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Abstract

Tables are among the most widely used tools
for representing structured data in research,
business, medicine, and education. Although
LLMs demonstrate strong performance in
downstream tasks, their efficiency in process-
ing tabular data remains underexplored. In
this paper, we investigate the effectiveness of
both text-based and multimodal LLMs on ta-
ble understanding tasks through a cross-domain
and cross-modality evaluation. Specifically, we
compare their performance on tables from sci-
entific vs. non-scientific contexts and examine
their robustness on tables represented as im-
ages vs. text. Additionally, we conduct an in-
terpretability analysis to measure context usage
and input relevance. We also introduce the
TableEval benchmark, comprising 3017 tables
from scholarly publications, Wikipedia, and fi-
nancial reports, where each table is provided
in five different formats: Image, Dictionary,
HTML, XML, and I5TiEX. Our findings indicate
that while LLMs maintain robustness across ta-
ble modalities, they face significant challenges
when processing scientific tables.

1 Introduction

Tables are one of the most ubiquitous tools for pre-
senting data in a structured or semi-structured man-
ner. They are commonly represented in a variety of
textual (e. g., HTML, I&TEX, XML) or image for-
mats (e. g., PNG, JPEG) and used across domains
such as finance, medicine, and business, as well as
in research and education.

In recent years, there has been a growing interest
in table understanding (TU) techniques (Zhang and
Balog, 2020; Gorishniy et al., 2021; Sahakyan et al.,
2021; Borisov et al., 2022; Sui et al., 2024; Deng
et al., 2024), aiming to extract and interpret infor-
mation and knowledge contained in tables for tasks
such as question answering (QA) and table-to-text

generation (T2T) (Nan et al., 2022; Cheng et al.,
2022; Osés Grijalba et al., 2024; Zheng et al., 2024).
While large language models (LLMs) demonstrate
strong performance in a wide range of applications
(Chang et al., 2024; Raiaan et al., 2024; Caffagni
et al., 2024; Zhang et al., 2024a; Team et al., 2024;
OpenAl et al., 2024), their ability to understand
(semi-)structured data remains under-researched
(Sui et al., 2024; Fang et al., 2024) — especially for
tables from scientific sources such as peer-reviewed
articles, conference proceedings, and pre-prints.'
There is also limited research on the impact of the
representation modality of structured data (i. e., im-
age vs. text) on model performance (Deng et al.,
2024; Zhang et al., 2024d), and to the best of our
knowledge, there are no approaches yet that specif-
ically address scientific tables. In particular, most
TU studies primarily focus on tables from non-
scientific contexts such as Wikipedia (Parikh et al.,
2020; Chen et al., 2021; Marzocchi et al., 2022;
Wau et al., 2024b; Pang et al., 2024). However, com-
pared to these domains, scientific tables often in-
clude technical terminology, complex concepts, ab-
breviations, and dense numerical values, requiring
domain-specific knowledge and strong arithmetic
reasoning skills (Ho et al., 2024; Moosavi et al.,
2021). Recent works (Yang et al., 2025; Wu et al.,
2024a) indicate that scientific tables present chal-
lenges to multimodal LLMs (MLLMs) and incorpo-
rating such (semi-)structured data into pretraining
improves performance. As the number of published
articles continues to increase rapidly (Fortunato
et al., 2018; Bornmann et al., 2021; Hong et al.,
2021), TU for scientific contexts, e. g., for schol-
arly document processing including information
extraction and research knowledge graph construc-
tion, is becoming even more relevant. Finally, we

!"Throughout this paper, we refer to such tables as scientific
and to tables from other sources as non-scientific.
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Evaluate each (M)LLM on individual data subsets from TableEval using various table representations (Image, IATgX,
XML, HTML, Dict), 3. Apply interpretability tools to the output yielding post-hoc feature attributions (e. g., using
gradient-based saliency) which signify the importance of each token with respect to the model’s output.

notice that interpretability analysis (Ferrando et al.,
2024) for TU has received little attention and re-
mains underexplored (Fang et al., 2024).

In this paper, we address the aforementioned
gaps by examining the efficiency of both LLMs
and MLLMs on a set of TU tasks. Specifically, we
compare their ability to handle (semi-)structured
data from scientific and non-scientific sources and
explore the effects of image vs. diverse text-based
table representations on model performance. We
also conduct feature importance analyses to inter-
pret the use of context information in LLMs. Fig-
ure 1 illustrates the main phases of our experiments.

Our contributions can be summarised as follows:

* We introduce TableEval, a cross-domain
benchmark containing 3017 tables from schol-
arly publications, Wikipedia, and financial
reports, available in image and four text
formats (Dictionary, HTML, XML, and
I5TEX). The dataset is publicly available on
Hugging Face: https://huggingface.co/
datasets/katebor/TableEval

* We conduct an extensive evaluation revealing
that, although current (M)LLMs remain ro-
bust across table modalities, their performance
significantly declines on scientific tables com-
pared to non-scientific ones.

* We examine the applicability of gradient-
based explanations for LLMs (Sarti et al.,
2023) to TU to learn about the relevance of
table content in prompts.

2 TableEval benchmark

Since no existing dataset covers both scientific and
non-scientific tables across text and image modali-
ties, we construct a benchmark tailored to our evalu-
ation. This section outlines the collection processes
of data (§2.1) and diverse table formats (§2.2).

2.1 Source data

To study the cross-domain performance of
(M)LLMs, we developed the TableEval benchmark
by leveraging pre-existing datasets of scientific and
non-scientific tables. We collected relevant datasets
based on the following criteria: 1. data is open-ac-
cess; 2. test set with the gold labels is available;
3. metadata includes references to the sources of ta-
bles, such as DOIs for scholarly papers or URLSs for
Wikipedia pages; 4. target tasks (e. g., QA, T2T) are
identical or very similar across datasets to maintain
consistency and ensure comparability; 5. tables can
be converted to the pre-defined formats (see §2.2).
The following five datasets were selected (see Ta-
ble 1): (a) ComTQA (Zhao et al., 2024), a vi-
sual QA (VQA) benchmark containing tables from
PubTables-1M (Smock et al., 2022) and FinTab-
Net (Zheng et al., 2020), originating from PubMed
Central> (PMC) papers and annual earnings reports,
respectively. The annotations are generated using
Gemini Pro (Team et al., 2024) and include ques-
tions requiring multiple answers, calculations, and
logical reasoning. (b) numericNLG (Suadaa et al.,
2021), a dataset focusing on the T2T generation
task with numerical reasoning based on tables and

Zhttps://pubmed.ncbi.nlm.nih.gov
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Dataset Task Source Image Dict KIgX HTML XML
Scientific tables
ComTQA (PubTables-1IM) VQA PubMed Central < Lo © o vl
numericNLG T2T ACL Anthology & < o < o
SciGen T2T arXiv and ACL Anthology il & il ot o
Non-scientific tables
ComTQA (FinTabNet) VQA Earnings reports of S&P 500 companies € o o o o
LogicNLG T2T Wikipedia Lo 54 < Lo 54 ] Lo 4
Logic2Text T2T Wikipedia o & o @ o

Table 1: Overview on the formats and collection methods for each dataset. Symbol & indicates formats already
available in the given corpus, while €2 and £ denote formats extracted from the table source files (e. g., article PDF,
Wikipedia page) and generated from other formats in this study, respectively.

their textual descriptions extracted from ACL An-
thology? articles and annotated by experts in the
Computer Science field. (c) SciGen (Moosavi et al.,
2021), a corpus designed for reasoning-aware T2T
generation, comprising tables from arXiv* papers
across fields such as Computation and Language,
Machine Learning, Computer Science, Computa-
tional Geometry, etc. Its test set contains expert-an-
notated data. (d) LogicNLG (Chen et al., 2020a), a
T2T dataset of open-domain tables from Wikipedia
and associated with manually annotated natural lan-
guage statements that can be logically entailed by
the given data. (e) Logic2Text (Chen et al., 2020c),
features open-domain Wikipedia tables manually
annotated with descriptions of common logic types
and their underlying logical forms for the T2T task.
As shown in Table 1, the final TableEval corpus
contains six data subsets, covering two downstream
tasks (QA and T2T), and comprising 3017 tables
and 11312 instances in total (for the detailed statis-
tics see Table 4 in Appendix A). All annotations
are taken from the source datasets. Examples from
each dataset are provided in Appendix B.

2.2 Table formats

We represent tables from each TableEval subset as
PNG images and in structured or semi-structured
textual formats including HTML, XML, IATEX, and
Python Dictionary (Dict) to analyse LLMs’ per-
formance across different modalities. HTML is
chosen as it is the original format of Wikipedia ta-
bles, XML for its use in encoding tables from PMC
articles, I&IEX as it is the primary format for scien-
tific tables, and Dict since it is readily available in
most source datasets. Instances of tables in various

3https ://aclanthology.org
*https://arxiv.org

representation formats were obtained using one of
the following methods (see Table 1): 1. extraction
from the original dataset; 2. extraction from the
table source (e. g., article PDF); 3. generation from
other formats (e.g., HTML < XML). Note that
for the latter two, we manually validate the final
results for each format and data subset by check-
ing a random sample of about 100 instances. In
what follows, the way we assembled each table for-
mat in the TableEval corpus is described in detail.
Additional information is provided in Appendix C.

Image. Since the PubTables-1M subset of
ComTQA already includes JPGs of tables, we
simply convert them to PNGs. In contrast, other
datasets provide only textual representations of
tables. Thus, for numericNLG and SciGen, we
first collect PDF files of the arXiv and ACL pa-
pers, and then use the PDFFigure2.0 (Clark and
Divvala, 2016) tool to extract images of tables.’
Whenever PDFFigure2.0 fails to produce an image,
we utilise the MinerU tool (Wang et al., 2024) as
an alternative. Note that SciGen instances asso-
ciated with papers that are no longer open-access
or do not contain tables are excluded. In case of
FinTabNet, images of tables are extracted from the
corresponding PDF pages of financial reports us-
ing the gold annotations of the bounding boxes.
Finally, images of the Wikipedia tables in Logic-
NLG and Logic2Text are generated by converting
their HTML representations into PNG files with
the imgkit Python wrapper®. Distribution of image
aspect rations across data subsets is provided in
Figure 12 in Appendix D.

XML and HTML. PubTables-1M is the only
dataset where the original XML sources of tables

3In SciGen, some PDFs are taken from the ACL Anthology

as they are no longer available on arXiv.
6https: //pypi.org/project/imgkit/
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can be obtained. To achieve this, we retrieve the
source papers based on their PMC ID using the
E-utilities API” and extract the tables with the Ele-
mentTree parser®. When it comes to HTML, we are
unable to retrieve the original format since system-
atic downloading of article batches from the PMC
website is prohibited’. This is why we generate
HTML from XML using a custom Python script
instead. Similarly, for numericNLG, we convert
already available HTML into XML with a Python
script. For SciGen, we download the source IATEX
code of each paper from arXiv, use the IAIEXML
tool'? to produce both XML and HTML, and ex-
tract tables from the resulting files. In contrast,
we construct HTML for FinTabNet tables by lever-
aging gold annotations of HTML structure which
provide tags and associated cell values. Afterwards,
the HTML code is converted to XML in the same
way as described for numericNLG. Finally, HTML
in LogicNLG and Logic2Text are collected from
the respective Wikipedia pages, while the XML
format is obtained using the same approach applied
to numericNLG and FinTabNet.

IATEX. For SciGen, we obtain the I&TEX code
directly from the source files of the papers. In
contrast to arXiv data, no I&IEX code is available
for PMC and ACL papers. Thus, we generate ISTEX
for numericNLG and PubTables-1M tables from
their HTML representations. To ensure the validity
of the output, we compile the code and resolve any
errors encountered. The same approach is used to
obtain IATEX for Wikipedia and financial tables.

Dictionary. All datasets except ComTQA al-
ready include linearised tables represented as lists
of column headers and cell values, although the en-
coding conventions slightly vary across them (see
Appendix C). To align with these datasets, we col-
lect column headers, subheaders, and cell values for
the PMC subset in ComTQA by parsing the table
XML code with ElementTree. In case of FinTab-
Net, we extract these elements from a dataframe
representation of each table obtained during the
HTML collection phase. For the experiments, the
linearised tables are represented as a Dict contain-
ing lists of column headers, lists of subheaders (if
extracted), lists of rows, as well as title, caption,

7https://www.ncbi.nlm.nih.gov/home/develop/
api/
8https://docs.python.org/3/library/xml.etree.
elementtree.html#
9https://pmc.ncbi.nlm.nih.gov/about/copyright/
Ohttps://math.nist.gov/~BMiller/LaTeXML/

and footnote (if available).

3 Experiments

We benchmark various (M)LLMs using individ-
ual data subsets and representations of tables from
TableEval. This is followed by an interpretability
analysis applied to the output yielding attributions
from a gradient-based method. In the following, we
first describe the experimental set up (§3.1), then
report and analyse the results (§3.2).

3.1 Experimental setup

Models. We evaluate both smaller and larger
models in terms of parameter size (3-14 billion),
see Table 2.!! We primarily focus on open-source
instruction-tuned (M)LLMs published on Hug-
ging Face'? (HF). The only closed-source model
we use is Gemini-2.0-Flash (Team et al., 2024),
which serves as our baseline, since Gemini is cur-
rently considered among the state-of-the-art. For
MLLMs, we select LLaVa-NeXT (Li et al., 2024),
Qwen2.5-VL (Bai et al., 2025), and Idefics3 (Lau-
rencon et al., 2024). As for text-based LLMs,
we evaluate Llama-3 (Grattafiori et al., 2024),
Qwen2.5 (Qwen et al., 2025), and Mistral-Nemo!3.

Model HF checkpoint Size (B) Vision
Gemini-2.0-Flash — - v
LLaVa-NeXT 1lama3-1lava-next-8b-hf 8 v
Qwen2.5-VL-3B-Instruct 3 v
Qwen2.5-VL Qwen2.5-VL-7B-Instruct 7 v
Idefics3 Idefics3-8B-Llama3 8 v
Llama-3 Llama-3.2-3B-Instruct 3 %
Qwen2.5-3B-Instruct 3 X
Qwen2.5 Qwen2.5-14B-Instruct 14 x
Mistral-Nemo Mistral-Nemo-Instruct-2407 12 X

Table 2: (M)LLMs used in the experiments (“Size” in-
dicates the number of parameters in billions).

Prompts and data. We run experiments on every
data subset from the TableEval corpus and develop
prompt templates that are customised to each task,
applying them uniformly across all models to en-
sure consistency during the evaluation. To study
the models’ true capability to understand various ta-
ble representations, we exclude explicit document
type indicators (e. g., HTML/XML headers) and
do not specify the format in the prompt. Addition-
ally, given the diversity of the (M)LLMs and the
fact that they may not always adhere to a specific
""Dye to limited computational resources, we restricted the
evaluation to (M)LLMs with up to 14 billion parameters.

Zhttps://huggingface.co
Bhttps://mistral.ai/news/mistral-nemo
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Figure 2: BertScore.F1, MoverScore, ROUGE-L.F1, and METEOR for the table formats averaged over data subsets
and models (left), and for scientific vs. non-scientific domain averaged over data subsets, models, and formats

(right). Error bars indicate standard deviation.

output structure (which can hinder proper parsing
of the answer), we do not enforce a particular re-
sponse format. The prompt templates are provided
in Appendix E.

Evaluation metrics. We follow the scores re-
ported in the original papers for each data sub-
set. Thus, we compute BLEU-N (Papineni et al.,
2002), SacreBLEU (Post, 2018), METEOR (Baner-
jee and Lavie, 2005), ROUGE-N, ROUGE-L (Lin,
2004), MoverScore (Zhao et al., 2019), BertScore
(Zhang* et al., 2020), and BLEURT (Sellam et al.,
2020). Given the extensive set of metrics, we report
only BertScore.F1, MoverScore, ROUGE-L.F1,
and METEOR in the main text, while providing all
raw score values in Appendix F.

Interpretability analysis. Inseq (Sarti et al.,
2023) applies feature attribution methods to gener-
ative LLMs to highlight how important each token
in the input is for generating the next token with
the help of a heatmap. In our experimental setup,
we perform post-hoc analyses using the model out-
puts as custom attribution targets on an instance
level. Input x Gradient (Simonyan et al., 2014),
provided by Inseq, is selected as it is both com-
putationally efficient and more faithful than, e. g.,
attention weights. The saliency is averaged to pro-
duce a one-dimensional vector of token attributions,
which we visualise as a heatmap.

Implementation details. All experiments are
conducted in a zero-shot setting using the
(M)LLMs’ default hyperparameters with the seed
value set to 42. We choose the batch size equal
to 1 for all open-source (M)LLMs and to the size
of the given subset for Gemini-2.0-Flash. We use

Nvidia A100 (40GB, 80GB), H100 (80GB), H200
(141GB), and L40S (48GB) GPUs for the open-
source models depending on the given LLM and
TableEval subset size. The Gemini-2.0-Flash re-
sults are evaluated using the Batch API through the
LiteLLM framework'4. We developed an end-to-
end evaluation pipeline!’ for the experiments and
use HF transformers or LiteLLM and the datasets li-
brary to load the models and datasets, respectively.

3.2 Results and analysis

Image vs. text. Averaged score values across
models and data subsets for each table format are
given in Figure 2 (left), whereas raw results are
shown in Table 5 in Appendix F. The use of images
outperforms the use of text across all metrics by
approximately 1-13%. In particular, for ComTQA
and LogicNLG, image achieves the best results,
while for other data subsets the outcomes are ei-
ther similar or the text modality prevails (by about
1-10%), as shown in Figure 3 a) and Tables 6-11
in Appendix F. This aligns with previous studies
(Deng et al., 2024) reporting comparable or signifi-
cantly better performance of models on the vision
modality. Unlike prior works (Sui et al., 2024;
Singha et al., 2023; Deng et al., 2024), we do not
observe a large variation in results across LLMs
and the four text formats, with the maximum gap
equal to about 4%. Further analysis of the metrics
for individual models and formats also indicates
similar accuracy across the LLMs, see Figure 3 b)
and Tables 12-16 in Appendix F. Hence, our find-

14https://www.litellm.ai
15https://github.com/esborisova/
TableEval-Study
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Figure 3: Values of BertScore.F1, MoverScore, ROUGE-L.F1, and METEOR a) for individual data subsets and
all formats averaged over models, and b) for individual models and text formats averaged over data subsets. Error
bars indicate standard deviation. Here “Fin” stands for FinTabNet, “PMC” denotes PubTables-1M, while “_1lm”

indicates text input for Gemini-2.0-Flash.

ings suggest that current models are less sensitive
to diverse text representations of tables. Such out-
comes may be attributed to LLMs’ exposure to data
encoded in the given formats during pretraining.

Scientific vs. non-scientific. The results for each
domain are shown in Figure 2 (right) and Table 17
in Appendix F. The findings indicate that LLMs are
more efficient on TU tasks from the non-scientific
split, achieving a score boost of up to 34%. The
best score values are obtained for LogicNLG fol-
lowed by Logic2Text, see Figure 4 (left) and Ta-
ble 18 in Appendix F.

We hypothesise that this difference could arise
from (a) the complexity level of the given data
and the target task; (b) lack or sparsity of the data

from scientific contexts in the pre-training corpus
of (M)LLMs. In numericNLG and SciGen, the goal
is to generate a coherent paragraph or a collection
of paragraphs summarising the table’s content. In
contrast, both LogicNLG and Logic2Text involve
producing a single statement, filling in masked en-
tities in a sentence and generating text based on
a logical form, respectively. Furthermore, accord-
ing to Moosavi et al. (2021), SciGen is charac-
terised by a higher level of complexity than Log-
icNLG. This is because each gold description in
SciGen summarises the entire table content and
involves multiple types of reasoning, whereas, in
LogicNLG each statement often focuses on a sub-
set of table rows and is associated with a single type
of reasoning. Similar to LogicNLG, Logic2Text
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Figure 4: BertScore.F1, MoverScore, ROUGE-L.F1, and METEOR for each data subset averaged over table formats
and models (left), and for individual models averaged over data subsets and formats (right). Error bars indicate
standard deviation. Here “Fin” stands for FinTabNet, “PMC” denotes PubTables-1M, while “_Ilm” and “_mm” are
used to distinguish between text and image input for Gemini-2.0-Flash, respectively.

descriptions involve only one type of logic. No-
tably, comparable performance is achieved across
models for both subsets in ComTQA, with the gap
in scores equal to about 1-3% (except for a 17%
higher BLEURT score for PubTables-1M). Given
that ComTQA was also proposed as a more chal-
lenging benchmark compared to existing datasets,
comprising questions with multiple answers, nu-
merical, and logical reasoning, the lower perfor-
mance of (M)LLMs could lie in the complexity of
the data as well. Finally, reasoning over scientific
tables requires in-domain knowledge, the absence
of which likely contributes to a decline in accuracy
for the respective TableEval subsets.

Comparison of (M)LLMs. Figure 4 (right) and
Table 19 in Appendix F outline results for individ-
ual models. Among MLLMs, Gemini-2.0-Flash
and Idefics3 perform best, with the former out-
performing the latter on BLEU-N, BLEURT, ME-
TEOR, ROUGE-3, and ROUGE-4 (by 1-4%). Next
in the ranking are Qwen2.5-VL models and LLaVa-
NeXT. For LLMs, Gemini-2.0-Flash obtains the
highest score values, followed by Mistral-Nemo.
Qwen2.5 models rank next with the 3B version
achieving either similar or slightly better results
than its 14B counterpart. On the contrary, Llama-3
consistently shows the weakest performance. We
observe that on average, Idefics3 tends to generate
concise responses with the shortest outputs pro-
duced for QA task (e.g., just a numeric value),
whereas other models provide longer outputs. A
similar trend is observed for LLMs, with Gemini-
2.0-Flash providing shorter predictions compared
to other models. Table 3 outlines the statistics on

prediction lengths for each (M)LLM. Additionally,
Figure 15 (Appendix F) illustrates the mean lengths
for each model and data subset, while Figure 16
(Appendix G) demonstrates prediction examples.
Since we do not postprocess the models’ outputs,
such difference in response length can contribute to
the discrepancy across (M)LLMs in BLEU-N and
ROUGE-N, which rely on n-gram overlap. Overall,
our evaluation indicates that open-source models
still remain behind the closed-source Gemini-2.0-
Flash. On another note, we could not observe any
correlation between model size and accuracy.

Model Mean Min Max
Idefics3-8B-Llama3 139 0 4416
Qwen2.5-VL-3B-Instruct 360 2 4170
Qwen2.5-VL-7B-Instruct 292 4 3464
llama3-1lava-next-8b-hf 311 24 6336
Gemini-2.0-Flash_mm 207 2 3097
Gemini-2.0-Flash_llm 259 0 10282
Llama-3.2-3B-Instruct 464 22 5626
Mistral-Nemo-Instruct-2407 303 21 2941
Qwen2.5-14B-Instruct 481 29 4154
Qwen2.5-3B-Instruct 465 26 4535

Table 3: Statistics on the mean, minimum, and maxi-
mum prediction lengths (in characters) for each model
across TableEval subsets. Blue and pink colours
highlight the lowest and highest values in each column,
respectively. Here “_llm” and “_mm” are used to dis-
tinguish between text and image input for Gemini-2.0-
Flash, respectively.

Interpretability. We choose instance-level anal-
ysis because dataset-level statistics tend to flatten
important nuances, especially in generative settings
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Figure 5: Interpretability analysis using Input x Gradient on Mistral-Nemo (correct prediction) and Llama3 (incorrect
prediction) for a ComTQA (FinTabNet) instance with the Dict format. The gold answer to the given question is
“decrease of $94.1”. Redder highlights correspond to higher importance. The prompts are abbreviated in the middle,
indicated with the dashed line. In addition, for the output, we visualise the log-probabilities representing the model’s

confidence (dark green = very confident).

without a finite number of classes (Ronnqvist et al.,
2022). Due to computational and visualisation con-
straints, we selected four ComTQA and two Log-
icNLG instances. The former was chosen for its
shorter reference and prediction lengths compared
to other subsets, while the latter was selected for
achieving the highest scores across LLMs. We com-
pare the best (Mistral-Nemo) and worst (Llama3)
performing open-source LLMs. !¢

Figure 5 shows saliency maps as determined by
the Input x Gradient explainer and log-probabilities
for the generation (see §3.1). In this ComTQA
(FinTabNet) example, with the table represented as
a Dict in the input, we first notice that positive at-
tributions are generally sparse due to the saturation
problem (Shrikumar et al., 2017) and potentially
the long context. Llama3 puts most attribution to-
wards start and end of the prompt and the row value
mentioned in the question (“Routing”). Mistral-
Nemo, on the other hand, focuses much more on
the year columns that are relevant to answering
the question correctly. A key difference also lies
in the tokenisation: While Mistral-Nemo splits all
numbers into single digits, Llama3 often uses three-

16Saliency maps for these examples, along with additional
instances, are available also in our GitHub repository.

digit tokens where the fourth digit of a year is cut
off. We assume that this makes it harder for Llama3
to process the marginal differences correctly.

The log-probabilities for the generated tokens
are a proxy for the model’s confidence. Here, we
observe high uncertainty in Llama3 generating the
core of the answer, the number token “42”, which
is incorrect. Mistral-Nemo, on the contrary, cor-
rectly answers the question and we can see that it is
certain about it from the high log-probabilities. Ad-
ditionally, the model shows high confidence in the
row “Routing” and column “Change” as the loca-
tion of the answer, which indeed corresponds to the
true position of the value (see also Figure 22 in Ap-
pendix H). At the same time, it is uncertain about
optional, meaning-preserving generations such as
the token “provided” as a qualifier for “fable” and
the beginning of the second sentence following the
answer which serves as a rationale for the model’s
decision-making (Lu et al., 2024).

Appendix H shows five more examples for
ComTQA and LogicNLG instances. We also ob-
serve a repeating pattern of the start and end of
a prompt being attributed the most. While these
observations are based on a small set of instances,
our pipeline enables computing saliency maps for
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any combination of prompt, input format, model,
and dataset in future experiments.

4 Related work

Earlier TU studies leverage LLMs by represent-
ing tables as sequential text, either through naive
linearisation or by incorporating delimiters and spe-
cial tokens (Fang et al., 2024). Some works focus
on fine-tuning LLMs to enhance TU (Zhang et al.,
2024c,b; Herzig et al., 2020; Yin et al., 2020; Gong
et al., 2020; Iida et al., 2021), while others explore
LLMs’ table reasoning abilities through prompt
engineering (Zhao et al., 2023; Chen, 2023; Sui
et al., 2024). However, compared to natural lan-
guage, tables present unique challenges to LLMs
due to their varying layout structures, feature het-
erogeneity, and a large number of components lead-
ing to excessively long sequences (Borisov et al.,
2022). The latter is particularly problematic, as
most LLMs become inefficient due to the quadratic
complexity of self-attention (Vaswani et al., 2017).
With recent advances in vision and multimodal-
ity research, using MLLMs for TU has gained in-
creasing attention with models like GPT-4 (OpenAl
et al., 2024) and Gemini (Team et al., 2024), be-
ing widely adopted. Although, similar to LLMs,
MLLMs also struggle with understanding struc-
tured data (Zheng et al., 2024).

Several studies examine the impact of the ta-
ble representation on models’ efficiency, indicating
that different table formats suit specific TU tasks
and LLMs at hand (Deng et al., 2024; Sui et al.,
2024; Zhang et al., 2024d; Singha et al., 2023). For
instance, Sui et al. (2024) find HTML and XML
being better understood by GPT models than Mark-
down, JSON, and natural language with separators
encoding. In contrast, Singha et al. (2023) observe
that using HTML leads to lower performance for
the fact-finding and transformation tasks compared
to dataframe-based and JSON formats. Meanwhile,
Deng et al. (2024) analyse how models’ reasoning
abilities vary when tables are represented as text
vs. images showing that Gemini Pro and GPT-4
perform similarly across both modalities.

While these studies offer insights into the ef-
fectiveness of (M)LLMs in interpreting structured
data across formats, they focus primarily on non-
scientific contexts like Wikipedia and finance. This
is likely due to the abundance of established, large-
scale datasets based on tables from these sources,
including WikiTables (Bhagavatula et al., 2015),

ToTTo (Parikh et al., 2020), and TabFact, (Chen
et al., 2020b), to name a few. Furthermore, inter-
pretability for TU tasks remains under-researched,
as related works mainly consider unstructured
text and are disconnected from downstream ap-
plications (Ferrando et al., 2024; Tenney et al.,
2024), rarely focusing on other long-form tasks like
retrieval-augmented generation (Qi et al., 2024) or
QA (Enouen et al., 2024). Nguyen et al. (2025)
use attributions to make tabular QA explainable
but they are constrained to the text-to-SQL setup.
Unlike prior studies, this paper focuses on cross-
domain and cross-modality evaluation, comparing
the performance and explanations of (M)LLMs on
both scientific and non-scientific tables, covering
image and diverse text representations of tables.

5 Conclusion

We conducted an evaluation study to explore the
robustness of diverse (M)LLMs on scientific vs.
non-scientific tables across image and four text for-
mats. The findings reveal that current models ob-
tain decent performance across both vision and text
modalities but significantly struggle with scientific
tabular data. Additionally, we explored the appli-
cability of interpretability methods to TU tasks to
get insights into the decision-making of LLMs. We
found feature attributions to be a useful tool for
revealing model uncertainty, its attention to table
structure and relevant content, and tokenisation dif-
ferences which might potentially affect predictions.

Limitations

Although this study provides insights into the
strengths and limitations of (M)LLMs in under-
standing tables, it has several limitations. First, we
use the same prompts across (M)LLMs and do not
postprocess the predictions which may contribute
to lower score values. Experimenting with model-
specific prompts and structured outputs using tools
such as Jsonformer!” could lead to better results.
Second, we rely on automatic metrics, the draw-
backs of which have been well-documented previ-
ously (Schmidtova et al., 2024; Gehrmann et al.,
2023). Third, we focus only on interpretability
for the text input, while methods like CC-SHAP
(Parcalabescu and Frank, 2025) remain the next
step to measure the importance of each modality
in MLLM decision-making. Fourth, annotating
all subsets in TableEval for a common task and

"https://github.com/1rgs/jsonformer
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evaluating (M)LLMs on the entire corpus could be
beneficial and we leave it for future work. Finally,
the dataset is limited to the English language and
thus does not allow for the assessment of multilin-
gual TU.
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A Dataset statistics

Image Dict IAIEX HTML XML
Dataset Instances Tables Instances Tables Instances Tables Instances Tables Instances Tables
Scientific tables
ComTQA (PubTables-1M) 6232 932 6232 932 6232 932 6232 932 6232 932
numericNLG 135 135 135 135 135 135 135 135 135 135
SciGen 1035 1035 1035 1035 928 928 985 985 961 961
Total 7402 2102 7402 2102 7295 1995 7352 2052 7328 2028
Non-scientific tables
ComTQA (FinTabNet) 2838 659 2838 659 2838 659 2838 659 2838 659
LogicNLG 917 184 917 184 917 184 917 184 917 184
Logic2Text 155 72 155 72 155 72 155 72 155 72
Total 3910 915 3910 915 3910 915 3910 915 3910 915

Table 4: Data distribution in the TableEval corpus for each format and subset.

B Dataset examples

Table 5: Brood size analysis of kin-29 alleles

Genotype % of wild-type brood size
N2 100 (270)
sma-6(wk7) 64 (172)
lon-1(wk50) 81 (219)
kin-29(wké 1) 32 (86)
kin-29(oy38) 81 (218)
kin-29(oy39) 80 (217)

Number of eggs scored for each genotype is shown in parentheses.

Question: What is the title of the table?

Answer: Brood size analysis of kin-29 alleles

Figure 6: An example from ComTQA (PubTables-1M), illustrating a table, a corresponding question, and a gold
answer.
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QA task: ComTQA (FinTabNet)

Moody's S&P Fitch (a)
PPL Electric (b)

Senior Unsecured/lssuer

Rating Baal A- BBB
First Mortgage Bonds A3 A- A-
Senior Secured Bonds A3 A- A-
Commercial Paper p-2 A-2 F2
Preferred Stock Baa3 BBB BBB
Preference Stock Baa3 BBB BBB
Outlook STABLE STABLE STABLE

Question: What is the rating of commercial paper?

Answer: P-2 A-2 F2

Figure 7: An example from ComTQA (FinTabNet), illustrating a table, a corresponding question, and a gold answer.

T2T task: numericNLG

Genre | Sentences Length ield Precision
News* 100 19.3 142 78.9
News 100 19.3 144 70.8
Wiki 100 214 178 61.8
Web 100 19.2 165 49.1
Total 300 20.0 487 60.2

Table 1: Corpus size (length in token) and system performance

by genre. News* used gold trees and is not included in total.

Description: Results. From the whole corpus of 300 sentences, PropsDE extracted
487 tuples, yielding on average 1.6 per sentence with 2.9 arguments. 60% of
them were labeled as correct. Table 1 shows that most extractions are made
from Wikipedia articles, whereas the highest precision can be observed for
newswire text. According to our expectations, web pages are most challenging,
presumably due to noisier language. These differences between the genres can
also be seen in the precision-yield curve (Figure 2).

Figure 8: An example from numericNLG, illustrating a table and its corresponding gold description.
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T2T task: SciGen

Model Test but but or neg

no-distill  no-project 8598  78.69 80.13
no-distill project 86.54  83.40 -

distill 7 no-project 86.11  79.04 -
distill project  86.62  83.32 -

ELMo no-project 88.89 86.51 87.24
ELMo project 88.96  87.20 -

Table 2: Average performance (across 100 seeds) of ELMo
on the SST2 task. We show performance on A-but-B sen-
tences (“but”), negations (‘“neg”).

Description: Switching to ELMo word embeddings improves performance by 2.9
percentage points on an average, corresponding to about 53 test sentences.
Of these, about 32 sentences (60% of the improvement) correspond to A-but-B
and negation style sentences, [CONTINUE] As further evidence that ELMo helps
on these specific constructions, the non-ELMo baseline model (no-project,
no-distill) gets 255 sentences wrong in the test corpus on average, only 89
(34.8%) of which are A-but-B style or negations.

Figure 9: An example from SciGen, illustrating a table and its corresponding gold description.

T2T task: LogicNLG

Country Date Label Format Catalogue No.
Europe 17 October 200811901 | Columbia CD, Double LP #88697392232

Australia 18 October 2008121 | SO cD #88697392382

1161]
20 Oclolmﬁﬂog CD, Double LP #88697392232

United Kingdom Columbia

1 December 2008138 CD (limited edition steel-box) #88697417452
United States 20 October 2008 | Columbia cD #38697338292

Son;
o 163] y .
Japan 22 October 200811631 | P/ cD SICP-2055

Germany 5 December 2008!164] | Columbia CD (limited edition steel-box) #886974174523

Global (iTunes) | 19 November 20121491 | Columbia Digital download #88697338292

Title: black ice (album)
Template: the album [ENT] was first released in [ENT]

Statement: the album Black Ice was first released in Europe.

Figure 10: An example from LogicNLG, illustrating a table, a statement with masked entities, and a corresponding
gold statement.
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T2T task: Logic2Text

Title:

Pick

# CFL Team Player Position College

13 Hamilton Tiger-Cats Devin Grant OL Utah

14 BC Lions (via Winnipeg) Matt Kellett K Saskatchewan

15 Montreal Alou.etteS (via Winnipeg Scott Flory OL Saskatchewan
via BC)

16 Calgary Stampeders Harland Ah You DL Brigham Young

17 Edmonton Eskimos Scott Deibert RB Minot State

18 Montreal Alouettes William Loftus D Manitoba

19 Saskatchewan Roughriders Kevin LB Waterloo

Pressburger
20 Toronto Argonauts Jermaine Brown RB Winona State

Logical form:
saskatchewan } ; position ; k } } ; eq { hop { filter_eq { filter_eq { all_rows
; college ; saskatchewan } ; position ; k } ; player } ; matt kellett } } =

true

Statement:

1998 cfl draft

and { only { filter_eq { filter_eq { all_rows

; college ;

the only kicker drafted by saskatchewan college in the 1998 cfl
draft was matt kellett

Figure 11: An example from Logic2Text, illustrating a table, a logical form, and a corresponding gold statement.

126




C Table formats collection

In what follows, we provide additional details on
the collection process of the table formats.

XML and HTML. As was mentioned in §2.2,
XML and XML/HTML for the PubTables-1M sub-
set of ComTQA and SciGen, respectively, are ex-
tracted from the source papers. For the former, the
target tables are identified based on their titles and
the highest cosine similarity with table content an-
notations available in PubTables-1M. For Scigen
we use the fuzzy match score with a threshold of
0.8 to identify the relevant tables based on their cap-
tions. Note that not all instances have these formats
(see Table 4) due to IAIEXML conversion errors,
low fuzzy match score, discrepancies between cap-
tions in the gold data and IXTEX files or a scholarly
paper not being available on arXiv anymore. We
also exclude cases with multiple tables sharing the
same caption but annotated separately, as it is chal-
lenging to accurately link the corresponding HTM-
L/XML code for each table. HTML in LogicNLG
and Logic2Text are retrieved from the Wikipedia
pages. However, due to the lack of metadata on the
data collection timestamps, we choose a time inter-
val close to the year of publication of these datasets
for our search in the Wikipedia archive. To extract
the relevant tables, we employ a cosine similarity
comparison against the gold tables, using a thresh-
old of 0.9. Since Wikipedia is constantly updated,
we further manually check the results and filter out
cases where the mismatch affects the ground truth,
e. g., cell values being out of date or the removal/ad-
dition of both rows and columns. Note that for all
subsets except SciGen, we follow the PMC table
formatting rules'” to obtain XML. Additionally, all
generated HTML underwent automatic validation
using the PyTidyLib?’ package.

IATEX. Similar to HTML/XML, we obtain
IKTEX from the source scholarly papers in SciGen
(see §2.2) and extract the target tables based on
their captions using the fuzzy match. Some in-
stances are excluded due to low similarity scores
(below 0.8), parsing errors or lack of IATEX source
code (tables from ACL papers). For numericNLG
and PubTables-1M tables, IATEX is generated from
HTML. This process involves preprocessing the
HTML code to replace symbols, such as Greek let-
ters and mathematical operators, with their IATEX

19https://www.ncbi.nlm.nih.gov/pmc/pmcdoc/
tagging-guidelines/article/dobs.html#dob-tables

Dhttps://countergram. github.io/pytidylib/

equivalents. The resulting HTML is then converted
to a dataframe and subsequently to I4TEX using
pandas.

Dict. The conventions of already available lin-
earised tables in SciGen, numericNLG, LogicNLG,
and Logic2Text are slightly diverse. In particular,
the distinction between column and row heads ex-
ists only in numericNLG. Furthermore, compared
to LogicNLG and Logic2Text, header hierarchy is
preserved in numericNLG and SciGen by merging
headers and subheaders into a single string.
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Figure 12: Distribution of image aspect ratios (width/height) across subsets in the TableEval benchmark. Each box
represents the interquartile range (IQR), with the central orange line indicating the median. Circles denote outliers,
while whiskers (set to 1.5 x IQR by default) extend to the minimum and maximum non-outlier values. Here “Fin”
stands for FinTabNet, while “PMC” denotes PubTables-1M.
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E Prompts

ComTQA (FinTabNet):
Refer to the provided table and answer the question. Question: {question}
ComTQA (PubTables-1M):

Refer to the provided table and answer the question. Question: {question}.
Table caption: {caption}. Table footnote: {footnote}.

SciGen:

Describe the given table focusing on the most important findings reported by
reasoning over its content. The summary must be factual, coherent, and
well-written. Do not introduce new information or speculate. Table caption:
{caption}

numericNLG:

Describe the given table focusing on the insights and trends revealed by the
results. The summary must be factual, coherent, and well-written. Do not
introduce new information or speculate. Table caption: {caption}

Logic2Text:

Generate a one sentence statement based on the table and logical form. Logical
form: {logical_form}. Table title: {title}

LogicNLG:

Based on a given table, fill in the entities masked by [ENT] in the following
sentence: {sentence}. Output the sentence with filled in masked entities.
Table title: {title}

Figure 13: Prompts used for experiments based on images of tables.
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ComTQA (FinTabNet):

Refer to the provided table and answer the question. Question: {question}.
Table: {table}.

ComTQA (PubTables-1M):

Refer to the provided table and answer the question. Question: {question}.
Table: {table}.

SciGen:

Describe the given table focusing on the most important findings reported by
reasoning over its content. The summary must be factual, coherent, and
well-written. Do not introduce new information or speculate. Table: {table}.

numericNLG:

Describe the given table focusing on the insights and trends revealed by the
results. The summary must be factual, coherent, and well-written. Do not
introduce new information or speculate. Table: {table}.

Logic2Text:

Generate a one sentence statement based on the table and logical form. Logical
form: {logical_form}. Table title: {title}. Table: {table}.

LogicNLG:

Based on a given table, fill in the entities masked by [ENT] in the following
sentence: {sentence}. Output the sentence with filled in masked entities.
Table title: {title}. Table: {table}.

Figure 14: Prompts used for experiments based on textual representations of tables.
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F Experimental results

Metric Dict HTML Image IKIgX XML
BertScore.F1 0.85 0.84 0.86 0.84 0.85
BLEU-1 0.16 0.15 0.19 0.16 0.16
BLEU-2 0.09 0.09 0.12 0.09 0.09
BLEU-3 0.06 0.06 0.09 0.06 0.07
BLEU-4 0.04 0.04 0.06 0.05 0.05
BLEURT -0.51 —-055 —-042 -0.54 -0.53
METEOR 0.24 0.24 0.25 0.24 0.24
MoverScore 0.54 0.53 0.56 0.54 0.54
ROUGE-1.F1  0.30 0.29 0.38 0.29 0.29
ROUGE-2.F1 0.15 0.14 0.20 0.15 0.15
ROUGE-3.F1  0.09 0.09 0.12 0.09 0.09
ROUGE-4.F1  0.06 0.06 0.08 0.07 0.06
ROUGE-L.F1  0.24 0.23 0.32 0.24 0.24
SacreBLEU 0.04 0.04 0.08 0.05 0.05

Table 5: Values across evaluation metrics for table for-

mats averaged over data subsets and models.

Metric Dict HTML Image IKIgX XML
BertScore.F1 0.83 0.84 0.86 0.83 0.84
BLEU-1 0.02 0.02 0.05 0.02 0.02
BLEU-2 0.01 0.01 0.03 0.01 0.01
BLEU-3 0.01 0.01 0.02 0.01 0.01
BLEU-4 0.01 0.01 0.02 0.01 0.01
BLEURT —-0.58 —-055 —-039 —-0.59 —-0.54
METEOR 0.06 0.07 0.08 0.06 0.07
MoverScore 0.50 0.50 0.53 0.49 0.50
ROUGE-1.F1  0.14 0.14 0.27 0.14 0.15
ROUGE-2.F1  0.08 0.08 0.17 0.08 0.09
ROUGE-3.F1 0.03 0.03 0.05 0.03 0.03
ROUGE-4.F1 0.01 0.01 0.02 0.01 0.01
ROUGE-LF1 0.13 0.14 0.27 0.14 0.15
SacreBLEU 0.01 0.02 0.04 0.01 0.02

Table 6: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for ComTQA (FinTab-
Net) subset for individual formats averaged over models.

Metric Dict HTML Image KIgX XML
BertScore.F1 0.82 0.82 0.85 0.82 0.82
BLEU-1 0.03 0.03 0.05 0.03 0.03
BLEU-2 0.02 0.02 0.03 0.02 0.02
BLEU-3 0.01 0.02 0.02 0.01 0.02
BLEU-4 0.01 0.01 0.02 0.01 0.01
BLEURT -0.73 -0.72 -0.59 -0.73 —-0.72
METEOR 0.09 0.10 0.09 0.09 0.10
MoverScore 0.48 0.48 0.51 0.48 0.48
ROUGE-1.F1  0.12 0.12 0.22 0.12 0.12
ROUGE-2.F1  0.06 0.06 0.11 0.06 0.06
ROUGE-3.F1  0.03 0.03 0.04 0.03 0.03
ROUGE-4.F1  0.02 0.02 0.03 0.02 0.02
ROUGE-L.F1  0.12 0.12 0.22 0.11 0.12
SacreBLEU 0.01 0.01 0.04 0.01 0.01
Table 7: Raw values of BertScore.F1, BLEU-

N.F1, BLEURT, METEOR, MoverScore, ROUGE-
N.F1, ROUGE-L.F1, and SacreBLEU for ComTQA
(PubTables-1M) subset for individual formats averaged

over models.

Metric Dict HTML Image KIgX XML
BertScore.F1 0.88 0.88 0.89 0.88 0.88
BLEU-1 0.24 0.24 0.22 0.24 0.24
BLEU-2 0.13 0.13 0.12 0.13 0.13
BLEU-3 0.07 0.07 0.07 0.07 0.08
BLEU-4 0.04 0.04 0.04 0.04 0.05
BLEURT -0.14 -0.11 -0.19 -0.09 —0.09
METEOR 0.35 0.37 0.33 0.37 0.38
MoverScore 0.59 0.60 0.60 0.60 0.60
ROUGE-1.F1 0.48 0.49 0.49 0.49 0.49
ROUGE-2.F1 023 0.24 0.24 0.25 0.24
ROUGE-3F1 0.12 0.13 0.12 0.14 0.13
ROUGE-4.F1  0.06 0.07 0.07 0.08 0.07
ROUGE-LF1  0.37 0.39 0.39 0.38 0.38
SacreBLEU 0.05 0.05 0.05 0.05 0.05

Table 8: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for Logic2Text subset
for individual formats averaged over models.
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Metric Dict HTML Image IIgX XML
BertScore.F1 0.87 0.88 0.91 0.89 0.88
BLEU-1 0.32 0.33 0.51 0.36 0.36
BLEU-2 0.26 0.27 0.43 0.30 0.29
BLEU-3 0.21 0.23 0.35 0.25 0.24
BLEU-4 0.17 0.18 0.28 0.20 0.20
BLEURT —046 —047 —0.13 —-040 —0.41
METEOR 0.52 0.53 0.63 0.55 0.55
MoverScore 0.60 0.59 0.64 0.61 0.60
ROUGE-1.F1 048 0.48 0.69 0.52 0.51
ROUGE-2F1  0.38 0.38 0.55 0.41 0.40
ROUGE-3.F1 0.31 0.30 0.45 0.34 0.33
ROUGE-4.F1 0.25 0.25 0.37 0.28 0.27
ROUGE-L.F1  0.46 0.47 0.67 0.51 0.49
SacreBLEU 0.13 0.15 0.28 0.16 0.16

Table 9: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for LogicNLG subset

for individual formats averaged over models.

Metric Dict HTML Image IIgX XML
BertScore.F1 0.83 0.84 0.83 0.84 0.84
BLEU-1 0.16 0.18 0.16 0.18 0.18
BLEU-2 0.06 0.07 0.07 0.07 0.07
BLEU-3 0.03 0.03 0.03 0.03 0.03
BLEU-4 0.01 0.02 0.01 0.02 0.02
BLEURT —0.58 —-054 —-0.60 -0.54 -0.53
METEOR 0.19 0.21 0.19 0.21 0.21
MoverScore 0.52 0.53 0.53 0.53 0.53
ROUGE-1.F1  0.28 0.31 0.30 0.32 0.32
ROUGE-2F1 0.06 0.08 0.07 0.08 0.08
ROUGE-3F1 0.02 0.02 0.02 0.02 0.03
ROUGE-4.F1 0.01 0.01 0.01 0.01 0.01
ROUGE-LF1 0.16 0.17 0.17 0.17 0.17
SacreBLEU 0.03 0.03 0.03 0.03 0.03

Table 10: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for numericNLG subset

for individual formats averaged over models.

Metric Dict HTML Image IKIgX XML
BertScore.F1 0.84 0.81 0.84 0.81 0.81
BLEU-1 0.16 0.11 0.15 0.11 0.11
BLEU-2 0.07 0.03 0.07 0.03 0.03
BLEU-3 0.03 0.01 0.03 0.01 0.01
BLEU-4 0.02 0.00 0.02 0.00 0.00
BLEURT -059 —-090 -0.64 —-091 -0.90
METEOR 0.20 0.13 0.19 0.13 0.13
MoverScore 0.53 0.50 0.53 0.50 0.50
ROUGE-1.F1  0.30 0.18 0.29 0.18 0.18
ROUGE-2F1  0.07 0.02 0.07 0.02 0.02
ROUGE-3F1 0.02 0.00 0.03 0.00 0.00
ROUGE-4.F1 0.01 0.00 0.01 0.00 0.00
ROUGE-L.F1  0.17 0.11 0.17 0.11 0.11
SacreBLEU 0.03 0.01 0.03 0.01 0.01

Table 11: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for SciGen subset for

individual formats averaged over models.

Metric Dict HTML KX XML
BertScore.F1 0.83 0.83 0.83 0.83
BLEU-1 0.12 0.12 0.11 0.11
BLEU-2 0.06 0.06 0.06 0.06
BLEU-3 0.03 0.04 0.04 0.04
BLEU-4 0.02 0.02 0.02 0.02
BLEURT —0.64 —-0.67 —-0.67 —0.66
METEOR 0.20 0.21 0.20 0.21
MoverScore 0.52 0.52 0.52 0.52
ROUGE-1.F1  0.23 0.23 0.23 0.23
ROUGE-2.F1  0.09 0.10 0.10 0.10
ROUGE-3.F1 0.05 0.05 0.05 0.05
ROUGE-4.F1  0.03 0.03 0.03 0.03
ROUGE-L.F1 0.17 0.18 0.18 0.18
SacreBLEU 0.02 0.02 0.02 0.02
Table 12: Raw values of BertScore.F1, BLEU-

N.F1, BLEURT, METEOR, MoverScore, ROUGE-
N.F1, ROUGE-L.F1, and SacreBLEU for Llama-3.2-
3B-Instruct and individual text formats averaged over

data subsets.

Metric Dict HTML KX XML
BertScore.F1 0.85 0.85 0.85 0.85
BLEU-1 0.17 0.15 0.18 0.17
BLEU-2 0.10 0.09 0.11 0.10
BLEU-3 0.06 0.06 0.07 0.07
BLEU-4 0.04 0.04 0.05 0.05
BLEURT —048 —-054 —-048 —-0.49
METEOR 0.25 0.24 0.25 0.25
MoverScore 0.54 0.54 0.54 0.54
ROUGE-1.F1  0.33 0.31 0.34 0.33
ROUGE-2.F1 0.17 0.16 0.18 0.18
ROUGE-3.F1 0.11 0.10 0.11 0.11
ROUGE-4.F1  0.07 0.07 0.08 0.08
ROUGE-L.F1  0.27 0.26 0.28 0.28
SacreBLEU 0.04 0.04 0.05 0.05

Table 13: Raw values of BertScore.F1, BLEU-N.F1,
BLEURT, METEOR, MoverScore, ROUGE-N.F1,
ROUGE-L.F1, and SacreBLEU for Mistral-Nemo-
Instruct-2407 and individual text formats averaged over

data subsets.
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Metric Dict HTML BIgX XML Metric Dict HTML BIEX XML
BertScore.F1 0.84 0.84 0.84 0.84

BertScore.F1 0.86 0.86 0.86 0.86

BLEU-1 013 013 013 0.3 BLEU-1 o2l 022 021 022
BLEU-2 007 007 007  0.07 BLEU-2 013 014 014 0.5
BLEU-3 0.04 0.05 0.05 0.05 BLEU-3 0.10 0.11 0.10 0.11
BLEU-4 0.03 0.03 0.03 0.03 BLEU-4 0.08 0.09 0.08 0.09
BLEURT —0.54  -055 -057 -056 BLEURT —0.37 039 —041 —0.38
METEOR 0.23 0.24 0.23 0.24 METEOR 0.26 0.27 0.26 0.27
MoverScore ~ 0.53 053 053 053 MoverScore 0.6 0.56 055  0.56
ROUGE-LFI 026 026 026 026 ROUGE.LF1 038 037 036 037
ROUGE-2F1 0.2 013 012 013 ROUGE-2F1 021 021 020 0.1
ROUGE-3F1 007 007 007 007 ROUGE-3FI 013 014 013 0.14
ROUGE-4.F1 005 005 005  0.05 ROUGE-4FI 010 0.0  0.10  0.10
ROUGE-LFI 020 021 020 020 ROUGELLFL 032 031 030 031
SacreBLEU 003 003 003  0.03 SaceBLEU 009 0.0 0.0 0.1

Table 14: Raw values of BertScore.F1, BLEU-  pp10 16. Raw values of BertScore.F1, BLEU-N.F1,
N.FI, BLEURT, METEOR, MoverScore, ROUGE-  g| EURT, METEOR, MoverScore, ROUGE-N.FI,

N.F1, ROUGE-L.F1, and SacreBLEU for Qwen2.5-  poUGE-L.F1, and SacreBLEU for Gemini-2.0-Flash
14B-Instruct and individual text formats averaged over ;4 individual text formats averaged over data subsets.
data subsets.

Metric Dict HTML EIgX XML Metric Non-Scientific Scientific
BertScore.F1 0.84 0.84 0.84 0.84 BertScore.F1 0.87 0.83
BLEU-1 0.16 0.15 0.16 0.15 BLEU-1 0.21 0.11
BLEU-2 0.09 0.08 0.09 0.09 BLEU-2 0.15 0.04
BLEU-3 0.06 0.06 0.07 0.06
BLEU-4 0.04 0.04 0.05 0.05 BLEU-3 0.11 0.02
BLEURT 054 059 —057 —0.57 BLEU-4 0.09 0.01
METEOR 024 023 024 023 BLEURT —0.34 —0.68
MoverScore 0.53 0.53 0.53 0.53 METEOR 0.33 0.15
ROUGE-1.F1  0.28 0.27 0.28 0.28 MoverScore 0.57 0.51
ROUGE-2.F1 0.13 0.13 0.14 0.13 ROUGE-1.F1 0.40 0.22
ROUGE-3.F1  0.08 0.08 0.09 0.08 ROUGE-2.F1 0.25 0.06
ROUGE-4.F1 0.06 0.05 0.06 0.06 ROUGE-3.F1 0.17 0.02
ROUGE-L.F1 0.22 0.21 0.23 0.22 ROUGE-4.F1 0.12 0.01
SacreBLEU 0.03 0.03 0.04 0.03 ROUGE-L F1 0.36 0.15
SacreBLEU 0.08 0.02

Table 15: Raw values of BertScore.F1, BLEU-
N.F1, BLEURT, METEOR, MoverScore, ROUGE- . . L
N.F1, ROUGE-L F1, and SacreBLEU for Qwen2.5-3B- Table 17: Values across evaluation metrics for scientific

Instruct and individual text formats averaged over data  and non-scientific domains averaged over data subsets,
subsets models, and table formats.
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Metric (FCiE%{)QNI:t) (Puf)OTglb’E‘erﬁM) Logic2Text LogicNLG numericNLG SciGen
BertScore.F1 0.84 0.83 0.88 0.89 0.83 0.82
BLEU-1 0.03 0.04 0.23 0.38 0.17 0.13
BLEU-2 0.02 0.02 0.13 0.31 0.07 0.04
BLEU-3 0.01 0.02 0.07 0.26 0.03 0.02
BLEU-4 0.01 0.01 0.04 0.20 0.01 0.01
BLEURT —0.53 -0.70 —0.13 —0.37 —0.56 -0.79
METEOR 0.07 0.09 0.36 0.56 0.20 0.16
MoverScore 0.50 0.49 0.60 0.61 0.53 0.51
ROUGE-1.F1 0.17 0.14 0.49 0.54 0.31 0.23
ROUGE-2.F1 0.10 0.07 0.24 0.42 0.07 0.04
ROUGE-3.F1 0.03 0.03 0.13 0.34 0.02 0.01
ROUGE-4.F1 0.01 0.02 0.07 0.28 0.01 0.00
ROUGE-L.F1 0.17 0.14 0.38 0.52 0.17 0.13
SacreBLEU 0.02 0.02 0.05 0.18 0.03 0.02

Table 18: Values across evaluation metrics for each data subset averaged over models and table formats.

Bert- BLEU- BLEU- BLEU- BLEU- Mover- ROUGE- ROUGE- ROUGE- ROUGE- ROUGE- Sacre-
Model Score.F1 1 2 3 s BLEURT METEOR g . 1.F1 2F1 3F1 4.F1 LF1  BLEU
Baseline
Gemini-2.0-Flash_mm 0.87 0.22 0.14 0.11 0.08 —0.35 0.27 0.56 0.40 0.22 0.14 0.10 0.33 0.11
Gemini-2.0-Flash_IIm 0.86 0.21 0.14 0.11 0.08 —0.39 0.26 0.56 0.37 0.20 0.14 0.10 0.31 0.10
MLLMs
Idefics3-8B-Llama3 0.88 0.19 0.12 0.09 0.07 —0.36 0.23 0.59 0.47 0.27 0.13 0.09 0.42 0.11
Qwen2.5-VL-3B-Instruct 085 018 012 009 0.07 —0.51 0.25 0.55 0.34 0.18 0.11 0.08 028  0.07
Qwen2.5-VL-7B-Instruct 086 019 012 008 0.06 —-0.39 0.27 0.55 0.36 0.19 0.12 0.09 030  0.07
llama3-llava-next-8b-hf 085 016 010 006 004 —0.50 0.24 0.54 031 0.15 0.09 0.06 025  0.04
LLMs
Mistral-Nemo-Instruct-2407 0.85 0.17 0.10 0.07 0.05 —0.50 0.25 0.54 0.33 0.17 0.11 0.07 0.27 0.04
Qwen2.5-3B-Instruct 0.84 0.15 0.09 0.06 0.04 —0.57 0.24 0.53 0.28 0.13 0.08 0.06 0.22 0.03
Qwen2.5-14B-Instruct 0.84 013 007 005 003 —0.56 0.24 0.53 0.26 0.12 0.07 0.05 020  0.03
Llama-3.2-3B-Instruct 083 0.2 006 004 002 —0.66 0.20 052 023 0.10 0.05 0.03 0.18  0.02

Table 19: Values across evaluation metrics for individual models averaged over data subsets and table formats.
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Model
17501 mmm Gemini-2.0-Flash_lim
[ Gemini-2.0-Flash_mm
1500 1 [0 Idefics3-8B
[ Llama-3.2-3B
I Mistral-Nemo
12504 = Qwen2.5-14B
I Qwen2.5-3B
c [ Qwen2.5-VL-3B
© 100071 EE Qwen2.5-VL-7B
g [ llava-next-8b
750 1
500 -
250 1

ComTQA (Fin) ComTQA (PMC) Logic2Text LogicNLG numericNLG SciGen
Dataset

Figure 15: Mean prediction lengths (in characters) for each model and data subset. Here “_llm” and “_mm” are
used to distinguish between text and image input for Gemini-2.0-Flash, respectively.
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G Case Study

Refer to the provided table and answer the question.
Question: What is the dincidence of dysplasia in the group
treated with AOM/DSS and 0.05% Befibrate?. Table caption:

{caption}. Table footnote: {footnote}.

Table 3: Incidence of multiplicity colonic mucosal ulcer and dysplasia.

“Group “Treatment Tincldence (%) " Multplicity (no. of lesions / mouse, means £5D)
no.
Mucosal  Toral Dysplasia with: Mucosal Total Dysplasia with:
ulcer  dysplasia ulcer dysplasia
Mild Severe Mild Severe
aypa  sph s sgph
I AOMDSS 40% 90% 80% 50% 05107 32215 14210 LI£13
2 AOM/DSS/0.04% Nimesulide 10% 920% 80% 50% 01%03 22123 12209 06207
3 AOM/DSS/0.05% Troglitazone 20% 90% 50% 30% 03107 21222 07+08 08216
\ 4 AOM/DSS/0,05% Bezafibrate 30% 80% 60% 20% 04107 1918 09210 0408 /
8roymed e 4 The incidence of dysplasia in the
The 1incidence of total dysplasia 1in cysp
X 80% group treated with AOM/DSS and
the group treated with AOM/DSS and 0 0.05% Befibrate s HOE
R . .05% Befibrate is 80%.
0.05% Bezafibrate is 80%. ° °

Gem‘ini f; @ Qwen-VL

Figure 16: An example illustrating differences in prediction length across Idefics3, Gemini-2.0-Flash, and Qwen2.0-
VL (7B) models on a sample from the ComTQA (PubTables-1M) subset.
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H Additional interpretability analyses

Mistral-Nemo vs. Llama3. The following fig-
ures show further examples of feature attribution
and log-probability analysis comparing Mistral-
Nemo with Llama3.

In Figure 17 (ComTQA FinTabNet), Mistral-
Nemo correctly predicts the answer, while Llama3
fails. We find a key difference in the attribution
pattern around the columns “207/4” and “2013”,
where Mistral-Nemo assigns a slightly higher score
(lighter blue) than Llama3. In the log-probability
analysis, we see high uncertainty in Llama3 gen-
erating the final answer starting with “/”. On the
contrary, Mistral-Nemo shows a high level of con-
fidence in the predicted value.

In Figure 18 (ComTQA PubTables-1M), both
models generate incorrect answers. For Mistral-
Nemo, one can barely see any attribution in the
decisive row of the table. For Llama3, there is a
slightly higher attribution for “Beer” in “Lung-
Beer”. We also observe that the tokeniser splits the
number into “496” and “6”. A plausible explana-
tion for the failure is that when it processes “Lung
Stanford” with 918 genes, it likely finds it to be
higher than 496 (ignoring the fourth digit “6”). Re-
garding the log-probabilities, the decision of which
feature to name after “the most number of genes is’
is controversial for both models, judged by the low
confidence in the following token.

In Figure 19 (ComTQA PubTables-1M), Mistral-
Nemo solves the task correctly, whereas Llama3
fails to distinguish “VRP-HA” from “VRP-neu”
and is not confident in the predicted value (/0).
Mistral-Nemo focuses on the “VRP-HA” row in
the table more than the similar alternative “VRP-
neu” and generally finds the relevant feature name
in the question to be more important, judging by
the attribution patterns. When we compare this to
the log-probabilities, the model is very confident
about its decision (“VRP-HA”) throughout the gen-
eration.

3]

Dict vs. XTgX input format. The following
figures show examples of feature attribution and
log-probability analysis. We compare predictions
across Dict vs. I&TEX representations of tables for
Mistral-Nemo and Llama3 based on instances from
the LogicNLG subset.

In Figure 20, Mistral-Nemo correctly predicts
the missing entities with a high level of confidence.
We notice high similarity between the input attribu-
tion patterns across two formats. In both cases, one

of the most relevant tokens (month “August”) is
correctly identified to produce the right answer ac-
cording to the ground truth and hence receives high
attribution. The model focuses on the tokens rele-
vant to the task and does not pay much attention to
ISTEX formatting tags, since the respective tokens
generally remain barely considered throughout the
generation. However, we can see some decreases
in model confidence at the end of the generation
(“games before”).

In Figure 21, Llama3 generates the wrong re-
sponses in both cases. However, the Dict variant
also makes the model focus on bracketing, separa-
tors, and punctuation quite often. Only for IATEX,
there is a noticeably lower confidence about gen-
erating “Electra” as the play of choice. For both
representations of the table, however, Llama3 is not
certain about the last two entities (“Cyprus and Ro-
mania”, “Cyprus and Greece”), which are either
fully or partially incorrect according to the ground
truth (“Greece and Italy”).
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Mistral-Nemo-Instruct-2407

Refer[to| the provided table and answer the question

. Question :[ How| much| was the| income from

continuing operations| in the| U..S .['in| [2[0]1]3 7.  Table
: \{"[table\_headers[":] ['[(lin| millions|)’, *2/01(4", '2[0]

Llama-3.2-3B-Instruct

Refer| to the provided table and answer the question
E Question : How was| the income' from

continuing operations| in[ the| U .S .['in[ ]201/3[2. Table :
\{"[table\_headers[": ['([In| millions)",[[201[4]",[ "[201]3]

1[3]] "12[0[2[2]'1,] "[table]\_rows|":] [['1U].S]",| '$[11.[1[5]3].]

"[201[2], [ "leable)\_rows|": [['[U].S " '$[1[153[[3['] 'S,

(3I"| "s[o[14].[9]"] *s[ofo[8 . (51, I{Non|-U[.S[[*[o[3]3 (9]

("[alof4].[e]".] 'I3I6]o].[2]'].] ['[income] from| Continuling]

(914[[9]'] '$[908].[5]'1.| ['|Non -U[.S].",[ "[o33].[9]'] ‘|404].]6]
[]'1360].]9]'1.| '|income| from| Continuing| Operations]', |

Operations["] 512 JO[B[7J[2I") $/1 [BIISIS]". 's 1[206]

's[2]./087][2["] "$[1].[319][5]"] '$[1].[269].[4 I\T]

The (income] [ from| [ continuing] (operations]
MEFIOEMiEnEe==EE
D@D E (milion)(]

According (18) i) 2818 ) (€5 [incorme
(from) [ continuing] operations) e U] 9
DR0EDEESE 1 0153 06 i

Figure 17: Interpretability analysis for the ComTQA (FinTabNet) instance with a table represented in a Dict format.
The ground truth is “$914.9 million”. The visualisation follows the same procedure as Figure 5.
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Mistral-Nemo-Instruct-2407

Refer@| the provided table and answer the question

. Question :| Which dataset has the most number of

genes ?./ Table : \{"[table\ title ": Table [5],| *|table]

[\_cap|tion|":] Random| data| simulations| of| real data|

[ sets|.| This| table|] compares]| the| results| found] from|

Llama-3.2-3B-Instruct

Refer to the provided table and answer the question
. Question : Which dataset has| the most number of

genes ?. Table : \{"[table\ title[":] Table[]5 [ *Jtable]

\_caption[":] Random| data| simulations] of| real| data)

[ sets|.| This| table| compares| the[ results| found| from|

[ the[ reall data ([Real| column])] to[ two] different] types|

[ the| real| data] ([Real| columnl|)| to] two] different]| types|

[ of] random]| data].| The[ Random| column] contains] the|

[ of] random| datal.| The| Random| column| contains] the|

[ experimentally| determined] largest| number] of| pairs|

[ experiment]ally| determined| largest| number| of] pairs|

[ found| from| [1[0] simulation| runs| using| a| random|

[ data| matrix] ([dJrawn] from| a] uniform| distribution])|

[ found] from[ |10| simulation| runs| using| a| random| data|

[ matrix| ([draw|n| from| a| uniform] distribution])| where|

[ where| the| number] of| genes| and| class| sizes] is| the]

[ the| number] of| genes| and| class| sizes] is| the| same|

[ same] as| the[ indicated] for| the[ real| data].| The| Label

Sh uff led[ column| contains| the| experimentally|

[ as] the] indicated] for| the| real| datal.[ The| Label| Sh|

[uffled| column| contains| the| experiment]ally|

[ determined] largest| number]| of] pairs| found] from[ [3]0]

[ determined| largest| number]| of| pairs| found] from| [30]

[ simulation| runs| where| the| class] labels| were|

[ randomly] shuffled|.] In] the| samples| column],| the|

[ number] in| parent|hesis| is| the] number] off positive|

[ samples|.| The| numbers] after| the| slash] are]| the|
[ number] of single| genes]| found|.| Label[ shufffling
[ leads| to] more] pairs| found] “[oy| chance["| only] for]

[ the| smaller| data] sets|.| The| small| data| sets| have|

[Targe| numbers] of| pairs| expected| *[by[ chance]"..[ "]

[ simulation| runs| where| the| class| labels| were|
[ randomly] shuffled] [ In[ the| samples| column,[ the|

[ number] in| parenthesis] is| the| number] of| positive|

[ samples|.| The| numbers] after| the| slash| are] the]

[ number] of] single| genes| found].[ Labell shuffling|

[ leads| to| more] pairs| found] *[oy| chance["] only] for]

[ the| smaller| data| sets|.| The| small| data sets| have|

[large[ numbers| of| pairs| expected] “[by] chance["].,[ *]

[table[\_headers|":| ['[Data] set]",| '[Samples][',] |Gen[es][',] ']

[table]\_headers|":| ['[Data] set]'.[ [Samples][',] |Gen[es|',| "]

[Reall',] '[Random|',| '/Label shlufffled|'],] “[table]\_sub)

(headers[":| [1] "[table|\_rows|": [[/GIST[", [1[9](6]),| '[1]

[Reall',| '|Random][',| ‘[Label| Sh|uffled|'],| *[table]\_sub]
[headers|":| T1,] "[table[\_rows[":| [['[G)IST[',| "[L9[([6])".] ]

of817] [ [13[7]0J8[11/7]4]| "[2]7]ol6)/|of" "|4]6[2]2/[2]1.

(198]7[", [137]981]/|74]' ] [270]6[/]0]' ] ‘[462[2]/]2] 1| [']Bre]

[ [[Brefast/BRICA (b rca[1] vs] brical2)y- LIS BI2l2

[ast|BR[CAl(br[ca[1] vs| brca[2])"[ '[15](7])".] '|322[6['.] ']

(6] [2[4[3[517]4//1/8[] "[2[0]5[6]31/2[" | "/53[9l0jol/ 1[2]1.

(143[574]/18['.| '|205]63[/2]'| [539]00]/]11]1,] ['[Bre[ast]

[ ['|Brefast/BRICA (b rc(a[1] \&] br|cal2] vs| Sporfadic])',| '[2]

(BR|CA](br{ca[1] \&| br|ca|2] vs| Spor|adic])".[ |22](7])".] ']

217l 131212061 "2 1[40l | ‘[1[2[8[el/2]] Tolrol.

(322]6]",| '[211]4)/]o]',| '|128]6]/1]"] [ol/o]'1.] ['|Cut/aneous)|

UlCutfaneous|',| [3[8](7)), [3(6]2[3]"| "[S[ol6)/0 "[6]2)/
0[[2[4/[0]'1.| T[Lung|staniford]" [ *[5]2[([1[3D" ] "[ol2[8]"

187D 1361 3] [596[/jl | [62)/0[' | "[24]/jo]').| I|L.
ung Stan|ford|',[ '|52[([13])",[ "|o18[".[ '[486]/[2]".] ‘[o}/]0]".] "]

_[4f8lel2[] "[olol| "Jol/jof'1. T'[Liung|Beer[ | *[[6]([1]0]

(0/]0]'L| ['[L]ung Beer[",[ '[96]([10])"[ [496]6]".| '[221]02]/[5)

] l4lolelel| "[2[2]x[of2}/[5]" | "[ol/jo].| *[oljo]'1.] ['[Pro]

| Joi7jo] [ Toi/jorL.] U|Profstatel'| [34[(9]) [ [395]8]"[ ]

state[',[ [3]4]([9))-] "13(9J5/8]"| '[2|4|ol6le[2l/5[2[| ‘[5]7)/I0]

(2a9)662]/[52]".| ‘[57/[o]'.| *[13]/]0)'11.[ *[table\ foot/note ":

("] '[2[3l/ol'1]1.] “[table]\ [foot|note|":] None\}.

Nonef\}]

Based provided (table](;](the]
 dataset|[ with|[ the]( most] number]( of]
[oenes)(g " ro (St (I (with 0 BB B @
[genes](}

sased (5 RS E6E) ) (¥
[ the]( most]( number]( of]( genes|[is] * L

Stan (ford] '] [ with] (] (918] (genes) .|

Figure 18: Interpretability analysis for the ComTQA (PubTables-1M) instance with a table represented in a Dict
format. The ground truth is “LungBeer”. The visualisation follows the same procedure as Figure 5.
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Mistral-Nemo-Instruct-2407

Refer@| the provided table and answer the question
. Question :[ What| is| the is/otype control for V RP-H A

?.[ Table : \{"[table\ title[":| Table| [2].| "[table]\_cap]tion]
[":] Int|racellular| interferon|-y| analysis| of| CD[8[+] T

[ cells| after] vaccination| three[ times| with] virus|-like|

Llama-3.2-3B-Instruct

Refer to| the provided| table| and| answer! the| question)

. Question :[ What/ is| the is[otype| control’ for| VR[P-H|A
?. Table: \{"[table|\_title[":| Table[ ]2}, *Jtable]\ caption|
[":] Intr]acellular] interferfon]-ly] analysis| of| CD|8[+| T

[ cells| after] vaccination| three[ times| with] virus|-like|

[ replicfon| particles| ([VIRP))- ne|u[ or| V|RP-[hem[ag[glut]

[ replicfon| particles| ([VR|P|)-[ne|u] or] VR|P|-h[em[ag|gl]ut]

([HA]).| "[table]\_headers|":] ['|V]acc]ination]',] ‘[Is]

otype/[ control| (\%)[",] '[Inter|ferfon|-y|+/[CD[8[+] (\%)]'1.] "]

(inin] (JHA)).[ "[table)\_headers[":] ['[V]acc]ination[',| *|Is
otype control (\%)[%[‘[inter{ferfon]-Jy]+/[CD[8]+] (\%)]'].)

[table]\_sub]headers[":] [1.| "[table]\_rows[":] [[['|V|RP|-ne[u]

[ "[table]\_sub]headers[":[ [1,] *Jtable]\_rows[":| [['[VR]P|-ne]

[ ol 2ol "[2].[8[o]'1. [IVIRPI-HIA™, "ol.[1]4]] "[of[2]7]

(ul'[Jol.[10[" "[2[.]80l'] T'[VRIP]-H|A]".| "0[.[14]",] ' o[.]27]1,]

"1 TNafiivel"] "loF o3[ Tof 3[8I1] "table\ ffootnote
| None\}.

[ Nafive]| Jo[[o31"] "0[[35] 1 "ftable) footinote]":
Nonel\}

he (1) 5758 [EaHE0) [Fen V) () ) 9
1E0E@™

To find [the](lis] (otype] (control] (for] [VR](P)

() ) (e (meed) [E9) Took (26 (E5@) * (1

(\% )] [column| [in| (tRe)

(table) .| [ The|(is) [otype] (control] is the

of is controls , [which]
is []@)(J 10 \%.

Figure 19: Interpretability analysis for ComTQA (PubTables-1M) instance with the Dict format. The ground truth
is “0.14%”. The visualisation follows the same procedure as Figure 5.
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Mistral-Nemo-Instruct-2407 (Dict)

Based| on a given table, fill in the entities masked

by [ENT\E in the following sentence : all game in

the table for the [[ENT/] were| played| on| [[ENT]]]

[ with[ no| game| after| or| before .| Output| the| sentence]

Mistral-Nemo-Instruct-2407 (IBTgX)

(Based| on a given table, fill in the entities masked
by [ ENT ] in the following sentence: all game in
the| table for| the| [[ENT]] were| played| on[ [[ENT]]
with[ no| game] after| or| before|.| Output| the[ sentence]

[ with[ filled] in| masked] entities|.| Table: \{"[title|":] [1]9]

[ with[ filled] in[ masked] entities|.| Table] title[:[ [1]9]0[8] v|

@E v fl season|,[ “[table]\_column|\_names][":] ['[home]

[ team[',] '[home| team| scorel',| Jaway| team|[',| '[away|

[ team| scorel',| ‘lvenuel',| '|date['],| "[table]\_content]

fif season|.[ Table[:] \\begin|\{table[\} [[nt]] \\

[c|apt]ions|etjup]\{[just[ification|=|ralgged]right].| single

—

(\_values[":] ['[unfiversity[',| "[1[3].[1]8] ([9]6])".| |oe]elong]

[lineJcheck|=false[\}| \\lcaption|\{|1]9]0]8| vIfI[ season|\}
|\\begin||\{tabuIarlh{_ll_lll—lﬂll\}l\\ltoplrule \& [\&

[ l6l.[8] (4f4][ "lemiclgl' 15 august 1[90[8!1[ ['lst

(\&] [ \Whmid]rule[[Homeftéam| \&] Home[ team| score]
1

[\& A team| \&’Away| team| score| \&| Venue| \&]

[ Date] W|University| \&] [1]3].[1]8] ([o]6])] \&] Geelong[ \&]

lake] ovall’,] '[1/5 august (1 9/0[8]']] ['[mel[bournel",| ‘[4].]

(el ErEap ] EMc/Gs] [15] August 1[9]0|8| \\\;!St

(Kitda[ \&J [&[J7] (BILP]\&] Fitzlroy] \&] [3112] (2]

8] (3]2))",| * coll ing[wood" | '[6].9] ([4[5])".| "Imcig|",| "15]

(Junction| Oval[ \& (1[5 August 1[9]0[8] WSouth

[august| [1]9/o[8]'1.] ['[richjmond]".] ‘[4].]2]7] (4[1])".] Ic[arl)

[ Melbourne[\&] [5].[8] ([3[8])] \&] Ess|endon{A&] [3].[1]4] (|

(ton[,] [6]-[1[2] (4[8])'.] ‘[punt| road| ovall',] *|1[5] august] |

(3]2D[\&] Lake] Ovall \& [1]5 August 1[9 Em

Ljofof8]' TNy

[oourne| \&] [4].[8] ([3]2])] \& Coll ing[wood] \&] [6['[9] (|4]5)

N\&] MC[G| \& August| 1(9]0 8I \\\\!Rich|mond| \&[ [4
[[2]7] (J4]1D]\&] carlton[\&] [6].[1]2] )| \&] Plunt]

(Road| Oval| \& [1[5] August| 1[9]o[8] W\ \\lbottomlruIeJ
[\end|\{tabular)\} \\end \{table\} ~——

All [games| (in] (the] table Rl E3]E)
(0](8]( V] [FL)( season] [**)[ were]( played]( on]
1 )5 st () 090 8 A ()

[ game|[ after|[ or] [ before] .|

All [ games| (in] (the] table @e

(0)(8]( V] [FL) season]( were] played)(on] (1]

5 Al ) D 8 0 B M somes
before (Tor] (after] .|

Figure 20: Interpretability analysis the LogicNLG instance comparing the Dict (left) with the I&IEX (right) input
format of the table. The ground truth is “all game in the table for the 1908 Vfl Season were played on 15 August
1908 with no game after or before”. The visualisation follows the same procedure as Figure 5.
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Llama-3.2-3B-Instruct (Dict)

Based on a given tableﬂ] fill in| the entities masked

by [ ENT] in following sentence:| the| play| [[ENT
1| was| performed] in] [[ENT]][ and| [[ENT 1. Output] the

Llama-3.2-3B-Instruct (I¥IgX)

Based on a given tableﬂz fill in| the entities masked

by [ ENT] in following sentence : [[ENT
1 was| performed] in| [[ENT]][ and] [[ENT]1. Output| the

sentence| with| filled| in| masked| entities|.| Table] title|:]

[
[ sentence| with| filled] in| masked] entities|. Table: \{"
[title[":] internationall festival| of| ancient] g[reek| dramal ,

[ cylprus|,| "Jtable]\_column|\_names]|":| ['[play]',| lauthor]',]

[
[
[linternational| festival| of| ancient| g[reek| dramal ,[ cy]
(

prus|.| Table[:] Wbegin[\{Jtable[\} [[nt]][\Wcenter|ing|\

['|company]',| Joase[',] ‘[country|'L.| "[table]\_content]
[\_values[": [['[elect]ra[',| "Jeur|ip[ides]",| ‘|radu[ stan|ca]

caption|setup[\{[just]ification|[=[rag]ged]right [ single[line]
[check|=false|\}| Wcaption[\{[international[ festival| of]

[ national| theatre]',| '[s|ibliu[',| ‘[rom[ania|'l.| ['|pl]ut]us]',] ']

[ancient] g|reek| dramal | cy[prus\}\\lbegin|\{|tab|ular

[ar]istjoph[anes]',| "|cy|prus| theatre| organisation]',] |nicos|
(ia]".] |eylprus|'l.| ['[the| birds|',[ ‘|arfistjoph[anes]',| ‘[the]

\N {1\ [Wtop|rule[[play| \&] author| \&] company|\&]
[ base] \&] country] WN[Wmid[rule[|Elect]ra[ \&] Eur]ip[ides]

(atro] techn(is| kar|ol[os| k[oun[",] ‘[ath[ens]',| [gree|ce]'l,| I

[\&] Rad|u] Stan|caf National| Theatre| \&] S[ib]iuf \&

[med|ea]',] 'eurliplides ",[ '[te]atro] inst[abile]',| [afostal',] ']

[ Romania| W\[Pl[utus| \&] Aristjoph[anes| \&] Cyprus|

(itally]'1] ['[the[ persfians|",| ‘[a]esch[yl]us ", [astr[a\xa[0]
(ofali] tefatro]'| ‘flec|ce]" | "[itally]'].| ['[med]eal’, ' eur(ip]
@]ﬂ |se]melio] theatre[',[ ‘[ath[ens]',| ‘[gree|ce|'1,[ ']
(ajax]",] [s|ophloc]les|',| '[att]is| theatre[',] ‘[ath[ens|"[ ]
(gree]ce]'l,] '[ant]igfone]" | *[s|oph]oc]les]',[ [hablima)

[ theatre[',] '[tel] av]iv]'| [ist]rael|'T 1\}

[ Theatre| Organisation| \&] Nficos|ia] \&] Cyprus| W\The
[ Birds| \&] Arist|oph[anes]| \&] The[atro| Technlisaxlo/sl

[ KJoun|\&] Athens|\&] Greece| \\\[Med]ea[ \&] Eurlip[ides)
(\&] Te[atro| Inst[abile| \&] Aloﬂ&l Italy] W\[The] Pers]
[ians] \&] Aleschlyl|us| \&] Astr{ajg]ali] Telaw&l Lec|ce]
(\&] Italy] WMed|ea] \&| Eurlip[ides| \&] S|eme]io| Theatre|
[\&] Athens|&] Greece| \W]Ajax| \&] Soph]ocles| \&] Attlis]
[ Theatre| \&] Athens]| \&Heecel \W\|Ant[igone] \&| Soph|

[oc]les| \&| Hab|ima| Theatre| \&|wAviv| \&] Israel] W\

\\\end \{ tab[ular)\}\\end/\{ table

Based provided [table](;] the

Based given [table](,] the

with | the [ masked|[ entities| [ filled|

[ sentence| with the [ masked|| entities|| filled|

(in](is) : the [play]( Elect|(ra) [ was]
(perammea [ cyprus -

(S : e (@8 cect [ a8
(performed] (iin] Cyprus Greece .

Figure 21: Interpretability analysis for the LogicNLG instance comparing the Dict (left) with the IATEX (right) input
format of the table. The ground truth is “the play Medea was performed in Greece and Italy”. The visualisation

follows the same procedure as Figure 5.

Years Ended December 31,

2014 2013 2012 2014 vs. 2013 2013 vs. 2012
$ Change % Change $ Change % Change
Routing $ 2,223.¢ $ 2,318.( $ 2,037 $ (94.7) @% $ 280.¢ 14%
Switching 721.% 638.( 554.¢ 83.2 13% 83.2 15%
Security 463.€ 563.¢ 669.7 (100.9) (18)% (105.¢) (16)%
Total Product 3,408." 3,519.¢ 3,262.: (111.%) )% 257.¢ 8%
Percentage of net revenues 73.7% 75.4% 74.7%
Total Service 1,218.« 1,149.; 1,103.¢ 69.2 6 % 45.¢ 4%
Percentage of net revenues 26.3% 24.6% 25.3%
Total net revenues $ 4,627. $ 4,669. $ 4,365. $ (42.0) )% $ 303.7 7%

Figure 22: Table image corresponding to the ComTQA (FinTabNet) example in Figure 5.
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