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Abstract

Computational phylogenetics has become an
established tool in historical linguistics, with
many language families now analyzed using
likelihood-based inference. However, standard
approaches rely on expert-annotated cognate
sets, which are sparse, labor-intensive to pro-
duce, and limited to individual language fami-
lies. This paper explores alternatives by com-
paring the established method to two fully au-
tomated methods that extract phylogenetic sig-
nal directly from lexical data. One uses auto-
matic cognate clustering with unigram/concept
features; the other applies multiple sequence
alignment (MSA) derived from a pair-hidden
Markov model. Both are evaluated against ex-
pert classifications from Glottolog and typolog-
ical data from Grambank. Also, the intrinsic
strengths of the phylogenetic signal in the char-
acters are compared. Results show that MSA-
based inference yields trees more consistent
with linguistic classifications, better predicts
typological variation, and provides a clearer
phylogenetic signal, suggesting it as a promis-
ing, scalable alternative to traditional cognate-
based methods. This opens new avenues for
global-scale language phylogenies beyond ex-
pert annotation bottlenecks.

1 Introduction
Originally developed in computational biology,
quantitative methods for phylogenetic reconstruc-
tion using likelihood-based inference frameworks
have now gained widespread acceptance in com-
parative linguistics. This is evident from the grow-
ing number of computational phylogenies pro-
posed for some of the world’s largest language
families, including Dravidian (Kolipakam et al.,
2018), Sino-Tibetan (Sagart et al., 2019), and
Indo-European (Heggarty et al., 2023). Moreover,
fully automated approaches — where even cog-
nate identification is performed algorithmically —
have demonstrated a surprising degree of robust-

ness (Rama et al., 2018). In contrast to the pre-
computational era of historical linguistics, where
such detailed reconstructions were rare, the gen-
eration of fully resolved phylogenies with branch
lengths and, in some cases, estimated divergence
dates has now become a standard practice in stud-
ies of language evolution.

Despite the increasing recognition of compu-
tational language phylogenies as a useful addi-
tion to the comparative linguistics toolkit, skep-
ticism remains prevalent. A key concern raised
by critics is that phylogenetic analyses are often
based on cognate sets—groups of historically re-
lated words—extracted from semantically aligned
word lists. Since these cognate sets are based on
expert annotations, they are sparse, labor-intensive
to acquire, and raise concerns regarding replicabil-
ity.

Another limitation of phylogenetic inference
based on cognate classes is that it is by definition
constrained to individual language families. There
is legitimate interest in automatically inferred trees
spanning larger collections of languages, perhaps
from the entire world. Such trees provide infor-
mation about the strength of evidence for putative
macro-families (Jäger, 2015; Akavarapu and Bhat-
tacharya, 2024). Furthermore, they are useful for
downstream tasks such as the statistical modeling
of global language evolution (Bentz et al., 2018;
Bouckaert et al., 2022).

The literature contains several proposed work-
flows for extracting character matrices from word
lists without cognate annotations, which can then
used as input for likelihood-based phylogenetic
inference. This paper presents a comparison of
cognate-based phylogenetic inference with two
such proposals, the one by Jäger (2018) and the
one by Akavarapu and Bhattacharya (2024). These
methods are evaluated in three ways: (1) by com-
paring the inferred phylogenies with the Glottolog
expert classification (Hammarström et al., 2024),
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(2) how well the inferred phylogenies fit to the ty-
pological features from (Skirgård et al., 2023), and
(3) an estimation of the strength of the phylogenetic
signal in the data, which is inferred with the soft-
ware PyPythia (Haag et al., 2022).

2 Materials and Methods

2.1 Materials
Word lists were obtained from Lexibank1; List
et al. 2023). These datasets contain lexical entries,
including the language they belong to, their mean-
ing, form in IPA transcription, and often a man-
ual cognate annotation. The datasets are curated
by the Lexibank community and are available in
a standardized format, which makes them suitable
for computational analyses.

In a first step, 135 Lexibank dataset were se-
lected. In total, this amounts to 2,486,845 lexical
entries from 6,845 languages (identified by glot-
tocodes).

For the purpose of evaluation, typological fea-
tures were obtained from Grambank2. This results
in 355,097 binary entries from 2,467 languages
and 195 typological features.

A subset of Lexibank data was selected accord-
ing to the following criteria:

• The entry comes from a language with a Glot-
tocode that is present in the Grambank data.

• The entry has an entry for its meaning
(Concepticon_Gloss) and a manual cog-
nate annotation (Cognateset_ID).

• The meaning comes from the 110 concepts
with the largest coverage.

This leaves 113,671 entries from 928 languages.
For further processing, the IPA transcriptions were
converted to the ASJP alphabet using the python
package lingpy (List and Forkel, 2024).

Constraining the Grambank data to these 928
languages leaves 138,878 binary data points from
all 195 features.

The gold standard tree was obtained from Glot-
tolog.3

1https://github.com/lexibank
2https://github.com/grambank/grambank
3https://zenodo.org/records/10804582/files/

glottolog/glottolog-cldf-v5.0.zip

2.2 Methods
The overall workflow consists of the following
steps:

1. Phylogenetic inference

(a) Generate a binary character matrix from
the Lexibank data.

(b) Infer a phylogenetic tree from this char-
acter matrix.

2. Evaluation

(a) Compare the inferred phylogenetic tree
with the Glottolog expert classification.

(b) Compare the inferred phylogenetic tree
with the Grambank typological features.

(c) Assess the strength of the phylogenetic
signal in the data.

Three different methods were used to generate
a binary character matrix: (1) binarized expert-
annotated cognate classes, (2) a combination of
automatic cognate clustering and unigram/concept
features as described in Jäger (2018), and (3) a
variant of the method developed by Akavarapu
and Bhattacharya (2024) using multiple sequence
alignment.

2.2.1 Expert-annotated cognate classes (cc)
Here we use the method introduced by Ringe et al.
(2002) and Gray and Atkinson (2003). Each cog-
nate class is treated as a character. A language is
coded as 1 if it has a cognate in the class, 0 if it
has a different cognate class for the same concept,
and missing if it has no cognate for the concept.
This results in a matrix with 928 rows and 25,913
columns.

Since each cognate class is, by definition, con-
fined to a single language family, this character ma-
trix contains no signal beyond the family level.

In the tables and figures below, this method is
referred to as cc (for cognate classes).

2.2.2 Automatic cognate clustering and
unigram/concept features (PMI)

The workflow proposed by Jäger (2018) was repli-
cated. This approach uses two types of characters.

• Binarized cognate classes obtained via auto-
matic cognate clustering. This involves (1)
supervised training of a Support Vector Ma-
chine classifier which takes a pair of words
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and predicts the labels 1 (cognate) or 0 (non-
cognate), using manual cognate classification
for supervision, (2) creating a distance matrix
for all entries for a given concept from the 100
concepts defined above, and (3) clustering the
distance matrix using the label propagation
algorithm (Raghavan et al., 2007).

• Unigram/concept characters. For each combi-
nation of a concept c and an ASJP sound class
s, a language is coded as 1 if it has a word for
concept c that contains sound class s, missing
if it has no word for concept c, and 0 other-
wise.

This resulted in a matrix with 928 rows and
41,013 columns.

Since the pointwise mutual information between
sound classes plays an essential role in this work-
flow, the method is referred to as PMI.

2.2.3 Multiple sequence alignment (MSA)
The method by Akavarapu and Bhattacharya
(2024) was used as starting point, but the present
approach differs in various aspects. The method is
based on the following steps:

In a first step, pairwise distances between lan-
guages in the full lexibank dataset were computed
using the Levenshtein distance on the ASJP tran-
scriptions and aggregating according to the method
described in (Jäger, 2018). Language pairs with
a distance below 0.7 were considered as probably
related, using the same heuristics as Jäger (2018).
There are 172,681 such language pairs. All word
pairs from such a language pair sharing their mean-
ing are treated as potential cognates. There are
90,565,486 such word pairs. An equal number of
random word pairs were sampled as probable non-
cognates. Potential cognates were assigned the la-
bel 1 and probable non-cognate the label 0.

In a second step, a classifier was trained on the
potential cognates and non-cognates. The clas-
sifier consists of a pair-Hidden Markov Model
(pHMM) (Durbin et al., 1998) and a logistic-
regression layer. The classifier was trained for one
epoch using the Adam optimizer. The resulting pa-
rameters of the pHMM were used in the next step.

A pHMM defines a probability distribution over
pairs of aligned sequences of sound classes. This
involves (1) emission probabilities for all pairs of
sound classes that are matched in the alignment, (2)
emission probabilities for individual sound classes
if they are aligned with a gap, and (3) transition

probabilities between the hidden states match, gap
in string 1, gap in string 2, and final state.

It is instructive to inspect the emission proba-
bilities in the trained model. In Table 1 the ten
sound classes with the highest probability of be-
ing matched with /p/ are shown for illustration, to-
gether with their log-probabilities. This ranking is
in good agreement with linguistic intuitions about
potential sound correspondences.

Sound class Log-probability
p −2.39
f −16.35
b −18.85
v −23.26
h −24.03
L −25.11
g −27.67
7 −29.74
C −29.95
I −30.78

Table 1: The ten sound classes with the highest proba-
bility of being matched with /p/ in the trained pHMM,
along with their log-probabilities.

Sound class Log-probability
c -0.86
j -1.17
L -1.54
1 -2.94
I -8.06
h -9.37
7 -9.60
i -10.14
y -10.24
T -10.33

Table 2: The ten sound classes with the highest proba-
bility of being matched with a gap in the trained pHMM,
along with their log-probabilities.

A high probability here is to be interpreted as
a high likelihood that instances of these sound
classes participate either in insertion or deletion.

The trained pHMM assigns a probability to each
pair of aligned sequences. Via the forward algo-
rithm, the probability of a pair of sequences is com-
puted as the sum of the probabilities of all possible
alignments between these sequences.

Following Durbin et al. (1998), a null-model
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was trained additionally that assigns individual
probabilities to both sequences, disregarding the
order of sound classes. The log-odds ratio of a pair
of words of being generated by the pHMM vs. the
null model can interpreted as a measure of the sim-
ilarity of the two words.

To illustrate this, a collection of ten words were
chosen at random from the dataset which all have
an edit distance of 1 to the word baba, and their log-
odds ratios with respect to baba were computed.
The results are shown in Table 3.

word log-odds
babae 98.26
babau 96.31
bIba 95.73
bawa 87.55
zaba 85.51
raba 74.58
maba 73.52
eaba 73.50
xaba 71.78
naba 70.94

Table 3: Ten randomly chosen words with an edit dis-
tance of 1 from baba, alongside with the predicted log-
odds to baba.

This ranking illustrates that the log-odds pre-
dicted by the trained pHMM are consistent with
linguistic intuitions about potential cognacy.

In a third step, the trained pHMM was used
in combination with the Viterbi algorithm to ob-
tain pairwise sequence alignments for all synony-
mous word pairs from different languages within
the smaller dataset of 928 languages and 110 con-
cepts.

In a fourth step, the pairwise sequence align-
ments were aggregated to a multiple sequence
alignment (MSA) using the T-Coffee algorithm
(Notredame et al., 2000).

Note that all reflexes of a given concept are
aligned within a single MSA, regardless of cog-
nacy. Such an MSA implicitly contains informa-
tion both about cognacy and about sound corre-
spondences.

An example (for a much smaller dataset) is
shown in Table 4 for illustration. These are the re-
flexes of the concept louse from the Tungusic lan-
guages in the dataset.4

4The data are taken from https://zenodo.org/

As can be seen from this example, the MSA con-
tains information about cognacy, but also about
sound correspondences. For example, a t in
the first column is a proxy for the cognate class
16_lousen-38. The sound classes k and q, on
the other hand, both correspond to the cognate
class 16_lousen-37, and they additionally reflect
a sound change. In column 4, however, the cog-
nate class 16_lousen-38 is split into two sound
classes, k and q, reflecting a sound change. The
presence of a sound class, as opposed to a gap, is
a proxy of that cognate class. Put differently, bi-
nary characters corresponding to a gap are flipped
by switching 0s and 1s.

In a fifth step, the MSA was converted to a bi-
nary matrix. Two binarization methods were used
simultaneously. For a given column in an MSA, a
character was created for the presence of a sound
class. For column 4 in Table 4, e.g., this character
has value 1 for Nanai, Orok and Ulch, and 0 for
the other languages. Additionally, for each sound
class type in a column, a different character was
created. In the example, there are two such char-
acters, one for k and one for q. The first has value
1 for Nanai and Orok and 0 otherwise, while the
second has value 1 for Ulch and 0 otherwise. Lan-
guages for which the data do not contain a reflex for
a given concept are coded as missing for all rele-
vant characters. If a language has multiple reflexes
for a given concept, the maximum value is chosen.

Applying this workflow to all concepts and con-
catenating the resulting matrices yields the final
character matrix 928 rows and 46,409 columns.

As mentioned above, this workflow builds on the
method by Akavarapu and Bhattacharya (2024),
but differs in various aspects. The mentioned
work (1) uses Dolgopolsky sound classes instead
of ASJP, (2) finds the MSA using CLUSTALW2
(Larkin et al., 2007) instead of T-Coffee, and (3)
omits the binarization steps, working with a multi-
state model of evolution for phylogenetic infer-
ence.

In the tables and figures this method is referred
to as MSA.

2.2.4 Phylogenetic inference
We performed phylogenetic inference using raxml-
ng (Kozlov et al., 2019), which implements
maximum-likelihood estimation. The GTR+G
model (generalized time-reversible model with

records/13163376, which is based on (Oskolskaya et al.,
2021).
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Language Cognateset_ID 1 2 3 4 5 6 7 8
Even 16_lousen-37 k - u - m - k e
Kilen 16_lousen-37 q h u - m I k I
Negidal 16_lousen-37 k - u - m - k I
Oroch 16_lousen-37 k - u - m - - I
Udihe 16_lousen-37 k - u - m u x I
Nanai 16_lousen-38 t - i k t - - I
Orok 16_lousen-38 t - i k t - - I
Ulch 16_lousen-38 t - i q t - - I

Language sound class k q
Even 0 0 0
Kilen 0 0 0
Negidal 0 0 0
Oroch 0 0 0
Udihe 0 0 0
Nanai 1 1 0
Orok 1 1 0
Ulch 1 0 1

Table 4: Example of a multiple sequence alignment. Alignment cells are shaded to indicate different cognate sets.
(left) Binarized version of column 4. (right)

gamma-distributed rates) was used for all analyses.
This means that gain rates and loss rates can be dif-
ferent, and that the mutation rates of the different
characters can differ but are drawn from the same
gamma distribution. The parameters of this distri-
bution are estimated from the data.

Using the standard settings of raxml-ng, 20 max-
imum likelihood tree searches were performed, ten
of them starting from random trees and ten from
maximum-parsimony trees. The tree with the high-
est likelihood was chosen as the final result.

2.2.5 Evaluation
Evaluation was conducted on three types of
datasets:

• the full dataset of 928 languages,

• 100 samples of 100 languages each, which are
drawn at random without replacement from
the full dataset, and

• a collection of 14 language families, each
with at least 10 languages.

For each of these groups of datasets, the follow-
ing evaluations were performed:

Comparison with Glottolog The Glottolog clas-
sification of the languages in a dataset can be rep-
resented as a phylogenetic tree with polytomies,
i.e., with nodes containing more than two daugh-
ters. This Glottolog tree serves as gold standard.
To assess the degree of agreement between the gold
standard and the inferred phylogenies, the general-
ized quartet distance (GQD) was deployed, as first
proposed by Pompei et al. (2011). This distance
is defined as the fraction of quartets (i.e., sets of
four languages) that are (a) resolved in both trees,
and (b) resolved differently in the two trees. The

GQD ranges from 0 (perfect agreement) to 0.67
(chance level). The GQD was computed using
the software QDist, which can be obtained from
https://birc.au.dk/software/qdist/.

Fit with Grambank The hypothesis is assumed
that the values of the Grambank features evolve
along a phylogeny in the same way as the lex-
ical characters described earlier in this section.
The degree of fit of the inferred phylogenies with
the Grambank features was assessed by (1) us-
ing the inferred phylogeny and estimating the
branch lengths, mutation rates and rate heterogene-
ity via Maximum Likelihood, and (2) computing
the Akaike Information Criterion (AIC). A lower
AIC value indicates a better fit.

ML inference and AIC computation were also
performed with raxml-ng.

For the groups of random samples and of lan-
guage families, AIC values were normalized to
mean 0 to facilitate comparison.

Phylogenetic difficulty The strength of the phy-
logenetic signal in the data was assessed using the
software PyPythia (Haag et al., 2022). The au-
thors define a measure of signal strength that uses
100 maximum likelihood tree searches and quanti-
fies the degree of agreement between the inferred
trees. The software PyPythia implements a ma-
chine learning algorithm that predicts this diffi-
culty from various properties of the character ma-
trix, such as entropy and sites-over-taxa ratio, and
maximum-parsimony tree inference, with high pre-
cision and comparatively low computational cost.
The measure ranges from 0 (little difficulty, i.e.,
strongest signal) to 1 (very difficult, i.e., no signal).
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Method GQD (Glottolog) AIC (Grambank) difficulty
Cognate classes 0.188 105.340 0.59
PMI 0.062 104.903 0.63
MSA 0.042 104,752 0.45

Table 5: Evaluation of the full dataset. GQD = Generalized Quartet Distance (lower is better; ranges from 0 for
perfect fit to 0.67 for chance level); AIC = Akaike Information Criterion for typological model fit (lower is better;
absolute values are not interpretable in isolation but differences are meaningful); difficulty = phylogenetic difficulty
estimated by PyPythia (lower is better; ranges from 0 for strong phylogenetic signal to 1 for absent signal).

Method μ GQD σ GQD μ AIC σ AIC μ difficulty σ difficulty
Cognate classes 0.227 0.077 151 115 0.486 0.030
PMI 0.095 0.030 −28 69 0.326 0.032
MSA 0.048 0.015 −123 66 0.294 0.021

Table 6: Evaluation of the 100 random samples (μ: sample mean; σ: sample standard deviation).

Method μ GQD σ GQD μ AIC σ AIC μ difficulty σ difficulty
Cognate classes 0.223 0.130 –1.73 17.01 0.401 0.164
PMI 0.221 0.109 3.42 20.43 0.280 0.187
MSA 0.218 0.109 −1.69 14.30 0.203 0.159

Table 7: Evaluation of the 14 largest language families (μ: sample mean; σ: sample standard deviation).
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Figure 1: Left panel: Comparison of methods across three evaluation metrics for the 100 random samples. The
boxplots show distribution per method, while the overlaid points represent individual samples. Right panel: Com-
parison of methods across three evaluation metrics for the 14 largest language families. The boxplots show distri-
bution per method, while the overlaid points represent individual samples.

3 Results
The evaluation results for the entire dataset are
shown in Table 5. Table 6 shows the aggregated
results for the 100 random samples. They are visu-

alized in the left panel of Figure 1.

The aggregated evaluation results for the 14
largest language families are shown in Table 7.
They are visualized in the right panel of Figure 1.
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The results for the individual families are given in
Table 8.

When focusing on phylogenetic inference at the
level of individual families, we find a considerable
variation between families. This applies both to
the numerical evaluation results and the relative
ranking of the three methods considered here. The
MSA method tends to produce the lowest phyloge-
netic difficulty, while there is no discernible trend
regarding the fit to Glottolog and to Grambank.

This picture changes considerably when we fo-
cus on datasets covering languages from many dif-
ferent families. Here, the MSA method consis-
tently outperforms the other two methods. This is
particularly evident in the comparison with Glot-
tolog, where the MSA method yields the lowest
GQD values. The MSA method also leads to the
lowest AIC values, indicating a better fit to the
Grambank typological features. The phylogenetic
difficulty is also lowest for the MSA method.

4 Discussion

These findings suggest that the MSA method is a
promising alternative to traditional cognate-based
methods. It is competitive with the more labor-
intensive method based on manual cognate anno-
tations, as well as the method using automatically
detected cognate classifications, when considering
individual language families. For global datasets,
the MSA method clearly outperforms the other two
methods. This is particularly evident in the com-
parison with Glottolog, where the MSA method
yields the lowest GQD values. The MSA method
also tends to produce the lowest AIC values, indi-
cating a better fit to the Grambank typological fea-
tures. The phylogenetic difficulty is also lowest for
the MSA method.

Limitations

The two evaluation methods that quantify the fit of
the inferred trees to empirical data only assess the
quality of the inferred tree topologies. Future work
will need to address the question how well the in-
ferred branch lengths and divergence dates corre-
spond to the true values. This is a challenging task,
as the true values are unknown. It is expected that
the usefulness for downstream tasks is a suitable
proxy.

Data and Code Availability
The code used in this study is available at
https://codeberg.org/profgerhard/
sigtyp2025_code/.
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Family Metric cc pmi msa
Afro-Asiatic GQD 0.455 0.195 0.211

PhyDiff 0.420 0.260 0.100
AIC 12.635 8.841 -21.476

Arawakan GQD 0.280 0.346 0.317
PhyDiff 0.250 0.110 0.080
AIC 0.868 -0.845 -0.023

Atlantic-Congo GQD 0.150 0.220 0.235
PhyDiff 0.680 0.670 0.530
AIC -34.076 15.572 18.504

Austroasiatic GQD 0.052 0.093 0.093
PhyDiff 0.280 0.310 0.280
AIC 11.338 -16.115 4.777

Austronesian GQD 0.161 0.200 0.194
PhyDiff 0.670 0.600 0.470
AIC -31.419 65.299 -33.880

Chibchan GQD 0.118 0.332 0.310
PhyDiff 0.350 0.360 0.110
AIC -0.168 -3.895 4.063

Dravidian GQD 0.312 0.242 0.242
PhyDiff 0.390 0.170 0.100
AIC 1.196 -0.862 -0.334

Indo-European GQD 0.031 0.014 0.005
PhyDiff 0.320 0.210 0.140
AIC 1.065 -19.079 18.015

Pama-Nyungan GQD 0.178 0.359 0.299
PhyDiff 0.540 0.420 0.360
AIC -17.375 13.601 3.774

Sino-Tibetan GQD 0.230 0.318 0.279
PhyDiff 0.590 0.300 0.280
AIC 32.455 -13.239 -19.216

Tucanoan GQD 0.421 0.274 0.400
PhyDiff 0.270 0.030 0.010
AIC -1.364 0.758 0.607

Tupian GQD 0.353 0.294 0.266
PhyDiff 0.390 0.200 0.160
AIC -0.187 -0.280 0.467

Turkic GQD 0.249 0.117 0.117
PhyDiff 0.350 0.230 0.170
AIC -1.266 0.647 0.618

Uto-Aztecan GQD 0.126 0.084 0.083
PhyDiff 0.120 0.050 0.050
AIC 2.098 -2.485 0.388

Table 8: Evaluation of the 14 largest language families. The best value for each family is highlighted in bold.
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