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Abstract

We present OrQA, a novel agentic frame-
work to generate large-scale tabular question-
answering (TQA) datasets based on real-world
open data. Such datasets are needed to over-
come the limitations of existing benchmark
datasets, which rely on synthetic questions
or limited web tables. OrQA employs LLM
agents to retrieve related open data tables, gen-
erate natural questions, and synthesize exe-
cutable SQL queries—involving joins, unions,
and other non-trivial operations. By leverag-
ing hundreds of GPU hours on four NVIDIA
A100, we applied OrQA to Canadian and
UK government open data to produce 1,000
question-tables–SQL triples, a representative
sample of which has been human-validated.
This open-source dataset is now publicly avail-
able to drive transparency, reproducibility, and
progress in table-based question answering.

1 Introduction

The Open Data initiative aims to ensure trans-
parency and foster informed civic engage-
ment—e.g., for accessing data related to public
policy outcomes or monitoring phenomena of in-
terest. Such initiatives have significantly increased
the availability of publicly accessible tabular and
structured datasets, often referred to as open data
lakes, many of which are accessible through web
portals that facilitate discovery and reuse. How-
ever, these open datasets are typically published
with highly heterogeneous schemas, making their
integration into structured relational databases chal-
lenging. As a result, identifying tables that can be
meaningfully joined or unioned remains a difficult
task, limiting the ability to extract comprehensive
insights across multiple datasets. Furthermore, to
fully democratize the access to open data a Tabular
Question Answering (TQA) approach is desirable,
allowing users to issue queries through natural lan-
guage interfaces, removing technical barriers for

1

2

3

4

Figure 1: OrQA workflow: 1) Crawl tables; 2) Join/Union
table-pairs discovery; 3) pairs scoring with the Scorer agent; 4)
Analyst and Reviewer agents generate SQL and NL questions.

the user, such as query languages and data schema
understanding.

TQA has emerged as a crucial task in natural
language processing, enabling models to answer
questions using tabular data (Zhu et al., 2024).
TQA tasks can be divided into two main cate-
gories: (i) the older one, fine-tuning specialized
models tailored specifically for this task (Herzig
et al., 2020; Yin et al., 2020; Liu et al., 2022; Zhou
et al., 2022); (ii) the newer one, utilizes LLMs
to generate code capable of manipulating tabular
data (Yin et al., 2023; Liu et al., 2024; Zhang et al.,
2024). While these new LLM-based approaches
have shown impressive performance in reasoning
over a single table—where all pertinent informa-
tion is self-contained—they often struggle in more
complex scenarios that require reasoning across
multiple tables, including operations such as joins
and unions, which are essential for handling real-
world data (Zhu et al., 2024). Moreover, although
LLMs have demonstrated robust capabilities across
various natural language tasks, their evaluation
has largely been confined to QA datasets derived
from small, web-based tables (Pasupat and Liang,
2015; Iyyer et al., 2017; Zhong et al., 2017; Nan
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et al., 2022). This limitation arises from two key
challenges. First, real-world multi-table datasets
are not widely available, as many remain private
due to confidentiality concerns (Hulsebos et al.,
2023; Vogel et al., 2024). Second, dataset creation
has traditionally relied on crowdsourcing, which,
while effective, is slow, expensive, and difficult to
scale (Long et al., 2024).

LLMs have shown great potential to generate
synthetic datasets, providing a scalable alternative
to costly human annotation. They can create di-
verse training data that better reflects real-world
challenges, which is critical for model develop-
ment (Long et al., 2024). As a pivotal applica-
tion of LLMs, synthetic data generation holds sig-
nificant importance for the development of new
LLMs (Long et al., 2024). As of April 2025, over
519 tabular datasets on Hugging Face are labeled as
synthetic1 and have been employed for fine-tuning
or reinforcement learning applications (Guo et al.,
2025). Yet, ensuring both high accuracy and suffi-
cient variety in these datasets is challenging. Thus,
careful design and specific techniques are required
to guide the generation process toward the desired
outcomes.

Our Contributions
We present the Open Data retrieval and Question
Answering (OrQA)2 datasets generation workflow,
designed to create large-scale and completely new
datasets for end-to-end TQA evaluation using tab-
ular content from Open Data sources. We also
present a dataset generated with OrQA, which cov-
ers tables obtained from the Open Data portals of
Canada3 and UK4. The dataset includes questions
expressed in natural language, each of which is
associated with: (i) the table or set of tables con-
taining the required information (useful for evalu-
ating the retrieval phase of a TQA system); (ii) the
SQL query to obtain the answer from the table(s)
(useful for evaluating the generation phase of a
TQA system); (iii) a set of statistics for analysis
and inspections.

We built OrQA by designing an agentic work-
flow that exploits state-of-the-art data discovery
techniques to select high-quality joinable and
unionable tables, which are employed as seeds for

1https://huggingface.co/datasets?modality=
modality:tabular&other=synthetic

2https://anonymous.4open.science/r/orqa-B4BD
3https://open.canada.ca
4https://www.data.gov.uk/

generating synthetic pairs of natural language ques-
tions and SQL queries with LLMs agents—as de-
scribed in the following.

2 OrQA Overview

The OrQA workflow is designed to be easily ap-
plied to any Open Data portal and allows the user
to create a new dataset given a specific Open Data
endpoint. OrQA is composed of four main steps,
listed hereafter and explained afterward:

1. Data Crawling: to download both tables and
metadata from a given Open Data endpoint;

2. Candidate Table Pair Search: to yield candidate
pairs of related tables discovered through data
discovery tool;

3. Candidate Evaluation: to evaluate the candidate
table pairs with a multi-agent debate mechanism
to filter casual and unmeaningful cases;

4. Question Generation: the accepted pairs are
used as input to create the final dataset.

Data Crawling. During the first step, the user
specifies the Open Data endpoint of interest ex-
posing CKAN API 5, and from there, tables and
relative metadata are downloaded and stored for
the next steps.

Candidate Table Pair Search. Data discov-
ery algorithms from the BLEND framework (Es-
mailoghli et al., 2024) are applied to identify candi-
date pairs of related tables, which could be merged
with a join or union operation. BLEND is a
general-purpose framework for table discovery in
data lakes; after an indexing stage of the available
tables, it can efficiently retrieve results, based on
overlap metrics, related to a given query table. In
the OrQA workflow, each column of every table is
used as an input seed for BLEND, which returns K
candidate tables. This search could be limited up
to a user-specified budget. In initial experiments,
we observed that filtering less informative columns
was necessary to reduce noise Thus, for the datasets
generated for this paper, we filtered out columns
with less than 10 unique values and 30 rows, or
more than 80% of missing values.

Candidate Evaluation. An agentic step is per-
formed to assess for each candidate pair whether
the two tables are meaningfully related or not. A
team of AI agents assigns a numerical relatedness

5https://docs.ckan.org/en/latest
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score θ
over θ pairs
UK CAN

6 952 807
7 938 755
8 902 551
9 160 256

10 0 0

Table 1: Candidate join pairs evaluated with a score equal of
higher than the threshold, on a sample of 1000 pairs.

score (on a scale from 0 to 10, the highest being
the most related) to each pair, using a description
of each table, a small sample of rows, and other
available metadata obtained from Open Data por-
tals. Only pairs that achieve a score higher than
a predefined threshold θ are retained for the final
generation phase.

To assess this scoring system, user feedbacks
were collected over a sample of 100 random candi-
date pairs from the UK dataset. The results showed
an average difference of just 0.43 between human
and agent team scores, with a standard deviation of
1.45, p-value 0.0038. These findings suggest that
the agent-based evaluation scoring appears to be
comparable to the user’s when assessing how much
a couple of tables is related to limited information
and domain knowledge. In our experiments, we
set the minimum score θ to 8—as seen in Table
1—which significantly reduces the total number of
pairs that need to be processed in the final compu-
tational step.

Question Generation. An agentic workflow is
implemented to generate the final output: a team
of agents—composed of a natural language ques-
tion generator, a text-to-SQL coder, and relative
reviewers—is responsible for creating both an SQL
query and the corresponding natural language ques-
tion. For each pair of unionable or joinable ta-
bles validated in the previous steps, the team of
agents produces queries and questions for single
and multi-table cases. The coder agent receives in
input the tables’ metadata, a sample of their rows,
and the other specifications for the current task;
then it generates an SQL query, verifying its syntax
through a dedicated tool. Once the query is cre-
ated, the question generator agent outputs a natural
language question that accurately represents the
query’s intent. In both these previously described
stages, a reviewer evaluates the generated output:
until specific requirements are not satisfied, it asks
the relative generator agent to refine its output, pro-
viding suggestions for improvement. To prevent
excessively long computations when the generator

source tables # rows # columns
avg stdev avg stdev

UK 24404 22747 174497 52 628
CAN 31437 141714 1405456 17 168

Table 2: Statistics of the crawled tables.

difficulty type #queries

simple single-table 208
multi-table 104

moderate single-table 272
multi-table 97

challenging single-table 236
multi-table 83

Table 3: Generated queries per difficult level and type.

agent repeatedly fails, a maximum number of re-
views is set. In every natural language question, it
is ensured that useful references for retrieval tasks
on the Open Data portals are inserted—such as
remainders to significant keywords or to the or-
ganization that created the resource. We applied
OrQA with a maximum of 3 review cycles, a choice
that balances efficiency and accuracy, as additional
cycles yielded diminishing returns. Additionally,
given that many tables may contain a large number
of columns, we restrict the agent’s context to the
first to the first 20 columns—appending any neces-
sary columns as required. This assumes the first 20
columns contain enough information to generate
meaningful queries.

3 Generated Dataset

By employing OrQA, we generated a dataset con-
sisting of 1,000 natural language questions and
corresponding ground truth, derived from both UK
and Canada (CAN) open data portals—Table 2 re-
ports statistics collected from these portals.

To generate the dataset, we employed a GPU
node equipped with 4 NVIDIA A100 GPUs, each
of them with 40 GB of memory. We opted for
Qwen2.5 (Yang et al., 2025) family models as
LLMs for the evaluation and generation steps. In
particular, we used Qwen2.5-7b for the evaluation
team agents and Qwen2.5-32b and Qwen2.5-coder-
32b for the Natural Language and SQL generation
agents, respectively. With this setup, the creation of
the dataset from data crawling to the generation of
the final questions required almost 100 hours of to-
tal computation, with a large part of these dedicated
to crawling, indexing and candidate search.

Following (Li et al., 2024), we divided SQL
queries into three main categories, simple, moder-
ate and challenging, specifying to the coder agent
for each category what we expect, from simple fil-
tering clauses to window functions, grouping and
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measure group 2013 2016

canada child benefit
refundable tax credit

classified as
transfer payment

"" "16860"

employee benefit plans tax expenditure "n.a." "n.a."
logging tax credit tax expenditure "15" "25"

Table 4: Example rows from one Open Data table. The
columns "2013" and "2014" are not recognized by default
as numeric columns.

SELECT measure , \ " group \ " , SUM(
CASE WHEN r e g e x p _ m a t c h e s (

\ " 2013 \ " , ' ^ \ \ d+$ ' )
THEN CAST ( \ " 2013 \ " AS INTEGER)
ELSE 0 END

) AS t o t a l _ 2 0 1 3
FROM r _ d f GROUP BY measure , \ " group \ "

Listing 1: Example query with data wrangling operation. label

subqueries. Table 3 reports distributions of the
difficult levels for the generated collection. In addi-
tion to the question-query pairs, we provide several
metadata, which are valuable for future evaluations
of workflow efficiency. These include the number
of review, the time taken to generate both SQL and
natural language queries, and the number of tokens
exchanged by the underlying LLMs. We also re-
port the details of the final review and, in cases of
SQL generation failure, the error message from the
database engine to facilitate failure analysis.

Online Data Wrangling. One burdening chal-
lenge when working with Open Data is to ex-
tract meaningful information while facing data-
wrangling issues. In OrQA, the agent team
itself—in particular the pair of coder and code
reviewer—attempts to dynamically wrangle the
desired columns during query generation. As an
example, the table 4 contains the columns “2013”
and “2014”, whose values are initially recognized
as strings, due to the presence of missing values
(like "n.a.") and the empty string "" in the same
column. By interacting and analyzing the query
output, the agents are able to generate an SQL query
that solves this issue, as shown in listing 1.

4 Related Work

Text-to-SQL and Fact verification are well-known
topics in the literature, and several datasets have
been proposed and tested across different systems
and scenarios. Notable among these are Spider (Lei
et al., 2025) and BIRD (Li et al., 2024), two com-
prehensive Text-to-SQL benchmark datasets with a
wide range of difficult tasks based on real-world
data. However, they assume that the tables or
databases where needed information is stored are
already provided. As Retrieval Augmented Gen-

eration (RAG) systems gain relevance, there is
the need to address the retrieval phase with ded-
icated tabular benchmark datasets. While datasets
such as CRAG (Yang et al., 2024) and MTEB
(Muennighoff et al., 2023) focus on text embed-
ding, TARGET (Ji et al., 2024) represents a first
step toward benchmarking table retrieval. Its eval-
uates model performance using embedding-based
retrieval systems, assuming that tables are totally in-
dexed. However, in many real-world scenarios with
limited resources, making a complete pre-indexing
stage is unfeasible. Open Data are a significant ex-
ample of this case: their dynamic nature and scale
make it difficult to incorporate them into static
datasets, but their content could address several
types of use-cases. Final users, such as public ad-
ministrations or private citizens, typically need to
extract information from them without perform-
ing large computations. Although Open Data have
been widely used in previous years in the data dis-
covery literature, prior work has not focused on
downstream tasks, only on finding related tables.
In particular, LakeBench (Deng et al., 2024) is a
benchmark dataset for joinable and unionable ta-
ble discovery methods, which limits its scope to
identify subsets of related results given a query ta-
ble. Like OrQA, during benchmark preparation it
uses established data discovery tools to generate
candidate pairs of related tables, but in that case a
large human effort is used to evaluate them, while
in OrQA this is fully automated.

5 Conclusion and Future Work

We present OrQA, an agentic workflow to generate
new datasets for retrieval and question-answering
model evaluation based on Open Data tables. With
OrQA, we generated a dataset composed of 1,000
questions, which can be employed as realistic
benchmark for RAG systems targeting TQA on
Open Data.

We believe that our effort paves the way for fur-
ther research, since several open challenges have
not yet been addressed. For instance, semantic-
aware data discovery tools could provide more in-
teresting candidates for question generation. Addi-
tionally, the current workflow covers only questions
that involve one or two tables, while users’ needs
may require more complex patterns. Furthermore,
different datasets might correctly address the same
question and should be considered in the ground
truth.
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evaluation_prompt = f""" \
You are a helpful assistant in tabular data comprehension.
Your task is to evaluate pairs of candidate tables
for a SQL operation by providing a numerical score.
If given , reason on other assistants observations.
Limit your output to 50 words: your final answer should be
a single integer number , between {self._min_score} and {self._max_score}.
Respond with the form:
Answer: <your numerical score here >
Explanation: <your concise explanation >
---------------------------------------------------------------
The table '{r_rsc_name}' belongs to the package '{r_pkg_name}'.
This package is published by the organization '{r_org_name}',
that is '{r_org_desc}', under the jurisdiction '{r_jur}'.
The table description is: {r_pkg_notes}.
Keywords and tags about it are: {r_pkg_keywords}, {r_pkg_tags}.
Example rows with schema: {r_df_str}
---------------------------------------------------------------
The table '{s_rsc_name}' belongs to the package '{s_pkg_name}'.
This package is published by the organization '{s_org_name}',
that is '{s_org_desc}', under the jurisdiction '{s_jur}'.
The table description is: {s_pkg_notes}.
Keywords and tags about it are: {s_pkg_keywords}, {s_pkg_tags}.
Example rows: {s_df_str}
---------------------------------------------------------------
Define a relationship quality score for the two tables.
Focus on the meaningfulness of a potential operation between
the given tables.

"""

Listing 2: Candidate table pair Evaluator agent system and initial task prompts.

debate_prompt = f""" \
Using the evaluations from other agents as additional
information , provide your score to the current table pairs.
The original task is: {task}.
These are the evaluations from other agents:
One agent evaluation: {agent_evaluation}.
...
One agent evaluation: {agent_evaluation}.

"""

Listing 3: Candidate table pair Evaluator agent inter-debate prompts.
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query_generator_prompt = f""" \
You are a SQL coder assistant. Your task is to generate SQL
queries of different difficult levels.
A 'simple ' query involves just basic operations , like simple
WHERE clauses.
A 'moderate ' query could use also casting , string replacement ,
grouping functions and other forms of aggregations.
A 'challenging ' query may require window functions , subqueries
and other complex operations.
You are using DuckDB: if necessary , put column names inside
double -quotes , like "column_name ".
Do not cast FLOAT to REAL. If a VARCHAR attribute is similar
to a datetime , try to cast it to DATE or DATETIME.
When using regex operations , use proper options.
Use the given tool to validate your SQL query: your response
must be only a valid function call.
---------------------------------------------------------------
Given the following information:
Use 'R' to indicate the first table.
Its schema is:
{r_SQL_schema}
Example rows of R table:
{r_df_str}
---------------------------------------------------------------
Use 'S' to indicate the second table.
Its schema is:
{s_SQL_schema}
Example rows of S table:
{s_df_str}
---------------------------------------------------------------
Generate a {difficulty} SQL query based on the given tables.
Use only 'R' and 'S' to reference the tables.
The query must include a JOIN on the R column {r_col_name}
and on the S column {s_col_name}.
The new query must be different from previous queries:
{prev_SQL}.

"""

Listing 4: SQL Generator agent system and task prompts to generate multi-table SQL queries involving a JOIN operation. Prompts
for single and UNION queries are similar.
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question_generator_prompt = f""" \
Your task is to generate natural language questions , related
to tables from Open Data.
Pretend to be a user that is using Open Data search portals
and needs to get answers.
The questions you create must be fluent and human -like: do not
use SQL-like words , such as null or select.
Keep focus on join and union operations between tables , if any.
If available and meaningful , use the given keywords and tags.
Because a common Open Data user (as you , in this case) does
not know anything in advance about the final result , you can't
use terms like records , data , datasets , tables , csv , packages
and resources.
If values are used inside the SQL query , try to
understand what they means based on the given context: for
example , 'ref' may mean 'refused ' in a column about orders
status.
You must not use explicit table or column names into the
question.
Your response must be only the question , nothing else.
---------------------------------------------------------------
Consider the following information:
The table '{r_rsc_name}' belongs to the package '{r_pkg_name}'.
This package is published by the organization
'{r_org_name}', titled as '{r_org_title}' that is
that is about '{r_org_desc}', under the jurisdiction '{r_jur}'.
The table description is: {r_pkg_notes}.
Keywords and tags about it are: {r_pkg_keywords}, {r_pkg_tags}.
Example rows with schema: {r_df_str}
---------------------------------------------------------------
The table '{s_rsc_name}' belongs to the package '{s_pkg_name}'.
This package is published by the organization
'{s_org_name}', titled as '{s_org_title}' that is
about '{s_org_desc}', under the jurisdiction '{s_jur}'.
The table description is: {s_pkg_notes}.
Keywords and tags about it are: {s_pkg_keywords}, {s_pkg_tags}.
Example rows: {s_df_str}
---------------------------------------------------------------
Generate a natural language question which accurately
represents the SQL query {sql} on the given tables
and its aim.
Pay attention to all the clauses used into the query.
You must introduce into the question remainders to keywords ,
organization and other metadata.

"""

Listing 5: Natural Language question Generator agent system and task prompts to generate questions based on a multi-table
operation.
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query_reviewer_prompt = f""" \
You are a query reviewer.
You focus on the correctness of proposed SQL queries
or Natural Language Questions.
For the SQL, focus on the query syntax.
Consider that is used DuckDB syntax.
---------------------------------------------------------------
The problem statement is:
{message.SQL_task}
The proposed SQL query is:
{SQL_query}
The execution of this query is:
{execution_result}
Previous feedback:
{previous_feedback}
Revise the query if the execution was not successful.
In the query has given an error , check if:
- Previous feedback was not addressed.
- The query does not involve required columns (if any).
- The query is identical to any previously generated query.
Respond with the following format:
```json
{

"correctness ": <Your comments >,
"approval ": <APPROVE or REVISE >,
"suggested_changes ": <Your comments >

}
```

"""

Listing 6: SQL Reviewer system and task prompts.

quuestion_reviewer_prompt = f""" \
You are a query reviewer.
You focus on the correctness of proposed SQL queries
or Natural Language Questions.
For the SQL, focus on the query syntax.
Consider that is used DuckDB syntax.
---------------------------------------------------------------
The problem statement is:
{nl_task}
The proposed Natural Language Question is:
{nl_question}
Previous feedback:
{previous_feedback}
Don't approve the question if:
- Previous feedback was not addressed.
- The question is too generic (like 'What is the average

value?') or too simple (like 'Where is Canada?').
- The question seems to be uncorrelated to the current task.
- Columns and tables names are explicitly present into the

question.
- Columns required by the user are not correctly used (if any).
- The question use too specific terms , like 'tables ',

'datasets ', 'packages ', 'data ', 'records '.
Respond with the following format:
```json
{

"correctness ": <Your comments >,
"approval ": <APPROVE or REVISE >,
"suggested_changes ": <Your comments >

}
```

"""

Listing 7: Natural Language question Reviewer system and task prompts.
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