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Abstract
The increasing availability of electronic health
records (EHR) offers significant opportunities
in data-driven healthcare, yet much of this data
remains fragmented, semantically inconsistent,
or incomplete. These issues are particularly
evident in tabular patient records where impor-
tant contextual information are lacking from
the input for effective modeling. In this work,
we introduce a system that performs ontology-
based entity alignment to resolve and complete
tabular data used in real-world clinical units.
We transform patient records into a knowl-
edge graph and capture its hidden structures
through graph embeddings. We further pro-
pose a meta-path sample generation approach
for completing the missing information. Our
experiments demonstrate the system’s ability
to augment cardiovascular disease (CVD) data
for lab event detection, diagnosis prediction,
and drug recommendation, enabling more ro-
bust and precise predictive models in clinical
decision-making.

1 Introduction

The amount of data stored as electronic health
records (EHR) in tabular format has grown signifi-
cantly in recent years, now including an immense
quantity of interactions, events and interconnected
information. As such, data integration will play a
transformative role in health information systems
for the years to come, bridging the gap between
research and applications. Existing machine
learning paradigms however cannot directly
operate on relational data due to the complex
structure of interconnected tables. Domain specific
algorithms therefore are in need for efficient and
robust processing of tabular EHR for use in clinical
decision making (Teng et al., 2020).

In recent years, graph representation learning
has been proposed as an approach for modeling
relational data where rows become nodes, columns

form node features, and primary-foreign key links
establish edges. To learn their underlying structure,
embedding models have been successfully applied
to capture hidden hierarchies for downstream
clinical tasks, such as comorbidity and readmission
prediction (Choi et al., 2020). In (Robinson
et al.), entity-level features are extracted and
embedded via Graph Neural Networks (GNN)
for training a task-specific model by adopting a
schema-less approach, modeling relational data as
a heterogeneous graph. While schema-less design
offers flexibility, it is less suited for integrating
external knowledge sources due to the absence of a
predefined structure (Yue et al., 2020).

In contrast, a fixed schema can be imposed
enabling seamless extension to external knowledge
sources which exist in the form of clinical and
biomedical ontologies. However, integrating
these sources necessitates ontology alignment
to resolve semantic ambiguities and maintain
coherent representations. In (Hao et al., 2021), a
graph representation learning approach is proposed
that maps tabular data sources to a domain specific
ontology in order to mitigate the presence of
ambiguous information. These models continue to
suffer from the inherent incompleteness, missing
values, and inconsistent codification from legacy
systems.

In this work, we propose a robust resolution-
alignment-completeness (RAC) system for consoli-
dating tabular EHR into semantically consistent
health knowledge graphs, using standard termi-
nologies aligned with medical ontologies. Unlike
prior schema-less, graph-based approaches, our
fixed schema approach prioritizes structural inte-
gration and scalability for enhancing predictive per-
formance by aligning domain-specific knowledge
with relational data. Our modular design consists
of the following components:
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Figure 1: Pathway Informed Generative Sampling and Table Representation through Resolution (R), Alignment (A),
and Completeness (C) modules: EHR entities are mapped to Basic Graph Patterns (BPG) of a reference schema,
clinical codes are resolved and aligned to SNOMED CT, and meta-path sampling augments representations with
missing and task-relevant knowledge.

◦ Resolution (R): In the first module, relevant
patient entities are extracted from a relational
data source and resolved/mapped via semanti-
cally equivalent identifiers and a fixed schema.
This module is responsible for identifying and
assigning types to data across patient visits
using concepts and relations from the fixed
schema. Subsequently, the semantically anno-
tated admission records are integrated into a
personal health knowledge graph as described
in subsection 2.1.

◦ Alignment (A): In the second module, the re-
sulting knowledge graph is transformed and
vectorized into a shared embedding space.
Through alignment of core concepts with a ref-
erence ontology, ambiguous representations
are semantically enriched and contextualized,
as described in subsection 2.2.

◦ Completeness (C): In the third module, the
aligned representations are further enhanced
by generating samples along upper ontology
concepts (i.e. meta-paths) in the knowledge
graph. The samples generate the augmented
graph that is used to complete missing infor-
mation given a prediction task, as described
in subsection 2.3.

We use the MIMIC repository for experimenta-
tion which contains data associated with distinct
hospital admissions concerning adult patients ad-

mitted to critical care units (Johnson et al., 2016).
In order to map patient relational records, we
use the Swiss Personal Health Network Schema
(SPHN)1 and a fine-tuned language model to pro-
cess the input data. The resulting health knowl-
edge graph is embedded using relational graph neu-
ral networks and aligned with the Systematized
Nomenclature of Medicine2 (SNOMED) as domain
knowledge graph. We test our framework for three
different down-stream clinical tasks, namely lab
event detection, diagnosis prediction, and drug rec-
ommendation. Our experiments demonstrate the
contributions from each component, namely se-
mantic annotation, schema-based entity resolution
and domain ontology alignment, to predictive per-
formance using precision, recall, and f1 scores as
classification metrics.

2 Method

The meta-path sampling framework proposed for
tabular EHR processing in this work, is shown
in Figure 1. Related entities from tables are ex-
tracted and mapped to the relevant parts repre-
sented by Basic Graph Patterns (BPG) in a refer-
ence schema. Rows (records) are assigned unique
identifiers and instances of the corresponding class
and column attributes are mapped to retrieved pred-
icates as triples. Clinical codes (e.g. ICD3, etc)

1https://biomedit.ch/rdf/sphn-schema/sphn
2https://www.snomed.org/
3https://icd.who.int/
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are assigned unique identifiers to resolve their se-
mantically equivalent instances and aligned with a
domain-specific ontology, namely SNOMED CT.
Lastly, the transformed records are embedded and
enriched using meta-pathway informed sampling
in order to augment their representations, including
missing and domain knowledge, as described in
the following subsections. Knowledge represented
through this system can ultimately be utilized to
complete the input data in tabular format.

2.1 Semantic Annotation
In this section we provide details related to the
Resolution module, including admission record
extraction, semantic annotation, and personal
health knowledge graph generation. The existing
records from the dataset are grouped according to
individual visits and by admission ID into separate
tables, thus taking an admission centric view. Sub-
sequently, records from each record are mapped
to concepts and relationships from a reference
schema using a pre-trained large-language model
(LLM) to generate typed entities and properties in
form of a personal health knowledge graph. The
steps to generate the latter, referred to as Semantic
Annotation, are shown in Figure 2.

More specifically, the tabular data are trans-
formed into a knowledge graph in this stage in
order to enable semantic interoperability required
in later stages. To this end, cell values are
given a type from a reference schema (column
annotation) and cell value pairs are linked through
a predicate from the reference schema (property
annotation). The mapping from the original
relational representations to entities linked with
reference predicates can be done using a pretrained
LLM (Dasoulas et al., 2023). The output is
further processed to produce a PHKG in Resource
Description Framework (RDF) format.

The steps for generating the transformed RDF
from tabular data using the LLM are summarized
in Algorithm 1. The records are processed and
mapped around core concepts C from the reference
schema (e.g. C = ‘Diagnosis’). Once the type of
the concept is identified, the basic graph pattern
(BGP) related to C given the record r is retrieved
(denoted by Cr). For each record, the LLM is
applied in several iterations to retrieve the entity
types e for each value and the predicate type p
between value pairs using the corresponding BGP.

Algorithm 1 Semantic Annotation with Pretrained
Large Language Model

Input: Single patient u records Ru, basic graph
patterns for core concepts C, LLM

Output: Personal Health Knowledge Graph Gu
for the patient

Initialize: empty graph Gu
1: for each record r inRu do
2: Cr ← LLM(r) ▷ Determine BGP
3: for each pair (ci, cj) in r do
4: (pij , ei, ej)← LLM(Cr, ci, cj)
5: Gu ← Gu ∪ (ci, pij , cj) ▷ Add edge
6: Gu ← Gu ∪ (ci, ei) ▷ Add type for ci
7: Gu ← Gu ∪ (cj , ej) ▷ Add type for cj
8: end for
9: end for

10: return Gu

Algorithm 2 Entity Alignment Between PHKG
and DSRO
Input: PHKG G = {V,E}, DSRO Gs =
{Vs, Es}, labeled nodes VL = {v1, . . . , vL},
unlabeled nodes VU = {vL+1, . . . , vL+U},
pretrained GCN encoder & decoder {ENC()
,DEC()}, threshold λ

Output: Alignment graph Galign

# Fine-tuning Step
Initialize: empty Ge and Gc

1: for vi in VL do
2: Ge ← Ge ∪ {(s, p+, vi) ∈ G}

∪ {(vi, p+, o) ∈ G} ▷ subgraph
3: Gc ← Gc ∪ {(s, p+, vi) ∈ Gs}

∪ {(vi, p+, o) ∈ Gs} ▷ subclass
# Update Encoder & Decoder

4: ENC,DEC← DEC(ENC(Ge),ENC(Gc))
5: end for

# Alignment Step
6: for vu in VU do
7: for vs in Vs do
8: s← DEC(⟨vu, vs⟩) ▷ score
9: if s > λ then ▷ threshold

10: Galign ← Galign ∪ {⟨vu, vs⟩}
11: end if
12: end for
13: end for
14: return Galign
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The generated types and predicates are added to the
personal health knowledge graph G and returned at
the end of the algorithm (Mehryar, 2025).

2.2 Ontological Matching
In this section we provide details related to
Alignment module, including extracting core
concepts, retrieving and encoding the correspond-
ing membership graphs, encoding patient health
knowledge graph, and alignment via graph neural
network decoding. We rely on a domain specific
reference ontology (DSRO) for the alignment task.
The coded clinical concepts for each patient are
first matched based on their label information
with core classes from the reference ontology,
non-exhaustively. Subsequently, the target classes
are enriched with RDF/s and Web Ontology
Language (OWL) hierarchical information,
forming a corresponding (subsumption) subgraph.
The subsumption graph along with the original
personal health knowledge graph are encoded
into a shared vector space and further decoded
to determine final alignments for Ontological
Matching, as shown in Figure 3.

More specifically, with Ontological Matching
the aim is to align codified information within
a personal health knowledge graph (PHKG)
according to structural and semantic information
of the DSRO required in later stages. To this end,
coded information pertaining to core concepts
(i.e. diagnosis, procedures, prescriptions etc) are
embedded using a graph convolution network
(GCN) encoder. The GCN encoder is used to
embed the source and target entities, including
membership information (i.e. sub- and super-
classes). The matching between two sets of
encoded representations is established through
the GCN decoder trained on labeled information.
For the unlabeled entities, the pretrained encoder
and decoder are applied to determine matching
pairs that score over a pre-specified threshold value.

The steps for generating alignment pairs
between the PHKG denoted by G and the DSRO
membership graph denoted by Gs, are summarized
in Algorithm 2. The labeled entities vi ∈ VL

are first extracted from both sources to produce
training graphs Ge and Gc, respectively. The
decoder is fine-tuned on these sets for alignment
task and by decreasing the distance between the
matching representations (i.e. update step). It is
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Figure 2: Semantic Annotation using a Large Language
Model (LLM), generating health knowledge graph given
input electronic health records (EHR) for a single pa-
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Figure 3: Ontological Matching using a layered
(from 1 to L) Graph Neural Network (GNN), gener-
ating matches between the entities in a health knowl-
edge graph (PHKG) in alignment with SNOMED CT
(SNMG) as domain ontology, to produce the enriched
knowledge graph (PHKG-MSN).

worth mentioning that nodes are not limited to
immediate neighbors (as denoted by p+ for one or
more property paths). Subsequently, the fine-tuned
encoder and decoder are applied to unlabeled
nodes VU . Each candidate pair is scored and added
to the set of alignment pairs Galign satisfying the
threshold λ.

2.3 Graph Augmentation

In this section we provide details related to
Completion module, including generating samples
from the aligned PHKG with respect to the
upper-level pathways. The generated samples
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following the upper level ontology concepts and
constraints produce the final augmented graph. In
particular we focus on generating samples missing
from the original PHKG along paths pertaining
to clinical observations (lab events), findings
(diagnosis), and substances (prescriptions). The
samples encode domain knowledge and satisfy
ontological constraints with respect to the DSRO
as described in the previous section. The generated
samples form an Augmented Graph, which may
be used to complete the information from original
input tables, as shown in Figure 1.

More specifically, the augmented graph is
generated for each admission following the
pathways that connect observations taken during
lab events, leading to outcome based diagnoses
and prescriptions. These core concepts form
the sampling meta-paths, informing the learning
process used in generating embeddings by the
GCN encoder. Given the range information for
each relation along a meta-path edge, the GCN
decoder can be used to predict target node types.
The predicted types capture the information
codified from the DSRO and can in turn be
translated into original table values.

The steps for generating a set of N node types
following L meta-paths denoted by {p1, · · · , pL}
are summarized in Algorithm 3. The unlabeled en-
tities {o1, · · · , oN} correspond to missing values
in the original table, initialized randomly to begin
with. Following the GCN training algorithm, for
each relation p on the meta-pathway we sample
the p-neighborhoods including the unlabeled enti-
ties. The encoder and decoder are fine-tuned on
these neighborhoods by decreasing the distance be-
tween the representations of path-wise neighbors.
Once the embedding representations are updated,
for each unlabeled node a score s is computed with
respect to the relation type p it appears in (as range).
The node type is added to the augmented graph
Gaug if it satisfies a threshold value λ.

3 Experimentation

In this section, extensive experiments are con-
ducted and reported for evaluating the proposed
framework towards aligning and completing tabular
EHR records. We report on dataset pre-processing
steps, semantic annotation accuracies, ontology
alignment results, and predictive performance for

Algorithm 3 Graph Augmentation with Meta-Path
Sampling

Input: Galign for patient u, L meta-paths
{p1, . . . , pL}, set of N blank nodes for
augmentation {o1, . . . , oN}

Output: Augmented graph Gaug

# Meta-path sampling
Initialize: empty graphs {G1, . . . ,GL}

1: for each predicate pl in {p1, . . . , pL} do
2: Gl ← Gl−1 ∪ {(s, p+l , o) ∈ Galign}

∪ {(s, p+l , o) | o ∈ {o1, . . . , oN}}
# Update encoder & decoder

3: ENC,DEC← DEC(ENC(Gl),ENC(Gl))
4: end for

# Augmentation step
5: for vj in {o1, . . . , oN} do
6: for each predicate p in {p1, . . . , pL} do
7: for vi in {(vi, p, vj) ∈ Galign} do
8: s← DEC(⟨vi, vj⟩) ▷ score
9: if s > λ then ▷ threshold

10: Gaug ← Gaug ∪ {(vi, p, vj)}
11: end if
12: end for
13: end for
14: end for
15: return Gaug
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Figure 4: Clinical Upper-level Concepts and Meta-
pathways. The highlighted edges indicate the causal
paths that inform the use case in our work.

lab event detection, diagnosis prediction, and drug
recommendation through precision (P), recall (R),
and f1 scores (F).

3.1 Datasets

We use the MIMIC repository containing tabular
data for patients to ultimately generate triples for
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training and evaluation purposes. In this work, we
limit the scope to records from patients that are
hospitalized for Cardiovascular Disease (CVD).
The relevant data are separated by admissions
encoded by ICD-9 code range 410-430, such as
428.22 (Chronic systolic heart failure), 428.23
(Acute on chronic systolic heart failure), 428.32
(Chronic diastolic heart failure), 428.33 (Acute on
chronic diastolic heart failure), 428.42 (Chronic
combined systolic and diastolic heart failure), and
428.43 (Acute on chronic combined systolic and
diastolic heart failure). These codes categorize
various forms and severities of heart failure
based on the systolic and diastolic dysfunction
of the heart. In ICD-10, these codes are largely
replaced by categories under I50 (Heart Failure).
To generate this subset, we identify and store the
admissions for those patients that have at least one
of the above ICD codes associated with them and
exclude items outside the above scope for our final
set of patients.

The tabular data used in this work are selected
and organized around four core themes, namely
Diagnosis, Procedures, Prescriptions, and Lab
Events. Although there are cases where extra
information such as transfers, provider source, and
notes exist, for the purposes of tabular processing
related to our use case we organize the data
under aforementioned core concepts. These four
concepts provide the pathways for most critical
care decision making (Mao et al., 2022). In
particular, lab events and procedures typically
inform diagnosis, while diagnosis decisions inform
prescriptions, causally speaking, as shown in
Figure 4.

In order to transform tabular data to knowl-
edge graph representation, SPHN4 is used as
a schema that defines core concepts and predi-
cates for modeling clinical patient records (i.e.
EHR). In particular, we focus on 13 core con-
cepts, namely, ‘LabTestEvents’, ‘LabResult’,
‘Code’, ‘DrugPrescription’, ‘Drug’, ‘Substance’,
‘Diagnosis’, ‘BilledProcedure’, ‘Administrative-
Case’, ‘SubjectPseudoIdentifier’, ‘MedicalProce-
dure’, ‘BodySite’, and ‘AdministrativeGender’. We
also consider an additional concept named ‘Pa-
tient’ in order to model the individual patients.
As for predicates, we model a total of 7, namely

4https://www.biomedit.ch/rdf/sphn-schema/sphn
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‘hasCode’, ‘hasLabTest’, ‘hasAdministrativeCase’,
‘hasSubjectPseudoIdentifier’, ‘hasDrug’, ‘hasAc-
tiveIngredient’, and ‘hasAdministrationRoute’ to
capture the relations between the entities. Addi-
tionally, we include ‘is a’ relation to indicate the
type assertions, ‘rdfs:subClassOf’ to indicate mem-
bership, and ‘owl:sameAs’ to indicate equivalent
codes.

3.2 Results

In the first set of experiments, we demonstrate the
effectiveness of the proposed semantic annotation
step (i.e. Algorithm 1) for predicting core concepts
in the BGP. We run the experiment for upto 5
iterations and measure the predictive precision
with 1, 3, 10, 15, and 20 records per core concept,
as shown in Figure 5. We observe that with 10 or
higher number of records and after 5 iterations, the
algorithm achieves satisfactory results. Once the
entities are annotated, the PHKG is generated in
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triple format.

The PHKG embeddings are learned with l con-
volution operators, each followed by a ReLu and
Dropout (p = 0.2) layer using the PyGeometric
library5. The hyperparameters are set by default
to batch_size=1024, learning_rate=0.005,
dropout=0.2, and regularization=1e-2. In
our experiments we create a separate train and test
split for each task at a random 80-to-20 ratio and
train a new model each time.

In order to find the effective model depth
for alignment and completion tasks, we run
algorithm 2 with different number of layers
l = {1, 2, 3, 4, 5} of the encoder and measure the
predictive precision, recall, and f-1 score of the
outcomes at threshold level λ = 0.5. We observe
as shown in Figure 6 that the models achieve the
best results up to and including three layers, past
which the performance begins to degrade. In the
following we set this hyper-parameter as l = 2.

The PHKG contains entities from one or
multiple coding systems - ICD for Diagnosis and
Procedures, LOINC for Lab and Observation
results, and NDC for Drugs and Substances.
On the other hand, SNOMED CT enables an
encompassing representation of clinical concepts
including diagnoses, procedures, observations and
substances. Aligning ICD, LOINC, and NDC
vocabularies to SNOMED CT allows the encoding
of patient data with contextualized representations
under one coding scheme, deemed crucial for
predictive tasks which we evaluate next.

In Figure 7, we demonstrate the results of
meta-path informed generative sampling in terms
of precision, recall, and f1-score according to
Algorithm 3. The progression of pathways follows
‘has lab code’ for LOINC code prediction, ‘has
diagnosis code’ for ICD code prediction, and ‘has
drug code’ for NDC drug prediction. For each
meta-path, the encoder and decoder are updated
for 30 iterations (i.e. a total of 90 iterations). It
can be observed with introduction of each new
pathway, that the scores exhibit a step function
behavior before converging within a window of 20
iterations. All in all, f1-scores of 0.984 , 0.862 ,
and 0.997 are achieved in this experiment for lab

5https://pyg.org/
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Figure 7: Performance scores on test data using the
meta-path sample generation of Algorithm 3, augment-
ing a personal health knowledge graph including 100
random admissions and following lab event (p1), diag-
nosis (p2), and prescription (p3) pathways.

event, diagnosis, and prescription code imputation.

We experiment further and report results for var-
ious down-stream prediction tasks using our graph
augmentation framework in Table 1. We provide
performance details in terms of three tasks, namely
lab event detection, diagnosis prediction, and drug
recommendation. Each task is defined as predict-
ing the corresponding code given the embedded
and aligned context from a particular admission
of a test patient. We experiment with both the
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Dataset
Size

Drug Recommendation Lab Event Detection Diagnosis Prediction
P R F P R F P R F

MIMIC III
DS100 0.99 ± 0.002 0.99 ± 0.002 0.99 ± 0.002 0.92 ± 0.009 0.91 ± 0.012 0.91 ± 0.013 0.87 ± 0.018 0.85 ± 0.022 0.85 ± 0.023
DS200 0.99 ± 0.002 0.99 ± 0.002 0.99 ± 0.002 0.87 ± 0.018 0.83 ± 0.031 0.82 ± 0.034 0.96 ± 0.009 0.96 ± 0.009 0.96 ± 0.009
DS300 0.99 ± 0.002 0.98 ± 0.002 0.98 ± 0.002 0.83 ± 0.010 0.73 ± 0.024 0.71 ± 0.029 0.96 ± 0.013 0.96 ± 0.014 0.96 ± 0.014
DS400 0.98 ± 0.002 0.98 ± 0.002 0.98 ± 0.002 0.84 ± 0.016 0.77 ± 0.033 0.76 ± 0.039 0.94 ± 0.021 0.94 ± 0.021 0.94 ± 0.021
DS500 0.98 ± 0.001 0.98 ± 0.001 0.98 ± 0.001 0.84 ± 0.012 0.78 ± 0.025 0.76 ± 0.029 0.97 ± 0.007 0.97 ± 0.008 0.97 ± 0.008

Average 0.99 ± 0.005 0.98 ± 0.005 0.98 ± 0.005 0.86 ± 0.034 0.80 ± 0.064 0.79 ± 0.074 0.94 ± 0.039 0.94 ± 0.048 0.94 ± 0.048
MIMIC IV

DS100 1.00 ± 0.002 1.00 ± 0.002 1.00 ± 0.002 0.95 ± 0.010 0.94 ± 0.013 0.94 ± 0.013 0.93 ± 0.011 0.92 ± 0.014 0.91 ± 0.014
DS200 0.99 ± 0.002 0.99 ± 0.002 0.99 ± 0.002 0.89 ± 0.021 0.85 ± 0.035 0.85 ± 0.038 0.98 ± 0.014 0.98 ± 0.015 0.98 ± 0.015
DS300 0.98 ± 0.004 0.98 ± 0.004 0.98 ± 0.004 0.89 ± 0.020 0.85 ± 0.033 0.85 ± 0.036 0.96 ± 0.014 0.96 ± 0.015 0.96 ± 0.015
DS400 0.98 ± 0.003 0.98 ± 0.003 0.98 ± 0.003 0.83 ± 0.020 0.74 ± 0.048 0.72 ± 0.061 0.94 ± 0.021 0.94 ± 0.022 0.94 ± 0.022
DS500 0.98 ± 0.002 0.98 ± 0.002 0.98 ± 0.002 0.87 ± 0.015 0.82 ± 0.027 0.81 ± 0.030 0.96 ± 0.010 0.96 ± 0.011 0.96 ± 0.011

Average 0.99 ± 0.008 0.99 ± 0.008 0.99 ± 0.008 0.89 ± 0.042 0.84 ± 0.070 0.83 ± 0.082 0.95 ± 0.019 0.95 ± 0.021 0.95 ± 0.025

Table 1: Performance evaluation of the proposed meta-path sampling generation algorithm for predictive tasks,
i.e. Drug Recommendation, Lab Event Detection, and Diagnosis Prediction. Different sizes of datasets are used,
including 100 to 500 admissions in each case (DS100-DS500) from both MIMIC III and MIMIC IV. Mean and
standard deviation over 10 separate runs are reported, in terms of precision (P), recall (R), and f1 score (F).

third and forth version of the MIMIC repository
(MIMIC III and MIMIC IV) and run the experi-
ment with different input sizes. In particular, we
generate graphs with randomly sampled data from
100, 200, 300, 400, and 500 distinct admissions
(i.e. DS100-DS500). It can be observed that the
models consistently achieve high performance in
precision, recall, and f1 score for each prediction
task and across different graph sizes.

4 Conclusions

In this work, a framework is proposed that trans-
poses the electronic health records from real-world
patients in tabular format with graphical represen-
tation using generative sampling. The represen-
tations are aligned with a domain specific ontol-
ogy to further disambiguate and contextualize. A
graph neural network that supports multi-relational
entities is trained and meta-path sampling is ap-
plied to generate missing information according
to upper-level ontological information. The gen-
eration process applied to tabular inputs related to
cardiovascular disease, achieve precision, recall,
and f1 scores in the ideal range for clinical data
augmentation and decision making.
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