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Abstract

Underlying mechanisms of memorization in
LLMs—the verbatim reproduction of training
data—remain poorly understood. What exact
part of the network decides to retrieve a to-
ken that we would consider as start of mem-
orization sequence? How exactly is the mod-
els’ behaviour different when producing mem-
orized sentence vs non-memorized? In this
work we approach these questions from mecha-
nistic interpretability standpoint by utilizing
transformer circuits—the minimal computa-
tional subgraphs that perform specific func-
tions within the model. Through carefully con-
structed contrastive datasets, we identify points
where model generation diverges from mem-
orized content and isolate the specific circuits
responsible for two distinct aspects of mem-
orization. We find that circuits that initiate
memorization can also maintain it once started,
while circuits that only maintain memoriza-
tion cannot trigger its initiation. Intriguingly,
memorization prevention mechanisms transfer
robustly across different text domains, while
memorization induction appears more context-
dependent.1

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a broad
spectrum of applications (OpenAI et al., 2024;
DeepSeek-AI et al., 2025; Touvron et al.,
2023). Despite these impressive advancements,
researchers have identified various challenges with
these models, with memorization emerging as an
important issue. Memorization in LLMs refers to
the model’s tendency to store and reproduce exact
phrases or passages from its training data when
prompted with appropriate contexts.

Memorization capabilities have both positive and
negative aspects. On one hand, deliberate memo-

1Code and data available at: https://github.com/
ilyalasy/memorization_circuits

rization enables models to store facts, concepts, and
general knowledge that enhance their performance
in tasks like question answering and information
retrieval (Ranaldi et al., 2023; Chen et al., 2023;
Lu et al., 2024). On the other hand, undesirable
memorization creates several problems: privacy
risks when models expose personal information,
security issues when they reveal passwords or cre-
dentials, copyright concerns when they reproduce
protected content, and biases reflecting their train-
ing data. Furthermore, memorization complicates
model transparency and interpretability, making
it difficult to determine whether specific outputs
reflect generalization or memorized content.

Interpretability research has provided important
insights into memorization in LLMs, revealing that
memorization is distributed across model layers
with distinct patterns: early layers promote to-
kens in the output distribution, while upper lay-
ers amplify confidence (Haviv et al., 2023). Stud-
ies have demonstrated that memorized information
shows distinct gradient patterns in lower layers
and is influenced by attention heads focusing on
rare tokens (Stoehr et al., 2023). However, there
exists a promising approach for understanding neu-
ral networks that has yet to be fully applied to
memorization: the circuits framework (Olah et al.,
2020; Elhage et al., 2021). This framework, which
seeks to reverse-engineer model behavior by lo-
calizing it to subgraphs of the model’s computa-
tion graph, has gained significant traction in in-
terpretability research by providing mechanistic
explanations of how models accomplish specific
tasks (Conmy et al., 2023; Wang et al., 2023). Most
state-of-the-art automatic circuit discovery algo-
rithms rely on patching techniques, which require
contrastive datasets with clean and corrupted exam-
ples (Conmy et al., 2023; Syed et al., 2024; Hanna
et al., 2024). Creating such datasets is challenging
for open-ended tasks like memorization. As a re-
sult, circuit discovery has mostly been applied to
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small, well-defined tasks like indirect object iden-
tification (IOI) (Wang et al., 2023), greater-than
comparisons (Hanna et al., 2023), or factual knowl-
edge recall (Yao et al., 2024). These simpler tasks
make circuit discovery more tractable, but leave
open the question of how to apply similar tech-
niques to understand more complex behaviors like
memorization.

In this paper, we introduce an approach to
studying memorization circuits in language models
trained on The Pile dataset. We focus specifically
on the Wikipedia subset of The Pile, as its clean,
well-structured content makes it easier to analyze
when manually creating our contrastive datasets.
Using this data, we identify highly memorized sen-
tences and precisely locate the divergence points
where the model transitions from memorization to
generation. Our contributions include:

• Creating two distinct datasets addressing dif-
ferent aspects of memorization: one for the
initial decision to retrieve memorized content
and another for continuing along memorized
paths

• Discovering compact circuits (≤ 5% model
edges) of these two tasks using attribution
patching techniques.

• Evaluating faithfulness of detected subgraphs
in different experimental settings to ensure our
circuits reliably capture memorization mecha-
nisms — including both blocking memoriza-
tion (corrupt-to-clean patching) and induc-
ing memorization (clean-to-corrupt patching),
testing how circuits generalize between dif-
ferent memorization tasks, and validating cir-
cuit performance across different text domains
(§4)

• Demonstrating that circuits that can trig-
ger memorization can also maintain it once
started, while circuits that only maintain mem-
orization cannot trigger its start (§5.1)

• Finding that circuits that prevent memoriza-
tion work across different text domains of The
Pile (GitHub code, Enron Emails, and Com-
mon Crawl), while circuits that cause mem-
orization are more specific to each domain
(§5.2)

Our findings help us better understand how memo-
rization works in language models and may lead to
improved ways to control this behavior.

2 Related Work

2.1 Memorization in Language Models

Carlini et al. (2019) introduced the concept of ex-
tracting training examples from language models,
which was later formalized through the notion of
k-extractability (Carlini et al., 2021). A sequence is
considered k-extractable (or memorized) if, when
prompted with k prior tokens from the training
data, the model generates the exact continuation
that appears in its training corpus. One of the mea-
sures of k-extractibility is memorization score. The
memorization score (Chen et al., 2024; Biderman
et al., 2023b) calculates the proportion of matching
tokens between the model’s greedy generation and
the ground truth continuation:

M(X,Y ) =
1

n

n∑

i=1

1(xi = yi) (1)

where n is the continuation length, X represents
the model-generated tokens, and Y represents the
ground truth continuation. A score of 1 indicates
perfect memorization, while 0 indicates no over-
lap. However, this metric has its limitations as it
only captures exact token-level matches. To ad-
dress these limitations, researchers have utilized
other more robust metrics like BLEU, Levenshtein
distance, embedding similarity, etc. (McCoy et al.,
2023; Ippolito et al., 2023; Duan et al., 2024; Shi
et al., 2024; Reimers and Gurevych, 2019).

The selection of an appropriate prefix length k
is crucial in memorization studies. Small values
of k might lead to ambiguous prompts with many
valid continuations, while excessively large values
might make the task trivial (Chen et al., 2024).
Most studies utilize prefix lengths between 30-50
tokens (Biderman et al., 2023a; Stoehr et al., 2023),
balancing these considerations.

Recent interpretability efforts have made
progress in understanding the mechanisms behind
memorization. Stoehr et al. (2023) found that gra-
dients flow differently for memorized versus non-
memorized content, with more gradient activity in
lower layers for memorized paragraphs. They iden-
tified an attention head (specifically, head 2 in layer
1 of GPT-NEO 125M) that focuses on rare tokens
and plays a crucial role in memorization. Simi-
larly, Haviv et al. (2023) showed that memorized
information exhibits distinct patterns, with early
layers promoting tokens in the output distribution
and upper layers amplifying confidence.
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2.2 Mechanistic Interpretability

Mechanistic interpretability seeks to reverse-
engineer neural network behavior into human read-
able explanations. Circuit framework (Olah et al.,
2020; Elhage et al., 2021) is particularly impor-
tant for understanding transformer architectures.
A circuit is defined as the minimal computational
subgraph of a model that faithfully reproduces the
model’s behavior on a given task (Wang et al., 2023;
Hanna et al., 2023; Conmy et al., 2023). The com-
putational graph consists of nodes (e.g. attention
heads and MLPs) connected by edges that specify
information flow. A circuit is considered faithful if
corrupting all model edges outside the circuit main-
tains the model’s original task performance. This
faithfulness property ensures circuits provide reli-
able explanations compared to other interpretability
methods that may capture features unused by the
model (Olah et al., 2020; Elhage et al., 2021). Au-
tomatic circuit discovery methods have emerged
to identify these minimal computational subgraphs
efficiently. These include techniques like ACDC
(Conmy et al., 2023), which automate and acceler-
ate the process of finding circuits through system-
atic interventions. However, as model size grows,
the number of required forward passes makes these
methods computationally expensive.

Activation patching—also known as causal trac-
ing or interchange intervention—serves as a fun-
damental technique in circuit discovery, replac-
ing specific internal activations with cached ac-
tivations from a different input to observe effects
on model output (Vig et al., 2020; Geiger et al.,
2021; Meng et al., 2022). This method relies on
contrastive datasets with clean and corrupted exam-
ples designed to elicit different model behaviors.
Researchers have applied activation patching to
various tasks ranging from indirect object identi-
fication (IOI) (Wang et al., 2023), where models
must predict the recipient of an action (e.g., "John
gave a bottle to [Mary]"), to factual knowledge re-
trieval like Capital-Country tasks (e.g., "Vienna is
the capital of [Austria]") (Meng et al., 2022).

Gradient-based methods have greatly improved
circuit discovery efficiency. Edge Attribution
Patching (EAP) (Nanda, 2023; Syed et al., 2024)
allowed to perform activation patching at scale by
using gradients to approximate patching effects,
reducing computational requirements from thou-
sands of forward passes to just two forward passes
and one backward pass for all possible interven-

tions. Recently, Edge Attribution Patching with
Integrated Gradients (EAP-IG) (Hanna et al., 2024)
addressed the zero gradient problem encountered
in EAP by accumulating gradients along the path
from corrupted to clean inputs. EAP-IG improves
the measurement of circuit faithfulness, a concept
previously established in circuit analysis (Wang
et al., 2023). Miller et al. (2024) demonstrate that
faithfulness metrics are highly sensitive to exper-
imental choices in ablation methodology such as
component type, ablation value, token positions,
and direction. Their work shows that circuit faith-
fulness metrics vary significantly across methods,
indicating that optimal circuits depend on both task
prompts and evaluation methodology. They also
released AutoCircuit, an efficient library for circuit
discovery (Miller et al., 2024), which we use in our
experiments.

3 Methodology

Our analysis focused on Wikipedia subset from the
Pile dataset (Gao et al., 2020). Following Stoehr
et al. (2023), we used a 50-50 token split: the first
50 tokens as context and the next 50 tokens as the
target continuation. Resulting dataset contained ap-
proximately 16 million examples. Again, following
Stoehr et al. (2023) we selected GPT-Neo-125m as
model under analysis to potentially compare our
interpretability experiments.

To identify memorized content, we used mem-
orization score (Eq. 1). After scoring all samples,
we retained only those with memorization scores
of exactly 1.0, representing perfect memorization.
This created a base of 4047 samples for our con-
trastive datasets.

3.1 Divergence points

Using our memorized samples, we identified diver-
gence points - the specific token positions where
model generation shifts from memorization to
novel generation.

Our algorithm methodically shortened the con-
text length until it detected a significant drop
in BLEU score, using a threshold of 0.3. We
chose BLEU over exact token matching because
it measures n-gram overlap between sequences.
This makes it less sensitive to minor variations,
while still effectively detecting when the model
branches away from the memorized continuation
path. Through this process, we transformed fully
memorized contexts into what we term "Poten-
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Figure 1: Examples of divergence points in memorized content. Each pair shows a shortened context (left) followed
by two possible continuations: the ground truth (red, top) and model’s actual generation (blue, bottom) with their
respective BLEU scores. Higher BLEU scores (closer to 1.0) indicate stronger memorization.

tially Memorized" (PM) contexts (Fig 1) - contexts
where the model’s highest probability token at the
trimmed position no longer follows the memorized
continuation path.

This approach enabled us to create two distinct
contrastive datasets designed for different analyti-
cal tasks: memorization decision (3.2) and branch
comparison (3.3). See Table 1 for examples from
the datasets.

3.2 Memorization Decision Dataset

This dataset is designed to identify which model
components select tokens that lead to memorized
continuations.

For the "clean" samples, we preserved PM con-
texts that are just one token away from trigger-
ing either a memorized continuation or a divergent
path. For the "corrupted" samples, we selected non-
memorized examples from the dataset that would
still produce the same token as found in the memo-
rization completion when measured by the model’s
highest logit value.

The key idea behind this approach is that we
need our contrastive pairs to exhibit different be-
haviors while maintaining semantic similarity. The
clean samples sit at the threshold of memoriza-
tion, while the corrupt samples are maximally dis-
tant from memorization when measured by BLEU
score. Despite this behavioral difference, we en-
sured semantic similarity between pairs by calculat-
ing embeddings (using the same underlying model)
and selecting the closest non-memorized samples.
Importantly, only the corrupt samples lead to the
memorization token, while clean samples allow
model to exhibit its natural behavior. This con-

trast allows us to isolate the computational mech-
anisms responsible for exact moment (token posi-
tion) when model starts memorization.

3.3 Branch Comparison Dataset
The question we aim to answer by creating this
dataset is: given that model already "decided" to
retrieve memorized sentence, how is this behavior
different from the model that has branched out? For
our contrastive pairs, the "clean" examples consist
of PM contexts followed by the next token from
the memorized sequence. This forces the model to
continue along the memorization path. The "cor-
rupted" examples contain the same PM context but
are followed by the model’s highest probability
token prediction, which leads away from memo-
rization.

3.4 Circuit Discovery
Formally, a circuit is the minimal computational
subgraph of a model whose performance remains
close to the whole model’s performance on a spe-
cific task. For a transformer model with nodes V
and edges E, a circuit is a subgraph (Vc, Ec) where
Vc ⊆ V and Ec ⊆ E that connects input embed-
dings to output logits. During circuit discovery, we
can test the performance impact of different edges
by modifying the information flow in the model.
For each node v with incoming edges Ev, its input
is set to:

∑

e=(u,v)∈Ev

ie · zu + (1− ie) · z′u (2)

Where ie indicates if edge e is in the circuit, zu
is node u’s output on clean inputs, and z′u is its
output on corrupted inputs. This intervention can
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Sample Context Prediction Ground Truth
Branch Comparison Dataset

Clean: Fazalur Rehman (born...) is a Pakistani field " hockey" " hockey"
Corrupted: Fazalur Rehman (born...) is a Pakistani politician " who" -
Clean: Marek (...) is a Polish weightlifter. " He" " He"
Corrupted: Marek (...) is a Polish weightlifter who " competed" -

Memorization Decision Dataset

Clean: Kim Woon-sung (born...) is a South Korean fencer "who" "."
Corrupted: Seong Nak-gun (born...) is a South Korean sprinter "." "."
Clean: József Farkas is a (...) wrestler. He competed " in" " at"
Corrupted: Istvan Zsolt was a (...) football referee. He officiated " at" " at"

Table 1: Examples from our contrastive datasets showing clean and corrupted samples with their contexts, model
predictions, and ground truth tokens. Memorization tokens are shown in red. For Branch Comparison corrupted
samples, the "-" indicates no ground truth as there is no such completion in the Pile.

be applied to both circuit and non-circuit edges to
understand their relative contribution to the task
performance.

We used Edge Attribution Patching with Inte-
grated Gradients (EAP-IG) (Hanna et al., 2024) as
our circuit discovery method. This method lever-
ages gradients to efficiently approximate the effect
of patching specific model components without re-
quiring multiple forward passes. For each edge
(u,v) in the model’s computational graph, EAP-IG
calculates an importance score using:

(z′u− zu)
1

m

∑
k = 1m

∂L(z′ + k
m(z − z′))
∂zv

(3)
Where z represents token embeddings for clean in-
puts, z′ for corrupted inputs, L is our loss function,
and m is the number of steps used to approximate
the integral (we used m=5).

In our patching experiments, we considered both
noising and denoising approaches. In the noising
approach (corrupt → clean patching), we patch ac-
tivations from corrupted inputs into clean inputs
to identify which components break the model’s
behavior when corrupted. Conversely, in the de-
noising approach (clean → corrupt patching), we
patch activations from clean inputs into corrupted
inputs to identify which components restore the
model’s behavior.

Our formulated tasks have various target objec-
tives to optimize. To standardize evaluation across
these diverse metrics, we followed Hanna et al.
(2024) to convert each task metric to a normalized
faithfulness score. It is defined as (m−b′)/(b−b′),
where m is the circuit’s performance, b is the whole

model’s performance on clean inputs, and b′ is per-
formance on corrupted inputs. This normalization
enables cross-dataset comparison of circuits.

For each task, we first compute importance
scores for model edges using EAP-IG. Using bi-
nary search over edges, we then identify smallest
number of edges that still results in a circuit that
can be considered faithful (≥ 85% of the complete
model’s performance).

4 Experiments

We define memorization token (tmem) as the to-
ken that appears in memorized continuations, i.e.
"ground truth" token from the pre-training dataset.
Predicted token (tpred) refers to the token that the
model predicts with highest probability (i.e. the
argmax token of an unpatched model). See Table 2
for a summary of tasks.

4.1 Memorization Decision Task

For the Memorization Decision task, we investigate
which components of the model are responsible for
determining whether to retrieve memorized con-
tent. We used following objectives for finding edge
importances via EAP: L = logitmem − logitpred
and L = logitmem.

In our noising experiments, we aim to discover
which model components, when activated, can trig-
ger memorization in contexts that wouldn’t nor-
mally produce it. For these experiments, we mea-
sure the memorization token logit or the logit differ-
ence between memorization and predicted token, as
these directly quantify the model’s preference for
the memorized content over "natural" continuation.
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Task Noising Denoising
Memorization
Decision

Interpretation: Identifies parts that
promote memorization when cor-
rupted
Metric: logitmem (↑) or
logitmem − logitpred (↑)

Interpretation: Identifies parts
that can restore normal behavior by
removing memorization
Metric: logitpred (↑) or
logprobpred(↑)

Branch
Comparison

Interpretation: Identifies parts that
can remove memorization when cor-
rupted
Metric: logitmem (↓) or
accuracymem (↓)

Interpretation: Identifies parts that
can recover memorization from a
divergent path
Metric: logitmem (↑) or
accuracypred (↓)

Table 2: Comparison of Noising and Denoising approaches across datasets. Arrows indicate whether higher (↑) or
lower (↓) values are better for each metric.

Our denoising approach seeks to identify com-
ponents that, when cleaned with PM contexts, can
induce memorization on arbitrary not-memorized
samples. Here, we use the predicted token logit as
our metric, as it shows how effectively the circuit
can influence the model toward non-memorized
predictions. Since it makes sense to compare logits
on specific generation steps on the same samples,
we make sure to do exactly that. We also measure
the logprobability of the predicted token logit to
provide a normalized measure that accounts for the
overall confidence distribution across all possible
tokens.

4.2 Branch Comparison Task
In the Branch Comparison task, we examine how
the model’s computation differs between continu-
ing along a memorized path versus diverging to a
novel generation. Unlike the Memorization Deci-
sion task, logit differences between specific tokens
are less meaningful here since we’re comparing
different "branches" of generation. Instead, we use
on L = −logitmem.

In addition, we used accuracyt as the percentage
of samples where a specific token t receives the
highest probability from the model.

With noising, we try to isolate components that,
when corrupted, cause the model to abandon mem-
orized paths. We measure this effect using the
memorization token logit (which should decrease)
or its accuracy, as these metrics directly capture the
disruption to memorization behavior.

For denoising, the intuition is that circuits found
this way, could pull the model back onto memo-
rized paths even after it has begun generating novel
content. Our metrics include the memorization
token logit (which should increase) and the accu-

racy of predicted token (which should decrease),
as these best reflect the model’s shift back toward
memorized content.

4.3 Circuit Verification
Circuit discovery methods can be susceptible to
misleading conclusions, making verification be-
yond task-specific metrics essential. While faithful-
ness indicates that a circuit maintains performance
compared to the full model, it does not guaran-
tee that the circuit truly captures the causal rela-
tionships involved in memorization (Miller et al.,
2024).

To address these concerns, we additionally per-
form the following analysis for all discovered cir-
cuits:

1. Random baseline comparison: Circuit is
compared against randomly selected edges.
This helps ensure the circuit’s performance
is not due to chance or to having a sufficient
number of parameters regardless of their func-
tion. During our tests all random circuits
showed faithfulness close to zero.

2. Cross-task generalization: We evaluate
whether circuits discovered in one task main-
tain their functional properties when applied
to the other task. This includes testing Mem-
orization Decision circuits on Branch Com-
parison to reveal shared memorization mecha-
nisms, and applying Branch Comparison cir-
cuits to Memorization Decision to determine
if mechanisms that remove or recover mem-
orization in one context can influence token-
level decisions in another.

3. Cross-corpus generalization: We test circuit
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performance across different subsets of the
Pile beyond Wikipedia to evaluate how memo-
rization mechanisms generalize across diverse
text domains.

4. Alternative patching methods: We test cir-
cuits with different patching types, includ-
ing zero ablation (setting activations to zero),
mean over corrupt dataset, and mean over
clean dataset. This verifies that circuit per-
formance is good not just because we patch it
with specifically crafted counterfactual exam-
ples, but it also can perform well under much
noisier patches.

5 Results

As shown in Table 3, we have identified some
compact (≤ 1% edges) yet functional circuits
(≥ 85% faithful) for both Memorization Decision
and Branch Comparison tasks. Most notably, the
Branch Comparison circuit was remarkably mini-
mal, requiring only 14 edges (0.04% of the model)
which made us skeptical about this circuit reliabil-
ity. We validate this and other small circuits in our
verification stage. Note that we consider circuits
with ≥ 5% of edges noisy and therefore do not
perform verification.

5.1 Cross-Task Generalization
During cross task evaluation we found several
asymmetries. By noising the model’s Memoriza-
tion Decision circuit (141 edges) with Branch
Comparison dataset memorization token accuracy
dropped from 97% to 12 % showed excellent per-
formance with faithfulness (1.00) (Table 4). This
indicates that circuits responsible for token-level
memorization decisions are also effective at con-
trolling whether the model continues along mem-
orized paths. The Branch Comparison circuit
(14 edges), when applied to Memory Decision,
showed moderate performance in the noising setup
— although logit diff between memorized and not-
memorized token drops when corrupted, the value
of the memorized logit is not promoted. In gen-
eral, both Branch Comparison circuits with 14 and
78 edges performed poorly on the Memorization
Decision dataset, while the largest circuit of 141
edges achieved only 0.7 faithfulness based on logit
diff (Table 5). This indicates that once model al-
ready started producing memorized completion, its’
mechanisms are different from the the mechanisms
behind initial "decision".

5.2 Cross-Subset Generalization

For our cross-corpus generalization experiments,
we focused on the Branch Comparison task across
other subsets of the Pile — specifically GitHub,
Enron Emails, and Common Crawl. Due to com-
putational resource constraints, we did not extend
these tests to the Memorization Decision task. We
tried both noising and denoising approaches, i.e.
patching circuits to remove memorization and to
induce memorization respectively, see Table 6.

The Memorization Decision circuit effectively
reduced memorization token accuracy from 77.6%
to 9.3% on GitHub and from 90.5% to 5.2% on
Common Crawl when applied in noising setup. The
Branch Comparison circuit demonstrated similar
effectiveness, reducing memorization token accu-
racy from 77.6% to 10.2% on GitHub, 86.4% to
20.5% on Enron Emails, and 90.5% to 4.5% on
Common Crawl.

In denoising experiments, both circuits showed
less capabilities in cross-corpus transfer. While
faithfulness scores remained high, the actual nu-
meric improvements were less dramatic - for ex-
ample, the Branch Comparison circuit increased
memorization accuracy from 5.2% to only 23.8%
on Common Crawl. One hypothesis here is that
memorization prevention mechanisms may operate
by simply promoting alternative tokens rather than
specifically targeting memorization, while memo-
rization induction appears more context-dependent,
with different datasets likely triggering distinct
mechanisms that we collectively identify as memo-
rization behavior.

5.3 Alternative Patching Methods

We tested different patching strategies to verify
circuit robustness beyond our primary patching ap-
proach (Table 7). Memorization Decision circuit
showed poor faithfulness with zero and mean-over-
dataset ablations, both in noising and denoising
settings. This indicates that the circuit’s ability to
affect normal behavior heavily relies on the crafted
counterfactuals.

Similarly, the detailed metrics for the Branch
Comparison circuit revealed extremely low token
accuracies (0-0.15%) across all settings, suggesting
high dependency to clean-corrupt pairs.

This behavior is, in general, expected as alter-
native patching methods often produce activations
that are too out-of-distribution for the model to
process normally (Chan et al., 2022).

89



Circuit Edge Count Edge % Faithfulness
Memorization Decision - Noising

(L = logit_diff , logit_diff ) 141 0.43% 0.95
(L = logitmem, logit_diff ) 332 1.02% 0.89
(L = logit_diff , logitmem) 3,769 11.60% 0.86
(L = logitmem, logitmem) 1,923 5.92% 0.89

Memorization Decision - Denoising
(L = logit_diff , logitpred) 5,614 17.28% 0.93
(L = logitmem, logitpred) 1,923 5.92% 0.94

Branch Comparison - Noising
(L = −logitmem, logitmem) 78 0.24% 0.96
(L = −logitmem, accuracy) 14 0.04% 0.98

Branch Comparison - Denoising
(L = −logitmem, logitmem) 141 0.43% 0.95
(L = −logitmem, accuracy) 14 0.04% 1.00

Table 3: Circuit discovery results across different tasks and metrics. Circuits are identified by their loss function
and metric used to calculate faithfulness (see Table 2). Edge percentage represents the proportion of edges in the
discovered circuit relative to the full model. Faithfulness scores indicate how closely the circuit’s performance
matches the full model. Logit diff always means logitmem − logitpred.

6 Conclusion

In this work, we identified and analyzed circuits re-
sponsible for memorization behaviors in language
models through targeted circuit discovery methods.

The Branch Comparison task appeared easier to
disentangle than the Memorization Decision task,
requiring only 14 edges (0.04% of the model) com-
pared to 141 edges (0.43%) for similar faithfulness
levels. However, we should be cautious about this
finding, as our results in Section 5 show that these
small circuits have limited generalizability across
tasks. The extremely small circuit size raises ques-
tions about whether we’ve captured the complete
memorization mechanism or merely identified a
critical but incomplete component.

Our cross-task generalization results reveal a
clear pattern: Memory Decision circuits work well
for Branch Comparison tasks, but Branch Compar-
ison circuits perform poorly on Memory Decision
tasks. This suggests that Memory Decision circuits
contain components that can both detect memoriz-
able content and control its usage, while Branch
Comparison circuits mainly handle continuation
with less ability to make initial memorization deci-
sions.

Cross-corpus experiments reveal that memoriza-
tion prevention mechanisms transfer across differ-
ent datasets, while memorization induction appears
more context-dependent. This suggests that differ-
ent text domains may trigger distinct mechanisms

that collectively manifest as memorization behav-
ior, with the ability to prevent memorization being
more generalizable than the ability to induce it.

Our experiments show that removing memoriza-
tion from already-memorized samples (noising ap-
proach) is easier than inducing memorization in
non-memorized samples (denoising approach). In-
terestingly, this observation contradicts findings
from Stoehr et al. (2023), who demonstrated that
memorized continuations are harder to corrupt than
non-memorized ones. In their experiments, they
showed that even when targeting the top 0.1% of
gradient-implicated weights, memorized passages
resisted modification while maintaining their dis-
tinctive patterns. This difference likely comes from
our focus on finding specific computation paths
rather than using gradient methods to find impor-
tant weights. One hypothesis is that memoriza-
tion works through two different mechanisms: a
"trigger" circuit that decides when to use memo-
rized content (which we found), and a more spread-
out storage system throughout the model (which
they found). The trigger circuit can be easily dis-
rupted, while the stored information itself is harder
to change. This suggests that memorization safe-
guards might work better by targeting these trigger
mechanisms rather than trying to remove the stored
information.

90



Limitations

Our study faces several methodological limitations
worth considering. First, we relied exclusively on
Edge Attribution Patching with Integrated Gradi-
ents (EAP-IG) to identify circuits. While computa-
tionally efficient, attribution patching provides only
an approximation of activation patching results. It
was shown, that there are cases where attribution
patching scores do not fully correlate with direct
activation patching measurements (Nanda, 2023;
Hanna et al., 2024), which could affect our circuit
identification accuracy. Future work should vali-
date our findings using direct activation patching.

Second, our findings are limited by focusing on
a single, relatively small language model (GPT-
Neo-125m). Larger models might employ more
complex memorization mechanisms or distribute
them differently across components. Testing across
multiple model sizes and architectures would pro-
vide more robust evidence about how memorization
mechanisms scale and evolve.

Third, there remains uncertainty about whether
our identified circuits represent general memoriza-
tion mechanisms or are specific to the Wikipedia
subset of the Pile or artifacts of our contrastive
dataset construction. Despite showing cross-corpus
generalization, our datasets were constructed us-
ing specific criteria for memorization detection that
may not capture all memorization phenomena in
language models. Additionally, while we tested
generalization across different text domains, all
tests were derived from the Pile dataset, potentially
limiting the scope of our conclusions.

Future work should investigate how memoriza-
tion mechanisms scale with model size, whether
similar circuits exist in different model architec-
tures, and expand testing to more diverse datasets
and memorization criteria to establish the general-
ity of these mechanisms.
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A Appendix

A.1 Cross Task Results

Table 5 shows the performance of Branch Com-
parison circuits when applied to the Memorization
Decision task. In noising experiments, we want
the circuit to shift logit_diff toward the corrupted
value (4.32), with the 141-edge circuit achiev-
ing the best performance (2.77, faithfulness 0.73).
The 14-edge circuit shows moderate transfer (0.98,
faithfulness 0.41), suggesting limited capacity to
block memorization decisions. For denoising, suc-
cess is measured by how closely logit_other ap-
proaches the clean value (13.02). All circuits per-
form poorly here, with even the largest 141-edge
circuit reaching only 11.35 (faithfulness 0.53), indi-
cating that mechanisms for maintaining memorized
paths transfer poorly to inducing memorization de-
cisions.

Table 4 shows the performance of Memoriza-
tion Decision circuits when applied to the Branch
Comparison task. In noising experiments, we
aim for accuracy_mem to match the clean value
(12.69%). Both the 141-edge and 332-edge circuits
achieve near-perfect transfer (12.93%, faithfulness
1.00), demonstrating that circuits responsible for
memorization decisions effectively prevent branch
memorization. For denoising, success is mea-
sured by how closely accuracy_other approaches
the corrupted value (13.26%). Both circuits per-
form exceptionally well, with the 332-edge circuit
achieving near-perfect transfer (13.08%, faithful-
ness 1.00), indicating robust generalization of mem-
orization induction mechanisms.

A.2 Cross subset results
Table 6 shows the performance of both Memo-
rization Decision and Branch Comparison circuits
when applied to other subsets of The Pile dataset
(GitHub, Enron Emails, and Common Crawl).

In noising experiments, we measure success by
how closely the accuracy_mem matches the cor-
rupted values (9.87%, 19.55%, and 5.24% for the
respective datasets). The Branch Comparison cir-
cuit (14 edges) demonstrates remarkable transfer
across all subsets, with accuracy values of 10.17%
for GitHub, 20.47% for Emails, and 4.46% for
Common Crawl, showing very close alignment
with target values. The Memorization Decision
circuit (141 edges) performs equally well, with par-
ticularly strong performance on Emails where it
reduces accuracy to 3.28%, even surpassing the
target corrupt value.

For denoising experiments, we want accuracy_gt
to approach the clean values (77.59%, 86.35%,
and 90.48%). Both circuits show more modest
gains here, with the Branch Comparison circuit in-
creasing accuracy to 12.81% for GitHub and 8.15%
for Common Crawl, while the Memory Decision
circuit achieves similar results with 10.68% for
GitHub, 22.84% for Emails, and 7.74% for Com-
mon Crawl. These results suggest that while cir-
cuits can effectively transfer across datasets to pre-
vent memorization, inducing memorization in non-
memorized samples proves more challenging and
context-dependent.

A.3 Ablation methods results
Table 7 presents the results of our circuit verifica-
tion using different ablation techniques. We evalu-
ated the Memorization Decision and Branch Deci-
sion circuits using three alternative patching meth-
ods: Zero ablation (replacing activations with ze-
ros), Mean over clean (replacing with mean values
from clean samples), and Mean over corrupt (re-
placing with mean values from corrupted samples).
Each circuit was evaluated on its own respective
dataset.

For the Memorization Decision circuit, we mea-
sured logit_diff in noising experiments and logit_gt
in denoising experiments. For the Branch Decision
circuit, we measured accuracy_mem in noising ex-
periments and accuracy_other in denoising experi-
ments. The "Patching" column represents our de-
fault ablation approach using contrastive datasets.
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Circuit accuracy_mem accuracy_pred faithfulness
All edges clean 97.35 12.69 —
All edges corrupted 13.26 94.5 —

Noising Experiments - Target: accuracy_mem = 13.26
141 edges 12.93 61.37 1.00
332 edges 12.93 77.71 1.00

Denoising Experiments - Target: accuracy_pred = 12.69
141 edges 68.87 13.80 0.99
332 edges 88.00 13.08 1.00

Table 4: Results of applying Memorization Decision circuits to the Branch Comparison task. For noising experiments,
success is measured by accuracy_mem approaching the corrupted value (13.26%); for denoising — accuracy_pred
approaching the clean value (12.69%).

Circuit logit_diff logit_mem logit_pred logprob_pred faithfulness
All edges clean -1.36 11.66 13.02 -5.55 —
All edges corrupted 4.32 13.74 9.4 -9.39 —

Noising Experiments - Target: logit_diff = 4.32
14 edges 0.98 8.68 7.70 -21.82 0.41
78 edges 2.02 10.30 8.28 -12.60 0.59
141 edges 2.77 11.78 9.01 -11.42 0.73

Denoising Experiments - Target: logit_pred = 13.02
14 edges -0.11 7.95 8.06 -20.90 0.38
78 edges -1.38 9.41 10.79 -10.99 0.38
141 edges -1.10 10.25 11.35 -9.42 0.53

Table 5: Results of applying Branch Comparison circuits to the Memorization Decision task. For noising experiments,
success is measured by logit_diff approaching the corrupted value (4.32); for denoising — logit_pred approaching
the clean value (13.02).

Dataset/Circuit GitHub Emails CC
Accmem Accpred Accmem Accpred Accmem Accpred

All edges clean 77.57 10.89 86.41 20.66 90.54 4.82
All edges corrupted 9.87 85.49 19.55 79.63 5.24 82.32

Noising Experiments - Target: acc_mem close to corrupted values
Branch Comparison (14 edges) 10.17 35.96 20.47 60.42 4.46 17.98
Mem Decision (141 edges) 9.25 58.02 3.28 57.29 5.24 44.64

Denoising Experiments - Target: acc_pred close to clean values
Branch Comparison (14 edges) 31.49 12.81 22.84 14.78 23.81 8.15
Mem Decision (141 edges) 50.04 10.68 51.53 22.84 47.38 7.74

Table 6: Results of applying memorization circuits to other Pile subsets (Branch Comparison task). The table
shows both accuracy of memorized token (Accmem) and accuracy of predicted token (Accpred) for each dataset and
circuit.

Circuit & Metric Patching Zero Mean over clean Mean over corrupt
Memorization Decision Circuit
Noising (logit_diff) 4.1 1.04 2.36 2.22
Denoising (logit_pred) 7.6 10.70 -1.05 -1.22
Branch Comparison Circuit
Noising (accuracy_mem) 11.25 0.00 0.05 0.05
Denoising (accuracy_pred) 8.5 0.10 0.15 0.15

Table 7: Results of verifying circuits using different ablation techniques
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