
Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025), pages 356–366
July 31, 2025 ©2025 Association for Computational Linguistics

VisTRA: Visual Tool-use Reasoning Analyzer for Small Object Visual
Question Answering

Hiroaki Sugiyama1*, Ko Koga2*, Toshifumi Nishijima2,
1NTT, Inc, 2Toyota Motor Corporation

Abstract

This study proposes VisTRA (Visual Tool-use
Reasoning Analyzer), a framework for ana-
lyzing how Visual Language Models (VLMs)
utilize tools in Visual Question Answering
(VQA) tasks involving small objects in high-
resolution images. While tools like object de-
tection and zoom functionality are essential for
small object VQA, their potential errors ne-
cessitate careful verification of outputs. Our
framework provides systematic evaluation of
VLMs’ tool-use capabilities through analysis
of verification patterns. Using the V* bench
dataset, we find that direct acceptance of tool
outputs correlates with decreased VQA accu-
racy, while lower-performing models exhibit
higher frequencies of cyclic verification loops.
These findings offer insights for improving
tool verification mechanisms in VLM architec-
tures focused on small object detection tasks.

1 Introduction
1 Visual Question Answering (VQA) is a task that
requires interpreting visual content in images to
generate appropriate responses to natural language
questions. Recent advances in Vision-Language
Models (VLMs), which integrate Large Language
Models (LLMs) with vision capabilities, have im-
proved VQA performance (Li et al., 2022; Liu
et al., 2023; Dai et al., 2023; Alayrac et al., 2022).

A well-known challenge in VQA is handling
high-resolution images containing small objects
(Wu and Xie, 2024; Kisantal et al., 2019). The
conventional approach of feeding entire images
into VQA systems faces an inherent limitation:
when processing images holistically, small objects
that occupy only a minimal portion of the to-
tal pixels become practically indistinguishable in
the global representation. This fundamental con-
straint of whole-image processing leads to system-

1* These two authors contributed equally to this work.

atic failures in capturing small objects, resulting in
degraded response accuracy.

Several approaches have been proposed to ad-
dress the small object challenge, including ana-
lyzing magnified portions of images (Singh et al.,
2018; Carion et al., 2020), additional training
with small object-focused datasets (Bosquet et al.,
2023), and multi-scale learning that preserve na-
tive resolution while extracting features from nu-
merous image sub-crops (Thapa et al., 2024;
Huang et al., 2025). While these methods im-
prove recognition accuracy, they introduce new
challenges such as increased architectural com-
plexity and limitations in detection targets.

A promising direction for addressing these limi-
tations has emerged from recent advances in LLM
capabilities. Modern LLMs demonstrate agen-
tic reasoning capabilities, autonomously planning
and utilizing various external tools to solve com-
plex tasks (Wu et al., 2023b; Yao et al., 2022).
This tool-use paradigm has been successfully ap-
plied to enhance LLMs’ capabilities across vari-
ous domains (Schick et al., 2023; Qin et al., 2025;
Mialon et al., 2023), leading to its application in
VQA tasks (Yang et al., 2023; Gupta and Kemb-
havi, 2023; Surís et al., 2023).

In small object VQA, systems utilizing detec-
tion and sliding window tools can identify ob-
jects that the core VLM might miss. However,
these tool-augmented approaches face a critical
challenge: VLMs often exhibit direct acceptance
of tool outputs without proper verification (Yang
et al., 2023; Hu et al., 2024), making them vulner-
able to false positives and missed detections (Lu
et al., 2023; Wu et al., 2023a). To address this
issue, VLMs need to not only verify tool outputs
but also adaptively refine their approach based on
the verification results (Huang et al., 2023; Singh
et al., 2023). When initial tool outputs prove un-
reliable, effective re-planning―such as adjusting
detection parameters or switching to alternative

356

analysis methods―becomes crucial. While stud-
ies demonstrate improved accuracy through itera-
tive refinement with feedback (Wang et al., 2024;
Shinn et al., 2023), current VLMs struggle to con-
sistently implement such adaptive reasoning and
strategic re-planning (Madaan et al., 2023).

In this study, we propose VisTRA (Visual Tool-
use Reasoning Analyzer), a systematic framework
for analyzing and classifying VLMs’ behavioral
patterns in tool utilization, with particular focus on
the relationship between VQA accuracy and two
critical aspects: direct acceptance of tool outputs
and re-planning capabilities. Leveraging the V*
bench dataset (Wu and Xie, 2024), which features
abundant small objects, we conduct a comprehen-
sive analysis of how VLMs process external vision
tool outputs and handle potential misrecognitions.

The main contributions of this paper are:

• Development of a systematic framework for
quantitative analysis of VLM behavior in vi-
sual tool utilization, enabling detailed exam-
ination of decision-making patterns.

• Quantitative analysis of direct acceptance
and re-planning in small object VQA, reveal-
ing their relationship with VQA accuracy.

• Public release of the framework (prompt) to
facilitate reproducibility and further research
in the field2.

Our analysis reveals that direct acceptance pat-
terns strongly correlate with decreased VQA ac-
curacy, while lower-performing VLMs tend to ex-
hibit ineffective re-planning through cyclic verifi-
cation loops.

2 Related Work

2.1 Tool Use and Agentic Reasoning in Large
Language Models

The utilization of external tools by LLMs has
emerged as a key approach to expanding their ca-
pabilities beyond native text processing (Mialon
et al., 2023; Qin et al., 2025). Concurrent with
this development, LLMs have demonstrated en-
hanced agentic reasoning―the ability to perform
autonomous multi-step reasoning processes, as ex-
emplified by sophisticated Chain-of-Thought ca-
pabilities in models like OpenAI’s o1. This combi-
nation of tool utilization and agentic reasoning en-
ables complex problem-solving sequences (Ruan
et al., 2023; Wang et al., 2024).

2http://github.com/nttcslab/vistra/

The incorporation of external tools, while ex-
panding LLMs’ capabilities, introduces critical
challenges in output verification. A significant
concern is direct acceptance―the tendency of
LLMs to incorporate tool outputs without proper
verification (Ruan et al., 2024). This challenge be-
comes particularly acute when tools produce un-
expected or incorrect outputs, potentially compro-
mising the entire reasoning process.

To address these verification challenges, re-
searchers have developed systematic approaches
incorporating self-verification mechanisms.
Methods such as Self-Reflection (Shinn et al.,
2023) and Feedback-Driven Self-Improvement
(Wang et al., 2024) enable LLMs to critically
evaluate their outputs and reasoning paths. These
verification mechanisms become particularly
crucial in complex scenarios involving multiple
tool interactions.

2.2 Tool Use Application and Challenges in
VQA

Visual Question Answering (VQA) represents a
domain where tool integration demonstrates par-
ticular promise (Liu et al., 2023). Current Visual
Language Models (VLMs) face significant chal-
lenges in tasks involving complex visual elements,
especially with numerous objects, text recogni-
tion, or small objects. Research by (Ye et al.,
2025) has identified specific limitations in count-
ing, spatial relationship reasoning, and instruction
grounding tasks. These challenges have motivated
the integration of specialized tools such as object
detection (Ren et al., 2017), OCR (Tanaka et al.,
2024), and segmentation (Kirillov et al., 2023).

The Visual Sketchpad framework (Hu et al.,
2024) represents a significant advancement in ad-
dressing these challenges by extending VLMs’
spatial reasoning capabilities. By implement-
ing a step-by-step reasoning approach with mul-
tiple image processing tools, it has demonstrated
improved performance in small object detection
and spatial relationship understanding. However,
the framework’s tendency to accept tool outputs
without verification highlights the need for robust
cross-validation mechanisms.

2.3 Evaluation and Analysis Frameworks for
Tool-Augmented Agentic Reasoning

The development of systematic evaluation frame-
works for tool-augmented LLMs has produced
several notable benchmarks. MINT (Wang et al.,

357

Turn 3Turn 2Turn 1
Input
image

--Is the green statue on the left or right
side of the white statue?

Input
text

In Patch 9, the green statue is
visible and positioned to the right
of the white statue.

The detection tool identified the
white statue but not the green
statue. I will use the sliding
window detection tool to search
for the green statue.
```python
... = sliding_window_detection(image_1, 
["green statue"])
...
```

To determine the position of the green
statue relative to the white statue, I can
use the detection tool...
```python
... = detection(image_1, ["green statue", "white 
statue"]) 
...
```

LLM
output

Original image White statue detected Patch 9 of sliding window

Figure 1: The inference process on the V* bench. A very small green statue is at the left end.

2024) pioneered the analysis of LLM reasoning
behavior through multi-turn tool use and feedback
mechanisms. This framework has demonstrated
quantifiable improvements in performance. Tool-
Comp (Nath et al., 2025) advances this evalua-
tion approach by focusing on sequential tool use
scenarios. Through its comprehensive toolkit and
process monitoring system, it provides detailed in-
sights into both final outcomes and intermediate
reasoning quality.

In the visual domain, V* bench (Wu and Xie,
2024) has established new standards for evalu-
ating high-resolution image processing capabili-
ties. This framework specifically addresses the
limitations of traditional vision-language models
in processing detailed visual information, evaluat-
ing their ability to autonomously deploy and co-
ordinate multiple visual tools. VisualAgentBench
(VAB) (Liu et al., 2024) extends evaluation into di-
verse multimodal environments, from 3D simula-
tions to GUI operations. While revealing promis-
ing capabilities in current Large Multimodal Mod-
els (LMMs), VAB’s findings highlight persistent
challenges in robustness.

A critical gap remains in both text and vision-
based frameworks: the quantitative analysis of
verification and replanning behaviors. Under-
standing these patterns is essential for develop-
ing more reliable tool-augmented systems, partic-
ularly in complex visual processing tasks requir-
ing coordination among multiple tools.

3 VisTRA: Visual Tool-use Reasoning
Analyzer

This section introduces and details the Visual
Tool-use Reasoning Analyzer (VisTRA), our pro-

posed framework for systematically analyzing
how Visual Language Models (VLMs) utilize ex-
ternal tools and respond to tool errors during agen-
tic reasoning. Focusing on VQA tasks involv-
ing small objects, we analyze how VLMs employ
tools such as Detection and SlidingWindow, and
how they handle tool misrecognition (through di-
rect acceptance, verification, or re-planning). Our
study utilizes the SKETCHPAD framework pro-
posed in VisualSketchpad (Hu et al., 2024) and
evaluates it on V* bench (Wu and Xie, 2024), a
benchmark for small object VQA. The VisTRA
framework records and categorizes each step of
a VLM’s reasoning process, providing detailed
analysis of reasoning transitions.

The following subsections detail our three-stage
methodology: first, we collect development and
validation data through V* bench; second, we es-
tablish a systematic tagging system and transition
patterns; and finally, we automate the annotation
process using LLMs.

Through this framework, we aim to pro-
vide quantitative insights into how VLMs utilize
tools and handle potential errors in their reason-
ing processes, particularly in challenging scenar-
ios involving small object recognition in high-
resolution images.

3.1 Case Analysis and Data Collection on V*
bench

To develop and validate our framework, we ana-
lyze reasoning processes in V* bench tasks using
the SKETCHPAD framework. Figure 1 presents
a representative case study demonstrating typical
reasoning patterns and potential failure modes.

The illustrated task requires determining the

358

Detected object

Total detection (A)

Partially detected (P)

No detection (E)

Task (user prompt)
 [Question]
 What color are

the floats?

Use tools for
inference?

Execution tools (e.g., detection)

Tool results

Verification of
tool results

Thought

Execution tools
- e.g., Zoom / Sliding windows

Use tools for
verification?

Tool results Float

Float

Answer
T: correct / F: Incorrect

Y: Use tools
N: inference only
by LLM

①

④

⑤

⑥

⑦

System prompt
- Tool definition
- VLM behavior definition

・・・・

⑧

②

Verification of
tool result existence

③

Y: Verify

N: Not
verify

Y: Verified acceptance

N: Direct acceptance

Y: Use tools

N: Check with LLM themselves

The same as State 2

R: Retry

R: Retry

(Actually, this is a shoe)

D: Detection, Z: Zoom,
S: Sliding window, V: Display,
M: Segment and Mask, O: Other

Figure 2: Developed flowchart. Each state in the framework is denoted by a number, and possible actions from that
state are represented by action tags (e.g., Y, N). For example, verifying tool output is expressed as 4:Y (Verified
acceptance), while bypassing verification is expressed as 4:N (Direct acceptance).

spatial relationship between two statues in a high-
resolution image. The target objects―a green
statue and a white statue―appear at a scale that
makes them difficult to identify through VLM
alone, with the green statue located at the left edge
and the white statue in the center of the image.

The reasoning process proceeds through three
turns (Figure 1). In Turn 1, the LLM employs the
detection tool to locate both the green and white
statues in the input image. Based on this detec-
tion result which reveals only the white statue in
the center, in Turn 2, the LLM initiates a sliding
window detection to search for the missing green
statue. With the new detection results where the
tool misidentifies a bush as the green statue in
patch 9, in Turn 3, the LLM accepts this detec-
tion without verification. This leads to an incorrect
conclusion that "the green statue is to the right of
the white statue," when the actual green statue is
on the left.

For our experimental evaluation, we collected
data using two LLM variants: base gpt-4o and
fine-tuned ft-gpt-4o. The ft-gpt-4o model was
trained for one epoch on 10 V* bench examples
where direct acceptance errors had been manually
corrected. Using these models, we created two
datasets: a reference dataset of 20 V* bench exam-
ples and a validation dataset of 15 examples. Each
example was processed by both models, yield-
ing 40 reasoning sequences for reference and 30
for validation, enabling comprehensive analysis of
tool-use and verification patterns.

3.2 Iterative Development of VLM’s Tool-use
Analysis Framework

Using the reference dataset from Section 3.1, we
constructed a flowchart (Figure 2) that captures
VLM tool-use behaviors through a tag-based rep-
resentation and transition patterns. Our devel-
opment process began with designing a prelimi-
nary flowchart focused on detecting direct accep-
tance and re-planning behaviors. Since LLMs of-
ten combine input interpretation and action deci-
sions within their reasoning steps, we established
a fine-grained annotation scheme that operates at
a sub-step level. Two expert annotators indepen-
dently labeled the actions in each VLM reasoning
step, followed by three cycles of discussion and
consensus building:

Cycle 1 The first cycle revealed significant dis-
crepancies in annotation practices, with agree-
ment rates of 13/20 for gpt-4o samples and 7/20
for ft-gpt-4o samples. Analysis of these differ-
ences highlighted several key issues, particularly
in state 3 annotations involving object detection
outcomes. Through discussion, we established
clear definitions for object detection outcomes in
state 3: no detection (E), partial detection (P), and
complete detection (A). We also standardized tool
notation for state 2 and 6: D: Detection, Z: Zoom,
S: Sliding window and detection, V: Display, M:
Segmentation and mask, O: Other.

Cycle 2 The second cycle showed substantial
improvement in agreement rates, reaching 20/20

359

for gpt-4o samples and 19/20 for ft-gpt-4o sam-
ples. During this phase, we finalized several crit-
ical aspects of the flowchart. We clarify that our
framework analyses exclusively how the LLM in-
terprets tool outputs, explicitly avoiding any hu-
man assessment of tool accuracy. We introduced
a dedicated verification state (state 3) to check the
presence/absence of tool outputs before proceed-
ing to the acceptance phase (state 4). Importantly,
the determination of Y/N in this verification state
is based on whether the LLM acknowledges the
presence of tool outputs, rather than the actual out-
puts themselves.

Cycle 3 The final cycle achieved complete inter-
annotator agreement across all samples. This level
of consensus allowed us to finalize our annotation
scheme. Our notation represents each flowchart
step and transition as <state:tag> in Figure 2,
where each behavior pattern is encoded through a
sequence of state-tag pairs.

For example, the reasoning process illustrated
in Figure 1 is represented as:

1:Y,2:D,3:PR,1:Y,2:S,3:AY,4:N,7:F

This sequence traces the reasoning path: initial
detection (1:Y,2:D), partial recognition trigger-
ing re-planning (3:PR), sliding window applica-
tion (1:Y,2:S), object recognition (3:AY), direct
answer without verification (4:N), and ultimately
an incorrect response (7:F).

Table 1 provides formal definitions of VLM be-
haviors and illustrates how these behaviors are en-
coded in our tag-based representation system. For
instance, the example sequence above exhibits di-
rect acceptance behavior, as it reaches state 7 with-
out verified acceptance (3:AY,4:Y). This notation
system allows us to systematically identify and
quantify such behavioral patterns across different
VLMs while maintaining the interpretability of in-
dividual decision steps in their tool utilization pro-

Table 1: VLM behaviors categories in tool usage. :X
represents any action tag corresponding to each state
number.

Behavior Definition
Verified
acceptance

Verification performed after all tar-
gets are found (3:AY,4:Y)

Direct
acceptance

Reaches 7:X without any verified ac-
ceptance (3:AY,4:Y)

Cyclic loop Contains repeated use of the same
tool (2:X)

Re-planning Uses different tools each time (all
2:X differ)

cess.

3.3 Prompt Engineering for Automated
Annotation

While manual annotation using VisTRA provides
detailed insights into VLM behaviors, its time-
intensive nature (approximately three hours per
20 samples) necessitates automation for scaling
analysis across multiple models. This section de-
scribes our systematic approach to automating the
VisTRA annotation process through prompt engi-
neering.

Our automation strategy involved iterative re-
finement of prompts corresponding to VisTRA
tag definitions, validated against our reference
dataset. The development progressed through
multiple phases, initially using only gpt-4o (rev.1-
3) before expanding to evaluate generalizabil-
ity with additional models: o1 (rev.4), o3-mini
(rev.6), and gpt-4.5-preview (rev.12). While we
primarily focused on batch annotation, where tags
were assigned to the entire reasoning process si-
multaneously, we introduced step-by-step annota-
tion from rev.9 onward.

Key improvements across revisions included:

• Rev.4: Restructured the evaluation format
to use labeled OBSERVATION, THOUGHT,
and ACTION statements as evidence for state
transitions, replacing narrative descriptions

• Rev.5-6: Refined reasoning step transitions
by enforcing single-THOUGHT evaluation
per step and implementing clear conditions
for terminal state transitions

• Rev.12-14: Explicitly defined state-transition
constraints between state 3 and 4, and imple-
mented explicit enumeration of target objects
to standardize the distinction between partial
and complete detection annotations at state 3

Figure 3 shows the progression of automated
versus manual annotation agreement rates across
revisions. Comparative analysis revealed that
while gpt-4.5-preview (purple; square) achieved
comparable performance to gpt-4o (blue; circle),
both o1 (orange; upper triangle) and o3-mini
(green; lower triangle) showed lower accuracy, of-
ten due to their tendency to over-analyze and de-
viate from our defined standards.

360

1 2 3 4 5 6 7 8 9 10 11 12 13 14
bat gpt-4.5 0.57 0.72
bat gpt-4o 0.45 0.45 0.47 0.62 0.65 0.72 0.75 0.7 0.85 0.82 0.78 0.82 0.82 0.82
bat o1 0.25 0.38 0.17 0.55 0.17 0.23 0.12 0.05 0.12 0.05 0.33
bat o3-mini 0.42 0.45 0.45 0.53 0.5 0.47 0.45 0.47 0.45
inc gpt-4.5 0.82 0.8
inc gpt-4o 0.78 0.7 0.9 0.88 0.72 0.85
inc o1 0.38 0.4 0.4 0.25 0.12 0.72
inc o3-mini 0.47 0.47 0.47 0.47 0.5 0.5

Revision
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
M

at
ch

 ra
te

 (%
)

bat gpt-4.5
bat gpt-4o
bat o1
bat o3-mini
inc gpt-4.5
inc gpt-4o
inc o1
inc o3-mini

Figure 3: Improvement through prompt updates

3.4 Validation of VisTRA’s Automated
Annotation Accuracy

To validate the reliability of our automated annota-
tion framework, we conducted comprehensive ex-
periments using a validation set distinct from our
reference dataset. This validation set comprises
30 reasoning sequences derived from 15 new V*
bench examples, each processed by both gpt-4o
and ft-gpt-4o models. We evaluated the frame-
work’s performance across multiple dimensions:
model selection, annotation approaches (batch vs.
incremental), and language settings.

Figure 4 presents the match rates between auto-
mated and manual annotations under various con-
ditions. Each subplot shows three metrics―match
rate, mismatch rate, and invalid rate―across dif-
ferent experimental conditions. The results reveal
several key findings:

First, regarding model performance, gpt-4o and
gpt-4.5-preview achieved higher match rates com-
pared to reasoning-specialized models (o1 and o3-
mini). Despite their focus on reasoning tasks, o3-
mini showed notably high invalid rates, while o1
produced a high proportion of mismatches, partic-
ularly in batch processing.

Second, when comparing annotation ap-
proaches, batch processing proved more effective
for gpt-4o, likely due to our focused optimiza-
tion of batch prompts during development.
Conversely, gpt-4.5-preview showed better perfor-
mance with incremental processing, suggesting its
enhanced ability to maintain consistency across

0.00

0.25

0.50

0.75

1.00

M
at

ch
_r

at
e

0.00

0.25

0.50

0.75

1.00

M
ism

at
ch

_r
at

e

gp
t-4

.5
gp

t-4
o o1

o3
-m

ini

model

0.00

0.25

0.50

0.75

1.00

In
va

lid
_r

at
e

batch inc
inc

en ja
lang

model
gpt-4.5
gpt-4o
o1
o3-mini

Figure 4: VisTRA’s Automated Annotation Accuracy
on validation dataset

multiple reasoning steps.
Finally, the framework demonstrated consistent

performance across both English and Japanese in-
puts, suggesting its potential applicability across
different languages without significant degrada-
tion in accuracy.

Based on these validation results, we selected
gpt-4o with batch processing as our primary con-
figuration for automated annotation. This choice
enables reliable, large-scale analysis of VLM’s
tool-using reasoning patterns across the entire V*
bench dataset.

4 Analysis of VLM Reasoning Processes
Using VisTRA

4.1 Experimental Setup

We analyze the tool-use behaviors of multiple
VLMs on the V* bench dataset using VisTRA,
with a focus on quantifying their reasoning pat-
terns during visual question-answering tasks. Our
evaluation includes four VLMs: gpt-4o, gpt-4o-
mini, gpt-4.5-preview, and a fine-tuned variant of
gpt-4o (ft-gpt-4o). We assess these models on 238
V* bench examples, excluding those used in ref-
erence and verification datasets. For each exam-
ple, we record the models’ reasoning processes
using the SKETCHPAD framework’s tools and
analyze three key behavioral patterns: direct ac-
ceptance (reaching final states without verifica-
tion), re-planning (switching to different tools),
and cyclic loops (repeated use of the same tool)
shown in Table 1.

361

0 100 200 300
Frequency

1:Y -> 2:D -> 3:AY -> 4:Y -> 5:Y -> 6:Z -> 3:AY -> 4:N -> 7:T
1:Y -> 2:D -> 3:AY -> 4:N -> 7:T

1:Y -> 2:D -> 3:ER -> 1:Y -> 2:S -> 3:AY -> 4:Y -> 5:Y -> 6:Z -> 3:AY -> 4:N -> 7:T
1:Y -> 2:M -> 3:AY -> 4:N -> 7:T

1:Y -> 2:D -> 3:PR -> 1:Y -> 2:S -> 3:AY -> 4:N -> 7:T
1:Y -> 2:D -> 3:ER -> 1:Y -> 2:S -> 3:AY -> 4:N -> 7:T

1:Y -> 2:D -> 3:AY -> 4:Y -> 5:Y -> 6:Z -> 3:AY -> 4:N -> 7:F
1:Y -> 2:D -> 3:AY -> 4:Y -> 5:Y -> 6:Z -> 3:ER -> 1:Y -> 2:S -> 3:AY -> 4:Y -> 5:Y -> 6:Z -> 3:AY -> 4:N -> 7:T

1:Y -> 2:D -> 3:PR -> 1:Y -> 2:S -> 3:AY -> 4:N -> 7:F
1:Y -> 2:D -> 3:AY -> 4:N -> 7:F
1:Y -> 2:M -> 3:AY -> 4:N -> 7:F

1:Y -> 2:D -> 3:AY -> 4:Y -> 5:Y -> 6:Z -> 3:ER -> 1:Y -> 2:S -> 3:AY -> 4:N -> 7:T
1:Y -> 2:D -> 3:ER -> 1:Y -> 2:S -> 3:AY -> 4:N -> 7:F

1:Y -> 2:D -> 3:PY -> 4:Y -> 5:Y -> 6:Z -> 3:AY -> 4:N -> 7:T
1:Y -> 2:D -> 3:ER -> 1:Y -> 2:S -> 3:AY -> 4:Y -> 5:Y -> 6:Z -> 3:AY -> 4:N -> 7:F

Model
gpt-4o
ft-gpt-4o
gpt-4o-mini
gpt-4.5-preview

Figure 5: Distribution of common patterns in automated reasoning step annotation

4.2 Analysis of Reasoning Patterns and
Performance

Table 2: VQA accuracy and rates of direct acceptance,
re-planning, and cyclic loop occurrence for each VLM

Model VQA Direct Re-planning Cyclic
Accuracy Acceptance Loop

gpt-4o 80.1 38.5 27.4 2.21
ft-gpt-4o 85.3 35.3 39.8 5.88
gpt-4o-mini 74.4 37.4 32.8 10.1
gpt-4.5 85.3 50.0 22.3 0.42

Table 2 summarizes the performance metrics of
the four evaluated models. Gpt-4.5-preview and
fine-tuned gpt-4o achieve the highest VQA ac-
curacy (both 85.3%), followed by the base gpt-
4o (80.1%) and gpt-4o-mini (74.4%). The mod-
els show considerable variation in their behav-
ioral patterns: gpt-4.5-preview exhibits the high-
est direct acceptance rate (45.0%) and lowest re-
planning rate (22.3%), while fine-tuned gpt-4o
shows a lower direct acceptance rate (32.8%) but
higher re-planning rate (39.8%). Notably, gpt-4o-
mini demonstrates the highest loop rate (10.08%),
substantially exceeding other models.

Contrary to our initial hypothesis, we found no
clear correlation between overall VQA accuracy
and behavioral metrics (direct acceptance rate and
re-planning rate) across different model scales.
For instance, gpt-4.5-preview achieves the highest
accuracy while showing the highest direct accep-
tance rate and the lowest re-planning rate. Sim-
ilarly, despite its relatively low direct acceptance
rate and moderate re-planning rate, gpt-4o-mini
exhibits the lowest accuracy. These results sug-
gest that model capabilities play a more funda-
mental role in determining VQA performance than
these behavioral patterns. In the following sec-
tions, we conduct a detailed analysis to under-
stand how these behavioral patterns influence per-

formance within models of similar capabilities.

4.2.1 Direct Acceptance and Verification

Table 3: VQA accuracy by direct / verified acceptance

Model Direct (%) Verified (%)
gpt-4o 70.1 86.3
ft-gpt-4o 78.6 89.6
gpt-4o-mini 65.2 79.9
gpt-4.5 80.7 89.9

Analysis of direct acceptance versus verified
responses reveals a consistent pattern across all
models: direct acceptance of tool outputs leads to
lower accuracy compared to cases involving veri-
fication steps (Table 3). However, the magnitude
of this accuracy drop varies significantly among
models. Gpt-4o-mini shows a substantial decline
from 79.9% to 65.2% (14.7 percentage points),
while gpt-4.5-preview exhibits a more modest
decrease from 89.9% to 80.7% (9.2 percentage
points). The fine-tuned gpt-4o also demonstrates
improved resilience against accuracy degradation,
with the gap between verified and direct accep-
tance (89.6% vs 78.6%) being smaller than its base
model (86.3% vs 70.1%). These findings suggest
that while verification generally improves perfor-
mance, more sophisticated models like gpt-4.5-
preview and the fine-tuned gpt-4o can better main-
tain accuracy even when directly accepting tool
outputs.

4.2.2 Impact of Re-planning and Verification

Table 4: Correct answer rate (# correct answers / # at-
tempts) for each retry type by model

Model Straight Cyclic loop Re-planning
gpt-4o 85.1 (137/161) 20.0 (1/5) 71.7 (43/60)
ft-gpt-4o 92.4 (133/144) 35.7 (5/14) 82.5 (66/80)
gpt-4o-mini 82.9 (131/158) 41.7 (10/24) 64.3 (36/56)
gpt-4.5 89.9 (161/179) 0.00 (0/1) 72.4 (42/58)

362

Table 4 shows how model performance varies
across different reasoning paths. All models per-
form best with straight reasoning paths, ranging
from 82.9% (gpt-4o-mini) to 92.4% (ft-gpt-4o).
During re-planning attempts, fine-tuned gpt-4o
maintains relatively high accuracy (82.5%), while
other models show noticeable degradation (64.3-
72.4%).

The occurrence and handling of cyclic loops re-
veal characteristic behaviors of each model. Gpt-
4.5-preview effectively avoids cyclic patterns with
only one occurrence, demonstrating its capabil-
ity to maintain efficient reasoning. In contrast,
fine-tuned gpt-4o shows an increased tendency for
cyclic behaviors (14 cases) compared to its base
model (5 cases), suggesting that supervised fine-
tuning may lead to over-fixation on certain pat-
terns. Gpt-4o-mini exhibits both the highest num-
ber of cyclic loops (24 cases) and the lowest re-
planning success rate (64.3%), indicating funda-
mental limitations in its reasoning capabilities that
prevent it from either avoiding loops or effectively
changing its approach when necessary.

4.3 Detailed Analysis of Tool Usage Patterns

Dominant Reasoning Patterns Figure 5 re-
veals the most frequent tool usage sequences
across models. The predominant pattern follows
a systematic verification approach: Using detec-
tion tool (2:D) → All the objects are detected
(3:AY,4:Y) → Zoom-based verification (6:Z) →
Answer (7:T). This sequence demonstrates how
models typically employ multiple tools to verify
their initial findings before reaching conclusions.

Impact of Fine-tuning on Tool Preferences
Fine-tuning led to notable changes in tool usage
patterns. A striking example is the disappearance
of the "Segment and mask → (direct acceptance)
→ Answer" sequence, which was the second most
frequent pattern in base gpt-4o but absent in fine-
tuned versions. Despite using only 10 training ex-
amples, fine-tuning significantly reduced the over-
all usage of segmentation masks, indicating a sub-
stantial shift in tool preferences.

5 Discussion

Our analysis using VisTRA revealed two critical
insights about Visual Language Models’ reasoning
capabilities. First, while more capable models like
gpt-4.5-preview can effectively utilize direct rea-
soning paths, strategic re-planning remains valu-

able for improving performance in models with
similar architectural capabilities. This suggests
that both inherent model capacity and reasoning
strategy contribute to overall VQA performance,
with the relative importance of each factor vary-
ing by model scale.

Our analysis also revealed how training influ-
ences tool usage patterns. Fine-tuning can dramat-
ically reshape a model’s approach to tool selec-
tion and verification, even with minimal training
data. We observed the emergence of a hierarchi-
cal tool usage pattern, where certain tools serve as
primary diagnostic instruments while others func-
tion as fallback options. This suggests that models
develop tool-specific confidence levels that guide
their verification strategies.

These findings point to several important direc-
tions for future research. First, we need more so-
phisticated frameworks for distinguishing between
genuine direct acceptance and internal verification
processes, particularly in high-capability models.
Second, the relationship between model scale and
optimal verification strategy deserves further in-
vestigation - there may be scale-dependent pat-
terns that could inform more efficient training ap-
proaches. Finally, understanding how models de-
velop tool-specific confidence levels could lead to
more effective training strategies for improving
tool use in visual reasoning tasks.

6 Conclusion

This work introduces VisTRA, a systematic
framework for analyzing VLMs’ tool utilization
patterns in small object VQA tasks. Through au-
tomated reasoning step annotation, we quantita-
tively demonstrated that direct acceptance of tool
outputs correlates with decreased VQA accuracy
across all models, while lower-performing VLMs
exhibit ineffective re-planning through cyclic veri-
fication loops. Our analysis revealed that more ca-
pable models like gpt-4.5-preview show reduced
accuracy degradation with direct acceptance, and
that fine-tuning can significantly reshape tool pref-
erences and verification patterns, even with mini-
mal training data. These findings provide insights
into the relationship between model capacity and
reasoning strategies in visual tool utilization.

363

Limitations

VisTRA’s current implementation is specifically
designed for analyzing behavior within the
SKETCHPAD framework on V* bench. While the
framework could potentially be adapted to simi-
lar VQA tasks and benchmarks, such applications
remain untested. Although SKETCHPAD repre-
sents a common approach to visual tool-based rea-
soning, adapting the framework to other contexts
may present challenges, particularly in prompt en-
gineering. The automation and optimization of
prompting strategies remain important areas for
future work. Regarding direct acceptance, our
study deliberately focused on tool usage patterns
rather than judgment accuracy. While this ap-
proach allowed us to examine behavioral tenden-
cies in isolation, it does not account for the rela-
tionship between tool output accuracy and model
behavior. Given that the impact of direct accep-
tance likely varies significantly based on tool out-
put accuracy, future work should investigate the
interaction between output correctness and model
behavior, particularly for improving VLM perfor-
mance.

Acknowledgments

References
Jean Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-

toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, An-
drew Brock, Aida Nematzadeh, Sahand Sharifzadeh,
Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a Visual Language Model for Few-Shot
Learning. In Advances in Neural Information Pro-
cessing Systems, volume 35.

Brais Bosquet, Daniel Cores, Lorenzo Seidenari, Víc-
tor M. Brea, Manuel Mucientes, and Alberto Del
Bimbo. 2023. A full data augmentation pipeline for
small object detection based on generative adversar-
ial networks. Pattern Recognition, 133.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-End Object Detection
with Transformers. pages 213–229.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi.
2023. InstructBLIP: towards general-purpose
vision-language models with instruction tuning. In

Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual Programming: Compositional visual reasoning
without training. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition, volume 2023-June.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Os-
tendorf, Luke Zettlemoyer, Noah A Smith, and Ran-
jay Krishna. 2024. Visual Sketchpad: Sketching as a
Visual Chain of Thought for Multimodal Language
Models. In Proceedings of Advances in Neural In-
formation Processing Systems.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, Pierre Ser-
manet, Noah Brown, Tomas Jackson, Linda Luu,
Sergey Levine, Karol Hausman, and Brian Ichter.
2023. Inner Monologue: Embodied Reasoning
through Planning with Language Models. In Pro-
ceedings of Machine Learning Research, volume
205.

Zile Huang, Chong Zhang, Mingyu Jin, Fangyu Wu,
Chengzhi Liu, and Xiaobo Jin. 2025. Better Sam-
pling, Towards Better End-to-End Small Object De-
tection. pages 319–335.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan Yen
Lo, Piotr Dollár, and Ross Girshick. 2023. Segment
Anything. In Proceedings of the IEEE International
Conference on Computer Vision.

Mate Kisantal, Zbigniew Wojna, Jakub Murawski,
Jacek Naruniec, and Kyunghyun Cho. 2019. Aug-
mentation for small object detection.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. BLIP: Bootstrapping Language-Image
Pre-training for Unified Vision-Language Under-
standing and Generation. In Proceedings of Ma-
chine Learning Research, volume 162.

Haotian Liu, Chunyuan Li, Qingyang Wu, and
Yong Jae Lee. 2023. Visual Instruction Tuning. In
Proceedings of Advances in Neural Information Pro-
cessing Systems, volume 36.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yi-
fan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
Xinyi Liu, Hanlin Zhao, Jiadai Sun, Xinyue Yang,
Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao Sun,
Siyi Cheng, Qinkai Zheng, Hao Yu, Hanchen Zhang,
Wenyi Hong, Ming Ding, Lihang Pan, Xiaotao Gu,
Aohan Zeng, Zhengxiao Du, Chan Hee Song, Yu Su,
Yuxiao Dong, and Jie Tang. 2024. VisualAgent-
Bench: Towards Large Multimodal Models as Vi-
sual Foundation Agents.

364

https://doi.org/10.1016/j.patcog.2022.108998
https://doi.org/10.1016/j.patcog.2022.108998
https://doi.org/10.1016/j.patcog.2022.108998
https://doi.org/10.1007/978-3-030-58452-8{_}13
https://doi.org/10.1007/978-3-030-58452-8{_}13
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1109/CVPR52729.2023.01436
https://doi.org/10.1007/978-981-96-2681-6{_}23
https://doi.org/10.1007/978-981-96-2681-6{_}23
https://doi.org/10.1007/978-981-96-2681-6{_}23
https://doi.org/10.1109/ICCV51070.2023.00371
https://doi.org/10.1109/ICCV51070.2023.00371
https://doi.org/10.5121/csit.2019.91713
https://doi.org/10.5121/csit.2019.91713

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley,
Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. 2023. Chameleon: Plug-and-
Play Compositional Reasoning with Large Lan-
guage Models.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-Refine: Iter-
ative Refinement with Self-Feedback. In Proceed-
ings of Advances in Neural Information Processing
Systems.

Grégoire Mialon, Roberto Dessì, Maria Lomeli,
Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave,
Yann LeCun, and Thomas Scialom. 2023. Aug-
mented Language Models: a Survey.

Vaskar Nath, Pranav Raja, Claire Yoon, and Sean
Hendryx. 2025. ToolComp: A Multi-Tool Reason-
ing & Process Supervision Benchmark.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung,
Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen,
Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Zi-
wei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai,
Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang
Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Ja-
son Phang, Cheng Yang, Tongshuang Wu, Heng Ji,
Guoliang Li, Zhiyuan Liu, and Maosong Sun. 2025.
Tool Learning with Foundation Models. ACM Com-
puting Surveys, 57(4):1–40.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2017. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(6).

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Ziyue Li, Xingyu Zeng, and Rui Zhao. 2023.
TPTU: Large Language Model-based AI Agents for
Task Planning and Tool Usage. In Proceedings
of Advances in Neural Information Processing Sys-
tems.

Yangjun Ruan, Honghua Dong, Andrew Wang, Sil-
viu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois,
Chris J. Maddison, and Tatsunori Hashimoto. 2024.
Identifying the Risks of LM Agents with an LM-
Emulated Sandbox. In Proceedings of International
Conference on Learning Representations.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì,
Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,

Nicola Cancedda, and Thomas Scialom. 2023. Tool-
former: Language Models Can Teach Themselves to
Use Tools.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: an autonomous agent with dynamic mem-
ory and self-reflection. Advances in Neural Infor-
mation Processing Systems, 36.

Bharat Singh, Mahyar Najibi, and Larry S. Davis.
2018. Sniper: Efficient multi-scale training. In Ad-
vances in Neural Information Processing Systems,
volume 2018-December.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
Prompt: Generating Situated Robot Task Plans us-
ing Large Language Models. In Proceedings - IEEE
International Conference on Robotics and Automa-
tion, volume 2023-May.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
ViperGPT: Visual Inference via Python Execution
for Reasoning. In Proceedings of the IEEE Inter-
national Conference on Computer Vision.

Ryota Tanaka, Taichi Iki, Kyosuke Nishida, Kuniko
Saito, and Jun Suzuki. 2024. InstructDoc: A Dataset
for Zero-Shot Generalization of Visual Document
Understanding with Instructions. In Proceedings of
AAAI Conference on Artificial Intelligence.

Rahul Thapa, Kezhen Chen, Ian Covert, Rahul
Chalamala, Ben Athiwaratkun, Shuaiwen Leon
Song, and James Zou. 2024. Dragonfly: Multi-
Resolution Zoom-In Encoding Enhances Vision-
Language Models.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2024.
MINT: Evaluating LLMs in Multi-turn Interaction
with Tools and Language Feedback. In Proceedings
of International Conference on Learning Represen-
tations.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong
Wang, Zecheng Tang, and Nan Duan. 2023a. Visual
ChatGPT: Talking, Drawing and Editing with Visual
Foundation Models.

Penghao Wu and Saining Xie. 2024. V*: Guided Vi-
sual Search as a Core Mechanism in Multimodal
LLMs. In Proceedings of 2024 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 13084–13094. IEEE.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W White, Doug Burger, and Chi Wang.
2023b. AutoGen: Enabling Next-Gen LLM Appli-
cations via Multi-Agent Conversation.

365

https://doi.org/10.1145/3704435
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICCV51070.2023.01092
https://doi.org/10.1109/ICCV51070.2023.01092
https://doi.org/10.1109/CVPR52733.2024.01243
https://doi.org/10.1109/CVPR52733.2024.01243
https://doi.org/10.1109/CVPR52733.2024.01243

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023.
MM-REACT: Prompting ChatGPT for Multimodal
Reasoning and Action.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
ReAct: Synergizing Reasoning and Acting in Lan-
guage Models. In Proceedings of International Con-
ference on Learning Representations.

Zhoutong Ye, Mingze Sun, Huan-ang Gao, Chun Yu,
and Yuanchun Shi. 2025. MOAT: Evaluating LMMs
for Capability Integration and Instruction Ground-
ing.

366

