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Abstract

Simultaneous machine translation (SIMULMT)
presents a challenging trade-off between trans-
lation quality and latency. Recent studies have
shown that LLMs can achieve good perfor-
mance in SIMULMT tasks. However, this often
comes at the expense of high inference costs
and latency. In this paper, we propose a conver-
sational SIMULMT framework to enhance the
inference efficiency of LLM-based SIMULMT
through multi-turn-dialogue-based decoding
where source and target chunks interleave in
translation history, enabling the reuse of Key-
Value cache. To adapt LLMs to the proposed
conversational decoding, we create supervised
fine-tuning training data by segmenting parallel
sentences using an alignment tool and a novel
augmentation technique to enhance generaliza-
tion. Our experiments with Llama2-7b-chat
on three SIMULMT benchmarks demonstrate
that the proposed method empowers the superi-
ority of LLM in translation quality, meanwhile
achieving comparable computational latency
with specialized SIMULMT models.1

1 Introduction

Simultaneous machine translation (SIMULMT) sys-
tems provide real-time translation of text input
stream (Gu et al., 2017). This task plays an im-
portant role in real-world applications, such as fa-
cilitating communication in online conferences and
generating live subtitles with strict latency require-
ments.

Although large language models (LLMs) have
shown the potentials in machine translation (Hendy
et al., 2023; Zhu et al., 2023), their applications to
SIMULMT is non-trivial, as they are not inherently
designed for simultaneous decoding. Recent works
have attempted to adapt LLMs for SIMULMT with
prefix fine-tuning, incremental decoding (Wang
et al., 2023b) and learning to wait for more source

1Code, weights, and data will be released with publication.
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Figure 1: Comparison of offline prompt (left) and con-
versational prompt (right). Offline prompt inserts to-
kens mid-sequence, preventing KV-cache reuse (red X),
while conversational prompt appends content sequen-
tially, enabling efficient cache utilization (blue blocks).

tokens before translation (Koshkin et al., 2024).
These works show LLMs, with careful prompt-
engineering, could approach the performance of
specialized SIMULMT models. However, high
computational cost, slow inference, and high la-
tency render these approaches impractical for real-
world applications (Yuan et al., 2024). This is pri-
marily due to the use of offline prompting, where
arriving source tokens are inserted at the end of the
source sequence, disrupting the continuity of the
translation history (Figure 1 left). This prevents
reusing cached target history states and requires re-
computation of source and target representations.

To mitigate this issue, we propose conversa-
tional prompt that resemble the multi-turn dia-
logue nature of LLMs. Specifically, user inputs
are treated as the source tokens to be read, while
the LLM’s responses are considered the predicted
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target tokens to be written. In our conversational
SIMULMT, newly arrived source form the current
instruction, while previous source tokens and their
translations are treated as conversation history (Fig-
ure 1 right). This conversational prompt enables the
reuse of Key-Value cache (Pope et al., 2023), as all
content is appended incrementally without modify-
ing the translation history. However, conversational
SIMULMT poses new challenges for LLMs to com-
prehend the segmented source content and produce
a coherent translation via multi-turn conversation.

To adapt the LLM to the conversational decoding
format, we opt to perform supervised fine-tuning
(SFT) on the pretrained LLM. But the challenge
is the lack of the conversational SIMULMT data
for SFT. Interleaving incomplete source and target
segments in the dialogue history is unnatural (see
Figure 1). This code-switching style is exhibited in
some languages (Yong et al., 2023); however, it is
the continuation rather than the translation of the
previous content, making it challenging to leverage
existing code-switched datasets for training. There-
fore, we propose to curate the training data by seg-
menting parallel sentence pairs into smaller chunks
based on a transformation of the word alignments.
The segmented chunks are further augmented to
handle different latency requirements.

Experiments on three SIMULMT benchmarks
demonstrate the effectiveness of our proposed con-
versational SIMULMT in balancing the trade-offs
between accuracy, speed and flexibility to different
latency requirements. Compared to offline prompt-
ing, our method not only maintains strong perfor-
mance, but also benefits from reduced latency. No-
tably, our method attains similar decoding speed to
the LLM-based OFFLINEMT.

Our contributions are summarized as follows,

• We introduce conversational prompting to
reduce the inference cost of LLM-based
SIMULMT by leveraging its multi-turn dia-
logue capability and enabling efficient reuse
of Key-Value cached computations.

• We present an automated training data cura-
tion pipeline that can turn any offline trans-
lation parallel corpus into the conversational
prompt format and generalize with a novel
augmentation strategy into any inference set-
ting.

• Experiments demonstrate that the proposed
conversational SIMULMT obtains up to

2× acceleration compared to the offline-
prompting baseline while maintaining com-
parable translation quality, emphasizing its
value in practical applications.

2 Background

Simultaneous Machine Translation (SIMULMT)
Unlike offline machine translation (OFFLINEMT),
where models generate target translation y =
(y1, ..., yJ) given a complete source sentence x =
(x1, ..., xI), SIMULMT incrementally translates
with partial source context x≤t = (x1, ..., xt)
where t ≤ I . A core component of SIMULMT
is a read-write policy that decides whether to wait
for new source tokens (READ) or generate target
tokens (WRITE), balancing translation quality and
latency.

Incremental Decoding Studies have explored
adapting OFFLINEMT models for simultaneous
decoding by performing offline decoding on in-
crementally updated histories (Liu et al., 2020;
Nguyen et al., 2021; Polák et al., 2022; Guo et al.,
2023). This involves a chunk-wise READ policy
that reads n tokens per round and a WRITE policy
that commits stable partial translations using the
longest common prefix (LCP) (Polák et al., 2022)
algorithm. LCP often causes high latency when
candidates lack common initial tokens. Relaxed
Agreement LCP (RALCP) (Wang et al., 2023b)
was proposed to vote for accepting prefixes with
candidate agreement above threshold γ.

SIMULMT with LLMs Since incremental de-
coding essentially repeats offline decoding, us-
ing offline-style translation prompts with LLMs
is straightforward and aligns with their instruction-
following capabilities (Xu et al., 2023). During
each round, a source chunk is READ and appended
to source history x. LLMs generate translations
using offline prompts as shown in Figure 1, which
are then WRITTEN to target history y.

3 Conversational SIMULMT

While incremental decoding with offline prompt
enables LLMs to perform simultaneous decoding,
it faces high computational latency due to the inser-
tion of newly arrived source tokens in the middle
of the prompt, disrupting the reuse of cached target
history states. In this section, we propose conversa-
tional prompts to improve the decoding efficiency
and balance quality-latency trade-off.
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Setting N-Shot SacreBLEU COMET

OFFLINEMT 0-Shot 30.99 84.95

Convers. SIMULMT 0-Shot 7.14 58.76
Convers. SIMULMT 5-Shot 13.51 69.03

Convers. SIMULMT 0-Shot Failure Case

Chunk 1 Input: Die Flugdaten zeigten, dass das

Chunk 1 Response:
The flight data showed that the plane
was flying at an altitude of 35,000 feet.

Chunk 2 Input: Flugzeug auch bei einem zweiten
Chunk 2 Response: The plane was also flying during the second flight.

Reference Flight data showed the plane had to pull out of second

Table 1: Performance comparison of Llama2-7b-chat
on WMT15 De->En test set in zero-shot and few-shot
conversational SIMULMT settings. OFFLINEMT re-
sults are included as a baseline. The example failure
case demonstrates how the LLM hallucinates comple-
tions (shown in red) when translating partial sentences,
leading to compounding errors in subsequent chunks.

3.1 Decoding with Conversational Prompt

The efficiency improvement in LLMs hinges on
maintaining the Key-Value (KV-) cache reuse, i.e.
the decoding process must consistently add new
tokens at the end of the sequence without alter-
ing the middle elements. When LLMs are per-
forming multi-turn dialogues, the prompt for each
turn is composed of a user input and assistant re-
sponse separated by special tokens, and conversa-
tion histories are simply concatenated as the con-
text (Touvron et al., 2023). Drawing parallels to
multi-turn dialogues in LLMs, SIMULMT can also
be viewed similarly, where user inputs and assistant
responses are equivalent to READ and WRITE action.
At round t, LLM reads a source context chunk Xt

and writes its translation Yt: “<U> Xt <A> Yt".
The already processed chunks are concatenated as
contexts, serving the latest translation round of new
incoming chunks. As all contents are appended in-
crementally, the reuse of KV-cache becomes feasi-
ble again like in multi-turn dialogue (see Figure 1).
Our approach also adapts the hypothesis selection
strategy e.g. RALCP (Wang et al., 2023b) to prune
the unstable suffixes in each response. Algorithm 1
in Appendix A presents the detailed decoding pro-
cess.

We conducted a pilot experiment to as-
sess LLMs’ zero-shot and few-shot capabil-
ities with conversational prompts. Using
Llama2-7b-chat (Touvron et al., 2023) on the
WMT15 De->En test set with chunk size n = 5,
we tested both zero- and five-shot settings. As
shown in Table 1, conversational SIMULMT per-
formed poorly even with 5-shot prompting. The

failure analysis reveals that LLMs, trained primar-
ily on complete sentences, struggle with partial
source translation and tend to hallucinate comple-
tions when presented with fragments in a multi-turn
dialogue format. To address this limitation, we pro-
pose to SFT LLMs on conversational SIMULMT
data. The following section details our approach to
converting a normal bi-text corpus into conversa-
tional prompt format.

3.2 SFT on Conversational SIMULMT Data
As conversational SIMULMT data is not naturally
available, we propose to synthesize READ / WRITE
chunks by segmenting sentence pairs from parallel
corpora. Inspired by Arthur et al. (2021) which gen-
erates the oracle policy from word alignments, we
further extend the approach by carefully addressing
the impact of word reordering and improving the
generalizability of the oracle policy. Specifically,
we first build monotonic dependency graph from
the alignment of a sentence pair. We then segment
the graph and convert these segments into READ /
WRITE pairs, followed by augmentation to improve
its generalization across various latency demands
(Figure 2). The process is explained below.

Alignment Graph Generation Given a sentence
pair, we employ fastalign (Dyer et al., 2013) to
obtain word alignment between source and target
tokens (Step 1 in Figure 2). The obtained alignment
is a set A of pairs (i, j) denoting the source token
xi is aligned with its corresponding target token yj .
We define the sufficient source token set to generate
a given target token yj as aj = {i|(i, j) ∈ A, ∀i ∈
[0, I]}.

A source and target sentences have a monotonic
translation relationship if the previous target to-
kens only aligned with the previous source tokens,
i.e. ∀j > k min(aj) ≥ max(ak) (Koehn et al.,
2005; Ling et al., 2011). This condition ensures that
the relative order of words is preserved between
the source and target sentences. In that case, the
optimal minimum-latency policy that retains suffi-
cient source information is to produce the mono-
tonic translation that follows the word order of the
source sequence, i.e. WRITE target token yj imme-
diately after reading the final required source token
xmax(aj), and then READ the next source tokens.

Monotonic Dependency Graph Monotonic de-
pendency enables effective implementation of op-
timal READ /WRITE policies. However, transla-
tions often require reordering to produce grammat-
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Figure 2: The illustration of the data curating process. The first graph is obtained from fast_align, it is then
modified into a monotonic dependency graph by adding additional edges. The Meta Trajectory can be derived by
segmenting the monotonic dependency graph with minimal dependency (segment with the colored solid line in step
3). Finally, Policy Generalization is applied to augment the segmented graph with merge (red dotted lines will be
removed) and shift (blue dotted lines are shifted) operations. Chunks in the trajectories derived from the third and
fourth graphs are highlighted with different colors.

ically correct output, especially between languages
with different syntactic structures. To address this,
we propose constructing a monotonic dependency
graph

−→A from alignment set A (Step 2 in Figure 2)
such that the monotonic condition is met.

For each target token yj violating the mono-
tonic condition min(aj) < max(aj−1), we add
a new edge from the last sufficient source token
xmax(aj−1) to yj , eliminating the need for reorder-
ing. In Figure 2, y2 violates monotonicity as its ear-
liest required source token min(a2) = 1 precedes
the last required source token for the previous tar-
get max(a1) = 2. Thus, we add an edge from x2
to y2.

Meta Trajectory We then segment the mono-
tonic dependency graph and convert these seg-
ments into READ / WRITE pairs, representing the
meta trajectory of the oracle policy with mini-
mum latency (Step 3 in Figure 2). We exam-
ine each target token to identify its exclusive cor-
responding source tokens with minimal depen-
dency. Each subgraph

−→Aj corresponds to a pair
(Rj ,Wj) where Wj = {yj} is a target token and
Rj = {xi|i ∈ aj \ aj−1} contains new source to-
kens required since the previous target. When con-
secutive target tokens depend on the same source
token, we combine their WRITE actions, assigning
the shared source token to Rj = {xi} and forming
Wj = {yj , ..., yj+n}. This generates a meta trajec-
tory RW ⋆ = [(R1,W1), ..., (RC ,WC)], C ≤ I ,
with C chunks.

Trajectory Augmentation Since the meta tra-
jectories are tailored for minimal latency, they
may not generalize well to different lengths of
the input chunk, corresponding to different lev-
els of latency. To improve the LLM’s adaptabil-
ity across various latency demands, we augment
the meta-trajectory RW ⋆ with a series of merge
and shift operations (Step 4 in Figure 2). We
first traverse RW ⋆ and randomly merge δ con-
secutive READ and WRITE actions, forming new
pairs ([Rc, ..., Rc+δ], [Wc, ...,Wc+δ]), where [·] is
the string concatenation operation. Here, δ is a
variable re-sampled from a uniform distribution
U(δmin, δmax) where δmin and δmax are predefined
hyperparameters.

Additionally, with a probability of β, we shift a
portion of tokens from a WRITE action Wc to the
next one Wc+1 in the merged trajectory. More
specifically, we split Wc at a proportion ρ and
transfer the latter part to the next pair, resulting in
(Rc,W

<ρ
c ), (Rc+1, [W

>ρ
c ,Wc+1]) where ρ is sam-

pled from U(ρmin, 0.9) where ρmin is a hyperpa-
rameter.

This augmentation enhances the LLM’s context
conditioning and suits incremental decoding where
prediction endings are often truncated by hypoth-
esis selection algorithms. The resulting trajectory
consists of READ /WRITE chunks of varying lengths,
formatted with conversational prompts for SFT.
During training, we apply cross-entropy loss only
on target tokens within unshifted WRITE chunks.
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Trajectory Dimension De→En En→Vi En→Zh

Meta-Trajectory
#Chunk 10.69± 5.5 12.98± 8.1 11.94± 7.3
#SRC word/Chunk 1.74± 0.8 1.38± 0.4 1.68± 0.5
#TGT word/Chunk 1.79± 0.8 1.73± 0.5 1.53± 0.5

Aug-Trajectory
#Chunk 2.74± 1.2 3.12± 1.6 2.95± 1.4
#SRC word/Chunk 7.01± 3.9 5.83± 2.8 7.02± 3.6
#TGT word/Chunk 7.18± 3.9 7.35± 3.5 6.40± 3.2

Table 2: Statistics of curated conversational SIMULMT
training data across all benchmarks, showing chunk
counts and source/target tokens per chunk (mean±std)
for both meta and augmented trajectories.

4 Experiments

4.1 Datasets

WMT15 De->En (4.5M training pairs) We use
newstest2013 (3000 pairs) for validation and
newstest2015 (2169 pairs) for testing2.

IWSLT15 En->Vi (133K training pairs) We em-
ploy TED tst2012 (1553 pairs) and tst2013
(1268 pairs) as validation and test sets, respec-
tively3.

MUST-C En->Zh (Di Gangi et al., 2019) (359k
training pairs) This TED talk dataset provides 1349
pairs for validation and the tst-COMMON (2841
pairs) for testing.

Conversational SIMULMT Datasets For each
dataset, we create conversational prompt versions
from their training sets using the approach de-
scribed in §3.2. We employ fastalign (Dyer et al.,
2013) to obtain initial word alignment graphs. For
trajectory augmentation, we set δmin:max = (2, 10)
for merging operations. For shift operations, both
β and ρmin are set to 0.5, meaning we shift at least
50% of tokens in a target segment to the next one
with 0.5 probability. Table 2 presents detailed statis-
tics for these datasets.

4.2 Evaluation Metrics

We evaluate translation quality and latency using
SacreBLEU4 (Post, 2018), COMET5 (Rei et al.,
2020), and word-level average lagging (AL) (Ma
et al., 2019). To assess computational efficiency,
we measure word wall time (WWT) (Wang et al.,
2023b), which represents the average time required
to predict a word on identical hardware.

2www.statmt.org/wmt15/
3nlp.stanford.edu/projects/nmt/
4BLEU+nrefs:1+case:mixed+eff:no+tok:{13a,zh}

+smooth:exp+version:2.3.1
5https://huggingface.co/Unbabel/

wmt22-cometkiwi-da

4.3 Model Training

For all LLM-based methods, we use
Llama2-7b-chat (Touvron et al., 2023) as
the backbone following Wang et al. (2023b). We
conduct QLoRA-based SFT (Hu et al., 2022;
Dettmers et al., 2023) for one epoch with r = 64,
α = 16, learning rate of 2e-4, batch size of 48,
and 4-bit quantization on a single A100 GPU.
Both offline and conversational prompt models
are fine-tuned on identical data sources (standard
offline style bitext from the aforementioned
training sets), but formatted as offline prompts and
conversational prompts respectively.

4.4 Settings

We compare our proposed conversational
SIMULMT against the following baselines:

Encoder-Decoder Transformers We evaluate
the performance of a series of specialized Encoder-
Decoder Transformer models for both OFFLINEMT
and SIMULMT:

• Offline NMT: Following (Zhang and Feng,
2022), we train vanilla Transformer (Vaswani
et al., 2017) (48M parameters for En->Vi;
300M for De->En and Zh->En) with beam
size 5 for inference.

• Wait-k (Ma et al., 2019): A fixed policy ap-
proach that reads k source tokens before al-
ternating read/write operations. We test with
k ranging from 1-8 for De->En and Zh->En,
4-8 for En->Vi.

• ITST (Zhang and Feng, 2022) An adaptive
policy that measures the information trans-
ferred from source to target token and deter-
mines when to proceed with translation with
a threshold (set as 0.1-0.7 for all datasets).

• Wait-Info (Zhang et al., 2022) An adaptive
policy using token information thresholds (K
from 1-8 for all datasets) to coordinate the
timing of translation.

LLM-based SIMULMT We compare our con-
versational prompt approach against the of-
fline prompt method (Wang et al., 2023b), us-
ing identical READ policies with chunk sizes
n=[3,5,7,9,11,13]. Both approaches are evaluated
with RALCP hypothesis selection (beam=5). We
also assess greedy decoding (beam=1, no hypoth-
esis selection) with our conversational prompting
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Figure 3: Translation quality and latency results on three benchmarks. Results are presented in three groups with
different colors: (i) Encoder-Decoder Transformer baselines (orange), (ii) Offline-Prompt LLMs (blue), and (iii)
Conversation-Prompt LLMs (red). Offline and Simultaneous decoding are distinguished by the first letter (O/S).

only (as computational latency baseline), since of-
fline prompting inherently requires hypothesis se-
lection and cannot function with greedy search. For
reference, we include results from LLM-based OF-
FLINEMT as a performance upper bound.

4.5 Results

Our preliminary study in Table 1 showed
LLMs struggle with zero/few-shot conversational
SIMULMT. Here we examine whether fine-tuning
on our curated data enables effective conversational
SIMULMT, focusing on quality-latency balance.

Translation Quality As shown in Figure 3,
LLM-based approaches (red and blue) outper-
form Transformer baselines (yellow) across all
language pairs by up to 3 BLEU/10 COMET
points. With sufficient latency allowance, LLM-
based SIMULMT even surpasses offline Trans-
former NMT. At equivalent latency levels, our con-
versational prompting (red) achieves comparable
BLEU scores to offline prompting (blue) while of-
ten showing better COMET scores.

Translation Latency Our conversational
SIMULMT (red) reduces latency compared to
offline prompting (blue), with average reductions
of 1.17 and 1.50 AL across all benchmarks. For
En->Vi and En->Zh, our approach achieves latency
comparable to specialized SIMULMT models.
While RALCP (S:LLM-ConvPrompt-RALCP)

generally provides better quality than greedy
decoding (S:LLM-ConvPrompt-Greedy), the latter
offers lower latency.

Practical Advantages Most significantly, our
conversational SIMULMT (red) maintains supe-
rior translation quality at low latency levels (AL<4)
compared to specialized models (yellow), making
it particularly valuable for practical applications
requiring both high quality and low latency. In con-
trast, offline prompting (blue) with identical decod-
ing configurations struggles to operate effectively
in the low-latency range, diminishing its quality
advantages relative to specialized approaches (yel-
low). These results demonstrate that our conversa-
tional prompting approach effectively addresses the
efficiency-quality trade-off in simultaneous transla-
tion with LLMs.

5 Analysis

5.1 Decoding Speed
While Average Lagging (AL) effectively quantifies
algorithmic delay between translation and source
input, it doesn’t account for computational costs.
In real-world applications, actual inference time
critically impacts user experience: a model with
low AL might still deliver poor user experience
due to high computational overhead. To address
this limitation, we evaluate decoding speed using
Word Wall Time (WWT), which measures actual
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Figure 5: Effect of trajectory augmentation strategies
on translation quality (BLEU) and latency (AL) for
WMT15 De->En. Results compare models trained on
meta-trajectories alone versus with merge and shift op-
erations.
inference time per word (§4.4).

Figure 4 presents detailed WWT results for
WMT15 De->En translation. Our analysis
reveals that offline prompting with RALCP
(S:LLM-OffPrompt-RALCP) exhibits the slow-
est performance, making it impractical despite
good translation quality. In contrast, our con-
versational prompting approach with RALCP
(S:LLM-ConvPrompt-RALCP) achieves computa-
tional efficiency comparable to offline LLM trans-
lation (O:LLM-ConvPrompt-Beam=5) while main-
taining high translation quality.

Most notably, our conversational prompting with
greedy decoding (S:LLM-ConvPrompt-Greedy)
delivers the best efficiency-quality bal-
ance—achieving processing speeds comparable
to specialized SIMULMT models (yellow) while
producing significantly better translations. These
results demonstrate that our approach effectively
addresses both algorithmic and computational
latency concerns, making it suitable for practical
deployment.

5.2 Effectiveness of Trajectory Augmentation
To evaluate our trajectory augmentation strategy,
we conducted an ablation study comparing mod-
els trained on: (i) meta trajectories only, (ii) meta
trajectories with merge operations, and (iii) meta
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Figure 6: Translation quality (BLEU) on WMT15 De-
>En when generating the final chunk with vs. without
preceding context, across different chunk sizes. The
consistent gap demonstrates effective context utilization.

trajectories with both merge and shift operations
(§3.2). All models used identical hyperparameters,
with training data as the only variable.

As shown in Figure 5, trajectory augmentation
yields notable improvements in translation quality
and latency when using RALCP. The merge op-
eration contributes most significantly to these im-
provements, while models trained solely on meta
trajectories perform poorly across all metrics.

This suggests augmentation techniques enhance
the model’s ability to generalize across different la-
tency conditions. Without augmentation, the model
struggles with varying input chunk sizes, causing
RALCP to accept less reliable hypotheses and in-
creasing latency. The augmented approach effec-
tively prepares the model for dynamic simultaneous
translation scenarios.

5.3 Ability to Leverage Contextual
Information

Effective SIMULMT with conversational prompt-
ing requires the model’s ability to accurately utilize
contextual information. To evaluate this capability,
we designed an experiment isolating the model’s
performance on the final chunk of translation both
with and without access to preceding context.

For each test instance, we extracted the com-
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(a) Impact of model iteration (Llama-2-7b-chat vs. Llama-3.1-
8B-Instruct) on WMT15 De->En.
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(b) Effect of model scale (Llama-3.1-8B-Instruct vs. Llama-3.2-
3B-Instruct) on WMT15 De->En.
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(c) Impact of target language proficiency (Llama-3.1-8B-Instruct
vs. Qwen2.5-7B-Instruct) on MUST-C En->Zh.

Figure 7: Performance comparison of different LLM
families with our conversational prompt.

plete inference history and separated it into: (i)
the source-target dialogue history serving as con-
text, and (ii) the final source chunk representing the
latest input. We then tasked our fine-tuned LLM
with translating this final chunk under two condi-
tions: with and without access to the preceding
conversation history. Performance was evaluated
by computing BLEU scores on the concatenation of
the generated final chunk with its original history.

As shown in Figure 6, we observed a consis-
tent 2-point decrease in BLEU scores when context
was withheld. This performance gap demonstrates
our model effectively leverages information from
previous conversation turns to produce more accu-
rate translations, confirming the fine-tuned LLM
maintains translation coherence.

5.4 Generalizability Across LLM Families

In our main experiments, we used
Llama-2-7b-chat following Wang et al. (2023b)
for consistency. Now, we examine our approach’s
generalizability across different LLMs, using
identical training and inference parameters for fair
comparison. We report only greedy simultaneous

decoding and offline beam=5 results to eliminate
interference with hypothesis selection.

Impact of Model Iteration We com-
pare Llama-2-7b-chat with the newer
Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) on WMT15 De->En to assess how model
advancements affect performance. As shown
in Figure 7a, the newer model demonstrates
consistent improvements in both offline and simul-
taneous modes. This confirms that conversational
SIMULMT effectively transfers to newer LLMs,
with benefits from improved instruction-following
capabilities and enhanced language modeling.

Effect of Model Scale We investigate how
model size impacts performance by compar-
ing Llama-3.1-8B-Instruct with the smaller
Llama-3.2-3B-Instruct (Grattafiori et al., 2024)
on WMT15 De->En. Figure 7b shows that
while the larger model predictably outperforms
its smaller counterpart, the 3B model still
achieves acceptable translation quality (on par with
Llama-2-7b-chat in Figure 7a), suggesting our
method is viable on resource-constrained devices.

Impact of Target Language Proficiency We
evaluate Llama-3.1-8B-Instruct against
Qwen2.5-7B-Instruct (Qwen et al., 2025) on
MUST-C En->Zh to investigate the effect of the
model’s target language capabilities. As shown
in Figure 7c, Qwen2.5 consistently outperforms
Llama-3.1 for Chinese translation by 1-2 BLEU
points across all latency settings, demonstrating
that target language proficiency provides additional
benefits with our approach.

6 Related Works

Simultaneous Machine Translation (SIMULMT)
is the task to provide real-time translation of a
source sentence stream where the goal is to mini-
mize the latency while maximizing the translation
quality. A common approach is to train an MT
model on prefix-to-prefix dataset to directly predict
target tokens based on partial source tokens (Ma
et al., 2019). Alternatively, Liu et al. (2020) pro-
posed the incremental decoding framework to lever-
age the pretrained OFFLINENMT model and turn
it into a SIMULMT model without further training.
A core component of SIMULMT is a read-write
policy to decide at every step whether to wait for
another source token (READ) or to generate a tar-
get token (WRITE). Previous methods have explored
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fixed policy, which always waits for k tokens be-
fore generation (Ma et al., 2019; Zhang et al.,
2022) and adaptive policy, which trains an agent
via reinforcement learning (Gu et al., 2017; Arthur
et al., 2021). Re-translation (Arivazhagan et al.,
2019) from the beginning of the source sentence at
the WRITE step will incur high translation latency.
Stable hypothesis detection methods such as Lo-
cal Agreement, hold-n (Liu et al., 2020) and Share
prefix SP-n (Nguyen et al., 2021) are employed to
commit stable hypothesis and only regenerate a sub-
sequence of source sentence. The goal is to reduce
the latency and minimize the potential for errors
resulting from incomplete source sentence (Polák
et al., 2022; Wang et al., 2021).

LLM-based NMT Recent research has delved
into the potential usage of LLMs in MT (Hendy
et al., 2023; Zhu et al., 2023; Robinson et al., 2023),
especially in handling discourse phenomena (Wang
et al., 2023a; Wu et al., 2024) and linguistic nu-
ances such as idioms (Manakhimova et al., 2023)
and proverbs (Wang et al., 2025). While LLMs do
exhibit some level of translation capability, prior
research has identified that they still lags behind
the conventional NMT models, especially for low
resource languages (Robinson et al., 2023). Addi-
tionally, the translation performance varies depend-
ing on prompting strategies (Zhang et al., 2023).
Efforts have been made to enhance the LLMs’ MT
performance by incorporating guidance from dic-
tionary (Lu et al., 2023), further fine-tuning (Zeng
et al., 2023; Xu et al., 2023) and augmenting with
translation memories (Mu et al., 2023).

LLM-based SIMULMT SimulLLM
(Agostinelli et al., 2023) explore the ability
to adapt an LLM finetuned on NMT task to
simultaneous translation with wait-k strategy.
Wang et al. (2023b) adopt hybrid READ/WRITE
policy with wait-k and incremental decoding.
TransLLaMA (Koshkin et al., 2024) teach LLMs
to produce WAIT tokens to preserve the causal
alignment between source and target tokens. At
each inference round, LLMs only produce a
single word or WAIT token, which is very costly
due to multiple rounds of LLM calls. Guo et al.
(2024) introduce LLM into the SIMULMT task
as a translation agent working with a specialized
SIMULMT policy agent. An additional memory
module stores translation history. The policy
agent decides on READ/WRITE actions, while the
LLM translates target segments. They face the

same KV-cache reuse challenge noted by Wang
et al. (2023b), making the computational cost of
collaborating big and small models even more
significant.

7 Conclusion

This paper focuses on the feasibility of utilizing
LLM for SIMULMT. We found that leveraging
the incremental-decoding framework with offline
prompting leads to high computational latency, hin-
dering the reuse of the Key-Value cache. To ad-
dress this, we propose the conversational prompt-
ing which allows LLMs to conduct SIMULMT in a
multi-turn dialogue manner. The approach signifi-
cantly speeds up the inference and also preserves
the quality superiority, enabling practical LLM-
based SIMULMT systems.

Limitations

We summarize the limitations of this study in the
following aspects:
Data Our evaluation was conducted on three
commonly used benchmarks which may limit the
diversity in domains, styles, and languages. There
may also be potential data contamination concerns
since LLMs might have been exposed to parts of
our test sets during pre-training. A more com-
prehensive evaluation with diverse datasets across
more domains and language pairs would strengthen
our findings.
Alignment-based Data Curation Our approach
relies on word alignment tools like fast_align to
segment parallel sentences, which has inherent lim-
itations. These tools may struggle with languages
having drastically different word orders or gram-
matical structures, potentially creating suboptimal
segmentation points. Furthermore, the alignment
quality degrades for distant language pairs or com-
plex sentences with idiomatic expressions and cul-
tural references. While our augmentation strategies
help mitigate some issues, they are still constrained
by the initial alignment quality.

Ethics Statement

Our work is built on top of an existing LLM. For
this reason, we share the similar potential risks
and concerns posed by the underlying LLM. Our
method is trained on commonly used training re-
sources of the Machine Translation research com-
munity and as such we are not expecting our ap-
proach to introduce new areas of risks.
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Algorithm 1 Conversational SIMULMT Decoding
Require: LLM : LLMθ,

Source chunks: x = [],
Target chunks: y = [],
KV-Cache: h = [],
Chunk index: c = 0,
Variables Definition: Source chunk size: n,
Beam-size: B, Agreement-degree: γ

1: while NOT_FINISH do
2: xc ← READ(n) //READ n tokens
3: x.append(xc)
4: xprompt ← PROMPT(x,y)
5: y′

c,h
′ ← LLM(xprompt, B,h, latest=True)

6: //B candidates with latest tokens in y′
c

7: yc,h← PREFIX(y′
c,h

′)
8: //Prune with Prefix selection, e.g. RALCP
9: if yc == ∅ then

10: continue
11: else
12: y.append(yc)
13: WRITE(yc)
14: c← c+ 1
15: end if
16: end while

Appendix

A Conversational SimulMT Decoding

Algorithm 1 presents the details of applying con-
versational prompts for decoding.
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