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Abstract

Large language models (LLMs) have achieved
great success, but their occasional content fab-
rication, or hallucination, limits their practi-
cal application. Hallucination arises because
LLMs struggle to admit ignorance due to inad-
equate training on knowledge boundaries. We
call it a limitation of LLMs that they can not
accurately express their knowledge boundary,
answering questions they know while admit-
ting ignorance to questions they do not know.
In this paper, we aim to teach LLMs to recog-
nize and express their knowledge boundary, so
they can reduce hallucinations caused by fab-
ricating when they do not know. We propose
COKE, which first probes LLMs’ knowledge
boundary via internal confidence given a set
of questions, and then leverages the probing
results to elicit the expression of the knowledge
boundary. Extensive experiments show COKE
helps LLMs express knowledge boundaries, an-
swering known questions while declining un-
known ones, significantly improving in-domain
and out-of-domain performance.

1 Introduction

Large language models (LLMs) have emerged as
an increasingly pivotal cornerstone for the develop-
ment of artificial general intelligence. They exhibit
powerful intellectual capabilities and vast storage
of knowledge (Brown et al., 2020; Ouyang et al.,
2022; Achiam et al., 2023), which enables them to
generate valuable content. Recent research demon-
strates that LLMs excel in passing various profes-
sional examinations requiring expert knowledge
in domains like medical (Jin et al., 2021) and le-
gal (Cui et al., 2023). Nevertheless, human users
are hardly willing to seek professional suggestions
from LLMs, due greatly to hallucinations in LLMs.
Hallucinations in LLMs refer to the phenomenon
that existing LLMs frequently generate untruthful
information (Zhang et al., 2023b; Ji et al., 2023),
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Figure 1: The evolution of the Known-Unknown Quad-
rant. The yellow portion represents the model’s para-
metric knowledge. Our method increases the “Known
Unknows”, helping the model recognize and articulate
its knowledge limitations.

which greatly undermines people’s trust and accep-
tance of LLM-generated content.

An important cause of hallucinations is the
model’s insufficiency in knowledge boundary
expression, which originates from the learning
paradigm of LLMs. Pre-training and instruction
fine-tuning serve as the two indispensable learning
stages for current LLMs. The learning mechanism
of these stages is to encourage LLMs to generate
the provided text, which also makes LLMs prone to
fabricating content when LLMs do not possess rel-
evant knowledge (joh, 2023; Gekhman et al., 2024).
Hence, LLMs are hardly instructed to express their
ignorance, which is a lack of accurate knowledge
boundary expression. Given a specific LLM and
a question set, the corresponding question-answer
pairs can be categorized based on two factors: (1)
whether the model has corresponding parametric
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knowledge (knows v.s. unknows), and (2) whether
the model is aware of the first factor (known v.s. un-
known), as is depicted in Figure 1. Hallucinations
frequently occur in the “Unknown Unknows” sce-
narios, where the model is unaware that it should
explain its ignorance like humans, instead of strug-
gling to give a hallucinated response.

Fine-tuning models to express knowledge bound-
aries faces two significant challenges. The first
challenge is how to efficiently obtain data that re-
flects the internal knowledge of a specific model.
Even if evaluation questions are easy to construct,
obtaining expert-level answers in certain fields is
costly. Additionally, since the model might pro-
duce correct answers in different forms from the
reference answers, evaluating their correctness is
also challenging (Kadavath et al., 2022; Zou et al.,
2023). The second challenge is enabling the model
to express its knowledge boundary robustly (Ren
et al., 2023). We expect consistent knowledge
boundary expression across prompts and general-
ization across domains.

To address the above two challenges, we propose
COKE, an Confidence-derived Knowledge bound-
ary Expression method which teaches LLMs to ex-
press knowledge boundaries and decline unanswer-
able questions, leveraging their internal signals.
Our method consists of two stages: a probing stage
and a training stage. In the probing stage, we use
the model’s internal signals reflecting confidence to
distinguish between answerable and unanswerable
questions, avoiding reliance on external annota-
tions. This allows for easy collection of large data
and avoids conflicts between the model’s internal
knowledge and annotations. In the training stage,
we construct prompts for each question using three
representative types: prior awareness, direct aware-
ness, and posterior awareness. Then, we apply
regularization by incorporating the squared differ-
ences in confidence across different prompts for
the same question into the loss function to enhance
consistency. This training setup helps the model
semantically learn to express knowledge boundary
better, thereby enhancing its generalization ability.

To evaluate the model’s knowledge boundary ex-
pression capability, we design an evaluation frame-
work that comprehensively assesses the model’s
performance in both “knows” and “unknows” sce-
narios. We conduct extensive experiments on both
in-domain and out-of-domain datasets. Results
show that the model learns to use internal signals
to help express knowledge boundary. Compared to

directly using model signals for determination, the
models trained with our method demonstrate better
performance and generalization.

In summary, our contributions are:
• We explore the effectiveness of internal model

signals in indicating confidence and demonstrate
the model can learn to use its signals to express
its knowledge boundaries after training.

• We propose a novel unsupervised method that
leverages internal model signals and multi-
prompt consistency regularization to enable the
model to express its knowledge boundary clearly.

• We develop a framework for evaluating a model’s
ability to express its knowledge boundary, and ex-
perimental results demonstrate that the model can
learn signals about the confidence of its knowl-
edge and articulate its knowledge boundary.

2 Related Work

2.1 Knowledge Boundary Perception
While models are equipped with extensive paramet-
ric knowledge, some studies indicate their inability
to discern the knowledge they possess from what
they lack, thus failing to articulate their knowl-
edge boundary (Yin et al., 2023; Ren et al., 2023).
In terms of enhancing a model’s awareness of
its knowledge boundary, efforts can be catego-
rized into two parts: one focuses on enabling
the model to fully utilize its inherent knowledge,
thereby shrinking the ratio of the model’s “Un-
known Knows” (Wei et al., 2022; Li et al., 2023;
Tian et al., 2024). The other part focuses on en-
abling the model to acknowledge the knowledge it
lacks, thereby reducing the ratio of the model’s
“Unknown Unknows”. R-tuning (Zhang et al.,
2023a) uses labeled data to judge the correctness of
model responses and trains the model using the SFT
method. Yang et al. (2023) and Kang et al. (2024)
explore training methods based on RL. Focused on
this aspect, our work investigates how to enable
models to express knowledge boundaries without
annotated data, while also considering consistent
knowledge boundary expression across prompts
and generalization across domains.

2.2 Uncertainty-based Hallucination
Detection

Some work on hallucination detection focuses on
obtaining calibrated confidence from LLMs. One
segment of work involves utilizing the information
from these models to compute a score that signifies
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Figure 2: The procedure of COKE, which consists of two stages. In the first stage, the model makes predictions for
unlabeled questions. We obtain two parts, Dk and Dunk, based on the model confidence. In the second stage, we
train with different prompts for the same question and use unsupervised loss and consistency loss to teach the model
to express the knowledge boundary.

the model’s uncertainty about knowledge (Man-
akul et al., 2023; Kuhn et al., 2023; Varshney et al.,
2023; Duan et al., 2024). Another segment of work
seeks to enable the model to express verbalized
uncertainty (Lin et al., 2022; Xiong et al., 2023;
Tian et al., 2023). Our work concentrates on en-
abling the model to explicitly express whether it
is capable of answering, rather than generating a
probability score. By allowing the model to ex-
press its knowledge boundary autonomously, users
no longer need to concern themselves with detect-
ing hallucinations, such as by setting uncertainty
thresholds.

3 Knowledge Boundary Expression

3.1 Problem Formulation

We focus on exploring LLMs’ capacity to perceive
their internal knowledge. For a series of questions
Q = {q1, q2, . . . , qn}, we categorize the questions
based on whether the model has the knowledge
required to answer them into two parts: questions
that can be answered Qk and questions that cannot
be answered Qunk. To minimize the interference
from the model’s reasoning ability, the questions
used for testing the model are all single-hop ques-
tions that inquire about factual knowledge. For a
given question q, the model M generates a predic-
tion based on its parameter knowledge Kθ, repre-
sented as y = M(Kθ, q). We measure the model’s
awareness of its knowledge from two aspects: the
awareness of the knowledge it possesses and the
knowledge it does not possess. The former is repre-
sented as the ratio of the model’s “Know Knows” to

“Knows”, denoted as Rk, while the latter is repre-
sented as the ratio of the model’s “Know Unknows”
to “Unknows”, denoted as Runk. Given a question
q ∈ Qk, RK is set to 1 if the model’s response
y aligns with the knowledge k, and to 0 if the
model either expresses uncertainty or provides an
incorrect answer. For a question where q ∈ Qunk,
Runk is assigned 1 if the model expresses uncer-
tainty, and 0 if it fabricates an incorrect answer.
We evaluate the model’s awareness of its knowl-
edge by testing on two types of q and calculating
Saware =

1
2(Rk +Runk). The model’s awareness

of its knowledge is more accurate as Saware ap-
proaches 1, and less accurate as it approaches 0.

3.2 Method

Our insight is that the learning mechanism of LLM
enables the model to search for the nearest knowl-
edge k in its parameters as the answer to the query
q. Although training allows the model to measure
distances accurately, it does not teach it to refuse to
answer based on the distance. Therefore, we hope
the model can learn to use its signals to recognize
when a large distance indicates a lack of knowl-
edge to answer q. Our method involves two steps
as shown in Figure 2: First, we use the model’s
own signals to detect knows and unknows; Second,
we guide the model to learn these signals through
instruction tuning, enabling it to express its knowl-
edge boundary clearly.

3.2.1 Internal Knowledge Identification
To identify whether the model possesses the knowl-
edge required to answer question q, we calculate
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the model’s confidence about its prediction. The
confidence of the model’s prediction serves as a
measure of the distance between query q and knowl-
edge k. On the unlabeled question set Q, we let
model M generate phrase-form predictions for each
question. We only consider the distance between
query q and the closest prediction; therefore, we
use greedy decoding to obtain the prediction.

We use three model signals to represent the
model’s confidence: Min-Prob, Fst-Prob, and Prod-
Prob. Min-Prob denotes the minimum probability
among the m tokens that make up the model’s pre-
diction, c = min(p1, p2, ..., pm). Fst-Prob and
Prod-Prob respectively represent the probability of
the first token in the prediction and the product
of all probabilities. Two conservative thresholds,
δk and δunk, are established to decide whether the
model has enough knowledge to answer a ques-
tion. For questions with c below the threshold
δunk, indicating the model is fabricating an an-
swer due to insufficient knowledge, we define
this subset as Dunk = {(qi, yi, ci) | ci < δunk}
and use it to train the model to express its lack
of knowledge. For questions with c above the
threshold δk, indicating the model possesses the
necessary knowledge, we define this subset as
Dk = {(qi, yi, ci) | ci > δk} and use it to train
the model to express that it knows the answer with
increased confidence.

3.2.2 Knowledge Boundary Expression
Learning

We guide the model in learning to express its knowl-
edge boundaries clearly based on its own signals
through instruction tuning. We believe that the
model’s expression of knowledge boundary aware-
ness should possess two properties: honesty and
consistency. Honesty requires the model to express
whether it knows the answer to a question based on
its certainty about the knowledge. For instance, it
should not answer “I don’t know” to questions it is
certain about. For honesty, we fine-tune the model
on the dataset obtained in the first step, enabling the
model to admit its ignorance on Dunk and main-
tain its answers on Dk. Consistency requires the
model to have the same semantic expression about
whether it knows the same knowledge under differ-
ent prompt formulations.

For consistency, we consider three different
prompts for knowledge boundary awareness in-
quiries, which we refer to as prior awareness, di-
rect awareness, and posterior awareness (Ren et al.,

2023). Prior awareness involves the model as-
sessing its ability to answer a question before
actually providing an answer, with prompts like
“Do you know the answer to the question
‘panda is a national animal of which
country’ honestly?”. Direct awareness in-
volves the model responding directly to a query,
supplying the answer if it possesses the knowl-
edge, and admitting ignorance if it doesn’t, with
prompts like “Answer the question ‘panda is
a national animal of which country’ ”.
Posterior awareness involves the model’s capac-
ity to evaluate the certainty of its answers, with
prompts like “Are you sure that the answer
to the ‘panda is a national animal of
which country’ is ‘China’ ”.

We hope that the model can express the same
knowledge boundary under different prompts for
the same question. It means that if the model de-
termines that it possesses the knowledge under
the prompt of prior awareness, it should be able
to provide the answer when queried, and express
confidence in its response when reflecting upon
its answer. We teach the model to recognize its
knowledge boundary by constructing three types
of prompts for the same question. We incorporate
the difference in probabilities of identical seman-
tic responses under various prompts into the loss
function, thereby ensuring the model’s consistency
across different prompts. Specifically, the loss func-
tion is defined as a combination of two components:
Lunsup, which captures the discrepancy between
the model’s expression and the labels generated
by its internal signals, and Lcon, which ensures
consistency of identical responses under different
prompts:

Lunsup = −
∑

1≤i≤3

logP (yi|xi) (1)

Lcon =
∑

1≤i,j≤3

∥P (yi|xi)− P (yj |xj)∥2 (2)

L = Lunsup + Lcon (3)

Previous research emphasizes that the MLP layer
is a key component for storing knowledge in the
transformer architecture LLM (Geva et al., 2021;
Meng et al., 2022; Dai et al., 2022). Guided by
these insights, we only fine-tune the weight matrix
of the attention layer using LoRA (Hu et al., 2022).
This strategy allows us not to change the internal
knowledge of the model, but just let the model learn
to express the of knowledge boundary based on the
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Method TriviaQA NQ PopQA

Kaware Uaware Saware Kaware Uaware Saware Kaware Uaware Saware

L
la

m
a2

-C
ha

t-
7B

Orig. 100 0 50.0 100 0 50.0 100 0 50.0
Fine-tune 93.9 6.2 50.1 88.6 3.1 45.8 93.5 1.9 47.7
IDK-FT 80.8 78.0 79.4 45.5 87.6 66.6 62.8 83.6 73.2

Uncertainty-Based
Min-Prob 61.8 86.2 74.0 33.4 91.4 62.4 57.7 89.3 73.5
Fst-Prob 74.6 69.8 72.2 51.5 79.1 65.3 65.1 82.6 73.9
Prod-Prob 68.3 81.2 74.8 45.8 87.0 66.4 63.7 86.4 75.1

Prompt-Based
Prior 96.3 7.5 51.9 97.0 10.3 53.6 65.4 31.8 48.6
Posterior 70.5 57.9 64.2 62.7 55.6 59.1 31.6 82.8 57.2
IC-IDK 86.4 25.8 56.1 53.6 65.1 59.3 42.3 85.3 63.8
Verb 14.3 95.8 55.1 17.5 95.0 56.3 17.6 97.3 57.4

COKE 76.1 74.0 75.0 56.0 84.2 70.1 71.1 83.0 77.0

L
la

m
a2

-C
ha

t-
13

B

Orig. 100 0 50.0 100 0 50.0 100 0 50.0
Fine-tune 96.7 7.1 51.9 95.0 2.8 48.9 95.7 2.9 49.1
IDK-FT 82.5 81.6 82.0 53.9 84.6 69.3 65.4 82.0 73.6

Uncertainty-Based
Min-Prob 91.6 44.5 68.1 88.1 43.4 65.8 84.6 57.2 70.9
Fst-Prob 92.9 34.1 63.5 90.6 30.7 60.7 87.4 51.0 69.2
Prod-Prob 65.8 80.9 73.3 59.1 75.5 67.3 57.6 81.7 69.6

Prompt-Based
Prior 88.6 14.2 51.4 81.3 26.5 53.9 38.2 81.8 60.0
Posterior 100 0.30 50.0 100 0.0 50.0 100 0.10 50.0
IC-IDK 99.7 1.5 50.6 96.8 6.7 51.7 90.8 25.1 58.0
Verb 60.0 68.9 64.4 44.7 89.8 67.3 50.8 81.8 66.3

COKE 71.6 74.9 73.3 68.3 70.2 69.2 70.1 82.6 76.4

Table 1: Comparison of the performance of our method and the baseline method across an in-domain dataset
(TriviaQA) and out-of-domain datasets (NQ and PopQA). We present results on two model scales: Llama2-Chat-7B
and Llama2-Chat-13B.

Metric Definition

Kaware Proportion of correct answers on Tk

Uaware Proportion of expressions of unknown or
correct answers on Tunk

Saware
1
2
(Kaware + Uaware)

Table 2: Knowledge awareness metrics.

confidence of the knowledge.

4 Experimental Setup

Datasets We consider three open-domain QA
datasets: TriviaQA (Joshi et al., 2017), Natu-
ral Questions (Kwiatkowski et al., 2019), and
PopQA (Mallen et al., 2023). These datasets are
broad-coverage, knowledge-intensive QA datasets,
making them well-suited for evaluating LLMs’ ca-
pacity to perceive their internal knowledge. We
utilize the train set of TriviaQA as our training
data, treating it as unsupervised data by not using
the labels. Natural Questions and PopQA serve

as the out-of-domain test sets since they were not
involved during the training process.

Metrics As mentioned in the Section 3.1, we
evaluate the model’s awareness of its knowledge
from two aspects: the awareness of the knowledge
it possesses and the awareness of the knowledge
it does not possess. Since we cannot directly ac-
cess the model’s internal knowledge Kθ, we divide
the test sets into two parts based on whether the
model’s predictions match the groundtruth: Tk rep-
resents the “Known Knows” of the model; Tunk

contains both the “Unknown Unknows” and “Un-
known Knows” cases. We expect the model to
maintain correct answers on Tk, representing the
retention of the “Known Knows” area of the model.
At the same time, we expect the model to either ex-
press unknown on Tunk, signifying a reduction in
the “Unknown Unknows” area, or provide correct
answers, representing a decrease in the “Unknown
Knows” area. We define the evaluation metrics as
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Method
TriviaQA NQ PopQA

Brier↓ ECE↓ smECE↓ AUROC↑ Brier↓ ECE↓ smECE↓ AUROC↑ Brier↓ ECE↓ smECE↓ AUROC↑

Fst-Prob 0.29 0.31 0.20 0.79 0.36 0.45 0.25 0.73 0.29 0.38 0.22 0.83

Prob-Prob 0.38 0.42 0.23 0.83 0.55 0.65 0.31 0.73 0.46 0.57 0.28 0.85

Min-Prob 0.24 0.26 0.19 0.83 0.29 0.39 0.23 0.77 0.25 0.34 0.20 0.85

Table 3: Calibration results for different internal signals in Llama2-Chat-7B on TriviaQA, NQ, and PopQA.

shown in Table 2.

Baselines We consider two different types of
baselines: uncertainty-based methods (white-box)
and prompt-based methods (black-box). We also
compared the original model (Orig.), the model
fine-tuned with questions and their label (Fine-
tune), and the model fine-tuned with question-label
pairs, where responses to unknown questions are
replaced by “Unknow” (IDK-FT). See Appendix A
for more details.

Uncertainty-based methods directly use the
model’s internal signals to determine its self-
awareness. The model’s response consists of multi-
ple tokens, and we experimented with three types
of methods to calculate the final confidence score
from the probabilities of these tokens:

• Min token probability (Min-Prob): Use the
smallest token probability in the model’s predic-
tion as the confidence score.

• Product token probability (Prod-Prob): Use
the product of the probabilities of all tokens in
the model’s prediction as the confidence score.

• First token probability (Fst-Prob): Use the
probability of the first token in the model’s pre-
diction as the confidence score.

Prompt-based methods use prompts to let mod-
els express their own knowledge boundary in natu-
ral language.

• Prior prompt: Similar to Ren et al. (2023) eval-
uating whether the model gives up on answering,
we use the prompt to directly ask the model if it
knows the answer to the question.

• Posterior prompt: Kadavath et al. (2022) shows
the model can evaluate the certainty of its an-
swers. We use the prompt to ask the model about
the certainty of its answers.

• In-context IDK (IC-IDK): Following Cohen
et al. (2023), by integrating demonstrations into
the prompt, we enable the model to express its
knowledge boundary through in-context learn-
ing.

• Verbalize uncertainty (Verb): Resent
work (Tian et al., 2023) suggests that LLMs’
verbalized uncertainty exhibits a degree of
calibration. We let the model output verbalized
uncertainty, and search for the optimal threshold
in the training set.

5 Results and Analysis

5.1 Overall Performance

We present our main results on the in-domain and
out-of-domain datasets in Table 1. Generally, we
have the following findings:

Across all settings, we outperform prompt-
based methods by a large gap. On Llama2-Chat-
7B, COKE obtains an Saware of 75.0 compared to
≤ 64.2 by prompt-based methods on TriviaQA, and
obtains an Saware of 77.0 compared to ≤ 63.8 by
prompt-based methods on PopQA. Models struggle
to accurately express knowledge boundaries when
it comes to the prior prompt, in-context learning,
and posterior prompts. Meanwhile, models can
express verbalized uncertainty through prompts,
and their accuracy improves with larger models,
but remains limited for models with fewer than 13
billion parameters. Interestingly, while accuracy
improves with larger model sizes, self-awareness
does not show significant gains in most cases. We
believe that this capability may require even larger
models to become evident.

Compared to uncertainty-based methods,
COKE can outperform in most settings. This
demonstrates that COKE enables the model to
effectively learn its confidence signals and gen-
eralize beyond the training signals. On out-of-
domain datasets, COKE significantly outperforms
uncertainty-based methods, indicating that thresh-
olds derived from a dataset have poor transferabil-
ity, while COKE exhibits better generalization.

Compared to methods requiring labeled data
for fine-tuning, COKE demonstrates better gen-
eralization. Although COKE performs worse than
IDK-FT on in-domain test sets, it significantly out-
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Figure 3: Model’s “Unknow” expression ratio in question groups under different confidence scores (using minimum
token probability). As the model’s confidence score decreases, the ratio of “Unknow” expressions increases. The
model exhibits a higher “Unknow” expression ratio on Tunk compared to Tk.

Training Signal TriviaQA NQ PopQA

Fst-Prob 74.9 69.3 76.2
Prod-Prob 73.9 69.8 76.3
Min-Prob 75.0 70.1 77.0

Table 4: Different signals serve as the model’s confi-
dence score in training the expression of knowledge
boundary. The metric is represented by the Saware.

performs this supervised fine-tuning approach on
out-of-domain datasets. This indicates that by lever-
aging the model’s internal signals to teach LLMs
to express knowledge boundaries, COKE not only
avoids reliance on labeled data but also achieves
better generalization.

5.2 Effectiveness of Model Signals

We demonstrate the effectiveness of model inter-
nal signals in reflecting the model’s knowledge
boundaries through an evaluation of these signals.
We used the same metrics as (Ulmer et al., 2024),
including Brier score (BRIER, 1950), expected cal-
ibration error (ECE; Pakdaman Naeini et al., 2015),
and smooth ECE (smECE; Blasiok and Nakkiran,
2024) to evaluate the model signals’ calibration
ability, and used AUROC to measure the model’s
ability to identify questions it doesn’t know. As
shown in Table 3, model internal signals perform
poorly in terms of calibration, with high Brier and
ECE scores. However, model internal signals per-
form well in determining whether the model is
ignorant, with high AUROC scores, which is also
reflected in the uncertainty-based methods in Ta-
ble 1. By employing strict thresholds, our method
mitigates signal noise while leveraging the signals’
ability to discriminate between knowledge and ig-
norance.

We also analyze the effectiveness of different
internal signals as training signals. As a training
signal, the use of the minimum probability of multi-
token outperforms other signals on both in-domain
and out-of-domain datasets, as illustrated in Table 4.
We consider that the minimum probability of multi-
token is more easily mastered by the model. We
leave the discovery of better signals reflecting the
model’s knowledge boundary and the utilization of
multi-signal training for future work.

5.3 Leverage Internal Signals for Knowledge
Boundary Expression

We investigated how our model utilizes confidence
scores to express its knowledge boundary. Fig-
ure 3 illustrates the relationship between confi-
dence scores and the model’s tendency to respond
with “Unknow”. The results show a clear pattern:
the model rarely answers “Unknow” at high confi-
dence levels, while frequently doing so at low con-
fidence levels. For example, with confidence scores
below 0.4, the model almost always responds “Un-
know”, whereas it confidently provides answers
when scores approach 1.0. This demonstrates that
the model effectively uses confidence scores to
delineate its knowledge boundaries and general-
izes well to out-of-domain data.

Interestingly, we observed that for the same con-
fidence level, the model responds “Unknow” more
frequently to questions in Tunk compared to Tk.
This suggests that the model has learned to uti-
lize additional implicit information beyond just
the confidence score, which helps mitigate the
problem of overconfidence in incorrect answers.
By incorporating the model’s confidence as a super-
visory signal during training, we reduce the noise
associated with using minimum token probabil-
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Method Tk Tunk

Correct (↑) IDK (↓) Wrong (↓) Probs Correct (↑) IDK (↑) Wrong (↓) Probs

Orig. 100 0 0 0.86/ - / - 0 0 100 - / - /0.58
Min-Prob 61.8 38.2 0 0.98/0.68/ - 0 86.2 13.8 - /0.53/0.96
Posterior 70.5 29.5 0 0.86/0.85/ - 0 57.9 42.1 - /0.55/0.63
COKE 76.1 22.3 1.6 0.92/0.68/0.60 3.7 70.3 26.0 0.64/0.52/0.75

Table 5: Percentage distribution of Llama-Chat-7B outputs on TriviaQA across three categories: correct answers,
expressions of unknowns, and wrong answers. “Prob” represents the average min-probability for each category.

ity alone, resulting in improved performance com-
pared to methods based solely on uncertainty.

5.4 Consistency of Knowledge Boundary
Expression

We investigate the benefits of teaching a model to
express knowledge boundary by using the strat-
egy of constructing different prompts for the same
question and applying a consistency regularization
loss function. By adopting this strategy, we dis-
cover that it not only improves the model’s abil-
ity to generalize, but also ensures a consistent ex-
pression of knowledge boundary under different
prompts. Results from Table 6 indicate that the
application of consistency loss, despite causing a
slight decrease in Saware on the in-domain dataset,
leads to substantial improvements on the out-of-
domain dataset, thereby demonstrating enhanced
generalization. We also reported the consistency
of the model’s expression of knowledge boundary
under different prompts, as shown in Table 6. We
evaluate the model’s consistency by randomly sam-
pling two different types of prompt templates from
prompt pools (see Appendix B.2). We notice that
the model adopted with consistency loss is capable
of expressing consistent knowledge boundaries for
most questions under different prompts.

5.5 Error Analysis

Enhancing a model’s self-awareness capability in-
volves a tradeoff between maintaining performance
on known knowledge (Kaware) and refusing to an-
swer on unknown knowledge (Uaware). We analyze
the outputs of COKE and other methods, examin-
ing the types and proportions of different outputs
within Tk and Tunk. As shown in Table 3, for the
Tk portion, COKE is able to maintain correct ex-
pressions for most questions, and the performance
drop is due to the model becoming more conser-
vative, refusing to answer some low-confidence
questions. In the Tunk portion, the model correctly

Method TriviaQA NQ PopQA

Saware Con. Saware Con. Saware Con.

orig. 50.0 35.2 50.0 22.2 50.0 39.3
COKE 75.0 92.1 70.1 90.9 77.0 89.6
w/o Con-loss 75.6 46.3 69.2 36.7 74.8 43.6

Table 6: The consistency of knowledge boundary ex-
pressions under different prompts. “Con.” refers to the
percentage of consistent responses when the model is
presented with the same question using different prompt
templates.

refuses to answer most questions it doesn’t know,
but issues of overconfidence still exist. Addition-
ally, some originally correct answers become incor-
rect, and some originally incorrect answers become
correct, which might result from the model chang-
ing its responses to questions with low confidence.
Observing the average probabilities across differ-
ent output types, Posterior methods show nearly
identical probabilities for different outputs, while
COKE demonstrates a clearer alignment between
its expression and answer confidence.

6 Conclusion

In this paper, we target the knowledge boundary
expression problem and propose COKE, a novel
unsupervised approach for this task. Our approach
is built on detecting signals of the model indicat-
ing confidence, and teaching the model to use its
signals to express knowledge boundary. Through
comprehensive experiments on in-domain and out-
of-domain datasets, we show that our method can
teach the model to use its signals, significantly en-
hancing the model’s ability to accurately express
knowledge boundary. Our work can be extended by
seeking more internal signals that better reflect the
model’s confidence and exploring how to combine
these signals to train the model, inspiring further re-
search into models autonomously improving their
ability to express knowledge boundaries without
human annotations.
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Limitations

We note three limitations of our current work. First
is the accuracy of the evaluation methods. Because
of the lack of a method to discover the internal
knowledge of the model, we divided Tk and Tunk

based on whether the model’s answer matches the
groundtruth, ignoring the impact of the model’s
erroneous beliefs. Another limitation is that to pre-
vent exposure bias and the influence of multiple
pieces of knowledge, we focused on the expression
of knowledge boundary under short-form answers,
without investigating the issue of long-form gen-
eration. Last, we focused on the model’s ability
to express the boundary of its internal knowledge,
not extending to scenarios like self-awareness with
external knowledge (e.g., RAG scenarios) or rea-
soning abilities (e.g., mathematics or logical rea-
soning).

Ethical Statement

We hereby acknowledge that all authors of this
work are aware of the provided ACL Code of Ethics
and honor the code of conduct.

Risks We propose COKE, which teaches models
to express their knowledge boundaries using inter-
nal signals, thereby reducing hallucinations caused
by fabricating answers when they do not know. Our
experiments demonstrate that our method signifi-
cantly reduces the instances of models fabricating
answers to unknown questions. However, models
may still occasionally produce fabricated answers
in certain scenarios. Therefore, in practical applica-
tions, it is important to note that our method does
not completely eliminate hallucinations, and there
remains a risk of models generating fabricated con-
tent. Caution is advised in fields with stringent
requirements.
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A Methodology

In this section, we elaborate on the rationale for
selecting the baseline methods in our work, as well
as the implementation details.

A.1 Uncertainty-based Methods
Inspired by works on uncertainty estimation for
LLMs, we believe that confidence calculated
through the model’s internal signals can effectively
reflect the model’s self-awareness. Since we con-
trol the model to output only answer phrases in-
stead of full sentences through prompting, we do
not need to perform additional extraction on the
generated content (Varshney et al., 2023; Duan
et al., 2024), but instead directly compute using
the logits of the tokens in the generated answer
phrase.

In this work, we consider three methods for cal-
culating the model’s confidence using its internal
signals:

• Min token probability & Product token prob-
ability: Varshney et al. (2023) found that the
minimum and product of the probabilities of to-
kens that form important concepts in a model-
generated sentence can effectively reflect the
model’s uncertainty. For Min token probability,
we directly take the smallest probability among
the tokens that compose the model-generated
phrase as the model’s confidence. For Product
token probability, we calculate the product of the
probabilities of each token, and then normalize it
by the length to obtain the final confidence score.

• First token probability: Considering that the
model may store the entire concept’s information
in the hidden state of the token at the beginning
of the concept phrase (Zhu and Li, 2023), we use
the probability of the first token to represent the
confidence of the entire response.

To directly use the confidence score to predict
the model’s knowledge boundary, we determine
whether the model expresses uncertainty based on
whether the score exceeds a threshold. We deter-
mine the optimal threshold for the model’s knowl-
edge boundary expression on 100 labeled samples
from the TriviaQA training set, aiming to maximize
the model’s Saware score.

A.2 Prompt-based Methods
Prompt-based methods directly prompt LLMs to
declare their knowledge boundaries in textual form,
without needing to access the internal signals of
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Prompt-based Method Prompt

Prior Prompt Do you know the answer to the following question honestly? If you know,
output Yes, otherwise output No, just say one word either Yes or No\n{Q}

Posterior Prompt Are you sure that the answer to the following {Q} is the following {A}?
If you are sure, output Sure, otherwise output Unsure, just say one
word either Sure or Unsure

In-context IDK Answer the following questions like examples. When you do not know
the answer, output Unknow.\nExamples:\nQuestion: Which is the largest
island in the Mediterranean Sea?\nAnswer: Sicily\nQuestion: Which
country will host the 2016 European Nations football finals?\nAnswer:
France\nQuestion: Actress Audrey Hepburn won her only Oscar for
which film?\nAnswer: Roman Holiday\nQuestion: Who leads the Catholic
Church?\nAnswer: Unknow\n\nYou should only output the answer, without
any extra information or explanations. Do not repeat the question. If
there are multiple answers, just output the most likely one. The answer
should not be a sentence, just a phrase part of the answer. Here is
your question: Question: {Q}

Verbalize Uncertainty Provide your best guess and the probability that it is correct (0.0 to
1.0) for the following question. Give ONLY the guess and probability,
no other words or explanation. For example:\n\nGuess: <most likely
guess, as short as possible; not a complete sentence, just the
guess!>\nProbability: <the probability between 0.0 and 1.0 that your
guess is correct, without any extra commentary whatsoever; just the
probability!>\n\nThe question is:\n{Q}.

Table 7: Instructional prompts used in the prompt-based method.

the model. Table 7 shows the prompts we used in
the prompt-based methods.

A.3 Fine-tuning Methods
We consider two conventional fine-tuning meth-
ods as baselines. These fine-tuning methods use
the same training set as our approach, but they
sample training data based on labels rather than
model signals. Fine-tune is a conventional instruc-
tion fine-tuning method, where the model is fine-
tuned directly on question-answer pairs. Regard-
less of whether the model answers correctly, the
fine-tuning target is always the ground truth. IDK-
FT first lets the model predict the answer to a ques-
tion. The fine-tuning target depends on whether the
model’s response matches the ground truth. If it
matches, the ground truth is used as the target; if it
doesn’t, the target is replaced with "Unknow".

B Experimental Settings

B.1 Dataset Details
We use three QA datasets: TriviaQA (Joshi
et al., 2017), NQ (Kwiatkowski et al., 2019), and
PopQA (Mallen et al., 2023) to construct our test
data for evaluating the model’s self-awareness.
These datasets consist of single-hop factual ques-
tions, which do not involve the model’s reasoning

Model TriviaQA NQ PopQA

Llama2-Chat-7B 45.2 16.6 21.7
Llama2-Chat-13B 52.0 21.9 23.5

Table 8: The accuracy of vanilla LLMs on our test data.
It represents the portion of knowledge that the model
knows and can answer (Known Knows).

capabilities, making them more suitable for testing
the model’s internal knowledge. Additionally, the
answers in these datasets are in short-form phrases,
avoiding the biases that might be exposed through
long-form generation. We use a closed-book, free-
form setup to evaluate the models’ ability to ex-
press their knowledge boundaries. We use exact
match to determine whether the model answers cor-
rectly or expresses the unknown. The test sets of
TriviaQA, NQ, and PopQA contain 11,313, 3,610,
and 14,267 samples, respectively. We randomly
sampled 2,000 examples from each of the Trivi-
aQA, NQ, and PopQA test sets as our test data.
As shown in Figure 8, the model exhibits dif-
ferent knowledge boundaries across different
datasets, and different models also show vary-
ing knowledge boundaries on the same dataset.
The proportions of Tk and Tunk differ across the
test datasets, but the model’s self-awareness score
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Type Prompt

Prior Awareness

1. Do you know the answer to the following question honestly? If you
know, output Yes, otherwise output No, just say one word either Yes or
No\n{Q}

2. Do you have knowledge of the answer to this question? If you do,
reply with Yes; if not, reply with No, just say one word either Yes or
No\n{Q}

3. Is the answer to this question known to you? Reply Yes if it is;
otherwise, reply No, just say one word either Yes or No\n{Q}

4. Do you have enough information to answer the following question? If
yes, answer Yes; if no, answer No, just say one word either Yes or
No\n{Q}

Posterior Awareness

1. Are you certain that ‘A’ is the correct answer to ‘Q’? If certain,
answer Sure; if not, answer Unsure, just say one word either Sure or
Unsure\nQ: {Q}\nA: {A}\n

2. Do you believe with certainty that ‘A’ is the correct answer to ‘Q’?
If yes, answer Sure; if not, answer Unsure, just say one word either
Sure or Unsure\nQ: {Q}\nA: {A}\n

3. Are you certain that your answer ‘A’ to ‘Q’ is based on accurate
information? If so, answer Sure; if not, answer Unsure, just say one
word either Sure or Unsure\nQ: {Q}\nA: {A}\n

4. Do you trust the information that led to your answer ‘A’ to ‘Q’? If
confident, answer Sure; if not, answer Unsure, just say one word either
Sure or Unsure\nQ: {Q}\nA: {A}\n

Table 9: Prompts used to test the consistency of knowledge boundary expression under different prompts.

Saware is calculated by averaging the scores corre-
sponding to Tk and Tunk, thus not being affected
by sample imbalance. Since we use the TriviaQA
training set as the training data, the NQ and PopQA
datasets, which have distributions different from
TriviaQA, serve as out-of-distribution test sets with
varying knowledge boundary distributions.

B.2 Prompt for Consistency Evaluation

We used the prompts in Table 9 as the prompt pool
for testing the consistency of knowledge boundary
expression under different prompts. We utilized
GPT-4o to generate different prompts that assess
the model’s ability to express knowledge bound-
aries, categorizing them into two types.

B.3 Implementation Details

For our experiment, we choose to use the LLaMA2-
Chat (Touvron et al., 2023) model. Based on the
pre-trained LLaMA2 model, LLaMA2-Chat is a
model that has undergone instruction tuning and
RLHF (Stiennon et al., 2020), thereby acquiring the
capability to follow instructions. We use the 7B and
13B versions of the LLaMA2-Chat model. We set

the thresholds δk and δunk to 0.99 and 0.4, respec-
tively. Due to the large number of instances, we sort
the confidence scores from the TriviaQA training
set and designate the bottom 10% as Dunk and the
top 20% as Dk, resulting in approximately 23,000
instances in total. We use LoRA for model fine-
tuning, setting r=8, alpha=16, and dropout=0.05.
During training, we set the initial learning rate to
1e-4, the final learning rate to 3e-4, the warmup
phase to 300 steps, and we train for 700 steps. We
conduct all our experiments on 4 NVIDIA A800
80GB GPUs.

C Experimental Supplement

C.1 Effectiveness of Model Signals
We also illustrate the effectiveness of the confi-
dence calculation method through an empirical
study. We obtain the model confidence for Llama2-
chat-7B on the Trivia-QA training set using three
different methods. We divide the model’s responses
into two parts based on whether the answers are
correct and calculate the sample distribution for
each part. As shown in Figure 4, there is a sig-
nificant difference in the confidence distribution
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Figure 4: Distribution of model predictions regarding confidence for Llama2-Chat-7B on Trivia-QA. Confidence is
calculated using Min-Prob, Fst-Prob, and Prod-Prob from left to right.

between the Correct Predictions and Incorrect Pre-
dictions. Predictions with confidence less than 0.4
are mostly incorrect, while the confidence of cor-
rect predictions is generally 1.0. This indicates
that the model signals can reflect the model’s confi-
dence, implying whether the model possesses the
corresponding knowledge.
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