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Marcello Federico12 Mark Fishel39 Marco Gaido3 Dávid Javorský4 Marek Kasztelnik36
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Beatrice Savoldi3 Nivedita Sethiya32 Claytone Sikasote26 Matthias Sperber27
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1GMU 3FBK 4Charles U. 5TalTech 6Elyadata 7U. Malta 9CMU 12Amazon
15JHU 16Avignon U. 18U. Edinburgh 20CUHK Shenzhen 21AppTek 22U. Galway
23KIT 24Northeastern U. 26U. Cape Town 27Apple 28Zoom 29U. Pompeu Fabra
30ETH Zurich 31ADAPT Centre 32IIT Indore 33IIT Madras 34Nara Women’s U.

35Oregon State U. 36ACC Cyfronet AGH 37U. Pretoria 38Snowflake 39U. Tartu

Abstract

This paper presents the outcomes of the shared
tasks conducted at the 22nd International
Workshop on Spoken Language Translation
(IWSLT). The workshop addressed seven crit-
ical challenges in spoken language transla-
tion: simultaneous and offline translation, au-
tomatic subtitling and dubbing, model com-
pression, speech-to-speech translation, dialect
and low-resource speech translation, and In-
dic languages. The shared tasks garnered sig-
nificant participation, with 32 teams submit-
ting their runs. The field’s growing impor-
tance is reflected in the increasing diversity
of shared task organizers and contributors to
this overview paper, representing a balanced
mix of industrial and academic institutions.
This broad participation demonstrates the ris-
ing prominence of spoken language translation
in both research and practical applications.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) stands as the lead-
ing annual scientific conference dedicated to ad-
vancing all aspects of spoken language translation
(SLT). Operating under the auspices of the Spe-
cial Interest Group on Spoken Language Trans-
lation (SIGSLT), the conference receives support
from three prestigious organizations: the Asso-
ciation for Computational Linguistics (ACL), the
International Speech Communication Association

(ISCA), and the European Language Resources
Association (ELRA). Maintaining its 22-year tra-
dition, the 2025 conference was preceded by a
comprehensive evaluation campaign designed to
address critical scientific challenges in SLT. This
paper presents the outcomes of the 2025 IWSLT
Evaluation Campaign, which comprised seven dis-
tinct shared tasks organized into three primary re-
search areas:

• High-resource ST
– Offline track, with focus on speech-to-text

translation of recorded scientific presenta-
tions, TV series, and business news from En-
glish to German, Arabic and Chinese.

– Simultaneous track, focusing on speech-to-
text translation of streamed audio of confer-
ences and interviews from English to Ger-
man, Japanese and Chinese, and from Czech
to English.

– Subtitling track, with focus on speech-
to-subtitle translation of audio-visual docu-
ments from English to German and Spanish
and on compression of pre-generated Ger-
man and Spanish subtitles.

– Model compression, with focus on speech-
to-text translation of recorded scientific pre-
sentations, TV series, and business news
from English to German and Chinese,
achieved by reducing the size of a large mul-
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tilingual speech-to-text foundation model.

• Low resource ST
– Low-resource SLT, focusing on the trans-

lation of recorded speech from North Lev-
antine Arabic to English, Tunisian Arabic
to English, Bemba to English, Fongbe to
French, Irish to English, Bhojpuri to Hindi,
Estonian to English, Maltese to English,
Marathi to Hindi, and Quechua to Spanish.
It also included a data track, inviting partici-
pants to submit newly collected speech trans-
lation datasets of under-resourced language
pairs.

– Indic Languages Track focuses on English
and multiple Indic languages. The speech
translations are from English speech to Indic
language text and from Indic speech to En-
glish language text. Indic languages include
Bengali, Hindi, and Tamil.

• Instruction-following Speech Processing
– Speech Recognition, Translation, Ques-

tion Answering, and Summarization, with
focus on Scientific talk audios from English
to German, Italian, and Chinese languages.

The shared tasks drew participation from 32 di-
verse teams (detailed in Table 1), encompassing
both academic institutions and industry leaders. In
the following sections, we provide comprehensive
coverage of each shared task, including detailed
descriptions of the research challenges, specifica-
tions of training and testing datasets, evaluation
methodologies, and submission analyses. Each
task discussion concludes with a thorough results
summary, with additional detailed performance
metrics available in the corresponding appendices.
This structure ensures a systematic presentation of
the tasks while maintaining accessibility to both
high-level findings and granular technical details.

2 Evaluation

The evaluation campaign features both automatic
and human evaluation. To support automatic eval-
uation, we developed a dedicated evaluation server
this year, as detailed in Section 2.1. The server was
piloted in the Offline, Model Compression, and In-
struction Following tracks. For the other tracks,
submission and evaluation processes were man-
aged by the respective organizers, following the
procedure used in previous campaigns. In addi-

tion, we performed a human evaluation across sev-
eral tracks as described in 2.2

2.1 SPEECHM-IWSLT2025 Evaluation
Server

The Evaluation Server is a suite of datasets
and metrics designed to measure and monitor
the performance of task-specific systems. It is
part of the “SPEECHM” platform, developed
under the Meetween European Project.1 For
the IWSLT-2025 Evaluation Campaign, a ded-
icated instance—SPEECHM-IWSLT20252—was
created. This instance features a web-based user
interface that allows participants to submit sys-
tem outputs and track their performance via a
leaderboard. The implemented evaluation metrics
depend on the task: COMET, BLEURT, BLEU
and CharacTER are used in the Offline and the
Model Compression tasks, while WER, COMET
and BERT scores are used Instruction Following
task.

The Evaluation Server is described in detail in
Appendix B.1.

2.2 Human Evaluation

Similar to last year’s round, a human evaluation
through direct assessment is performed on the pri-
mary submissions of each participant in order to
verify the soundness and completeness of the re-
sults. We include most tasks and test sets for hu-
man evaluation. We follow Sperber et al. (2024)’s
approach to handle the automatically segmented
long-form speech in a robust manner. Details are
provided in Section A.

3 Offline track

The Offline Speech Translation task at IWSLT, a
cornerstone of the conference’s tradition, aims to
establish a robust evaluation framework for mon-
itoring advancements in spoken language transla-
tion. Its core focus lies in unconstrained speech
translation, distinguishing it from tasks with inher-
ent temporal and structural limitations such as si-
multaneous translation or subtitling. While main-
taining a consistent task formulation, the empha-
sis over time has incrementally shifted towards in-
creasing task difficulty to better align with real-
world demands, encompassing the translation of

1www.meetween.eu
2iwslt2025.speechm.cloud.cyfronet.pl
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Team Organization Tracks Reference
AIB-MARCO E

ALADAN ALADAN E Kheder et al. (2025)
APPTEK AppTek Ä Petrick et al. (2025)
BUINUS University of Indonesia and Bina Nusantara University E Tjiaranata et al. (2025)

CDAC-SVNIT Center for Development of Advance Computing & Sardar
Vallabhbhai National Institute of Technology

� Roy et al. (2025)

CMU Carnegie Mellon University 7 Ouyang et al. (2025)
CUNI Charles University 7 Macháček and Polák (2025)

CUNI-NL Charles University �� Luu and Bojar (2025)
FFSTC-2 E Kponou et al. (2025b)

GMU George Mason University E Meng and Anastasopoulos (2025)
HITSZ Harbin Institute of Technology, Shenzhen � Wei et al. (2025)

IIITH-BUT International Institute of Information Technology Hyder-
abad (IIITH) and Brno University of Technology (BUT)

E Akkiraju et al. (2025)

IITM SPRING Lab, IIT Madras � Sarkar et al. (2025)
IST Instituto Superior Tecnico � Attanasio et al. (2025)
JHU Johns Hopkins University E Robinson et al. (2025)
JU Jadavpur University � Das et al. (2025)

JU-CSE-NLP Jadavpur University � Dhar et al. (2025)
KIT Karlsruhe Institute of Technology �E � Koneru et al. (2025); Li et al. (2025)

KREASOF-TCD Kreasof AI, Trinity College Dublin, and African Institute
for Mathematical Sciences

E Farouq et al. (2025)

KUVOST E Mohammadamini et al. (2025)
LIA University of Avignon E Chellaf et al. (2025)

MBZAI Mohamed bin Zayed University of Artificial Intelligence E
MEETWEEN MeetWeen �

NAIST Nara Institute of Science and Technology �7 Widiaputri et al. (2025); Tan et al. (2025)
NLE NAVER LABS Europe � Lee et al. (2025)
NYA Netease YiDun AI Lab � Wang et al. (2025)
OSU Oregon State University 7 Raffel et al. (2025)

QUESPA QUESPA E Ortega et al. (2025)
SYSTRAN company for translation technology E Avila and Crego (2025)

TCD Trinity College Dublin Ù Moslem (2025)
UPV Universitat Politècnica de València 7 Sanchez et al. (2025)

URDU E Mehmood and Rauf (2025)

Table 1: List of participants to the IWSLT 2025 shared tasks (� Offline track; 7 Simulultaneous track; Ä Subtitle
track; Ù Compression track; E Low-resource track; �Indic track; � Instruction-following track

new and diverse languages, domains, and speak-
ing styles.

This section provides an overview of this year’s
task characteristics, along with a summary of the
participating systems and their respective results.

3.1 Challenge

In line with the track’s emphasis on the chal-
lenges posed by diverse and increasingly com-
plex evaluation scenarios, this year’s round fo-
cused on incorporating a new language, Arabic,
into an evaluation setting designed to capture the
complexity of real-world speech. This scenario
encompassed diverse language settings (English→ Arabic/Chinese/German) and domains (scien-
tific presentations, TV series, and business news),
alongside varied speaking styles and challenging
recording conditions (e.g., single speakers, multi-
ple overlapping speakers, background noise, and
accent data).

Within this framework, participants were tasked
with developing their system(s) for any of the
three language combinations, selecting one from
three distinct training data conditions (i.e., con-
strained, constrained with large language mod-
els, unconstrained), which differed in terms of al-
lowed training resources. Consistent with previ-
ous rounds, the task welcomed participation with
both cascade and end-to-end models, the latter be-
ing defined as solutions that eschew intermedi-
ate discrete representations (e.g., source language
transcripts), instead employing joint training of all
parameters and components used during decoding.
Multiple submissions to the “SPEECHM” cen-
tralized evaluation server3 were permitted, with
the requirement of designating one as the primary
submission and any others as contrastive.

3iwslt2025.speechm.cloud.cyfronet.pl
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3.2 Data and Metrics
Test Data Also this year, participants were pro-
vided with test data representative of diverse do-
mains and conditions, namely:
• Scientific Presentations – This dataset, derived

from the Instruction Following task (Section 9),
comprises 21 recordings, each lasting approxi-
mately 5.5 minutes, featuring transcripts of sci-
entific oral presentations and their correspond-
ing translations into several languages. The talks
encompass a variety of technical content deliv-
ered by speakers from around the world.

• TV Series from ITV Studios4 – This dataset in-
cludes 3 recordings, each approximately 40 min-
utes in length, featuring multiple individuals in-
teracting in various scenarios. The speech trans-
lation system needs to handle challenges such
as overlapping speakers, different accents, and
background noise.

• Business News from Asharq Business with
Bloomberg5 – This dataset comprises two
recordings, each approximately 2.5 hours in du-
ration, and specifically focuses on the economy
domain. The content is derived from a TV chan-
nel and distributed through various digital and
social media platforms.

• Accented English Conversations sampled
from the Edinburgh International Accents of En-
glish Corpus (EdAcc, Sanabria et al., 2023) –
This dataset provides approximately 3.5 hours
of conversations, each featuring two friends in-
teracting on daily topics such like hobbies and
vacation. The speakers were selected to cover a
wide range of English accents from around the
globe. In addition to the variety of accents (33 in
total), another major challenge presented is the
presence of spontaneous speech.

Contingent on data availability, each language di-
rection was evaluated across distinct scenarios,
specifically:
• English→ German: TV series, scientific presen-

tations, business news, and accent challenge.
• English→ Arabic: business news.
• English→ Chinese: scientific presentations.

Continuing the practice of previous years, the test
sets were either entirely or partially shared with
other tasks. This included the subtitling track (for
TV series and business news data), the simulta-
neous, instruction-following, and model compres-
4www.itvstudios.com
5asharqbusiness.com

sion tracks (for scientific presentations). This col-
laborative approach significantly fosters broader
integration and comparability across the various
components of the evaluation campaign.

Training and Development Data As in the last
two rounds of the challenge, participants were of-
fered the possibility to submit systems built under
three training data conditions:
1. Constrained: In this condition, permitted

training data is limited to a medium-sized
framework to ensure manageable training time
and resource requirements. The compre-
hensive list6 of allowed training resources
(speech, speech-to-text-parallel, text-parallel,
text-monolingual) explicitly excludes any pre-
trained language models.

2. Constrained with large language models
(constrained+LLM ): This condition allows all
training data permitted in the constrained setup,
with the addition of any other LLMs, provided
they are freely accessible and released under a
permissive license. This setup aims to enable
participants to leverage accessible LLMs in a
standardized evaluation scenario.

3. Unconstrained: Under this condition, any re-
source, including pre-trained language models,
may be utilized, with the sole exception of the
evaluation sets. This setup is designed to allow
the participation of teams equipped with high
computational power and capable of develop-
ing effective solutions leveraging additional in-
house resources.

Development data were supplied only for English-
German and English-Chinese. For English-
German, they comprise the development set from
IWSLT 2010, along with the test sets released for
the 2010, 2013-2015, and 2018-2022 IWSLT cam-
paigns. For English-Chinese, they consist of the
test set used for the 2022 round.

Evaluation Metrics Systems were evaluated
based on their ability to produce translations simi-
lar to the target-language references. This similar-
ity was quantified using multiple automatic met-
rics: COMET7 (Rei et al., 2020), BLEU8(Papineni
et al., 2002), BLEURT (Sellam et al., 2020), Char-

6See the IWSLT 2025 offline track: iwslt.org/2025/offline
7huggingface.co/Unbabel/wmt22-comet-da
8BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.4.14
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acTER (Wang et al., 2016), chrF9(Popović, 2015),
and TER10(Snover et al., 2006). COMET was
again chosen as the primary evaluation metric
this year. It was calculated on the test set us-
ing automatic resegmentation of the hypothesis
based on the reference translation by mwerSeg-
menter,11 employing a detailed script made acces-
sible to participants.12 To enhance the soundness
and completeness of the evaluation, human assess-
ment was also conducted on the best-performing
submission from each participant.

3.3 Submissions

This year, 7 teams participated in the offline
task, submitting a total of 30 runs through the
“SPEECHM” evaluation server. Table 2 provides
a breakdown of the participation in each sub-
task showing, for each training data condition, the
number of participants, the number of submitted
runs and, for each training data condition (con-
strained, constrained+LLM , unconstrained), the
number of submitted runs. Below, we provide a
short description of the systems, whose creators
submitted a system description paper.

CUNI-NL (Luu and Bojar, 2025) participated
with an end-to-end en-de system trained under the
“constrained with Large Language Models” con-
dition. The model consists of an audio encoder
that transforms the input audio into embeddings
that are then passed to the LLM, which generates
the output texts (transcript or translation). Both a
length adapter and a modality adapter are added to
facilitate the integration of the audio embeddings
into the LLM. Two speech encoders (Seamless-
v2-large and Whisper-v3-large) and three LLMs
(Llama3 8B Instruct, EuroLLM 9B Instruct, and
gemma3 12B Instruct) have been tested. To en-
hance the performance, multitask training was per-
formed, teaching the model to transcribe, trans-
late, and simultaneously transcribe and translate.
The training data are limited to the CoVoST2
dataset and a large multilingual corpus built from
the Common Voice corpora.

9nrefs:1+case:mixed+eff:yes+nc:6+nw:0+space:no
+version:2.4.2

10nrefs:1+case:lc+tok:tercom+norm:no+punct:yes+asian:no
+version:2.4.2

11www-i6.informatik.rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

12github.com/isl-mt/SLT.KIT/blob/master/scripts/
evaluate/Eval.sh

KIT (Koneru et al., 2025) participated with a
cascade en-de system trained under the “uncon-
strained” condition. The cascade model comprises
several components. The segmenter aims to iden-
tify the optimal point at which to segment an audio
file. Various techniques were tested, demonstrat-
ing that fixed-window chunking with a chunk size
of 25 consistently yields the best performance.
The second component is an ensemble of ASR
systems trained under different conditions, which
is used to transcribe the audio. The produced
transcripts are then recombined by a task-adapted
LLM based on Llama3 8 B. The final transcripts
are translated using a version of Tower 7B en-
hanced for the en-de translation direction. A final
component was introduced to post-edit the trans-
lations with an APE model based on Tower 13 B.
All the data used to train each component has been
previously cleaned and selected to obtain high-
quality samples.

NAIST (Widiaputri et al., 2025) participated
with end-to-end en-de, en-zh systems, where the
version based on SALMONN technology was
trained under the “unconstrained” condition, while
the in-house version was trained under the “con-
strained with Large Language Models” condition.
SALMONN is an end-to-end speech-to-text model
that integrates Whisper large-v2 as the speech en-
coder, a fine-tuned BEATs encoder for non-speech
audio and the Vicuna 13B LLM as the decoder.
The two audio encoders and the LLM are con-
nected via a window-level Q-Former module. The
customised end-to-end version is based on the
Whisper large-v3 encoder, a DeCo projector, and
the Qwen2.5 LLM. The en-de models are fine-
tuned using a combination of CoVoST and Eu-
roparl, while the en-zh models are fine-tuned only
on CoVoST. Different prompts have been tested to
maximise translation performance.

NYA (Wang et al., 2025) participated with cas-
cade en-ar, en-de, en-zh systems trained under the
“unconstrained” condition. The ASR is based on
Whisper medium, while the MT system combines
an NMT model based on the Transformer tech-
nology and an LLM model based on X-ALMA.
The NMT model is enhanced by leveraging data
augmentation with backwards and forward trans-
lations and domain adaptation via data filtering.
The LLM model is obtained by fine-tuning X-
ALMA on in-domain data and leveraging Low-
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English-German
Participants Runs Constrained Constrained+LLM Unconstrained

6 16 0 4 12
English-Chinese

Participants Runs Constrained Constrained+LLM Unconstrained
4 10 0 2 8

English-Arabic
Participants Runs Constrained Constrained+LLM Unconstrained

2 4 0 0 4

Table 2: Breakdown of the participation in each sub-task (English→German, English→Chinese, English→Arabic)
of the IWSLT offline ST track. For each language direction, we report the number of participants, the number of
submitted runs and, for each training data condition (constrained, constrained+LLM , unconstrained), the number
of submitted runs.

Rank Adaptation fine-tuning. The NMT n-best
and the LLM list of candidates are merged and
reranked using COMET-based MBR decoding.
The MT training data are filtered using a semantic
metric based on sBERT. The in-domain specific
data are generated by crawling domain-specific
videos and leveraging the existing bilingual sub-
titles. The audio is segmented using SHAS.

3.4 Results
3.4.1 English to German
Overall result Table 21 shows the aggregated
result of the systems participated in the four test
sets. In terms of ranking based on automatic eval-
uation metrics, KIT is ranked 1st, followed by
NYA and NeMo. These top-3 systems perform
better than the others by a large margin, e.g., a 0.1
COMET score, and most of them are based on the
cascaded architecture rather than end-to-end. Un-
like last year, where the winning system is metric
dependent, the ranking between the top-3 systems
remains consistent across all six metrics.

Unlike the top-3 systems, NAIST (U) and
CUNI-NL presents a scenario where the ranking
is metric dependent. In particular, NAIST (U) per-
forms better in both COMET and BLEURT (neu-
ral metrics) but worse in both BLEU and chrF
(string-based metrics).

Domains This year, a new set of domains has
been introduced for evaluation. The long-standing
TED domain has been removed, whereas the ac-
cent (data) and the ITV (only the domain) remain.
Similar to last year’s edition, we evaluated each
submitted system on different domains.

In spite of having diverse set of domains, the
top-3 systems (KIT, NYA and NeMo) perform
consistently well. The much better numbers on
the evaluation metrics indicate that both Scientific

Presentations and Business News domains are less
challenging to translate than the accent and ITV
domains. Although the top-3 systems perform
similarly in both the accent and ITV domains, the
remaining systems achieve far worse scores on the
ITV domain, making ITV possibly the most chal-
lenging domain.

Furthermore, the ranking across domains is
quite consistent meaning that a system performing
good in one domain as performs good in the other
domain. The only exception is AIB, which per-
forms good on three domains, but has challenges
in the ITV domain.

Data conditions On top of the above, we can
also observe the improvement of translation qual-
ity by increase the training data size. In all the test
domains, the top three systems are from the “un-
constrained” conditions, whereas the “constrained
LLMs” submissions are ranked the bottom, except
in the ITV domain. Among all the participants,
NAIST is the only team which submitted both ”un-
constrained” and “constrained with LLMs” condi-
tions. Their ”unconstrained” system outperforms
the constrained condition substantially in all met-
rics, showing the importance of training data size
despite using LLMs for the tasks. However, it is
worth noting that the pretrained models and the
architectures between the two conditions are quite
dissimilar. Another noteworthy comparison is be-
tween the CUNI-NL and the NAIST (U). Despite
being a “constrained with LLMs” submission, the
CUNI-NL performs better in Business News, ITV
and Scientific Presentations domains in almost all
metrics. This smaller performance gap could be
attributed to the choice of the pretrained models,
which the CUNI-NL has substantially tested on.

417



3.4.2 English to Arabic
For the en-ar direction, we evaluate the submitted
systems on the Business News domain. This is
a newly added language pair this year, and there
are 3 submissions that are all based on “uncon-
strained” conditions.

Table 22 summarizes the results. The NYA is
ranked 1st, followed by the NeMo and the AIB.
The ranking is consistent across all the evaluation
metrics. Furthermore, the ranking is also consis-
tent with the ranking in English to German.

3.4.3 English to Chinese
For the en-zh direction, we evaluate the submitted
systems on the Scientific Presentations domain.
Unlike last year, there are both cascaded and end-
to-end submissions this year.

Table 23 summarizes the results. The NYA is
ranked 1st in the COMET metric among the six
submitted systems. In addition to COMET, it is
also ranked 1st in both BLEU and character-TER.
While it does not score the highest on chrF and
BLEURT, it ranks second overall. The AIB takes
the second place with performance similar to the
NYA in most evaluation metrics, and it is even
ranked 1st according to BLEURT.

Regarding the data condition, NAIST submit-
ted both “unconstrained” and “constrained with
LLMs” conditions. Similar to en-de language di-
rection, their “unconstrained” system outperforms
the “constrained with LLMs” system substantially
in all metrics. Despite the stronger performance,
possibly caused by the larger training data size,
NAIST (U) and NAIST (C+) use different pre-
trained components.

3.5 Human Evaluation
Similar to previous editions, each participant’s pri-
mary submission has been further assessed by pro-
fessional translators. The details of the human
evaluation and its results are described in A.

Examining the results, it is interesting to note
that, in most cases, human evaluation confirms the
ranking provided by automatic metrics, with only
minor discrepancies. This is true for the English
to Arabic direction, where NYA outperforms other
models, and for the English to Chinese direction,
where only the top position shifted in favour of
NYA, leading to a better average DA score than
AIB (despite automatic metrics showing minimal
difference between the two submissions). The
human evaluation also corroborates the findings

from the automatic metrics regarding the impact of
data conditions: the models trained in the uncon-
strained data condition generally outperform those
trained in the constrained condition.

For English to German, the results confirm the
trends observed in other language directions for
the TV series test set, with human evaluation val-
idating the rankings generated by the automatic
metrics. More variations are shown for the accent
and scientific presentation test sets.13 For the ac-
cent test set, KIT outperforms all other systems,
achieving the best score. The most surprising re-
sults concern the AIB submission, which, despite
a significant difference from the best model in
terms of COMET score (5.4 points), is indistin-
guishable from KIT from the human evaluation
standpoint. It is difficult to hypothesise a possi-
ble reason for this discrepancy due to the lack of
a system description paper, but this confirms the
need to test a model under different conditions and
validate its results with human evaluation. The
AIB submission also shows similar behaviour for
the scientific presentation test set, where it is pe-
nalised by the automatic evaluation (fourth with
a gap of 3.8 COMET scores from the top-ranked
system), but rewarded by human evaluation.

The fact that some of the test sets are shared
across different tasks gives us the possibility to
present a single ranking including systems devel-
oped under different conditions and tasks. Exam-
ining Tables 14, 15 and 17 shows that the systems
built for the offline task without any latency (si-
multaneous task), task-sharing (instruction task),
and length (subtitling task) constraints attain the
best performance, with a margin of more than 1
average DA score over the other submissions.

4 Simultaneous track

Simultaneous speech translation focuses on trans-
lating speech in real-time, in a manner similar to
simultaneous interpreting. The system is designed
to begin translating before the end of an utterance.
This technology is particularly useful in scenarios
such as international conferences, personal travel,
or public emergency events.

The task included two tracks: cascaded and di-
rect. Submissions to the cascaded track contain
systems that produce intermediate text, i.e. the
transcription of the source audio, that is imme-

13The Asharq News test set has not been human-evaluated
due to budget constraints.
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diately consumed by a simultaneous text-to-text
agent. In contrast, direct, or end-to-end, systems
avoid any intermediate text and directly generate
target-language (text) translations from the source
audio. Both tracks covered four language direc-
tions as in the previous year: English to Ger-
man, English to Chinese, English to Japanese, and
Czech to English.

4.1 Challenge
4.1.1 Changes from the last year
This year’s simultaneous translation task had two
major changes compared to the last year:

Long-form speech We introduced a more real-
istic condition for simultaneous speech translation
on unsegmented speech (Papi et al., 2025a). Par-
ticipants had to develop streaming translation sys-
tems processing long-form speech.

Large language models Participants were al-
lowed to use LLMs under the same conditions as
Constrained with large language models in the Of-
fline task described in Section 3.2.

4.1.2 Latency regimes
Two latency regimes, low and high, were intro-
duced for each of the tracks to evaluate translation
quality in different latency conditions.

English-to-German and Czech-to-English 0 to
2 seconds (low), 2 to 4 seconds (high)

English-to-Chinese 0 to 2.5 seconds (low), 2.5 to
4 seconds (high)

English-to-Japanese 0 to 3.5 seconds (low), 3.5
to 5 seconds (high)

4.1.3 Submission
Participants were allowed to submit no more than
one system per track, language direction, and la-
tency regime. The latency regime of a submission
was determined by its results on the development
set. This year, we allowed two submission op-
tions: Docker image and System log submissions.
The latter option was easier for the participants be-
cause they did not need to wrap their systems into
a deployable form. Systems of the Docker image
submissions were executed by the organizers on
the blind-test set in a controlled environment using
a NVIDIA H200 GPU. An example implementa-
tion was provided using the SimulEval toolkit (Ma
et al., 2020).

4.2 Data

To simplify the setting and allow participants to
focus on the new modeling aspects of simultane-
ous translation, we adhere to the constraints with
large language models as defined for the offline
SLT task, see Section 3.2 above. This is the only
data condition for the task. The test and dev sets
differ across language pairs:

English to German, Chinese, and Japanese
The test data are the speech translation section of
the IWSLT25Instruct benchmark created for the
Instruction Following task (Section 9) and derived
from scientific talks (ACL Anthology presenta-
tions). The dev data are the ACL 60/60 bench-
mark (Salesky et al., 2023). In addition, we use
Accented English Conversations test set for En-
glish to German.

split domain #utter. #words/ duration
utter. (min)

dev ParCzech 276 24 56
ELITR 314 13 28.6

test ParCzech 636 20.53 108.58
Non-Native 1298 6.33 86.85

Table 3: Statistics of the dev and test sets for the Czech-
English simultaneous task.

Czech to English The dev set was created from
two sources:
• From ParCzech 3.0 (Kopp et al., 2021), we took

a subset of the test recordings in the variant
called “context”, which consists of parliamen-
tary speeches in their original partitioning, pre-
serving the natural flow of the speech.

• From the ELITR test set (Ansari et al., 2021),14

we took an entire recording of a debate about AI.
The reference translations of the devset were

done by students of translation studies from the
Faculty of Arts at Charles University.

The test set was also collected from two
sources:
• Selected recordings (complete speeches) of the

Parliament of the Czech Republic, ensuring that
there is no speaker overlap with the recordings
allowed for training.

• Recordings of Czech language proficiency ex-
ams at the A2 level (Novák et al., 2024).

14github.com/ELITR/elitr-testset/tree/master/documents/2021
-theaitre-related/robothon-debate
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The reference translations of the testset were pro-
vided by a professional translation agency. The
statistics of both sets are provided in Table 3.

4.3 Evaluation
4.3.1 Automatic Evaluation
We automatically evaluate two aspects of models:
quality and latency.

Quality We conducted both automatic and hu-
man evaluation. BLEU (Papineni et al., 2002) and
COMET (Rei et al., 2022a) are used for automatic
quality evaluation. The ranking of the submission
is based on the BLEU score on the blind test set.

Latency We only conducted automatic evalua-
tion using StreamLAAL (Papi et al., 2024).

4.3.2 Human evaluation
For English-to-German and Czech-to-English, hu-
man evaluation was conducted using the Contin-
uous Rating method proposed by Javorský et al.
(2022). Further details on the method and score
calculation are provided in Appendix A.2. This
evaluation covered systems operating in the high-
latency regime (with the exception of the CMU
submission, which participated only in the low-
latency regime).

For Czech-to-English, we additionally collected
two independent human interpretations—one by a
professional and one by a student interpreter—and
evaluated them in the exact same manual evalua-
tion style as system outputs, i.e. presenting them
as gradually growing text in their authentic tim-
ing. The professional interpreter has been work-
ing full-time in the field since 2013, has been ac-
credited by EU institutions since 2018, and reg-
ularly interprets for clients such as Czech Tele-
vision, Czech Radio, CNN, and the World Bank.
The student interpreter was a second-year master’s
student at the Institute of Translation Studies, with
three completed semesters of simultaneous inter-
preting training. The interpreting was carried out
remotely, transcribed by WhisperX (Bain et al.,
2023) and post-edited by an annotator fluent in
English. For preparation of the sessions, both in-
terpreters got a brief summary of each speech in
three sentences using Llama 3.3 language model
(Grattafiori et al., 2024). According to the profes-
sional interpreter, the interpretation differed from
real-world conditions for three main reasons: (1)
the absence of visual input, as the recordings were
provided in audio-only format; (2) the absence of

a second interpreter, who would normally assist
by noting down numbers and looking up specific
terminology; and (3) limited preparation time, as
the speeches covered a wide range of topics — un-
like in real interpreting settings, where the subject
matter is typically more stable.

For English-to-Japanese, another human evalu-
ation was conducted by a professional interpreter
using MQM-based metric (JTF, 2018) as in the
last years.

Human evaluation using Direct Assessment was
also conducted for comparison with other tasks, as
described in A.1.

4.4 Submissions
Five teams in total participated this year, with
three of those participating submissions contain-
ing testable systems for computationally-aware
latency measurements. All teams entered the
English-to-German track; four teams entered
the English-to-Chinese, two teams entered the
English-to-Japanese tracks; and one team entered
the Czech-to-English track.

BASELINES were built for all directions. We
use two approaches, a cascaded and a direct one.
Both approaches used simultaneous segmenters
to accommodate the long-form regime. We used
fixed-length and VAD segmenters as described in
Polák and Bojar (2024). For the cascaded sys-
tem, we use Whisper-Large-V3-Turbo (Radford
et al., 2023) for ASR and M2M100 (Fan et al.,
2021) for MT. Both the Whisper and M2M100
models were onlinized using the Local Agree-
ment policy (Polák et al., 2022, 2023). To make
the ASR more robust to segmentation, we used
the transcript of the previous segment as a con-
text. For the direct approach, we selected Seam-
lessM4T (Seamless Communication et al., 2023)
as the backbone of our system. We also used the
Local Agreement policy for onlinizing the offline
SeamlessM4T model.

CUNI (Macháček and Polák, 2025) partici-
pated in the direct track for English to German,
Chinese, and Japanese, as well as Czech to En-
glish directions. They proposed two system ar-
chitectures based on the language direction. For
the from-English direction, their system is based
on Whisper-Large-V3 (Radford et al., 2022) in
the role of ASR and EuroLLM (Martins et al.,
2024) as MT. The Whisper model was onlin-
ized using the AlignAtt (Papi et al., 2023) policy,
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while the EuroLLM model was onlinized using
the Local Agreement policy (Polák et al., 2022,
2023). For the Czech-to-English direction, they
used a direct approach, leveraging Whisper-Large-
V3. They also explored improving translation
quality by including previous translation as con-
text and prompting for in-domain terminology.

CMU (Ouyang et al., 2025) participated in the
direct track for the English to Chinese and Ger-
man directions. Their system integrates a chunk-
wise causal Wav2Vec2.0 speech encoder (Baevski
et al., 2020), an adapter, and the Qwen2.5-7B-
Instruct (Qwen et al., 2025) as the decoder. The
training is conducted in two stages on speech seg-
ments curated from LibriSpeech (Panayotov et al.,
2015), CommonVoice (Ardila et al., 2020b), and
VoxPopuli (Wang et al., 2021) datasets, which
are translated into Chinese and German with the
4-bit quantized Qwen2.5-32B-Instruct. The la-
tency is controlled through a configurable latency
multiplier, ensuring translations are generated af-
ter accumulating a predefined number of chunks,
and the decoder uses a sliding window strategy to
maintain the context through KV cache concate-
nation.

OSU (Raffel et al., 2025) participated in the
cascaded track for the English-to-German and
Chinese directions. Their system employs
Whisper-Large-V2 (Radford et al., 2022) with a
voice-activity-detection (VAD) segmenter (Silero
Team, 2021) for ASR with a 4-bit quantized
Gemma3-12B-Instruct (Team et al., 2025) and
context-aware conversational prompting (Wang
et al., 2024a) for translation. For fine-tuning,
they re-purpose a prior framework (Agostinelli
et al., 2024; Raffel et al., 2024) and its conver-
sational prompting implementation alongside se-
mantic similarity-based filtering to curate noisy
subtitling data (Lison et al., 2018) before fine-
tuning with LoRAs (Hu et al., 2021). In addi-
tion, this system augments basic conversational
prompting for ST by leveraging a single-sentence
sliding window memory bank for prior context.

UPV (Sanchez et al., 2025) participated in the
cascaded track for the English-to-German direc-
tion. Their system employs Whisper-Large-V3-
Turbo (Radford et al., 2022) with a modified
longest-common-prefix (LCP) decoding policy for
ASR alongside NLLB-3.3B (NLLB Team et al.,
2022) with relaxed-agreement LCP (RALCP)

(Wang et al., 2024b) with a wait-k policy (Ma
et al., 2019) for simultaneous translation. Addi-
tionally, this system features a similar, but simpli-
fied and more efficient, segmentation process to
AlignAtt (Papi et al., 2023), leveraging attention
maps to judge necessary model context. For train-
ing, they randomly prepended up to 10 sentences
of prior context to a given sample so as to better
leverage the unsegmented audio of this year’s task.

NAIST (Tan et al., 2025) participated in
English-to-German, Chinese, and Japanese lan-
guage directions of the direct track. Their system
employs SHAS (Tsiamas et al., 2022) for speech
segmentation, Whisper-large-v3 (Radford et al.,
2022) for encoding input speech, DeCo (Yao et al.,
2024) for projecting Whisper features into acous-
tic embeddings for the LLM, and Qwen-2.5-7B-
Instruct (Qwen et al., 2025) LLM. It was fine-
tuned with LoRA by joint training of ST and ASR,
and the offline-trained ST system was used for
simultaneous translation using Local Agreement
(Liu et al., 2020; Polák et al., 2022).

4.5 Results
4.5.1 Automatic Evaluation
We rank the system performance based on BLEU
scores. Cascaded systems are marked with an as-
terisk (∗). The detailed results can be found in the
respective tables in Appendix B.3.

Low-Latency The ranking of systems for the
the low-latency condition is as follows:
• English to German (Table 24):

CMU, NAIST, OSU ∗, BASELINES-Direct
• English to Chinese (Table 25):

CMU, NAIST, OSU ∗, BASELINES-Direct
• English to Japanese (Table 26):

NAIST, BASELINES-Direct
• Native Czech to English (Table 27):

CUNI, BASELINES-Direct
• Non-native Czech to English (Table 28):

CUNI, BASELINES-Direct
• Accented English to German (Table 29):

OSU ∗, NAIST, CMU, BASELINES-Direct

High-Latency The ranking of systems for the
high-latency condition is as follows:
• English to German (Table 24):

CUNI ∗, UPV ∗, OSU ∗, BASELINES-Casc.∗,
NAIST, BASELINES-Direct

• English to Chinese (Table 25):
CUNI ∗, NAIST, OSU ∗, BASELINES-Direct
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• English to Japanese (Table 26):
CUNI, NAIST, BASELINES-Direct

• Native Czech to English (Table 27):
BASELINES-Direct, CUNI, BASELINES-Casc.∗

• Non-native Czech to English (Table 28):
CUNI, BASELINES-Casc.∗, BASELINES-Direct

• Accented English to German (Table 29):
OSU ∗, UPV ∗, BASELINES-Casc. ∗, NAIST,
CUNI ∗, BASELINES-Direct

4.5.2 Human Evaluation
Details of the human evaluation are provided in
Section A.2 of the Appendix and results are shown
in Table 18 for Czech-to-English, in Table 19 for
English-to-German, and in Table 20 for English-
to-Japanese. For Czech-to-English and English-
to-German, we selected only one baseline that has
a higher BLEU score.

4.6 Conclusions

This year’s simultaneous translation shared task
marks a significant shift in the focus of simultane-
ous translation system evaluations. With the intro-
duction of unsegmented source audio in the test-
set, participants are incentivized to address crit-
ical opportunities and challenges in real applica-
tions that have largely been avoided in prior years
at the IWSLT. Unlike last year, submissions for
this year’s shared task all feature large language
models (LLMs), with the exception of the CUNI
Czech-to-English submission, which were tailored
for simultaneous translation in a variety of ways.
Interestingly, a range of LLMs were represented
in this year’s submissions. CUNI’s submission
leveraged EuroLLM, a model built for translation
across numerous languages, whereas other teams
employed more general-purpose models.

On the IWSLT25Instruct test set, the CUNI
submission outperformed almost all other systems
at high-latency regimes, aside from on English-to-
Chinese, where the NAIST submission produced
a slightly higher BLEU score. At low-latency
regimes, CMU produced the highest quality trans-
lations at comparatively low latency for English-
to-German and English-to-Chinese. While the
OSU and UPV submissions performed worse on
the IWSLT25Instruct test set, they both performed
significantly better on the challenging accented
English-to-German test set, with the OSU system
performing best at the cost of comparably high la-
tency.

Human evaluation of the Czech-to-English lan-

guage pair shows that the quality of CUNI is com-
parable to that of the student interpreter but worse
than that of the professional interpreter. However,
the latency of CUNI is 1.51, approximately three
times lower, i.e. faster than human interpreting.15

BLEU scores for human interpretations are very
low, which is expected, as interpreting often in-
volves paraphrasing, summarization, and explana-
tion. While both latency and BLEU favor CUNI,
the professional interpreting still delivers the high-
est overall quality and in the shortest time, by go-
ing beyond the literal translation and conveying in-
formation in a more comprehensive way.

Human evaluation for English-to-German and
English-to-Japanese aligns well with the results of
automatic evaluation. Neural network-based eval-
uations are similarly aligned with automatic eval-
uations, yielding no major surprises.

Regarding promising directions for investiga-
tions and improvements to the shared task, the
accented and non-native test sets emerged as the
most difficult for current systems, and more stud-
ies on these scenarios could drive simultaneous
translation models to be more robust. Moreover,
enhancing the task accessibility–such as allowing
log-based submissions as this year–can encourage
broader participation. However, this comes at the
cost of losing compatibility in computationally-
aware latency metrics, which are crucial for simul-
taneous translation systems. Striking a balance
between accessibility and fair evaluation will be
key to enabling more meaningful progress in fu-
ture editions.

5 Subtitling track

In recent years, the task of automatically creating
subtitles for audiovisual content in another lan-
guage has gained a lot of attention due to the rapid
increase in the global distribution and streaming
of movies, series, and user-generated videos. Re-
flecting these trends, the automatic subtitling
track was introduced for the first time in 2023
(Agarwal et al., 2023) and proposed again in 2024
(Ahmad et al., 2024) as part of the IWSLT Evalu-
ation Campaigns.

The automatic subtitling task has been contin-
ued this year.16 Participants were asked to gen-
15The latency is even lower than 2 seconds. The reason is that

the systems were bucketed according to the latency on the
devset, which for CUNI is 2.63.

16The subtitle compression sub-track, introduced in 2024,
was proposed this year as well but we received no submis-
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erate subtitles in German and/or Arabic from En-
glish speech in audiovisual documents.

5.1 Challenge
The task of automatic subtitling is multifaceted:
starting from speech, not only must the transla-
tion be generated, but it must also be segmented
into subtitles that comply with constraints ensur-
ing a high-quality user experience. These con-
straints include proper reading speed, synchrony
with the voices, the maximum number of subtitle
lines, and characters per line. Most audio-visual
companies define their own subtitling guidelines,
which can slightly differ from each other. In the
case of IWSLT participants, we asked to generate
subtitles according to specific guidelines provided
by TED, including:
• The maximum subtitle reading speed is 21 char-

acters per second;
• Lines cannot exceed 42 characters, including

white spaces;
• Subtitles cannot exceed 2 lines.
Participants were expected to use only the audio
track from the provided videos (dev and test sets),
as the video track could be of low quality and pri-
marily intended to check the temporal synchronic-
ity and other aspects of displaying subtitles on
screen.

The subtitling track required participants to
automatically subtitle audio-visual documents in
German and/or Arabic, where the spoken language
is always English. The documents were collected
from the following sources:
• TV series from ITV Studios;17

• Financial news content recordings from the
Asharq Business with Bloomberg media
group.18

5.2 Data and Metrics
Data. This track proposed two training data con-
ditions:
• Constrained: the official training data condi-

tion, in which the allowed training data is lim-
ited to a medium-sized framework19 to keep the
training time and resource requirements man-
ageable;

• Unconstrained: a setup without data restric-
tions (any resource, pre-trained language mod-

sion for it.
17www.itvstudios.com
18asharqbusiness.com
19iwslt.org/2025/subtitling#training-and-data-conditions

els included, can be used) to allow also the par-
ticipation of teams equipped with high compu-
tational power and effective in-house solutions
built on additional resources.

For each language and domain, a development
set and three test sets were released, those of pre-
vious evaluations (tst2023 and tst2024), used for
measuring progress over years, and a new one
(tst2025). Table 4 provides some statistics on
these sets.

domain set AV hh:mm #ref subtitles
docs de ar

ITV

dev 7 06:01 4489 -
tst23 7 05:08 4807 -
tst24 7 05:54 4564 -
tst25 3 02:07 1845 -

Asharq- dev 2 03:01 3662 2974
-Bloomberg tst25 2 03:03 3543 2759

Table 4: Statistics of the dev and evaluation sets for the
subtitling task.

Metrics. The evaluation was carried out from
three perspectives, subtitle quality, translation
quality, and subtitle compliance, through the fol-
lowing automatic measures:
• Subtitle quality vs. reference subtitles:

– SubER, primary metric, used also for rank-
ing (Wilken et al., 2022);20

• Translation quality vs. reference translations:
– BLEU21 and CHRF22 via sacreBLEU (Post,

2018);
– BLEURT (Sellam et al., 2020).
Automatic subtitles are realigned to the refer-
ence subtitles using mwerSegmenter (Matusov
et al., 2005)23 before running sacreBLEU and
BLEURT.

• Subtitle compliance:24

– rate of subtitles with more than 21 characters
per second (CPS);

– rate of lines longer than 42 characters, whites-
pace included (CPL);

– rate of subtitles with more than 2 lines (LPB).

20github.com/apptek/SubER
21sacreBLEU signature: nrefs:1|case:mixed|eff:
no|tok:13a|smooth:exp|version:2.0.0

22sacreBLEU signature: nrefs:1|case:mixed|eff:
yes|nc:6|nw:0|space:no|version:2.0.0

23www-i6.informatik.rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

24github.com/hlt-mt/FBK-fairseq/blob/master/examples/
speech to text/scripts/subtitle compliance.py
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5.3 Submissions

The subtitling track saw the participation of only
one team: APPTEK (Petrick et al., 2025). Details
about their systems follow.

AppTek: The APPTEK cascaded system includes
the AppTek25 production ASR and MT systems,
adapted to the domains of this evaluation (ITV and
Asharq-Bloomberg).
• ITV: In addition to other speech data from var-

ious domains, APPTEK’s hybrid ASR system
was trained on entertainment data (audio and
corresponding subtitles) provided by AppTek’s
major media and entertainment localization cus-
tomer. Similar data, in the form of profes-
sionally created English and German subtitle
files, was used to adapt the English-to-German
Transformer-based neural MT system.

• Asharq-Bloomberg en-de: The cascade of the
AppTek’s general domain ASR system and an
adapted English-German MT system was used.
The MT model was adapted on a subset of par-
allel data selected from available public sources
(like CCMatrix), based on semantic similarity
with the Asharq-Bloomberg en-de parallel de-
velopment data (clustering based on sentence
embedding similarity).

• Asharq-Bloomberg en-ar: In this case too,
the cascade consisted of the AppTek’s general
domain ASR system and an adapted English-
Arabic MT system. Here, the MT model was
adapted on parallel data of human-curated (post-
edited) Asharq-Bloomberg financial news pro-
grams. This data was available to AppTek as
part of their cooperation with Asharq business
with Bloomberg.
AppTek’s Intelligent Line Segmentation (ILS,

proprietary technology) neural model was used in
the source language after ASR to create subtitle
blocks, timed mostly according to word bound-
aries but extended where possible for a comfort-
able (lower) reading speed. ILS was also used to
segment the translated sentences into these blocks,
optimizing line breaks for human acceptance and
readability while, at the same time, respecting the
subtitling constraints.

AppTek’s NMT systems support length control.
For all primary submissions, whenever the de-
fault translation violated either the lines-per-block
(LPB) limit or the characters-per-second (CPS)

25www.apptek.com

limit, the source transcript was re-translated with
a stricter length control parameter (e.g., “short”,
“shorter”, “shortest”).

For the primary ITV submission, an increased
reading speed limit of 23 CPS was chosen
for a better translation quality/subtitle compli-
ance trade-off. The Contrastive 1 submis-
sion is without MT length control, while the
Contrastive 2 submission uses the default
CPS value of 21. For Asharq-Bloomberg, the
Contrastive 1 is without domain adaptation,
en-ar Contrastive 2 is without length con-
trol, en-de Contrastive 2 differs in setting
MT meta-data controls to genre “news” and style
“formal”.

5.4 Results

5.4.1 Automatic Evaluation
Scores on tst2025 of all APPTEK runs calculated
using automatic metrics are shown in Tables 30
and 31. Tables 32 and 33 refer to progressive
tst2024 and tst2023 sets, respectively, where the
primary runs of 2024 and 2023 participants are re-
ported as well to allow comparisons and quantifi-
cation of progresses.

tst2025 ITV en-de (Table 30, ITV rows): Scores
confirm the expectations based on the setups of the
various runs. The primary run actually provides
the best trade-off between translation quality and
subtitle compliance using a smoothed setup of the
length control mechanism: indeed, its BLEURT
score lies between those of Contrastive 1
(for which translation quality was the priority,
obtained by disabling the length control mecha-
nisms) and Contrastive 2 (for which subti-
tle compliance was prioritized using the default
setup of the length control mechanism). On the
other side, the CPS of the primary run is better
than that of Contrastive 1 but worse than
Contrastive 2. The SubER value, being the
best among all, confirms that the working point
of the primary run optimizes the compromise be-
tween the two contrasting features.

tst2025 Asharq-Bloomberg en-de (Table 30,
Asharq-Bloomberg rows): In the financial news
domain, the length control configuration is com-
mon to all runs and so it is not surprising to ob-
serve CPS values that are close to each other. The
MT model used to produce the Contrastive
1 submission was not domain-adapted, which
caused the lowest BLEURT value. It is evident
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that the generation of translations according to the
“news” genre and “formal” style (Contrastive
2) does not have effects that automatic metrics can
capture.

tst2025 Asharq-Bloomberg en-ar (Table 31): In
this case, the domain adaptation does not help too
much for the primary run as compared to the use of
the original generic MT model (Contrastive
1). The deactivation of the length control mech-
anism (Contrastive 2) allows to obtain the
best translation quality at the expense of the lowest
CPS.

tst2024 ITV en-de (Table 32): The results of
APPTEK’s runs on the tst2024 essentially confirm
the main outcome from the 2025 testset, i.e. that
the length control mechanism allows to adjust the
subtitle compliance at the expense of translation
quality. The main difference observed between
tst2025 and tst2024 results is that, for the latter, the
best SubER—corresponding to the optimal trade-
off between the two contrastive features—is ob-
tained with the Contrastive 2 setup, not the
primary one.

Concerning the comparison with the primary
submission of the past edition, the improvement
observed for the 2025 APPTEK system is impres-
sive from all point of views, including translation
quality, subtitle compliance, and trade-off between
them. The only 2024 system that beats the primary
AppTek 2025 submission is HW-TSC in terms of
(only) BLEURT, but at the cost of significantly
worse subtitle compliance values.

tst2023 ITV en-de (Table 33): The same con-
siderations made on APPTEK’s runs for tst2024,
in particular on the impact of the length control
mechanism, also apply to tst2023.

The results on tst2023 also assess the progress
among all participants of the current and past two
editions of the subtitling track. As noted last
year, the two best primary 2024 systems (APPTEK

and HW-TSC) achieved SubER values similar to
those of the two best 2023 systems (APPTEK and
TLT), having generally better translation quality
but worse subtitle compliance. This seemed to in-
dicate that in 2024 more attention was paid to the
quality of translation than to subtitle compliance.
On the contrary, this year both aspects were taken
into consideration, allowing to establish working
points that are better than in the past from all per-
spectives.

Overall, the results discussed here demonstrate

a clear evolution in subtitling technology over
the years. Despite limited participation, the task
appears to have successfully met its objectives
of fostering research in this area by providing a
shared evaluation framework for sound compar-
isons across diverse and challenging settings, as
well as enabling comparative analyses of progress
on blind test sets from previous years.

5.4.2 Human Evaluation
Human evaluation was also conducted for the sub-
titling task, with the aim of gaining a general and
purely indicative understanding of the quality of
the systems’ output in this challenging condition,
as compared to systems developed under differ-
ent conditions, including the much less restrictive
ones of the offline task. A crucial premise in inter-
preting the results reported in Section A.1 is that
these results stem from an evaluation setup that is
inherently penalizing for subtitling systems. The
scores shown in Tables 13 and 16 were obtained by
asking human assessors to compare the systems’
outputs against verbatim translations, without ac-
cess to the reference transcripts in the source lan-
guage - a process that inevitably disadvantages the
often shortened or condensed outputs produced by
subtitling systems. That said, the results are not
surprising. On the en-ar task (Table 13), the gap
with the three competitive, unconstrained offline
systems is substantial. On the en-de task (Ta-
ble 16), the APPTEK system obtains rank 4 out
of the 8 evaluated systems.

6 Model compression track

The Model Compression Track, introduced for the
first time at IWSLT 2025, addresses a growing
concern in the NLP community: how to reconcile
the impressive capabilities of foundation models
with the practical constraints of real-world deploy-
ment. As a matter of fact, while large-scale text
and speech models have revolutionized tasks such
as end-to-end speech-to-text translation, their sub-
stantial size and computational demands introduce
significant challenges in resource-constrained set-
tings—including mobile devices, embedded sys-
tems, and edge computing environments. This
is particularly problematic when low-latency, on-
device inference is required. Model compression
offers a promising path forward, enabling reduc-
tions in model size and complexity while striv-
ing to minimize performance degradation as much
as possible. By foregrounding this challenge, the
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track aims to establish a shared evaluation frame-
work for monitoring future advancements in the
development of more efficient, accessible, and de-
ployable SLT systems.

6.1 Challenge
This year’s objective was to assess participants’
ability to reduce the size of a large multilingual
speech-to-text foundation model while minimiz-
ing performance degradation in English→German
and English→Chinese speech translation settings.
The chosen model, Qwen2-Audio (Chu et al.,
2024), was selected due to its substantial yet man-
ageable size (8.2 billion parameters, requiring ap-
proximately 16 GB of memory storage), its sup-
port for various speech processing task across
multiple language directions, and its permissive
Apache 2.0 license. Altogether, its computa-
tional cost, memory-intensive nature, and versa-
tility make it an ideal candidate for task-oriented
model compression.

Regarding compression techniques, admissible
approaches were required to exclusively focus
on modifying or optimizing the model’s inter-
nal parameters, ensuring that the final compressed
model remained strictly derived from the original
Qwen2-Audio. Therefore, eligible techniques in-
cluded pruning (i.e. the removal of less important
neurons and/or entire layers within the model, by
identifying and eliminating parameters that con-
tribute minimally to its output), quantization (i.e.
the reduction of the numerical precision of the
model’s weights–e.g., from 32-bit to 16-bit, 8-bit,
or less–to lower its memory footprint), distillation
(i.e. the creation of a smaller “student” model
derived from Qwen2-Audio, for instance through
pruning, trained to replicate the behavior of the
original “teacher” model), as well as any other
method that produces a compressed counterpart of
the original model. Compression techniques could
be applied either individually or in combination.

6.2 Data and Metrics
Test Data Participants were provided with test
data representative of a specific domain, sci-
entific presentations, which is shared across
other tracks–specifically, the offline, simultane-
ous, and instruction-following tracks. This dataset
(IWSLT25Instruct, fully described in Section 9)
comprises 21 recordings, each approximately 5.5
minutes in length, featuring transcripts of sci-
entific oral presentations along with their corre-

sponding translations from English into several
languages (including German and Chinese).

Training and Development Data Participants
were offered the possibility to submit systems de-
veloped under two distinct training data condi-
tions, which differed in the datasets allowed to
support the model compression process. Specifi-
cally, while the unconstrained condition imposed
no restrictions on data usage, the constrained con-
dition limited the permitted training data to the
ACL60/60 dataset.26 This dataset is identical in
both size and source audio content for the two
language directions involved in the task and, al-
though small, is domain-consistent with the evalu-
ation sets.

Evaluation As an initial step toward a com-
prehensive evaluation framework for benchmark-
ing compression techniques that strike a balance
between compactness and performance, this first
round of the task focused on a subset of the rele-
vant dimensions of the problem,27 specifically ad-
dressing two interconnected challenges, each with
its own evaluation criteria:
• Model Reduction: Reduce the size of the foun-

dation model, defined by its number of param-
eters and memory usage, to improve suitability
for deployment in resource-limited settings.

• Translation Performance: Preserve translation
quality despite model size reduction, ensuring
that the compressed models remain both prac-
tically valuable and reliable.
Focusing on these two dimensions, the evalu-

ation protocol was designed to follow a two-step
approach.

STEP 1: Categorization of the submitted mod-
els into five size bins based on their storage re-
quirements (S),28 representing increasingly ag-
gressive levels of compression. The bins were de-
fined as follows:
• Bin1: 2 GB ≤ S < 4 GB
• Bin2: 1 GB ≤ S < 2 GB
• Bin3: 500 MB ≤ S < 1 GB
26https://aclanthology.org/attachments/2023.iwslt-

1.2.dataset.zip
27While computational efficiency (i.e., speed) is recognized

as a critical factor for deploying models in resource-
constrained environments, it was excluded from the eval-
uation framework in this initial round. However, we plan to
adopt a phased evaluation strategy in future editions, with
subsequent rounds incorporating computational efficiency
and thereby broadening the overall evaluation scope.

28Self-reported by participants at the submission stage.
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Model Num. Params (↓) Storage (↓) en-de (↑) en-zh (↑)
Qwen2-Audio-7B-Instruct 8.4B 16.8GB 0.672 0.743
TCD constrained primary 5.0B 9.7GB 0.764 0.806
TCD unconstrained contrastive 4.1B 8.8GB 0.693 -

Table 5: Results on the IWSLT25-Instruct ST test set in terms of translation quality (COMET-22 scores) and model
size (expressed in terms of number of parameters and storage size).

• Bin4: 200 MB ≤ S < 500 MB
• Bin5: S < 200 MB

STEP 2: Translation quality assessment using
COMET, following the same procedure adopted in
the offline track (i.e., computing COMET scores
on the test sets after automatically resegmenting
the system hypotheses and aligning them with the
reference translations using mwerSegmenter29).

The rationale behind this evaluation protocol
was to enable an independent assessment of mod-
els within the same size bin, thereby ensuring fair-
ness and meaningfulness in the comparisons.

6.3 Submissions and Results

The task had only one participant, TCD (Moslem,
2025), that submitted a constrained primary sys-
tem and an unconstrained contrastive one. The
constrained system reduced the number of pa-
rameters by 40% by means of 4-bit quantiza-
tion and QLoRa finetuning, after a full-finetuning
of the base model (Qwen2-Audio-7B-Instruct) on
the in-domain data. During the QLoRa finetun-
ing, sequence-level knowledge distillation from
the full-finetuned model is employed. For the un-
constrained system, the method is similar, but af-
ter the first finetuning of the whole model a layer
pruning strategy on the decoder (from 32 to 24 lay-
ers) is applied to further streamline the model, fol-
lowed by another full-finetuning of the resulting
model.

As seen from Table 5, the submitted runs ex-
hibit mixed results with respect to our two eval-
uation dimensions. On the one hand, looking at
model reduction, the number of parameters (5.0B
for the constrained submission, 4.1B for the un-
constrained one) and storage usage (9.7 GB and
8.8 GB, respectively) of the compressed models
are notable but insufficient to meet the most re-
laxed size requirements defined by Bin1 (i.e., a
maximum of 4 GB of storage). This highlights
the difficulty of the task and the need to further

29www-i6.informatik.rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

explore more aggressive techniques, as there re-
mains significant room for improvement.

On the other hand, considering translation per-
formance, it is encouraging to observe that, al-
though the reductions were insufficient to fall
into any of the target compression bins, the
output quality across both target languages is
even higher than the original model, thanks
to dedicated finetuning on in-domain data, de-
spite the applied compression techniques. The
COMET scores show relative increases up to
13.43% on English→German and 9.46% on
English→Chinese compared to the original, un-
compressed Qwen2-Audio model. This is a non-
trivial outcome, especially given the typical trade-
offs involved when attempting to reduce the com-
putational requirements of a large model.

In light of these findings, we believe that the
challenges introduced in this first round of the
model compression track remain open. The sub-
stantial margin for improvement observed should
encourage broader participation in future rounds,
driven by the growing need for efficient, accessi-
ble, and deployable SLT systems.

7 Low-resource SLT

The 5th edition of the Low-resource Spoken Lan-
guage Translation track focused on the translation
of speech from a variety of data-scarce languages.
The target language is typically a higher-resource
one, generally of similar geographical or historical
linkages. The goal of this shared task is to bench-
mark and promote speech translation technology
for a diverse range of dialects and low-resource
languages. While significant research progress has
been demonstrated recently, many of the world’s
languages and dialects lack the parallel data at
scale needed for standard supervised learning.

Recognizing that the biggest bottleneck towards
truly language-inclusive speech translation sys-
tems is data availability, this year’s edition in-
cluded a data track, inviting participants to con-
tribute newly collected speech translation datasets
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for under-resourced language pairs.

7.1 Challenge

Systems Track This year’s task significantly ex-
panded the typological and geogrpahical diversity
of the languages, language families, and scripts
represented. The ten subtasks were:
• North Levantine Arabic→ English (apc-eng)
• Tunisian Arabic→ English (aeb-eng)
• Bemba→ English (bem-eng)
• Fongbe→ French (fon-fra)
• Irish→ English (gle-eng)
• Bhojpuri→ Hindi (bho-hin)
• Estonian→ English (est-eng)
• Maltese→ English (mlt-eng)
• Marathi→ Hindi (mar-hin)
• Quechua→ Spanish (que-spa)
Teams were allowed to submit to as few as one lan-
guage pair, up to all ten. Both constrained and un-
constrained submissions were allowed, to be sepa-
rately ranked. For the constrained scenario, teams
were only allowed to submit systems using the
data provided by the shared task. For the uncon-
strained systems, teams were allowed to use any
data as well as any pre-trained models.

Data Track This track aimed to empower lan-
guage communities to contribute datasets. Such
datasets are essential for expanding the reach of
spoken language technology to more languages
and varieties.

Participants of this track were encouraged to get
creative with data creation strategies, while also
ensuring data quality. As such, data track instruc-
tions included the following:
• Translations should be performed, wherever

possible, by qualified, native speakers of the tar-
get language. We strongly encouraged verifica-
tion of the data by at least one additional native
speaker.

• Submitted datasets should be accompanied by
dataset cards.30 These should detail precise lan-
guage information and the translation workflow
that was employed. In particular, we asked par-
ticipants to identify the language with both an
ISO 639-3 individual language tag and a Glot-
tocode. The script should be identified with an
ISO 15924 script code.

• We highly encouraged new contributions to be
released under CC BY-SA 4.0 or other similarly

30github.com/openlanguagedata/oldi.org/blob/main/
resources/dataset-card-template.md

permissive licenses. By contributing data to this
shared task, participants agreed to have this data
released under these terms. At a minimum, data
should be made available for research use.

• While post-editing of automatic output was al-
lowed, we required that any data submitted for
the shared task are 100% verified by humans, if
not directly created by humans. Raw, unverified
machine translated outputs were not allowed. If
using MT, we tasked participants with ensuring
that the terms of service of the model they used
allow re-using its outputs to train other machine
translation models (for example, popular com-
mercial systems such as DeepL, Google Trans-
late and ChatGPT explicitly disallow this).

7.2 Data and Metrics
Table 6 provides a summary of the training data
that were part of the shared task. We describe in
more detail the data for each language pair below.

North Levantine Arabic–English (apc-eng)
Levantine Arabic (ISO code: apc) is a well-
established unit within the Arabic dialectal con-
tinuum, spoken mainly in Syria, Jordan, Lebanon,
and Palestine. Although historically often split
into North and South sub-dialects, recent ISO cat-
egorizations unite them under a common variant.
Nonetheless, we maintain this finer split to empha-
size the distinct phonological features and linguis-
tic variations that characterize regional accents.

As in the first run of the apc–eng language
pair, participants were provided with the UFAL
Parallel Corpus of North Levantine 1.0 (Sellat
et al., 2023), which includes about 120k lines of
multi-parallel North Levantine-Modern Standard
Arabic-English textual data, that can be down-
loaded from the LINDAT/CLARIAH-CZ Repos-
itory.31 For additional speech data in Levantine
Arabic, participants were pointed to two LDC re-
sources: the BBN/AUB DARPA Babylon Lev-
antine corpus (Makhoul et al., 2005) and the
Levantine Arabic QT Training Data Set 5 cor-
pus (Maamouri et al., 2006). Participants were
also encouraged to make use of the Tunisian Ara-
bic and Modern Standard Arabic resources made
available in previous IWSLT editions.

Given the limited amount of publicly avail-
able corpora, we adopted the design of the ini-
tial apc–eng language pair run and focused exclu-
sively on the unconstrained scenario.
31hdl.handle.net/11234/1-5033
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The development32 and test33 data consist of
recordings of native speakers of the dialect and
are a mix of spontaneous monologues and dia-
logues on topics of everyday life (health, family
life, sports) as well as characteristics of the coun-
try of origin (Syrian traditions, education system,
culture, etc.). The transcription and translation
team consisted of students of Arabic at Charles
University, with an additional quality check pro-
vided by the native speakers of the dialect.

Tunisian Arabic–English (aeb-eng) Tunisian
Arabic (ISO code: aeb) is the main spoken lan-
guage in Tunisia. It is heavily influenced by the
Arabic language. Due to its geographic position,
the spoken language of Tunisia was also influ-
enced by other languages including Tamazight,
French and Turkish. As was the case of IWSLT22
and 23, the provided Tunisian Arabic–English cor-
pus consists of around 323 hours of Tunisian Con-
versational Telephone Speech (CTS) along with
manual transcripts made available by LDC. A sub-
set of the above transcript (200k lines that repre-
sent 167 hours of speech) was manually translated
into English and provided as training data for the
speech translation task. In this 2025 evaluation
campaign, participants also had access to an ad-
ditional Tunisian dialect corpus of manually tran-
scribed 08 hours of conversational speech (Mdhaf-
far et al., 2024).

All train and test sets are time-segmented at the
utterance level. The development and test sets are
the same official sets used during IWLST 2022
and 2023.

Bemba–English (bem-eng) Bemba (also
known as IciBemba) is a Bantu language (ISO
code: bem), spoken predominantly in Zambia and
other parts of Africa by over 10 million people. It
is the most populous indigenous language spoken
by over 30% of the population in Zambia where
English is the lingua franca and official high-
resourced language of communication. Bemba
is native to the people of Northen, Luapula and
Muchinga provinces of Zambia but also spoken in
other parts of the country including urban areas
such as Copperbelt, Central and Lusaka provinces
by over 50% of the population (ZamStats, 2012).

The provided Bemba-English corpus (Sikasote
et al., 2023a) consists of over 180 hours of Bemba
32IWSLT 2024 devset and testset (with references):

hdl.handle.net/11234/1-5518, hdl.handle.net/11234/1-5519
33hdl.handle.net/11234/1-5924

audio data, along with transcriptions and trans-
lations in English. The dataset is comprised of
recorded multi-turn dialogues between native Be-
mba speakers grounded on images.

In addition, we provided transcribed (28 hours)
and untranscribed (60 hours) monolingual Be-
mba speech from Zambezi Voice (Sikasote et al.,
2023b) and BembaSpeech (Sikasote and Anasta-
sopoulos, 2022) datasets.

Fongbe–French (fon-fra) Fongbé (also spelled
Fongbè or Fon) is a Gbe language (ISO 639-3:
fon). Fongbe, a tonal African language, is the most
spoken dialect of Benin, by more than 50% of
Benin’s population, including 8 million speakers.
Fongbe is also spoken in Nigeria and Togo. The
provided dataset contains over 48 hours of Fongbe
audio recordings aligned with French translations.
Additionally, a validation set of over 6 hours is in-
cluded. The data used for this shared task is the
extended version of the FFSTC corpus recently re-
leased (Kponou et al., 2025a). All recordings are
derived from reading sessions by native Fongbe
speakers, making this dataset a valuable resource
for speech translation and low-resource language
processing research.

Irish–English (gle-eng) Irish (also known as
Gaeilge; ISO code: gle) has around 170,000 L1
speakers and 1.85 million people (37% of the pop-
ulation) across the island (of Ireland) claim to be
at least somewhat proficient with the language. In
the Republic of Ireland, it is the national and first
official language. It is also one of the official lan-
guages of the European Union (EU) and a recog-
nized minority language in Northern Ireland with
the ISO ga code.

The provided Irish audio data were compiled
from the news domain, Common Voice (Ardila
et al., 2020a),34 and Living-Audio-Dataset.35 The
Irish-to-English corpus comprises approximately
12 hours of Irish speech data (see Table 6), trans-
lated into English texts.36 This year, we also
provided the participants of three synthetic au-
dio Irish-to-English datasets comprising 196 hours
(Moslem, 2024). The synthetic data was cre-
ated by synthesizing audio from parallel textual
datasets obtained from OPUS (Tiedemann, 2012),
namely EUbookshop, Tatoeba, and Wikimedia.37

34commonvoice.mozilla.org/en/datasets
35github.com/Idlak/Living-Audio-Dataset
36github.com/shashwatup9k/iwslt2025 ga-eng
37hf.co/collections/ymoslem/irish-english-speech-
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Bhojpuri–Hindi (bho-hin) Bhojpuri (ISO
code: bho) belongs to the Indo-Aryan language
group. It is dominantly spoken in India’s western
part of Bihar, the north-western part of Jharkhand,
and the Purvanchal region of Uttar Pradesh. As
per the 2011 Census of India, it has around 50.58
million speakers (Ojha and Zeman, 2020). Bho-
jpuri is spoken not just in India but also in other
countries such as Nepal, Trinidad, Mauritius,
Guyana, Suriname, and Fiji. Since Bhojpuri was
considered a dialect of Hindi for a long time, it
did not attract much attention from linguists and
hence remains among the many lesser-known and
less-resourced languages of India.

The provided Bhojpuri–Hindi corpus consists
of 23.31 hours of Bhojpuri speech data (see Ta-
ble 6) from the news domain, extracted from News
On Air38 and translated into Hindi texts.39 Ad-
ditionally, the participants were directed that they
may use monolingual Bhojpuri audio data (with
transcription) from ULCA-asr-dataset-corpus40 as
well as Bhojpuri Language Technological Re-
sources (BHLTR) (Ojha et al., 2020; Ojha, 2019)41

and Bhojpuri-wav2vec2 based model.42

Estonian–English (est-eng) Estonian (ISO
code: est) belongs to Finnic branch of the Uralic
language family. It is the official language of
Estonia and is spoken natively by about one
million people.

The provided training set consists of 581,647
utterances (1,258 hours), while the development
set includes 1,601 utterances (3.6 hours). The
training data is sourced from the TalTech Esto-
nian Speech Dataset 1.0 (Alumäe et al., 2023),
a manually transcribed corpus primarily compris-
ing broadcast material, created for training speech
recognition models. All recordings are long-form
speech, transcribed and time-aligned at the utter-
ance level. In this dataset, long recordings have
been segmented into individual utterances. The
transcripts have been automatically translated into
English using Google Translate in 2024 (Sildam
et al., 2024).

The development and test sets include speech
from government and municipal press confer-

translation-datasets-665dd9e8fbaa279db3474ca0
38newsonair.gov.in
39github.com/panlingua/iwslt2025 bho-hi
40github.com/Open-Speech-EkStep/ULCA-asr-dataset-

corpus
41github.com/shashwatup9k/bho-resources
42www.openslr.org/64/

ences, TV news, radio shows and talk shows, cov-
ering a variety of topics (sports, AI, international
relations). The English translations have been
manually created by professional translation agen-
cies, instructed to translate without using any MT
systems for post-editing. Both the original Esto-
nian transcriptions and their English translations
are provided for all utterances.

Maltese–English (mlt-eng) Maltese (ISO code:
mlt) is a Semitic language with a heavy influence
from Italian and English. It is spoken primarily in
Malta, as well as in migrant communities abroad,
notably in Australia, parts of the United States,
and Canada.

The data release for this shared task comprises
over 14 hours (split into development and train-
ing sets) of audio data, along with their tran-
scription in Maltese and translation into English.
Participants were allowed to use additional Mal-
tese data, including the text corpus used to train
BERTu (Micallef et al., 2022), a Maltese monolin-
gual BERT model, the MASRI Data speech recog-
nition data (Hernandez Mena et al., 2020), and any
data available at the Maltese Language Resource
Server.43

Marathi–Hindi (mar-hin) Marathi (ISO code:
mar) is an Indo-Aryan language and is domi-
nantly spoken in the state of Maharashtra in India.
It is one of the 22 scheduled languages of India
and the official language of Maharashtra and Goa.
As per the 2011 Census of India, it has around 83
million speakers which covers 6.86% of the coun-
try’s total population.44 Marathi is the third most
spoken language in India.

The provided Marathi–Hindi corpus consists of
25.12 hours of Marathi speech data (see Table 6)
from the news domain, extracted from News On
Air45 and translated into Hindi texts.46 The dataset
was manually segmented and translated by Panlin-
gua.47 Additionally, the participants were directed
that they may use monolingual Marathi audio data
(with transcription) from Common Voice (Ardila
et al., 2020a),48 as well as the corpus provided
by He et al. (2020)49 and the Indian Language Cor-

43mlrs.research.um.edu.mt/
44censusindia.gov.in/nada/index.php/catalog/42561
45newsonair.gov.in
46github.com/panlingua/iwslt2025 mr-hi
47panlingua.co.in/
48commonvoice.mozilla.org/en/datasets
49www.openslr.org/64/
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Language Pairs Train Set Dev Set Test Set Additional Data

North Levantine–English apc–eng - 2.5 1.39 IWSLT 2024 test set (with references)

Tunisian Arabic–English aeb–eng 323.0 - - A 160 hours out of this 323 hours are manually
translated into English. 8h of transcribed speech
from TARIC data set are also provided. Evalua-
tion sets are same as IWSLT23.

Bemba–English bem–eng 167.17 5.89 5.83 28.12 hours of monolingual audio with transcrip-
tions (ASR) and 60 hours of untranscribed audio
data.

Fongbe–French fon–fra 48 6.1 5.9 A 57 hours of spoken Fongbe with corresponding
French translations

Irish–English ga–eng 9.46 1.03 0.66 A 196 hours of Synthetic Data, IWSLT 2023
and 2024 test set (with references) and MT data
(monolingual and parallel corpora)

Bhojpuri–Hindi bho–hi 19.88 2.07 0.54 IWSLT 2024 test set (with references ) and
Monolingual audio with transcription (ASR) and
monolingual text

Estonian–English est-eng 1258.0 3.6 4.22 Remark: training data is synthetic (ASR data,
machine-translated to English)

Maltese–English mlt–eng 11.83 2.52 2.0 Monolingual audio with transcriptions (ASR),
monolingual text

Marathi–Hindi mr–hi 15.88 3.66 0.46 Monolingual audio with transcriptions (ASR),
IWSLT 2023 and 2024 test set (with references)
and monolingual text

Quechua–Spanish que–spa 1.60 1.03 1.03 48.0 hours of monolingual audio with transcrip-
tions (ASR) and post-edited translations (new)
along with extra MT data

Table 6: Training, development and test data details (hours) for the language pairs of the low-resource shared task.

pora (Abraham et al., 2020).50

Quechua–Spanish (que-spa) Quechua (macro-
laguage ISO code: que) is an indigenous lan-
guage spoken by more than 8 million people in
South America. It is mainly spoken in Peru,
Ecuador, and Bolivia where the official high-
resource language is Spanish. It is a highly inflec-
tive language based on its suffixes which aggluti-
nate and are found to be similar to other languages
like Finnish. The average number of morphemes
per word (synthesis) is about two times larger than
in English. English typically has around 1.5 mor-
phemes per word and Quechua has about 3 mor-
phemes per word.

There are two main regional divisions of
Quechua known as Quechua I and Quechua II.
This data set consists of two main types of
Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO: quy) and Cusco, Peru (Quechua
Collao ISO: quz) which are both part of Quechua
II and, thus, considered a “southern” language. We
label the data set with que - the ISO norm for
Quechua II mixtures.

Due to the lack of data and low performance
in previous work ((Salesky et al., 2024; E. Ortega

50www.cse.iitb.ac.in/∼pjyothi/indiccorpora/

et al., 2024)), the organizers decided to allow only
unconstrained submissions this year. The uncon-
strained setting consists of 1 hour and 40 minutes
of training data and divided into 573 training files,
125 validation files, and 125 test files which are
excerpts from the Siminchik corpus translated by
native Quechua speakers. (Cardenas et al., 2018)
Additionally, participants were directed to another
larger data set from the Siminchik corpus which
consisted of 48 hours of fully transcribed Quechua
audio (monolingual). In this year’s task (2025),
the organizers also included post-edited transla-
tion from Google of the 48 Siminchik hours which
did not have translations last year (2024). Another
MT dataset is offered in a parallel format, similar
to last year. (Ortega et al., 2020) It consists of 100
daily magazine article sentences and 51140 sen-
tences which are of religious context in nature.

7.2.1 Metrics

We use standard lowercase BLEU with no punctu-
ation to automatically score all submissions. Ad-
ditional analyses for some language pairs are pro-
vided below. Were applicable, we also report
chrF++ (Popović, 2015).
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7.3 Submissions

The Shared Task received a record 109 submis-
sions (for speech translation) from 12 teams for all
10 language pairs. The submissions that provided
an accompanying system paper are described in
detail below and outlined in Table 7.

AIB-MARCO This team employed a cascade
speech translation system consisting of Whis-
per/SeamlessM4T and Qwen2.5-7B-instruct.
They performed sliding window ASR on the input
audio then segment-level translation based on the
transcription from the ASR model.

For primary systems of apc-eng and est-eng
they used Whisper-large as the ASR model,
whereas for gle-eng they used SeamlessM4T as
the ASR model. For the contrastive systems,
they employed different ASR models. The LLM
used in translation is an optimized Qwen2.5-7B-
instruct model.51

ALADAN (Kheder et al., 2025) provided a sub-
mission for the North Levantine Arabic to En-
glish direction, building on the same team’s ef-
forts from last year (Kheder et al., 2024). It is
a cascade of ASR and MT systems. For the MT
part data sparsity is alleviated via a crowd-sourced
parallel corpus that covers five major Arabic di-
alects (Tunisian, Levantine, Moroccan, Algerian,
Egyptian), curated via rigorous qualification and
filtering. They also include an additional experi-
ment with a large, high-quality Levantine Arabic
corpus from LDC, which does not benefit from
adding the crowdsourced data. ASR is done with
a TDNN-F model and a Zipformer, whereas com-
pared to the previous year’s submission, a 4-times
bigger model is taken for Zipformer (253M pa-
rameters). The methodology also includes dialect-
specific normalization of Arabic text.

BUINUS (Tjiaranata et al., 2025) focused on the
mlt-eng direction. Their system employs a cas-
cade architecture, combining ASR and translation
to handle the low-resource setting better. For ASR,
they use Whisper (Radford et al., 2022), which
was further fine-tuned with the data provided in
the shared task. For the translation step, they
use NLLB model (NLLB Team et al., 2022), em-
ploying both direct fine-tuning and data augmen-
tation techniques designed to modify the target

51This description was provided by the participants. No asso-
ciated paper was submitted.

sequences and thereby reinforce encoder reliance
and decoder robustness. Fine-tuning of NLLB was
carried out in two stages: an initial stage used a
combination of real and augmented data, followed
by a second stage fine-tuning exclusively on the
main task to refine the model further. To efficiently
fine-tune larger models under computational con-
straints, they used QLoRA (Dettmers et al., 2023),
achieving better performance with the 3.3B pa-
rameter model compared to smaller versions. No-
tably, their analysis revealed that data augmen-
tation yielded comparatively greater performance
gains for smaller models, underscoring the value
of data-driven strategies in resource-constrained
scenarios. They note, however, that the perfor-
mance difference between the larger and smaller
NLLB models was modest, and the errors at the
ASR stage hurt the translation component.

GMU (Meng and Anastasopoulos, 2025) submit-
ted systems for all language pairs except apc-
eng. Their approach focuses on fine-tuning
SeamlessM4T-v2 for ASR, MT, and ST tasks. The
fine-tuned ASR and MT models are used to con-
struct cascaded ST systems. They also explored
various training paradigms for ST fine-tuning, in-
cluding direct end-to-end (E2E) fine-tuning, pa-
rameter initialization using fine-tuned ASR and/or
MT model components, and multi-task training.
The multi-task training setup includes ST, MT and
knowledge distillation (KD) objectives, where KD
leverages the MT components to enhance the ST
components. They found that direct E2E fine-
tuning yielded strong overall results, and initializ-
ing the ST encoder with an in-domain fine-tuned
ASR encoder further improved performance on
languages SeamlessM4T-v2 had not been previ-
ously trained on. Multi-task training, on the other
hand, provided marginal improvements.

JHU Johns Hopkins University’s team, (Robin-
son et al., 2025), participated in all language pairs
continuing their tradition from last year (Rom-
ney Robinson et al., 2024). As with the previous
year, the motivation was to assess the robustness of
the methods they were employing across a variety
of domains and typologically diverse languages.
However, the main focus this year was on ensem-
bling methods, and in particular, Minimum Bayes
Risk (MBR) decoding (Bickel and Doksum, 1977;
Kumar and Byrne, 2004). In order to do so, they
aimed to gather a variety of different submissions
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Language Pairs
Team Name apc-eng aeb-eng bem-eng fon-fra bho-hin gle-eng est-eng mlt-eng mar-hin que-spa

Systems Track
AIB-MARCO ✓ ✓ ✓

ALADAN (Kheder et al., 2025) ✓ ✓
BUINUS (Tjiaranata et al., 2025) ✓

GMU (Meng and Anastasopoulos, 2025) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IIITH-BUT (Akkiraju et al., 2025) ✓

JHU (Robinson et al., 2025) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
KIT (Li et al., 2025) ✓ ✓ ✓

KREASOF-TCD (Farouq et al., 2025) ✓
LIA (Chellaf et al., 2025) ✓ ✓ ✓

QUESPA (Ortega et al., 2025) ✓
SYSTRAN (Avila and Crego, 2025) ✓

Teams per Pair: 5 6 4 3 3 3 3 3 2 3

Data Track
KUVOST (Mohammadamini et al., 2025) English - Central Kurdish

URDU (Mehmood and Rauf, 2025) Urdu - English
FFSTC-2 (Kponou et al., 2025b) Fongbe - French

Table 7: Breakdown of the teams and the language pairs subtasks that they participated in for the Low-Resource
Shared Task.

for each language pair. They relied on both end-to-
end translation systems, as well as cascaded sys-
tems. In addition, they looked at combining sim-
ilar languages for mixed data training. Overall,
the results were mixed with ensembling helping in
some language pairs and hurting in others. How-
ever, a key takeaway is that for practioners, MBR
is still helpful because you do not need to know
which system is the best in advance.

LIA (Chellaf et al., 2025) participated in three
language pairs - both of the arabic dialects, as well
as Fongbe to French. All of their submissions
were in the unconstrained setting relying on pre-
trained models. They explored both pipelined sys-
tems and end-to-end systems. They investigated
various ways of augmenting systems with varying
data, such as combining Modern Standard Arabic
(MSA) data with dialectal arabic, or looking at in-
cluding Fongbe transcriptions both with and with-
out diacritics. For the Tunisian-to-English transla-
tion task, their primary system was an end-to-end
system based on a language-agnostic semantically
aligned speech encoder. They trained it follow-
ing the SAMU-XSLR framework (Khurana et al.,
2022) from the w2v-bert 2.0 (Seamless Commu-
nication et al., 2023) model as a student and BGE-
M3 text model (Chen et al., 2024) as a teacher. For
the North Levantine-to-English task, their primary
system was based on a combination of cascaded
systems. The two ASR modules were based on
Whisper-large-v3: these models have been fine-

tuned on the Levantine data released by the orga-
nizers but also on Modern Standard Arabic data.
The two MT models applied to the ASR outputs
were based on NLLB-200 1.3B fine-tuned on the
official data augmented with the Levanti corpus,
available on Hugging Face 52. Each MT model
fed by different ASR output generated 10 transla-
tion hypotheses. The final selection was made by
using BLASER (Chen et al., 2023). Last, for the
Fongbe to French translation task, their primary
system was also a cascaded system using an ASR
module built on the AfriHuBERT SSL speech en-
coder (Alabi et al., 2024) and an MT module based
on the NLLB model.

KIT (Li et al., 2025) participated in the Bemba-
to-English, North Levantine Arabic-to-English,
and Tunisian Arabic-to-English tasks under the
unconstrained condition. They explored both cas-
caded and end-to-end ST systems. All approaches
were based on pretrained models: SeamlessM4T
(Seamless Communication et al., 2023) for end-to-
end ST, NLLB (NLLB Team et al., 2022) for MT,
and MMS (Pratap et al., 2024) and XEUS53 for
ASR. The main focus was on using synthetic data
for data augmentation and applying model regu-
larization techniques. Two types of synthetic data
generation were studied: (1) translating source
language ASR data using MT systems to create
ST training data, and (2) generating source lan-

52huggingface.co/datasets/guymorlan/levanti
53huggingface.co/espnet/xeus
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guage speech via text-to-speech from MT training
data. Results showed that ST models trained only
on synthetic data can outperform cascaded sys-
tems, provided that a strong MT system is used.
The impact of TTS-based augmentation varied: it
was effective only when the TTS quality was high.
Regularization experiments used intradistillation
(Romney Robinson et al., 2024), which proved to
be a reliable and broadly applicable method across
all tasks in low-resource settings.

IIITH-BUT (Akkiraju et al., 2025) fine-tuned
SeamlessM4T models for Bhojpuri-Hindi speech
translation. To address data scarcity, they applied
speed perturbation and SpecAugment data aug-
mentation techniques. Moreover, they examined
cross-lingual transfer learning through joint train-
ing with Marathi and Bhojpuri speech data.

The team experimented with two variants of
SeamlessM4T, medium (1.2B parameters) and
large v2 (2.3B parameters). For hyperparame-
ter optimisation, they explored a range of val-
ues for batch size, learning rate, label smoothing,
and warmup steps. For data augmentation, they
used SpecAugment to apply spectrogram masking
with time masks and frequency masks, and im-
plemented speed perturbation with speed factors
of 0.9x, 1.0x, and 1.1x. This data augmentation
process resulted in expanding the training data by
three times. Finally, they combined the Marathi-
Hindi parallel data with the limited Bhojpuri-
Hindi dataset to fine-tune the SeamlessM4T mod-
els.

KREASOF-TCD (Farouq et al., 2025) This team
participated in the Bemba-to-English shared task
under unconstrained conditions. The team sub-
mitted three speech translation systems based on
the cascading method. The Primary submission
system is based on medium-sized Whisper for
the ASR and NLLB-200 3.3B for the MT. The
Contrastive 1 and Contrastive 2 systems use the
small-sized Whisper model for the ASR, while
the MT systems are based on the NLLB-200
3.3B and NLLB-200 600M models, respectively.
The team explored fine-tuning pre-trained mod-
els and data augmentation for their strategy to de-
velop the systems. The ASR systems were ob-
tained by fine-tuning the Whisper models on the
data from the BembaSpeech (Sikasote and Anas-
tasopoulos, 2022) and BIG-C (Sikasote et al.,
2023a) datasets. The MT systems are based on

the NLLB-200 (NLLB Team et al., 2022) model,
which is fine-tuned on bilingual segments of the
BIGC and ”dev” split of the FLORES-200 (Goyal
et al., 2022) datasets. To improve the quality of
speech translations, the team explored augment-
ing the Bemba-to-English training data with the
portion of the Tatoeba (Tiedemann, 2020) dataset
that was back-translated from English into Be-
mba using the NLLB-200 600M model. The
back-translations were filtered using cross-entropy
scores.

SYSTRAN (Avila and Crego, 2025) participated
in one language pair, Tunisian Arabic to En-
glish, under the constrained condition using the
resources provided by LDC for this task that
included MSA data from broadcast news and
Tunisian Arabic conversational telephone speech.
The focus of their contribution was on tightly cou-
pling an ASR encoder (Whisper, the Medium and
Large-v3 versions tested) with an NMT decoder
(NLLB, the 3.3B parameter version ). Embed-
dings from the Whisper encoder are fed into the
NLLB decoder via a Reshape module consisting
of a convolutional layer and liner projection layer
instead of using the standard word embeddings.
The motivation is for parameter-efficient training
in low-resource settings, ensuring quality transla-
tions while being scalable. They fine-tuned their
model using the available LDC parallel corpora,
with additional filtering and cleaning strategies to
optimize domain robustness and translation con-
sistency.

QUESPA (Ortega et al., 2025) submitted three
unconstrained systems this year as the Quechua–
Spanish shared task organizers only allowed un-
constrained setting submissions. Team QUESPA

were able to improve the previous year’s results
despite the baseline task data remaining mostly the
same with exception of newly machine-translated
text from the original Siminchik corpus. The three
unconstrained systems ranged from 14.8 BLEU
to 26.7 BLEU where QUESPA’s best performing
systems from last year (2024) ranged from 11.1
to 19.7 BLEU. The 7 BLEU points of improve-
ment of their best system is attributed to a new
ASR dataset released from the “quy” ISO code
called Collao, a dialect of Quechua spoken mostly
in southern Peru. (Paccotacya-Yanque et al., 2022)

QUESPA’s unconstrained systems were once
again a novel introduction for the QUE–SPA
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Language Pair Winning Team System Constrained BLEU

apc-eng KIT primary no 23.3
aeb-eng KIT primary no 21.4
bem-eng GMU primary no 31.7
fon-fra LIA primary no 39.6
bho-hin JHU primary no 10.7
gle-eng GMU primary no 13.4
est-eng AIB-MARCO primary no 30.9
mlt-eng GMU primary no 57.5
mar-hin GMU contrastive1 no 44.3
que-spa QUESPA contrastive2 no 26.7

Table 8: Winning submissions for each language pair of the Low-Resource Shared Task.

task and outperformed last year’s best systems.
The Primary System was not previously used by
QUESPA in IWSLT. It is comprised of a cascaded
ASR + MT system where ConMamba (Jiang et al.,
2024), based on a Conformer architecture (Gu-
lati et al., 2020) is used for ASR using publicly
available recipes54, experimenting with small (S)
and large (L) configurations (144/512 dimensions,
12+4/12+6 layers). The resulting transcribed text
is then passed into a newly created (fine-tuned)
NLLB (NLLB Team et al., 2022) machine trans-
lation system that was tested in development with
several combinations that finally resulted in 18
BLEU on the test set. The Contrastive 1 system is
similar to QUESPA’s submission from 2024, how-
ever, Whisper Version 3 is used this year along
with ESPnet (Watanabe et al., 2018). Results
from the Whisper V3 model were then passed into
the NLLB-based MT model used in the Primary
system. The Contrastive 2 system is QUESPA’s
biggest achievement yet and can be considered
the most novel system to data for speech trans-
lation on the Quechua–Spanish language pair. It
is a pre-trained SpeechT5 (Ao et al., 2022) model
fine-tuned for Speech Translation using the uncon-
strained training data along with the 48 hours of
newly created post-edited MT data. Furthermore,
they applied a data augmentation technique called
nlpaug (noise, distortion, duplication)(Ma, 2019)
which resulted in a total of 96h: 48h original + 48h
of new synthetic data. Lastly, their best addition
to the Contrastive 2 system was the inclusion of a
Collao speech translation corpus that contains 15
hours of Quechua Collao translated speech (quz).
The resultant training data set for the Contrastive
2 system thus was: 96 + 15 (111) total hours of
Quechua speech translations. (Paccotacya-Yanque
et al., 2022)

54github.com/xi-j/Mamba-ASR

7.4 Results

General Notes Table 8 summarizes the winning
submissions for each language pair. Detailed re-
sults for all teams’ systems and settings are avail-
able in Appendix B.5.

Of the 10 language pairs, 6 different teams had
the top performing system on at least one language
pair. This shows how competitive the shared task
was, and that a multitude of approaches are helpful
for low-resource speech translation.

Compared to previous iterations of the shared
task, some of the language pairs had marked im-
provements with large gains in the official auto-
matic metrics. For example, BLEU scores for
Quechua-Spanish, the least resourced language
pair, improved from 19.7 to 26.7 BLEU points
(this was largely the result of the use of additional
data by the winning team). However, for other
continuing language pairs, performance is rather
stagnated, remaining in exactly the same levels
(if not worse) for Bemba-English, Bhojpuri-Hindi,
Irish-English, and the two Arabic dialects lan-
guage pairs. This might suggest that we have per-
haps reached a performance ceiling of sorts in the
current datasets under the current data-scarce con-
ditions, especially for the language pairs that lie in
the low-end of data availability. It should be noted,
though, that this ”ceiling” performance neverthe-
less still lags substantially behind the translation
quality we observe for high-resource pairs, still re-
inforcing the need for further data collection and
research in the area.

For the language pairs included for the first time
in the shared task, we find that Estonian-English,
our highest resourced language pair with more
than 1,200 hours of translated audio, ends up with
speech translation systems of decent quality with
BLUE scores in the 29–31 range by multiple par-
ticipants. On the other hand lies Fongbe-Frnech,
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which even though does end up with decent sys-
tems yielding BLEU scores over 30 by two par-
ticipants. Similar to last year’s findings, we see
our current technologies can produce good ST sys-
tems for language pairs with more than 50 hours of
high-quality translated speech.

We note that almost all submissions followed
the unconstrained setting – a clear indication that
pre-trained multilingual systems seem to be the
best option for building ST for low-resource lan-
guages, at least under the current data, architec-
tural, and compute constraints.

Notes on apc-eng Compared to the initial run
of the apc-eng language pair in the previous year,
the performance gap between the top-ranked sys-
tem (KIT) and the remaining participants has nar-
rowed. The second-place team (LIA) achieved re-
sults within 1 BLEU point of the winner, while
the third-place team (ALADAN, last year’s cham-
pion) trailed by only 3.5 BLEU points. Although
the absolute BLEU score achieved by the top-
performing system is notably lower than that of
the previous year (23.34 vs. 28.71), we attribute
this discrepancy not to a decline in overall sys-
tem quality (quite the contrary!) but rather to dif-
ferences in the test set composition (2024: 974
lines, 12,263 words; 2025: 1,026 lines, 8,833
words). Although the ranking based on chrF cor-
responds with the BLEU evaluation, COMET in-
dicates that the LIA system surpasses KIT, em-
phasizing the minimal performance differences
among the leading submissions. The integration
of end-to-end and cascaded systems, particularly
through MBR decoding to combine translation hy-
potheses, proved to be a successful strategy for
enhancing overall system performance. Due to
their strong multilingual capabilities, the Whisper
and NLLB models continue to be among the most
widely adopted solutions for ASR and MT, respec-
tively. Top-performing systems demonstrated sub-
stantial quality improvements through the use of
additional speech and text resources, often curated
internally. Notably, LIA showcased the benefits
of carefully filtering a general Arabic corpus us-
ing a dialect identification system. The genera-
tion of synthetic textual data via back-translation,
forward-translation, and paraphrasing remains an
effective method. The winning team, KIT, also
experimented with synthetic speech data genera-
tion using a TTS model; however, this approach
was found to be ineffective, primarily due to the

lack of high-quality speech data, leading to an
under-trained TTS system. Several teams also re-
ported findings regarding the impact of domain
alignment in training and evaluation datasets, em-
phasizing the critical importance of developing re-
sources for low-resource languages that are tai-
lored to the practical needs of end users.

7.5 Data Track Results and Discussion

The data track received 3 submissions, each pro-
ducing usable datasets for 3 low-resource lan-
guage pairs: English-Central Kurdish, Urdu-
English, and Fongbe-French. This successful first
iteration reinforces the desire by researchers and
communities to contribute open-source datasets.
The organizers will plan to use these datasets in
future iterations of the low-resource shared task as
appropriate. We discuss the submissions below.

KUVOST (Mohammadamini et al., 2025) pro-
duced a large-scale English speech to Central Kur-
dish dataset by relying on the publicly available
Common Voice dataset. This effort produced more
than 1,000 hours of parallel speech translation
data, by leveraging community volunteer work:
more than 230 volunteers manually translated and
revised more than 240k English sentences, which
were then paired with their utterances in Common
Voice. The effort included an extensive data val-
idation process. The participants also ensure the
quality of the data by producing pre-determined
train-dev-test splits, and building baseline systems
on top of fine-tuned Whisper v3 and Seamless
M4T, leading to BLEU scores over 32 on the test
set.

Note that this effort, in contrast to the norm for
the systems track, produced data where the low-
resource language (Central Kurdish) is on the tar-
get side and the high-resource one (English) is on
the source speech side.

URDU (Mehmood and Rauf, 2025) produced an
Urdu-English speech translation dataset. They re-
lied on Common Voice 13.0 and its Urdu speech
portion. The Urdu transcripts were first automati-
cally translated into English, but then checked and
corrected by 19 bilingual volunteers, as well as
validated by a professional translator. This multi-
stage quality assurance approach disentangles the
correction of potential syntactic or grammatical
errors from a secondary stage that ensures high-
quality, fluent translations for idiomatic or po-
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etic texts, highlighting the potential need for more
careful handling of some data subdomains.

FFSTC-2 (Kponou et al., 2025b) presented an ex-
tension of the previous FFSTC dataset, adding an-
other 36 hours to bring the available total to 61
hours of Fongbe-French data. Unlike the other
two submissions, this team started with target-side
text (French), which was first automatically trans-
lated to Fongbe. Then the text translations were
reviewed by bilingual experts, and only at the end
was read speech of these Fongbe translations col-
lected. The effort included a validation process,
e.g. to remove utterances with excessive back-
ground noise, where the validators re-recorded the
utterances, yielding an additional 42k recordings.

The participants also confirmed the utility of
these additional data, developing ST systems (both
cascade and end-to-end) as well as ASR systems
that improve over systems trained on the previous
iteration of the corpus.

8 Indic Languages Track

The growing demand for inclusive digital ac-
cess has highlighted the need for seamless cross-
lingual communication, especially in linguisti-
cally rich regions like India. While English dom-
inates global technology and information spheres,
millions of speakers of Indic languages such as
Bengali, Hindi, and Tamil still lack adequate
speech and language technologies. Despite their
large combined speaker base of over 700 million
and significant cultural and economic importance,
these languages remain underrepresented in NLP
and speech research due to limited high-quality
parallel text and audio data.

Compounding this challenge are the inherent
complexities of Indic languages including rich
morphology, high inflection, and frequent code-
mixing in real-world discourse, which make Spo-
ken Language Translation (SLT) development es-
pecially difficult (Sethiya and Maurya, 2024). Ad-
dressing this gap, the Indic Shared Task track
at IWSLT 2025 focuses on SLT for Bengali,
Hindi, and Tamil in both English→Indic and In-
dic→English directions. The latter is emphasized
due to its higher complexity and the inclusion of
STEM and broadcast media domains, demanding
systems capable of handling technical vocabulary
and varied speech styles.

By releasing the first benchmark dataset tailored
to these low-resource languages across critical do-

mains, this task aims to drive research that tack-
les real-world multilingual challenges. It seeks to
advance digital inclusion, foster equitable access
to global knowledge, and support the preservation
and technological integration of Indic languages.

8.1 Challenge
The IWSLT 2025 Indic Shared Task track fo-
cuses on speech-to-text translation (ST) across
six language directions: English-to-Bengali
(en→bn), English-to-Hindi (en→hi), English-
to-Tamil (en→ta), Bengali-to-English (bn→en),
Hindi-to-English (hi→en), and Tamil-to-English
(ta→en). This year’s challenge expands beyond
previous iterations by including both Indic-to-
English and English-to-Indic directions, though
the data sources for each direction are distinct.

The track allows participants to submit in both
the constrained and unconstrained conditions. The
constrained condition permits only the use of the
provided dataset, while the unconstrained condi-
tion allows the incorporation of additional external
resources and pre-trained models. Systems can be
either end-to-end (E2E) or cascaded, and partici-
pants may submit both monolingual and multilin-
gual systems across any or all of the six language
directions.

8.2 Data and Metrics
The Indic track at IWSLT 2025 provides a com-
prehensive speech-to-text translation (ST) corpus
spanning three Indic languages: Bengali, Hindi,
and Tamil. The dataset is constructed from two
distinct sources, reflecting the two translation di-
rections.

For the English-to-Indic (en→xx) direction, the
data is derived from the Indic-ST corpus (Sethiya
et al., 2024), which consists English speech paired
with English transcripts and Indic translations.
These data is from domains like Mann ki Baat, and
NPTEL, unlike IWSLT 2024, which had data from
TED talks (Sethiya et al., 2024). The dataset is
segmented using provided YAML files, ensuring
consistent alignment across audio, English tran-
scripts, and Indic translations. Table 9 reports the
number of lines and audio hours, partitioned into
training, validation, and test splits. Note that due
to linguistic differences, the token counts between
English and the target Indic languages naturally
vary.

For the Indic-to-English (xx→en) direction,
the data is sourced from a curated subset of
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the BhasaAnuvaad dataset (Sankar et al., 2025),
which draws from rich educational and broadcast
domains. Specifically, it includes material from
the National Programme on Technology Enhanced
Learning (NPTEL), the Spoken-Tutorial project,
and Mann-ki-Baat addresses, covering specialized
STEM content as well as public broadcast speech.
This direction provides a new challenge for par-
ticipants, requiring systems to handle domain-
specific terminology, varied accents, and sponta-
neous speech phenomena.

English-Bengali (en↔bn): Bengali, the sev-
enth most spoken language globally, has around
228 million speakers and belongs to the Indo-
Aryan family. It is the official language of
Bangladesh and is widely spoken in the Bengal
region of India, written in the Bengali-Assamese
script. The en→bn dataset comprises 815 hours
of English speech aligned to Bengali translations,
while the bn→en set contains 157.95 hours of Ben-
gali speech aligned to English text.

English-Hindi (en↔hi): Hindi is the third
most spoken language in the world, with approx-
imately 615 million speakers. It belongs to the
Indo-Aryan family and is primarily spoken in In-
dia, where it serves as one of the official lan-
guages, written in Devanagari script. The en→hi
dataset contains 815 hours of English speech and
Hindi translations, while the hi→en dataset pro-
vides 653.88 hours of Hindi speech with aligned
English translations.

English-Tamil (en↔ta): Tamil, a classical
Dravidian language with approximately 91 million
speakers, is spoken predominantly in the Tamil
Nadu state of India and parts of Sri Lanka. It is
written in the Tamil script derived from Brahmi.
The en→ta dataset offers 815 hours of English
speech with aligned Tamil translations, whereas
the ta→en data includes 378.16 hours of Tamil
speech with English translations.

Evaluation Metrics: For system evaluation,
we primarily employ the chrF++ metric (Popović,
2017), chosen for its high correlation with hu-
man judgments—especially in the context of In-
dian languages (Sai B et al., 2023)—making it par-
ticularly well-suited to our task. All chrF++ scores
are computed using the standardized sacreBLEU
toolkit (Post, 2018) to ensure consistency and re-
producibility. In addition, we report BLEU scores
for completeness, although they are not used in
ranking the systems.

Lang. Train Valid Test

Hours Samples Hours Samples Hours Samples

en→hi 680.54 205.2k 40.48 11.67k 93.13 36.25k
en→bn 680.54 205.2k 40.48 11.67k 93.13 36.25k
en→ta 680.54 205.2k 40.48 11.67k 93.13 36.25k
bn→en 157.95 64.8k 1.00 395 1.25 858
hi→en 653.88 248.8k 1.00 397 1.34 579
ta→en 478.16 211.3k 1.00 457 2.18 956

Table 9: Summary of provided data for each language
direction, including hours and number of samples.

8.3 Submissions

The 2nd edition of the Indic shared task track of
IWSLT received 32 submissions for all six lan-
guage pairs from five teams: the CDAC-SVNIT
team from SNLP Lab, the CDAC Noida and
SVNIT, Surat; the JU-CS-NLP team from Ja-
davpur University; another team, JU from Ja-
davpur University; team IITM from Speech Lab,
IIT Madras; and team HITSZ from Harbin In-
stitute of Technology, Shenzhen. The partici-
pants submitted their results under various con-
straints, including end-to-end constrained and un-
constrained, cascaded constrained, and uncon-
strained approaches. Below, we provide an
overview of each team’s approach and their re-
sults.

CDAC-SVNIT (Roy et al., 2025): This team
submitted 12 systems, two for each of the six
language pairs. Their submissions featured both
cascaded and end-to-end approaches. The cas-
caded systems operated under an unconstrained
setting, while the end-to-end systems adhered
to a constrained setup. For the cascaded ap-
proach, they fine-tuned a pre-trained CLSRIL-
23 model for ASR and a pre-trained IndicTrans2
model for MT. The end-to-end systems utilized
a transformer-based encoder-decoder architecture
from the Fairseq toolkit, pretrained on the pro-
vided data.

JU-CS-NLP (Dhar et al., 2025): This team
submitted six systems, one for each language pair,
under the unconstrained cascaded setting. For En→ xx translation, the system employed OpenAI’s
pre-trained Whisper Base model for ASR and a
fine-tuned version of Meta’s NLLB-200-distilled-
600M model for MT. For xx → En, it used the
pre-trained IndicConformer model for ASR and
the fine-tuned IndicTrans2 model for MT, both de-
veloped by AI4Bharat. The MT models are fine-
tuned on the provided dataset.

JU (Das et al., 2025): The submission includes
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Direction Team ID chrF++ / BLEU

en→bn CDAC-SVNIT 62.21 / 36.96
JU-CSE-NLP 74.58 / 51.70

IITM 60.81 / 26.67

en→hi CDAC-SVNIT 64.17 / 44.09
JU-CSE-NLP 72.98 / 57.61

IITM 62.30 / 41.09

en→ta CDAC-SVNIT 66.15 / 29.34
JU-CSE-NLP 73.81 / 36.17

IITM 62.33 / 21.35

bn→en CDAC-SVNIT 44.89 / 14.77
JU-CSE-NLP 53.99 / 23.69

JU 35.56 / 8.69
IITM 55.27 / 22.90

hi→en CDAC-SVNIT 67.06 / 41.04
JU-CSE-NLP 67.91 / 44.13

IITM 68.14 / 41.59

ta→en CDAC-SVNIT 41.16 / 15.70
JU-CSE-NLP 49.34 / 17.66

JU∗ 39.02 / 13.39
IITM 47.44 / 18.41

Table 10: Performance of unconstrained cascaded sys-
tems on different language pairs in terms of chrF++ and
BLEU scores. The * symbol denotes a system that used
a multilingual base model without any finetuning.

an unconstrained cascade setting for 2 language
pairs from Bengali and Tamil to English. A pre-
trained Whisper Small model is used for ASR,
which is pretrained for Bengali on the Bangla
Mozilla Common Voice dataset and for Tamil on
multiple publicly available datasets. For MT, the
system utilized the fine-tuned MarianMT model
for Bengali to English translation and the fine-
tuned facebooknllb-200-distilled-600M model for
Tamil to English translation.

IITM (Sarkar et al., 2025): The team
submitted six systems under the unconstrained
cascaded setting. For ASR, they used the
Phi-4 model, fine-tuned separately for each
language: Bengali using SKNahin/open-large-
bengali-asr-data, Hindi using SpringLab/Hindi-
1482hrs and AI4Bharat/SeamlessAlign, and Tamil
using Prajwal-143/ASR-Tamil-cleaned. For MT,
they employed the NLLB model, fine-tuned on
the SPRINGLab/shiksha and SPRINGLab/BPCC-
cleaned datasets for xx→ English translation.

HITSZ (Wei et al., 2025): The team made 6
submissions for the unconstrained end-to-end set-
ting for each of the 6 language pairs. The end-
to-end system utilizes the encoder-decoder based
Dhwani model, where the speech signals are en-
coded using the whisper speech encoder and the

Direction chrF++ / BLEU

en→bn 52.69 / 27.00
en→hi 52.50 / 33.84
en→ta 54.67 / 22.81
bn→en 53.07 / 25.02
hi→en 62.94 / 39.29
ta→en 43.91 / 19.27

Table 11: Performance of unconstrained end-to-end
systems by HITSZ on different language pairs in terms
of chrF++ and BLEU scores.

non-speech audio signals are encoded using the
BEAT’s encoder, which are bridged to the lan-
guage model with the help of Q-former. The trans-
formed tokens are decoded using the Krutrim large
language instruct model.

8.4 Results

Tables 10, 11 & 12 present the performance
of the submitted systems across six transla-
tion directions, evaluated primarily using the
chrF++ (Popović, 2017) metric. Each direction
was evaluated under both unconstrained and con-
strained settings, and systems were categorized
as either cascaded or end-to-end (E2E) in design.
The unconstrained setting permitted the use of
any external data, while the constrained setting re-
quired systems to be trained using only the pro-
vided shared data. Below, we summarize the key
findings per translation direction.

en→bn In the English-to-Bengali direction, the
highest chrF++ score was achieved by the JU-
CSE-NLP team using a cascaded system in the un-
constrained setting, with a score of 74.58. CDAC-
SVNIT and IITM also submitted strong cascaded
systems, achieving 62.21 and 60.81 chrF++, re-
spectively. Among end-to-end (E2E) systems,
HITSZ obtained a chrF++ of 52.69, while in the
constrained setting, CDAC-SVNIT’s E2E model
led with 58.22 chrF++, indicating the effectiveness
of their model despite the data restrictions.

en→hi For English-to-Hindi, the best chrF++
score again came from JU-CSE-NLP’s cascaded
system under the unconstrained condition, reach-
ing 72.98. CDAC-SVNIT and IITM followed
closely with scores of 64.17 and 62.30, respec-
tively. The E2E system from HITSZ achieved
52.50 chrF++, and CDAC-SVNIT’s constrained
E2E model attained a respectable 54.48, outper-
forming several unconstrained E2E systems.

439



Direction chrF++ / BLEU

en→bn 58.22 / 31.57
en→hi 54.48 / 34.61
en→ta 56.08 / 21.35
bn→en 14.30 / 00.46
hi→en 42.97 / 15.42
ta→en 26.25 / 05.05

Table 12: Performance of constrained systems submit-
ted by CDAC-SVNIT using an end-to-end (E2E) ap-
proach. Only the provided shared data was used for
training.

en→ta In the English-to-Tamil direction, JU-
CSE-NLP led with a chrF++ of 73.81 using a cas-
caded approach under the unconstrained setting.
This was followed by IITM (62.33) and HITSZ’s
E2E model (54.67). Under the constrained condi-
tion, CDAC-SVNIT’s E2E model achieved 56.08
chrF++, showing competitive performance despite
being limited to shared training data.

bn→en For Bengali-to-English, the highest
chrF++ score was reported by HITSZ’s E2E
system with 53.07, outperforming all cascaded
systems including CDAC-SVNIT (44.89), IITM
(55.27), and JU (35.56). Under the constrained
condition, the best result was 14.3 chrF++ from
CDAC-SVNIT’s E2E model, underscoring the dif-
ficulty of this direction when relying solely on
shared data.

hi→en In the Hindi-to-English direction, the
top-performing system was submitted by IITM
with a chrF++ of 68.14 using a cascaded ar-
chitecture under the unconstrained setting. This
was closely followed by JU-CSE-NLP (67.91)
and CDAC-SVNIT (67.06). HITSZ’s E2E model
achieved 62.94 chrF++, while CDAC-SVNIT’s
constrained E2E system reached 42.97, indicat-
ing a substantial drop in performance under con-
strained data.

ta→en For Tamil-to-English, JU-CSE-NLP’s
cascaded system achieved the highest chrF++
score under the unconstrained setting with 49.34.
Other strong systems included IITM (41.16) and
JU∗ (47.44), the latter of which utilized a multilin-
gual model without fine-tuning. Among E2E ap-
proaches, HITSZ led with 43.91. CDAC-SVNIT’s
constrained E2E system attained 26.25 chrF++,
again reflecting the challenges imposed by data
limitations in this direction.

8.5 Conclusion

This edition of the Low-Resource Indic Multilin-
gual Speech Translation track marked the first time
that translation from Indic languages to English
was included alongside the English-to-Indic direc-
tions. This expansion provided a more compre-
hensive evaluation of multilingual translation ca-
pabilities and highlighted the unique challenges of
translating into English from morphologically rich
and syntactically diverse Indic languages.

Across the six language directions, systems
demonstrated strong performance in both uncon-
strained and constrained settings, with cascaded
architectures generally outperforming end-to-end
approaches in the unconstrained track. However,
several constrained end-to-end systems showed
promising results, indicating progress toward ro-
bust low-resource translation without reliance on
external data.

The wide range of approaches submitted—
spanning cascaded pipelines, multilingual pre-
training, and direct speech-to-text modeling—
reflects growing diversity in system design for
low-resource speech translation. These results of-
fer valuable insights into the current state of the
field and set a strong baseline for future editions of
the task, especially in further improving Indic-to-
English performance and in exploring more uni-
fied multilingual modeling techniques.

9 Instruction-Following Track

In recent years, large language models (LLMs)
have redefined the landscape of natural language
processing by demonstrating the ability to per-
form a wide range of tasks without requiring task-
specific architectures or fine-tuning. These mod-
els offer a single, unified interface for diverse ap-
plications such as translation, summarization, and
question answering, simply by conditioning on
textual instructions (Hendy et al., 2023). Initially
restricted to textual input, LLMs are now evolving
into multimodal systems, incorporating modalities
such as vision and speech to expand their applica-
bility beyond the text domain (Li et al., 2024). In
parallel, speech foundation models (SFMs) have
emerged as powerful architectures capable of pro-
cessing spoken language at scale (Latif et al.,
2023). When combined with the instruction-
following capabilities of LLMs (Ouyang et al.,
2022), they open new opportunities for building
general-purpose speech models that are not lim-
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ited to handling a pre-defined set of tasks (Ruben-
stein et al., 2023). This integration, often referred
to as SpeechLLM or SFM+LLM (Gaido et al.,
2024), promises to deliver very versatile systems,
making it possible to interact with spoken lan-
guage in flexible and controllable ways.

To explore this promising direction, this year
we introduce, for the first time at IWSLT, a
new shared task focused on evaluating instruction-
following models for the speech modality. The
goal is to assess models that can perform multi-
ple speech-to-text tasks–such as automatic speech
recognition, speech translation, spoken question
answering, and summarization–by following natu-
ral language prompts, using either short audio seg-
ments or long-form spoken content as input.

9.1 Task Description

In the Instruction-Following (IF) task, partici-
pants had to develop a single instruction-following
model that can perform multiple speech-to-text
tasks based on a natural language prompt. The
model receives both an audio input and a task in-
struction in textual form and is expected to follow
the instruction to produce the appropriate output.

Sub-Tracks. The task is divided into two sub-
tracks based on the nature of the input audio:
SHORT, where the input is represented by auto-
matically segmented audio (usually of a few sec-
onds), and LONG, where the input is a long-form
audio. Depending on the sub-track, the following
tasks have to be supported by the model:
• SHORT Sub-Track

– Automatic Speech Recognition (ASR): the
speech is transcribed into the same language;

– Speech-to-text Translation (S2TT): the
speech is translated into the target language;

– Spoken Question Answering (SQA): textual
questions have to be answered based on the
spoken content in the same language and in
a language different from the speech (ques-
tions and answers are always in the same lan-
guage);

• LONG Sub-Track
– Automatic Speech Recognition (ASR): the

speech is transcribed into the same language;
– Speech-to-text Translation (S2TT): the

speech is translated into the target language;
– Spoken Question Answering (SQA): textual

questions have to be answered based on the
spoken content in the same language and in

a language different from the speech (ques-
tions and answers are always in the same lan-
guage);

– Speech-to-text Summarization (S2TSUM):
a summary has to be provided from the spo-
ken content in the same language and in a lan-
guage different from the speech.

All tasks listed for each sub-track were mandatory;
that is the model must be capable of handling each
task type when prompted appropriately.

Languages. The tasks involve both monolingual
and cross-lingual processing. The supported lan-
guages are English (en) for ASR, monolingual
SQA, and S2TSUM, and English to German (de),
Italian (it), and Chinese (zh) for S2TT, multi-
lingual SQA, and multilingual S2TSUM. Partici-
pants were allowed to submit results for a subset
of language directions.

Prompts. For each sample in the test set, there
is no information about the specific task to be per-
formed (e.g., ASR) or the language pair to support
(e.g., en); rather, the model has to correctly inter-
pret and fulfill diverse instructions across the sup-
ported language pairs (e.g., “Traduci questo au-
dio in inglese”[it], “Translate this audio into En-
glish”[en]).

9.2 Data and Metrics

Training and Development Data. We adopt
two evaluation conditions: constrained and uncon-
strained. In the constrained condition, participants
are allowed to use the specified Speech Founda-
tion Model55 and Large Language Model56, train-
ing their systems on designated datasets:
• EuroParl-ST (Iranzo-Sánchez et al., 2020) and

CoVoST2 (Wang et al., 2020) for ASR/S2TT57

tasks,
• Spoken-SQuAD (Li et al., 2018) for SQA,
• NUTSHELL (Züfle et al., 2025) for S2TSUM.
Development data is provided through the ACL
60/60 dataset (Salesky et al., 2023), which con-
tains transcripts, translations, and summaries that
can be retrieved using video IDs. Importantly,
the use of the pre-trained SFM and LLM is not
mandatory, and submissions with models trained
from scratch on the allowed data are accepted, as
are systems using only one of the two pre-trained

55hf.co/facebook/seamless-m4t-v2-large
56hf.co/meta-llama/Llama-3.1-8B-Instruct
57EuroParl-ST: en→{it, de}, CoVoST2: en→{zh, de}
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models. No training data is provided for cross-
lingual SQA or S2TSUM tasks where the output
languages differ from the source speech language,
which is designed to test the models’ zero-shot
cross-lingual abilities. The unconstrained condi-
tion places no limitations on model architectures,
pre-trained models, or training data.

The constrained evaluation condition is meant
for providing a controlled environment for com-
paring different approaches without the confound-
ing effects of varying data sources or model scales.
On the other hand, the unconstrained condition
reflects real-world deployment scenarios where
practitioners may leverage cutting-edge models,
proprietary datasets, and computational scaling to
achieve optimal performance.

Evaluation Data. We evaluate the submitted
models with IWSLT25Instruct, a novel resource,
representing the first cross-lingual multimodal
benchmark for instruction-following tasks across
speech, text, and vision modalities in four lan-
guages: English, German, Italian, and Chinese.
IWSLT25Instruct is extracted from the ASR,
S2TT, SQA, and S2TSUM sections of the MMIF
benchmark (Papi et al., 2025b), built upon sci-
entific domain data retrieved from the ACL An-
thology.58 The dataset contains 21 videos, cor-
responding to 2 hours. Source audio and video
content in English (talks of about 5-6 minutes
each) are enriched with multilingual annotations
and translations to support: i) ASR (en→en); ii)
S2TT (en→de, it, zh), iii) S2TSUM (en→es, de,
it, zh); iv) SQA (en→es, de, it, zh). In SQA,
questions (about 10 for each video) are provided
both in the speech language (English) and in other
target languages (German, Italian, Chinese), and
answers must be given in the same language as
the one of the question (e.g., Italian questions
require answers in Italian). The SQA task in-
cludes unanswerable questions, to which the only
correct response is “Not answerable or its cor-
responding translations in the other languages.59

For S2TSUM, the dataset contains 100 abstracts
(including those of the 21 videos), for a total of
17k words. The audio data are provided as com-
plete audio files (5-6 minutes, WAV format) for the
LONG sub-track, and as automatically segmented
audio (of 15-20 seconds) using SHAS (Tsiamas

58aclanthology.org
59Namely, in Italian “Non è possibile rispondere”, German

“Nicht zu beantworten.”, and Chinese 无法回答。 .

et al., 2023) for the SHORT sub-track.
We release the videos, source audio, and task

instructions to participate in the shared task. Also,
we provide an example submission for the LONG
sub-track, which could be used as a 1-shot task
demonstration. Participants submit their system
outputs and may adjust instructions to suit their
models’ prompts. The evaluation is conducted via
the SPEECHM platform, presented in Section 2.

Metrics. The evaluation was carried out by com-
puting separate scores for each of the tasks in-
volved. Namely, for ASR, we computed WER
using the jiWER library60 after normalizing the
test using the Whisper normalizer61 (Radford
et al., 2022). For S2TT, we used COMET62

(Rei et al., 2020) after concatenating all segments
belonging to the same talk in the case of the
SHORT sub-track and resegmenting the text with
mwerSegmenter to pair them with the refer-
ence sentences. Lastly, for SQA and S2TSUM,
we computed BERTScore (Zhang* et al., 2020)
rescaling the scores with baselines to obtain more
interpretable scores in a wider range (typically,
in the [0, 1] range).63 The code used for the
evaluation is available at: github.com/hlt-mt/if-
iwslt2025.

9.3 Submissions

In total, we received 16 submissions from 5 dif-
ferent teams. Two teams submitted under the con-
strained setting. Only one submission was con-
trastive. Two teams (NLE and KIT) participated
in all language directions, while others (CUNI-
NL and IST) submitted for a subset. One team
(MEETWEEN) submitted for English only. The
participants’ systems in the SHORT (CUNI-NL,
IST, MEETWEEN, NLE) and LONG (KIT) sub-
tracks are detailed below.

CUNI-NL (Luu and Bojar, 2025) participated
in the unconstrained LONG sub-track, submitting
to ASR (en→en) and S2TT (en→de). Their sub-
mission explores the combination of speech en-
coders and instruction-tuned LLMs. Specifically,
they compare Whisper and Seamless as encoders,
alongside LLaMA, EuroLLM-9B-Instruct (Mar-
tins et al., 2024), and Gemma-3-12B-IT (Team
60github.com/jitsi/jiwer
61Specifically, we used version 0.0.10.
62With model Unbabel/wmt22-comet-da.
63See github.com/Tiiiger/bert score/blob/master/journal/

rescale baseline.md
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et al., 2025) as LLMs. For Seamless, the orig-
inal length adapter is used, while for Whisper,
a convolution-based length adapter is applied.
A trainable feed-forward projection connects the
frozen encoder with the frozen LLM, and LoRA
adapters (Hu et al., 2021) are applied on top of
the LLM. Training is conducted exclusively on the
CoVoST dataset. Their results show that combin-
ing Seamless as the encoder with EuroLLM as the
LLM yields the strongest performance.

IST (Attanasio et al., 2025) participated in the
SHORT unconstrained sub-track, submitting to the
en→en, de, and zh language pairs. Their sys-
tem adapts small language models: audio is en-
coded with wav2vec 2.0 (Baevski et al., 2020),
and a two-layer MLP projects features into the
input space of a frozen Qwen2.5–1.5B (Qwen
et al., 2025). Seven ASR datasets are used, along
with CoVoST2 for S2TT, and Spoken-SQuAD for
SQA. To increase coverage, ASR transcripts and
Spoken-SQuAD are translated into German and
Chinese using multiple LLMs and unanswerable
questions are synthesized to improve SQA robust-
ness. Task and language tags are prepended to
prompts to enable multilingual, multitask instruc-
tion following. Training then proceeds in two
stages: first, the speech encoder and MLP are
jointly trained on ASR data for modality align-
ment; then, the encoder is frozen and only the
MLP is fine-tuned on ASR, AST, and SQA.

MEETWEEN participated in the SHORT un-
constrained sub-track, submitting to the ASR and
SQA tasks. The system64 combines the Seam-
less speech encoder with a Q-Former (Li et al.,
2023; Tang et al., 2024) modality adapter and a
LLaMA decoder. Training is performed in three
stages. In the first stage, an ASR warmup is
conducted with the encoder and LLM frozen and
only the modality adapter is trained. The second
stage, all-task warmup, retains the frozen encoder
and LLM while training the adapter across ASR,
S2TT, SQA, S2TSUM, MT, SLU, and lip reading
tasks. Finally, in end-to-end training, the encoder
remains frozen while both the adapter and LLM
are fine-tuned on the same set of tasks.

NLE (Lee et al., 2025) participated in the
SHORT constrained sub-track, submitting to all
language pairs: en→en, de, it, zh. They augmented
training data by translating SpokenSQuAD and
64huggingface.co/meetween/Llama-speechlmm-1.0-l

generating more fluent, abstractive answers. Their
model employs a Seamless encoder with addi-
tional downsampling, a Transformer-based pro-
jection module, and LLaMA with LoRA (Hu
et al., 2021) applied. Training occurs in three
stages using two-level sampling process (Zanon
Boito et al., 2024): first, the projector is trained
with frozen encoder and LLM on ASR+ST or
ASR+ST+SQA data; second, LoRA adapters are
trained on the LLM using text-only MT and QA
data; finally, both are jointly fine-tuned on all tasks
for 1000 steps, with strong performance evident
after 100 steps. Models trained with SQA in stage
two initially underperform on SQA. However, af-
ter final tuning, all models perform similarly, with
those trained only on ASR and S2TT slightly bet-
ter on S2TT.

KIT Koneru et al. (2025) participated in the
LONG constrained sub-track, submitting to all lan-
guage pairs: en→en, de, it, zh. They aug-
mented data by synthesizing NUTSHELL speech
with TTS for ASR adaptation, and using LLaMA
to generate multilingual QA pairs and trans-
lated summaries from NUTSHELL for SQA and
S2TSUM. Their architecture connects Seamless
and LLaMA via a trainable Q-Former (Li et al.,
2023; Tang et al., 2024). Training involved con-
trastive pretraining (Züfle and Niehues, 2025) on
ASR data followed by task-specific fine-tuning.
Chain-of-thought reasoning was applied to im-
prove SQA robustness by detecting unanswerable
questions. For long audio, VAD-based segmen-
tation (Sohn et al., 1999) was used in ASR and
S2TT. For SQA and S2TSUM, audio segments
were encoded separately, with embeddings con-
catenated before projection and LLM input to
maintain end-to-end trainability. A context-aware
post-editing model trained on NUTSHELL TTS
data improved domain-specific terminology and
restored context lost to segmentation.

9.4 Results

9.4.1 Automatic Evaluation

The complete results for both SHORT and LONG
sub-tracks are presented in Table 47. For compari-
son, we include the results of the Phi4-Multimodal
model (Abouelenin et al., 2025), a state-of-the-art
baseline model trained on a broader range of tasks
(including the IF task) and datasets (both in-house
and public).
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Monolingual English. In the monolingual
scenario–comprising ASR and SQA in the
SHORT sub-track, and ASR, SQA, and S2TSUM
in the LONG sub-track–all participating teams
submitted systems, including a contrastive sub-
mission (CUNI-NL). In the SHORT sub-track, the
best ASR performance is achieved by the baseline
(7 WER). Among participants, NLE obtains the
best result (13 WER), followed by CUNI-NL
and IST, both with 15 WER. For SQA, NLE
outperforms all other systems with a BERTScore
of 0.50–exceeding the baseline by 0.04 points.
Notably, the NLE’s system, even if trained in
the constrained settings, still emerged as the top-
performing participant, though it lagged behind
the baseline in ASR by nearly double the WER. In
the LONG sub-track, KIT, which is the only team
that submitted a system, is able to outperform
the baseline in two out of three tasks (ASR
and S2TSUM), and its SQA performance (0.41
BERTScore) is nearly on par with the baseline
(0.42). Nonetheless, there remains a performance
gap compared to short-form processing: for
example, the constrained systems NLE (SHORT)
and KIT (LONG) differ by 0.02 WER in ASR and
0.08 BERTScore in SQA.

Crosslingual German. In the English-to-
German (en-de) direction, the best S2TT result in
the SHORT sub-track is achieved by the baseline
(0.77 COMET). Among participants, CUNI-NL’s
primary submission (0.72 COMET), NLE (0.71),
and CUNI-NL’s contrastive (0.69) perform sim-
ilarly. For SQA, NLE achieves the best score,
surpassing the baseline by 0.02 BERTScore. In
the LONG sub-track, KIT outperforms the baseline
in all three tasks (ST, SQA, and S2TSUM), with
substantial margins in some cases (e.g., 0.74
vs. 0.55 COMET in S2TT). While short-form
processing remains easier for current systems, the
gap is smaller in this case, with the constrained
NLE system achieving only 0.03 COMET im-
provement on S2TT and 0.03 BERTScore in SQA
compared to the constrained KIT.

Crosslingual Italian. In the English-to-Italian
(en-it) direction, the baseline again achieves the
best S2TT result in the SHORT sub-track, out-
performing the only participant (NLE) by 0.06
COMET. However, NLE surpasses the baseline in
SQA with a 0.02 BERTScore improvement. In
the LONG sub-track, KIT outperforms the base-

line across all three tasks, including a large gain of
0.21 COMET in S2TT. As with other language di-
rections, performance on long-form input remains
consistently lower than short-form.

Crosslingual Chinese. In the English-to-
Chinese (en-zh) direction, the baseline also leads
in S2TT for the SHORT sub-track, outperforming
NLE–the best-performing participant–by 0.05
COMET. For SQA, however, NLE achieves a 0.02
BERTScore improvement over the baseline. In
the LONG sub-track, KIT once again outperforms
the baseline and, interestingly, achieves better
performance in long-form SQA (0.41) than those
obtained by NLE in the short-form SQA (0.35),
suggesting that the system was able to effectively
exploit the long context.

9.4.2 Human Evaluation

Similar to the other tracks of this year’s IWSLT
Evaluation Campaign, each participant’s primary
submission65 has been manually evaluated. The
human evaluation involves the speech translation
outputs in German and Chinese, and the manual
process that has been conducted is explained in
Appendix A. The results are also compared with
those of the other tracks in Table 15 and Table 17.

The human evaluation results largely confirm
the trends observed in automatic evaluation. For
en-de, the top-ranked KIT system (with a COMET
score of 0.74) achieved the best human-evaluated
performance, followed by CUNI primary and NLE
(with a COMET of 0.72 and 0.71, respectively).
However, human evaluators found the second and
third-ranked systems indistinguishable, suggest-
ing that COMET score differences of 0.01 fall be-
low the threshold of human perceptual sensitivity.
Similarly, for en-zh, the KIT and NLE systems
were perceived as equivalent by humans, confirm-
ing their close automatic scores (of 0.77 and 0.76,
respectively). Compared to the other tracks, the IF
track results align with expectations, performing
worse than the systems of the offline track but bet-
ter than those of the simultaneous track, especially
under low-latency constraints. This performance
reflects two key factors: offline and simultane-
ous tracks’ systems benefit from larger training
datasets and task-specific optimization for speech

65We have excluded from the human evaluations the submis-
sions with COMET scores below 0.4, as they were signif-
icantly worse than other participants, making the compari-
son meaningless.
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translation, while IF models are more general-
purpose architectures, supporting multiple tasks.
These findings highlight that while automatic met-
rics provide valuable performance insights, human
perception may be less sensitive to small metric
differences, particularly when systems achieve rel-
atively high performance levels.

9.5 Discussion and Conclusions

As this was the first edition of the Instruction-
Following (IF) shared task at IWSLT, our primary
goal was to understand the interest of our commu-
nity in evaluating general-purpose speech models
across a variety of tasks and languages, and ex-
plore the feasibility of leveraging these models for
long-form speech processing. The task was met
with strong interest, with 16 submissions from 5
teams, and provided valuable insights into the cur-
rent capabilities and limitations of IF systems for
speech-based tasks.

Among the four tasks, ASR emerged as the
most accessible, with most participants achieving
a WER below 18. Monolingual SQA was also
relatively approachable, with BERTScores up to
0.50. In contrast, crosslingual SQA proved more
challenging, with best-case BERTScores between
0.38 and 0.41. The S2TT task showed consis-
tent translation quality across language pairs, with
best COMET scores ranging from 0.74 to 0.77.
S2TSUM, however, stood out as the most difficult
task, with no system exceeding a score of 0.37–
even in the best case (en-zh).

Comparing performance across tracks, short-
form processing (SHORT) consistently outper-
formed long-form (LONG) processing in all lan-
guages. Surprisingly, the difference appears to
be more pronounced in the monolingual tasks
instead of the crosslingual tasks, which are in-
herently more difficult, suggesting that ASR and
monolingual SQA are better mastered by current
short-form models. It is also noteworthy that the
best results in both tracks were achieved by sys-
tems trained under constrained settings, demon-
strating that these settings represent a promising
starter pack for IF model development, allowing
for building competitive systems even with limited
resources.

In terms of top-performing systems, NLE’s sub-
missions led the SHORT track across all language
directions. In the LONG track, the KIT system–
despite being the only submission–outperformed

the state-of-the-art Phi4-Multimodal baseline in
nearly every task.

Given the success of this first edition and the
encouraging level of participation, we plan to
continue the IF shared task in future editions of
IWSLT, expanding its scope and challenges to fur-
ther advance research in speech processing.
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Sebastian Stüker, Katsuhito Sudoh, Brian Thomp-
son, Alex Waibel, Shinji Watanabe, Patrick Wilken,
Petr Zemánek, and Rodolfo Zevallos. 2024. FIND-
INGS OF THE IWSLT 2024 EVALUATION CAM-
PAIGN. In Proceedings of the 21st Interna-
tional Conference on Spoken Language Translation
(IWSLT 2024), pages 1–11, Bangkok, Thailand (in-
person and online). Association for Computational
Linguistics.

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
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saoudi, Rabea Affan, Claude Barras, Maxim Ty-
chonov, and Jean-Luc Gauvain. 2025. ALADAN
at IWSLT25 Low-resource Arabic Dialectal Speech
Translation Task. In Proceedings of the 22nd Inter-
national Conference on Spoken Language Transla-
tion (IWSLT).

Sameer Khurana, Antoine Laurent, and James Glass.
2022. Samu-xlsr: Semantically-aligned multimodal
utterance-level cross-lingual speech representation.
IEEE Journal of Selected Topics in Signal Process-
ing, 16(6):1493–1504.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
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463.

Nam Luu and Ondˇrej Bojar. 2025. CUNI-
NL@IWSLT 2025: End-to-end Offline Speech
Translation and Instruction Following with LLMs.
In Proceedings of the 22th International Conference
on Spoken Language Translation (IWSLT).

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang,
Jiatao Gu, and Juan Pino. 2020. SIMULEVAL: An
evaluation toolkit for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 144–150, Online. Associa-
tion for Computational Linguistics.

Mohamed Maamouri, Tim Buckwalter, David Graff,
and Hubert Jin. 2006. Levantine arabic qt train-
ing data set 5. Speech Linguistic Data Consortium,
Philadelphia.
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Appendix A. Human Evaluation

A Human Evaluation

Human evaluation includes direct assessment for offline, simultaneous, subtitling, and instruction fol-
lowing tasks (A.1), in addition to continuous rating and MQM for the simultaneous task (A.2, A.3).

A.1 Direct Assessment
For the offline translation track (Section 3), simultaneous translation track (Section 4), subtitling track
(Section 5), and instruction following track (Section 9), we conduct a human evaluation of primary
submissions. Human graders are asked for direct assessment (DA) (Graham et al., 2013; Cettolo et al.,
2017; Akhbardeh et al., 2021), expressed as scores ranging from 0 to 100. The business news test set does
not include reference transcripts, so the human assessment is performed monolingually, comparing the
system outputs against reference translations. We exclude the English to German direction from this test
set for budget reasons. All other sets are graded in full, with no subsampling performed. No annotator
normalization was performed this year.

Since many tasks have standardized their test sets, we evaluate all outputs for a given testset, across
any task that used said testset. This gives us the opportunity to compare across tasks and get a general
sense of the relative progress across tasks. Caution should be exercised when comparing systems across
tasks, as the tasks have different objectives – for example, length in the case of subtitling and latency in
the case of online systems. Additionally, in the case of the business news testset, we use the verbatim
version of the reference; the subtitle systems would likely have been judged more favorably if we had
instead used the more terse subtitle reference.

A.1.1 Automatic Segmentation
We collect segment-level annotations based on the re-segmentated test data, generating automatic reseg-
mentations of the hypothesis based on the reference translation by mwerSegmenter.66 Because we do
not want issues from the segmentation to influence scores negatively, we follow Sperber et al. (2024)
and provide translators not only with the source sentence and system translation but also with the system
translation of the previous and following segments. Annotators are then instructed as follows: “Sentence
boundary errors are expected and should not be taken into account when judging translation quality.
This is when the target appears to be adding or missing words (including being completely empty) while
the source was segmented in a different place. To this end, we have included the previous and next sen-
tence targets for context. If the content of the source and target are only different because of sentence
boundary issues, do not let this affect your scoring judgement.
Example of a good translation (shown English-only for illustration purposes) suffering only from sen-
tence boundary issues that should not be penalized:
Source: you’ll see that there’s actually a sign near the road.
Target: is a sign near the
Previous target: [...] and you will see that there actually Next target: road. [...]
No video or audio context is provided. Segments are shuffled and randomly assigned to annotators to
avoid bias related to the presentation order. Annotation is conducted by professional translators fluent in
the source language and native in the target language.

For monolingual grading (business news test set, English to Arabic), we add the following instruction:
“You’ll be shown a candidate translation from English into Arabic, while the ”source” is the Arabic
reference translation. Please rate the correctness of the candidate, given the reference..”

A.1.2 Computing Pairwise Statistical Significance and System Rankings
Last year, we used the Wilcoxon rank-sum test (also called the Mann-Whitney U) to determine statistical
significance of the human evaluation scores. The Wilcoxon rank-sum test is non-parametric, which is
advantageous because DA scores do not follow a normal or other known distribution (see Figure 1).
66www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
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However, the Wilcoxon rank-sum test also assumes independent samples, whereas our data samples are
not in fact independent. This is because a given source sentence is translated by two or more MT systems
and then those outputs are scored by a human annotator. We generally expect correlation between scores
for the same source sentence (e.g. a source sentence which is very difficult to translate will likely result
in lower than average scores for all MT systems).
An alternative to the Wilcoxon rank-sum test is the Wilcoxon signed-rank test, which assumes dependent
(i.e. paired) data, but it adds an assumption that the distribution of scores is symmetric around a mean,
which Figure 1 illustrates is not true in our case.

0.00

0.02

0.04
En-De (n=45,448)

0.00

0.02

0.04
En-Zh (n=12,320)

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04
En-Ar (n=5,996)

Figure 1: Direct assessment score histograms, normalized, per language pair.

This year, we chose to use a permutation test (Fisher, 1935) to estimate the statistical significance of
the difference in the means of the segment-level DA scores for each pair of MT systems. Permutation
tests are appealing because they don’t require any assumptions about the underlying distribution of the
data. Instead, they have the assumption of exchangeability (Pitman, 1937; Draper et al., 1993; Good,
2002)—that is, under the null hypothesis (in our case, that the two MT systems are of equal quality) the
joint distribution of the observations is invariant under permutations of the data labels. We first randomly
split the segment-level scores (ignoring the labels, i.e. which MT system produced each segment) into
two parts and compute the difference in DA score mean. Repeating this process many times provides
a set of mean differences we can reasonably expect under the null hypothesis that the two systems are
of the same quality. We compute a one-tailed p-value by calculating the fraction of the time that the
random splits produce differences greater than or equal to the mean difference we observe for the two
systems. To help ensure exchangeability, we perform permutations such that each split has exactly
one translation of each test set sentence, commonly referred to as a paired permutation test (Good,
2013). In the context of machine translation, paired permutation tests are widely used in automatic
metric evaluation (Deutsch et al., 2021; Freitag et al., 2023, 2024; Thompson et al., 2024). We use the
paired permutation implementation from Thompson et al. (2024).67

Given the p-values from all pairwise system comparisons, system rankings are trivially computed by
ordering the systems by mean DA score and then finding the rank of the highest and lowest ranked
system(s) that are not statistically significantly different from each system. We use a 95% confidence
(i.e. p-value < 0.05).

English → Arabic, business news testset rankings are given in Table 13, with p-values in Figure 2.
English→ German, accented English conversations testset rankings are given in Table 14, with p-values
in Figure 3. English → German, scientific presentations testset rankings are given in Table 15, with p-

67github.com/thompsonb/mt-metrics-eval/blob/main/mt metrics eval/pairwise paired permutation test.py
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values in Figure 4. English→ German, TV series testset rankings are given in Table 16, with p-values in
Figure 5. English→ Chinese, scientific presentations testset rankings are given in Table 17, with p-values
in Figure 6.

As one would expect, we find that across all language pairs / test sets, offline systems tend to be the
highest ranked, and high-latency online systems tend to rank higher than low-latency online systems.

Table 13: English → Arabic, business news testset. Human direct assessment scores and corresponding rankings.
Rank range based on 95% confidence interval, from pairwise p-values in Figure 2.

Task System Data/Condition Human Score Human Rank

Offline NYA unconstrained 84.451 1
Offline NEMO unconstrained 82.017 2
Offline AIB-MARCO unconstrained 80.228 3
Subtitling APPTEK 60.524 4

Table 14: English → German, accent English conversations testset. Human direct assessment scores and corre-
sponding rankings. Rank range based on 95% confidence interval, from pairwise p-values in Figure 3.

Task System Data/Condition Human Score Human Rank

Offline KIT unconstrained 74.865 1-2
Offline AIB-MARCO unconstrained 74.705 1-2
Offline NYA unconstrained 72.576 3-4
Offline NEMO unconstrained 72.298 3-4
Simultaneous UPV high 70.679 5-6
Simultaneous OSU high 70.372 5-6
Simultaneous OSU low 67.550 7
Offline NAIST unconstrained 63.622 8
Offline NAIST constrained 58.610 9
Offline CUNI constrained 51.407 10
Simultaneous CMU low 44.099 11
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Table 15: English → German, scientific presentations testset. Human direct assessment scores and corresponding
rankings. Rank range based on 95% confidence interval, from pairwise p-values in Figure 4.

Task System Data/Condition Human Score Human Rank

Offline KIT unconstrained 90.626 1
Offline NEMO unconstrained 86.583 2-4
Offline NYA unconstrained 86.536 2-4
Offline AIB-MARCO unconstrained 85.372 2-5
Simultaneous CUNI high 84.309 4-5
Simultaneous UPV high 78.662 6
Simultaneous OSU high 76.923 7-10
Instruction.long KIT primary 76.382 7-10
Offline NAIST unconstrained 75.432 7-11
Offline CUNI constrained 75.367 7-11
Simultaneous OSU low 74.397 9-11
Simultaneous NAIST high 71.166 12-15
Instruction.short CUNI-NL primary 70.702 12-15
Simultaneous CMU low 70.372 12-15
Instruction.short NLE primary 69.607 12-16
Offline NAIST constrained 67.801 15-18
Simultaneous NAIST low 67.197 16-18
Instruction.short CUNI-NL contrastive 66.280 16-18

Table 16: English → German, TV series testset. Human direct assessment scores and corresponding rankings.
Rank range based on 95% confidence interval, from pairwise p-values in Figure 5.

Task System Data/Condition Human Score Human Rank

Offline KIT unconstrained 61.379 1
Offline NYA unconstrained 56.801 2-3
Offline NEMO unconstrained 56.395 2-3
Subtitling APPTEK 53.992 4
Offline CUNI constrained 32.278 5
Offline NAIST unconstrained 27.174 6
Offline NAIST constrained 21.674 7
Offline AIB-MARCO unconstrained 12.122 8
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Table 17: English → Chinese, scientific presentations testset. Human direct assessment scores and corresponding
rankings. Rank range based on 95% confidence interval, from pairwise p-values in Figure 6.

Task System Data/Condition Human Score Human Rank

Offline AIB-MARCO unconstrained 85.918 1
Offline NYA unconstrained 84.044 2-4
Offline BIGWATERMELON unconstrained 83.338 2-4
Offline NEMO unconstrained 83.009 2-4
Simultaneous CUNI high 77.805 5
Offline NAIST unconstrained 71.593 6-9
Instruction.short NLE primary 70.465 6-10
Instruction.long KIT primary 69.995 6-10
Simultaneous CMU low 69.812 6-10
Simultaneous OSU high 69.415 7-11
Simultaneous NAIST high 67.761 10-12
Simultaneous OSU low 67.519 11-12
Simultaneous NAIST low 65.487 13
Offline NAIST constrained 58.831 14
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Figure 2: English → Arabic, business news testset, pairwise p-values from paired permutation tests. p-values< 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings computed from these
p-values, see Table 13.
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Figure 3: English → German, accented English conversations testest, pairwise p-values from paired permutation
tests (n=10,000). p-values < 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings
computed from these p-values, see Table 14.
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Figure 4: English → German, scientific presentations testset, pairwise p-values from paired permutation tests
(n=10,000). p-values < 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings
computed from these p-values, see Table 15.
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Figure 5: English → German, TV series testset, pairwise p-values from paired permutation tests (n=10,000). p-
values < 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings computed from
these p-values, see Table 16.
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Figure 6: English → Chinese, scientific presentations testset, pairwise p-values from paired permutation tests
(n=10,000). p-values < 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings
computed from these p-values, see Table 17.
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A.1.3 Deciding Which Segments to Human-Evaluate
Each year, the shared task size is limited by the amount that can be human-evaluated. Oftentimes, a
random subset of segments is chosen for human evaluation to fit a specific budget. However, this unin-
formed selection might be suboptimal and previous works showed promise for efficient subset selection
for machine translation and summarization. While the IWSLT 2025 evaluation has not used informed
subset selection, this section investigates its potential for future IWSLT human evaluation campaigns.

Setup. Given a large set of evaluatable items X , the task is to select Y ⊆ X such that ∣Y ∣ fits a specific
budget. Then, all systems participating in the shared task are evaluated on Y . We consider the following
methods for subset selection (Zouhar et al., 2025a):
• Metric average: Selecting examples with lowest average quality estimation scores across systems

(highest difficulty). Based on wmt22-cometkiwi-da (Rei et al., 2022b).
• Metric variance: Selecting examples with largest variance among the quality estimation scores across

systems. Same metric.
• Metric consistency: Selecting examples where the item-level metric ranking is predictive of the final

aggregated system ranking. Same metric.
• Diversity: Selecting examples with which lead to most different system outputs (measured with pair-

wise ChrF).
• K-means: Selecting examples that are most dissimilar to each other (using k-means clustering).

We simulate the selection at a particular budget (subset size). We measure the success of subset selection
in three ways. In all cases, the higher the better.
• Cluster count: Number of statistically significant clusters, as computed by Kocmi et al. (2023).
• Kendall’s τb rank correlation: Similarity of final system ranking based on the subset and based on

the full set.
• Soft Pairwise Accuracy (Thompson et al., 2024): Similarity of final system ranking based on the

subset and based on the full set but with statistical significance taken into account.
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Figure 7: Results of informed subset selection for English→Arabic human-evaluated testset.

Results. The results in Figure 7 show that, by far, random selection remains the most robust selection,
with metric consistency being on par to random when measured by soft pairwise accuracy or Kendall’s
τb and slightly better when measured by cluster count.

This can be partly explained by the evaluation segments not being aligned. For other tasks, such as
text-to-text machine translation, given a single input, the systems produce outputs that can be compared
to each other. In the current speech translation setup, the segmentation makes it so that segments with
the same force-aligned source have very different outputs across systems. For example, the following
are the 8 system translations aligned to the same source segment “There were tough fights, even blood
flowed.”, which sometimes include non-relevant content, likely from previous or subsequent segments:

viel Geld verschwendet. Scham! hart umkämpfte Schlachten, Blut wurde vergossen. Ich schäme
zu Besuch Sie kommen heute Nacht zu uns Hart gekämpfte Schlachten. Das Blut wurde vergossen,
Harte Kämpfe. Es wurde Blut vergossen. Hart gekämpfte Schlachten. Das Blut wurde vergossen,
Schwer erkämpfte Kämpfe. Es wurde Blut vergossen. war glücklich. Vier Schlachten. Es wurde geschrieben. Schande!
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Comparing the segment-level quality estimation using automatic metrics (necessary for metric aver-
age, metric variance, and metric consistency) then becomes difficult. The primary noise for the metrics
comes from noisy prefixes and suffixes. Some metrics, such as COMET-partial (Zouhar et al., 2025b,
Appendix G) show promise to this kind of noise, though do not improve meaningfully the subset selec-
tion. The biggest hurdle to informed subset selection is thus a better alignment of system output, or the
selection at higher-level units where the alignment is implicitly correct, such as the level of documents
or whole audio files.

A.2 Continuous Rating for Czech-to-English and English-to-German
Manual evaluation of English-to-German Simultaneous Task uses Continuous Rating as described by
Javorský et al. (2022).

For both translation directions (Czech-to-English and English-to-German), we solicited students of
translation studies from the Faculty of Arts, Charles University, as evaluators. All were native speakers
of Czech, studying for English and (those evaluating German) also German translation.

During the evaluation, annotators were presented with the source audio and subtitles. The subtitles
were displayed in two lines below the audio following the guidelines for video subtitling (Bbc, 2019).
The annotators were asked to score the quality of the live-presented text output while listening to the
input sound. Specifically, the instructions explicitly asked to focus on content preservation, or roughly
the adequacy:
• We ask you to provide your assessment using so-called “continuous rating”, which continuously indi-

cates the quality of the text output given the input utterance you hear in the range from 1 (the worst) to
4 (the best) by clicking the corresponding buttons or pressing the corresponding keys.

• The rate of clicking/pressing depends on you. However, we suggest clicking each 5-10 seconds or
when your assessment has changed. We encourage you to provide feedback as often as possible even
if your assessment has not changed.

• The quality scale should reflect primarily the meaning preservation (i.e. evaluating primarily the “con-
tent” or very approximately the “adequacy”) and the grammaticality and other qualitative aspects like
punctuation (i.e. the “form” or extremely roughly the “fluency”) should be the secondary criterion.

Processing of Collected Rankings Once the results are collected, they are processed as follows. We
first inspect the timestamps on the ratings, and remove any that appeared more than 20 seconds than the
end of the audio. Because of the natural delay and because the collection process is subject to network
and computational constraints, there can be ratings that are timestamped greater than the audio length. If
the difference is however too high, we judge it to be an annotation error. We also remove any annotated
audio where there is fewer than one rating per 20 seconds because the annotators were instructed to
annotate every 5-10 seconds.

Obtaining Final Scores To calculate the final score for each system, we average the ratings across
each annotated audio, then average across all the annotated audios pertaining to each system-latency
combination. This type of averaging renders all input speeches equally important and it is not affected
by the speech length or the eagerness of the annotator.

The final scores for Czech-to-English and English-to-German are provided further below in Tables 18
and 19, respectively.

A.3 MQM-based Human Evaluation for English-to-Japanese
For the English-to-Japanese Simultaneous Translation Task, we conducted a human evaluation using a
variant of Multidimensional Quality Metrics (MQM; Lommel et al., 2014). MQM has been used in recent
MT evaluation studies (Freitag et al., 2021a) and WMT Metrics shared task (Freitag et al., 2021b). For
the evaluation of Japanese translations, we used JTF Translation Quality Evaluation Guidelines (JTF,
2018), distributed by Japan Translation Federation (JTF). The guidelines are based on MQM but include
some modifications in consideration of the property of the Japanese language.

We hired a Japanese-native professional interpreter as the evaluator. The evaluator checked translation
hypotheses along with their source speech transcripts and chose the corresponding error category and
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severity for each translation hypothesis on a spreadsheet. Here, we asked the evaluator to focus only on
Accuracy and Fluency errors, because other types of errors in Terminology, Style, and Locale convention
would not be so serious in the evaluation of simultaneous translation. Finally, we calculated the cumula-
tive error score for each system based on the error weighting presented by Freitag et al. (2021a), where
Critical and Major errors have the same level of error scores. The results are shown in Table 20.

Test Set Part Team CR (↑) BLEU (↑) StreamLAAL (↓)
Non-Native

Baseline-VAD 2.34 16.46 1.85
CUNI 3.02 24.53 1.79

ParCzech

Baseline-VAD 3.04 23.55 3.68
Interpreting-Student 3.35 11.31 4.34
CUNI 3.36 21.94 1.51
Interpreting-Professional 3.51 10.09 4.16

Table 18: Human evaluation using Continuous Rating (CR) for systems from the high-latency regime of simulta-
neous speech-to-text translation contrasted with two variants of human interpreting, Czech-to-English. The Con-
tinuous Rating values range from 1 (worst) to 4 (best).

Team CR (↑) BLEU (↑) COMET (↑) StreamLAAL (↓)
Baseline-Fixed 3.02 19.15 0.593 3.54

NAIST 3.25 24.58 0.717 3.71
CMU 3.39 22.63 0.697 1.47
OSU 3.56 25.80 0.729 3.21
UPV 3.63 29.81 0.739 2.90
CUNI 3.72 35.25 0.790 3.32

Table 19: Human evaluation using Continuous Rating (CR) for systems from the high-latency regime (except
CMU which was only in low-latency regime) of simultaneous speech-to-text translation, English-to-German. The
Continuous Rating values range from 1 (worst) to 4 (best).

System
BLEU

Error score
# Errors

(on two ACL talks) Critical Major Minor

CUNI 39.4 32 0 3 17
NAIST (high) 32.8 123 8 12 23
NAIST (low) 33.1 129 12 9 24

Table 20: Human evaluation results on two ACL talks (91 lines) in the English-to-Japanese Simultaneous speech-
to-text translation task. Error weights are 5 for Critical and Major errors and 1 for Minor errors.
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Figure 8: SPEECHM architecture. The platform is composed of the WebUI for managing user submissions and
showing evaluation results, produced by the evaluation scripts executed in the scope of Slurm jobs on the HPC
Ares (for CPU-based calculations) and Athena (for GPU-based calculations) HPC clusters.

Appendix B. Automatic Evaluation Results and Details

B.1 Evaluation Server
B.1.1 Introduction
The Evaluation Server is a collection of benchmarking resources and tools to evaluate the capability of
user systems with respect to a set of tasks. It is part of the SPEECHM platform, released by the Meetween
European Project68, which consists of (a) ten downstream tasks, (b) a set of task-dependent evaluation
metrics and (c) a WebUI for submissions and performance tracking by means of a leaderboard.

For the IWSLT-2025 Evaluation Campaign a dedicate instance of the SPEECHM has been developed,
named SPEECHM-IWSLT202569. It supports three of the IWSLT-2025 shared tasks, namely the Offline,
the Model Compression and the Instruction Following tasks.

B.1.2 User operations
Given a task testset (e.g. the TvSeries English-German testset for the Offline SLT task), users typically
perform the following operations:
1. download the source data (i.e. the English audios archive);
2. run their system and produce the hypothesis output (i.e. the German translations)
3. submitt their system output (i.e. the German translations);
4. wait for the evaluation process and read the evaluation scores (e.g. the COMET, and BLEU scores).

The SPEECH-IWSLT2025 allows the users to perform the above operations except the 2. one (users
are expected to run their systems outside the Evaluation Server). In addition users can also delete and
replace a submission with another one.

Submissions are managed trough the concept of user models, a user-defined entity that describes the
main features of a given user system. By means of models, users can submitt multiples hypothesis
68www.meetween.eu
69iwslt2025.speechm.cloud.cyfronet.pl
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Figure 9: SPEECHM leaderboard.

outputs for the same task testset, one for each different developed system.

B.1.3 The Web UI
The Web UI facilitates the submission process, manages evaluation submissions, and monitors inter-
actions with the external HPC cluster. This workflow is illustrated in Figure 8. Initially, users must
create an account in the SPEECHM system, a straightforward process due to its integration with PLGrid,
GitHub, and Google identity providers. Once registered, users can download the challenge input files
(Step 1). These files serve as input for the participant’s model inference (Step 2), which must currently
be performed outside the SPEECHM system. In future iterations, SPEECHM aims to integrate this step
as well.

After generating the outputs, users can conveniently upload them to the SPEECHM portal (Step 3).
At this stage, challenge owners initiate the hypothesis evaluation process (Step 4). This step is restricted
to challenge owners since they alone have access to the HPC computational resources required for eval-
uation. SPEECHM employs slurmrestd70 to submit SLURM jobs to HPC clusters and to monitor job
execution status.

Upon completion of the evaluations, the scores are stored in the SPEECHM database (Step 5). These
scores contribute to generating various leaderboards, such as those specific to a task, testset, or model.
An example leaderboard is shown in Figure 9.

B.1.4 The evaluation scripts
The evaluation metrics are computed through a set of scripts that run on the PLGRID clusters71. Scripts
to compute the metrics that benefit from usage of GPU cards (such as COMET, BLEURT and BERT
scores) run on the Athena72 cluster while the other scripts (computing ASR, BLEU and CharacTER
scores) are executed on the Ares cluster73.

It is worth noticing here that while the references of the Offline and Model Compression task testsets
are typically unstructured plain files, those of the Instruction Following task are structured as XML files.
Therefore, the evaluation script for the Instruction Following task testsets has been developed specifically
in order to manage the XML input structure.

B.2 Offline SLT

• Systems are ordered according to the COMET score (denoted by COMET, the first column).
• The “Joint” table is computed by averaging the scores of the 4 test sets, aka macro-averaging.
70slurm.schedmd.com/slurmrestd.html
71portal.plgrid.pl
72www.cyfronet.pl/en/19073,artykul,athena.html
73www.cyfronet.pl/en/computers/18827,artykul,ares supercomputer.html
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• The “D” column indicates the data condition in which each submitted run was trained, namely: Con-
strained (C), Constrained+LLM (C+), Unconstrained (U).

• This year, we have submissions of both cascade and end-to-end architectures.

System D Joint
COMET (↑) BLEU (↑) BLEURT (↑) chrF (↑) CharacTER (↓) TER (↓)

KIT U 0.783 30.2 0.660 57.4 0.451 63.1
NYA U 0.780 28.9 0.646 56.5 0.463 64.6
NeMo U 0.765 28.7 0.638 56.1 0.465 67.1
AIB U 0.676 22.0 0.520 47.8 0.548 77.4
NAIST U 0.644 17.9 0.469 43.0 0.628 77.1
CUNI-NL C+ 0.632 19.4 0.465 44.3 0.634 73.2
NAIST C+ 0.594 13.4 0.400 37.9 0.693 83.3

System D Accent
COMET BLEU BLEURT chrF CharacTER TER

NYA U 0.742 20.7 0.595 52.0 0.543 78.3
KIT U 0.733 21.8 0.603 52.3 0.54 76.2
NeMo U 0.712 18.4 0.579 51.0 0.549 92.5
NAIST U 0.695 16.7 0.551 46.8 0.598 81.2
AIB U 0.688 19.4 0.533 50.2 0.569 79.7
NAIST C+ 0.672 13.7 0.518 43.8 0.628 86.8
CUNI-NL C+ 0.628 15.3 0.473 40.6 0.676 80.5

System D Asharq News
COMET BLEU BLEURT chrF CharacTER TER

KIT U 0.833 36.2 0.722 65.0 0.382 54.5
NYA U 0.832 37.5 0.708 64.7 0.396 52.8
NeMo U 0.826 38.1 0.708 64.7 0.384 51.1
AIB U 0.811 35.8 0.686 62.1 0.416 53.3
NAIST U 0.601 18.3 0.408 40.9 0.677 74.6
CUNI-NL C+ 0.583 21.8 0.432 47.5 0.629 71.8
NAIST C+ 0.503 10.3 0.282 30.3 0.804 81.8

System D ITV
COMET BLEU BLEURT chrF CharacTER TER

KIT U 0.722 21.8 0.579 44.3 0.546 74.7
NYA U 0.704 19.1 0.551 42.9 0.564 78.4
NeMo U 0.695 19.8 0.546 42.2 0.571 75.8
CUNI-NL C+ 0.544 10.6 0.318 29.7 0.778 83.3
NAIST U 0.513 8.20 0.287 25.7 0.787 93.8
NAIST C+ 0.491 6.90 0.249 25.4 0.786 97.5
AIB U 0.401 2.60 0.172 17.9 0.788 121

System D Scientific Presentations
COMET BLEU BLEURT chrF CharacTER TER

KIT U 0.842 40.9 0.735 68.0 0.337 47.0
NYA U 0.840 38.4 0.730 66.4 0.348 48.9
NeMo U 0.828 38.4 0.718 66.3 0.355 49.0
AIB U 0.804 30.0 0.688 61.0 0.418 56.1
CUNI-NL C+ 0.772 29.9 0.638 59.4 0.453 57.1
NAIST U 0.766 28.6 0.630 58.5 0.448 59.0
NAIST C+ 0.710 22.8 0.550 52.2 0.554 67.1

Table 21: Official results of the automatic evaluation for the Offline Speech Translation Task on official test sets,
English to German.

System D Asharq News
COMET (↑) BLEU (↑) BLEURT (↑) chrF (↑) CharacTER (↓) TER (↓)

NYA U 0.839 22.1 0.665 55.4 0.440 64.4
NeMo U 0.820 19.7 0.644 52.7 0.461 66.2
AIB U 0.812 17.2 0.627 50.3 0.496 67.0

Table 22: Official results of the automatic evaluation for the Offline Speech Translation Task on official test set,
English to Arabic.
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System D Scientific Presentations
COMET (↑) BLEU (↑) BLEURT (↑) chrF (↑) CharacTER (↓) TER (↓)

NYA U 0.860 56.7 0.713 49.1 0.418 32.9
AIB U 0.856 55.7 0.719 49.1 0.427 33.0
BigWaterMelon U 0.845 56.2 0.703 49.5 0.436 34.1
NeMo U 0.844 46.3 0.699 40.6 0.481 39.0
NAIST U 0.771 40.2 0.590 33.4 0.600 48.4
NAIST C+ 0.711 31.0 0.487 26.6 0.724 56.7

Table 23: Official results of the automatic evaluation for the Offline Speech Translation Task on official test set,
English to Chinese. When computing the TER scores via sacreBLEU, we provide these two additional arguments:
“–ter-normalized” and “–ter-asian-support”
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B.3 Simultaneous SLT

Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)

Low-Latency

Baseline-Fixed 15.74 0.551 1.87 1.70 (2.61)
Baseline-VAD 17.81 0.595 1.82 1.99 (3.10)
NAIST 20.85 0.680 1.92 1.82 (N/A)
OSU ∗ 22.04 0.708 1.84 1.73 (2.47)
CMU 22.63 0.697 1.69 1.47 (1.81)

High-Latency

Baseline-Casc.∗ 24.89 0.699 3.23 3.20 (4.59)
Baseline-Fixed 19.15 0.593 2.35 3.54 (4.57)
Baseline-VAD 22.07 0.644 3.43 2.95 (3.82)
NAIST 24.58 0.717 3.99 3.71 (N/A)
OSU ∗ 25.80 0.729 3.34 3.21 (4.41)
UPV ∗ 29.81 0.739 2.94 2.90 (3.37)
CUNI ∗ 35.25 0.790 3.77 3.32 (N/A)

Table 24: English-to-German simultaneous speech-to-text translation divided by latency regimes. Latency is mea-
sured in seconds. Values in parentheses are computationally aware latency and are provided for system submissions
only on the test set. Cascaded systems are marked with an asterisk (∗).

Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)

Low-Latency

Baseline-Fixed 20.42 0.568 2.35 3.76 (4.64)
Baseline-VAD 22.63 0.588 1.88 1.96 (2.74)
OSU ∗ 34.06 0.705 2.22 2.20 (3.34)
NAIST 37.82 0.747 2.46 2.28 (N/A)
CMU 43.26 0.773 2.19 2.15 (2.66)

High-Latency

Baseline-Fixed 21.84 0.595 3.12 3.11 (3.98)
Baseline-VAD 26.19 0.638 3.28 3.15 (3.91)
OSU ∗ 37.07 0.733 3.52 3.49 (4.82)
CUNI ∗ 39.07 0.808 3.54 2.94 (N/A)
NAIST 39.41 0.761 3.70 3.20 (N/A)

Table 25: English-to-Chinese simultaneous speech-to-text translation divided by latency regimes. Latency is mea-
sured in seconds. Values in parentheses are computationally aware latency and are provided for system submissions
only on the test set. Cascaded systems are marked with an asterisk (∗).
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Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)
Low-Latency

Baseline-VAD 11.32 0.591 2.35 2.21 (3.25)
NAIST 23.84 0.786 3.34 2.83 (N/A)

High-Latency

Baseline-Fixed 10.05 0.610 3.74 4.62 (5.89)
Baseline-VAD 13.76 0.667 3.66 3.54 (4.62)
NAIST 23.99 0.787 3.98 3.25 (N/A)
CUNI ∗ 33.44 0.841 4.48 4.23 (N/A)

Table 26: English-to-Japanese simultaneous speech-to-text translation divided by latency regimes. Values in paren-
theses are computationally aware latency and are provided for system submissions only on the test set. Cascaded
systems are marked with an asterisk (∗).

Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)
Low-Latency

Baseline-Fixed 19.96 0.647 1.87 2.31 (3.26)
Baseline-VAD 19.94 0.642 1.78 2.46 (3.70)
CUNI 20.78 0.715 1.76 1.41 (N/A)

High-Latency
Baselines-Casc.∗ 19.92 0.675 3.64 4.29 (8.11)
Baseline-Fixed 21.44 0.662 3.41 3.34 (4.22)
Baseline-VAD 23.55 0.677 3.34 3.68 (4.67)
CUNI 21.94 0.729 2.63 1.51 (N/A)

Table 27: Czech-to-English simultaneous speech-to-text translation for the native speakers test set divided by
latency regimes. Latency is measured in seconds. Values in parentheses are computationally aware latency and are
provided for system submissions only on the test set.

Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)
Low-Latency

Baseline-Fixed 8.84 0.568 1.87 3.33 (4.53)
Baseline-VAD 12.84 0.589 1.78 1.00 (1.88)
CUNI 21.59 0.704 1.76 3.30 (N/A)

High-Latency

Baselines-Casc.∗ 24.00 0.698 3.64 5.30 (9.43)
Baseline-Fixed 18.02 0.612 3.41 5.19 (6.22)
Baseline-VAD 16.46 0.626 3.34 1.85 (2.62)
CUNI 24.53 0.749 2.63 1.79 (N/A)

Table 28: Czech-to-English simultaneous speech-to-text translation for the non-native speakers test set divided by
latency regimes. Latency is measured in seconds. Values in parentheses are computationally aware latency and are
provided for system submissions only on the test set.
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Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)

Low-Latency

Baseline-Fixed 10.89 0.490 1.87 2.48 (3.57)
Baseline-VAD 10.22 0.487 1.82 3.43 (4.41)
CMU 11.18 0.525 1.87 1.74 (2.26)
NAIST 12.15 0.570 1.92 1.89 (N/A)
OSU ∗ 16.11 0.618 1.84 2.06 (2.90)

High-Latency

Baselines-Casc.∗ 13.99 0.583 3.23 3.09 (4.37)
Baseline-Fixed 13.03 0.520 2.35 4.06 (4.92)
Baseline-VAD 11.07 0.500 3.43 3.33 (4.33)
CUNI ∗ 12.51 0.626 3.77 2.99 (N/A)
NAIST 12.92 0.585 3.99 3.70 (N/A)
UPV ∗ 16.26 0.599 2.94 3.58 (N/A)
OSU ∗ 18.73 0.643 3.34 3.81 (4.83)

Table 29: English-to-German simultaneous speech-to-text translation for the challenging accented test set divided
by latency regimes. Latency is measured in seconds. Values in parentheses are computationally aware latency and
are provided for system submissions only on the test set. Cascaded systems are marked with an asterisk (∗).
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B.4 Automatic Subtitling

Team Cndt System Domain Sub. qual. Translation quality Subtitle compliance
SubER Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry ITV 62.86 19.11 40.62 .4899 93.78 100.00 100.00
Asharq-Bloomberg 50.87 35.21 59.03 .6057 92.44 100.00 99.19

APPTEK U cntrstv1 ITV 63.57 20.65 42.94 .5043 82.36 100.00 97.55
Asharq-Bloomberg 51.93 34.28 57.83 .5869 95.69 100.00 99.85

APPTEK U cntrstv2 ITV 63.31 18.06 39.16 .4767 97.40 100.00 100.00
Asharq-Bloomberg 50.94 35.02 58.99 .6052 92.13 100.00 99.07

Table 30: Subtitling Task: automatic evaluation scores on tst2025 en→de. U stands for unconstrained training
condition; prmry and cntrstv for primary and contrastive systems.

Team Cndt System Domain Sub. qual. Translation quality Subtitle compliance
SubER Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry Asharq-Bloomberg 62.13 21.56 52.74 .5995 99.81 100.00 99.97
APPTEK U cntrstv1 Asharq-Bloomberg 62.62 21.22 52.25 .5982 99.81 100.00 99.97
APPTEK U cntrstv2 Asharq-Bloomberg 62.57 21.87 53.27 .6044 96.28 100.00 99.38

Table 31: Subtitling Task: automatic evaluation scores on tst2025 en→ar. U stands for unconstrained training
condition; prmry and cntrstv for primary and contrastive systems.

Team Cndt System Domain Sub. qual. Translation quality Subtitle compliance
SubER Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry ITV 66.55 18.86 41.71 .5053 93.50 100.00 100.00
APPTEK U cntrstv1 ITV 69.32 19.07 43.08 .5164 83.53 100.00 97.87
APPTEK U cntrstv2 ITV 65.97 18.33 40.96 .5008 97.07 100.00 100.00

Submissions 2024
APPTEK U prmry ITV 72.38 16.98 40.42 .4683 69.23 100.00 99.92

FBK-AI4CDIR C prmry ITV 78.90 9.67 28.43 .2911 70.45 90.04 99.97
FBK-AI4CCSC U prmry ITV 79.92 14.86 35.16 .4048 54.20 91.12 100.00

HW-TSC U prmry ITV 76.04 16.09 41.34 .5098 61.72 61.80 100.00

Table 32: Subtitling Task: automatic evaluation scores on tst2024 en→de. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems.

Team Cndt System Domain Sub. qual. Translation quality Subtitle compliance
SubER Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry ITV 65.26 18.79 41.62 .5064 93.32 100.00 100.00
APPTEK U cntrstv1 ITV 66.97 20.27 43.73 .5219 82.02 100.00 97.69
APPTEK U cntrstv2 ITV 65.01 18.26 40.77 .5003 97.12 100.00 100.00

Submissions 2024
APPTEK U prmry ITV 69.21 17.97 41.27 .4790 67.64 100.00 99.96
HW-TSC U prmry ITV 72.16 18.35 42.95 .5244 60.15 62.37 100.00

FBK-AI4CCSC U prmry ITV 74.91 16.19 35.91 .3996 54.70 92.97 100.00
FBK-AI4CDIR C prmry ITV 77.15 10.40 29.13 .2939 68.73 91.00 99.97
Submissions 2023

APPTEK U prmry ITV 69.83 14.43 35.27 0.4028 86.01 100.00 100.00
TLT U prmry ITV 73.11 14.92 37.13 0.4501 80.21 99.47 100.00

APPTEK C prmry ITV 80.87 9.08 27.74 0.2612 91.14 100.00 100.00
FBK DIR C prmry ITV 82.67 8.05 26.10 0.2255 67.75 85.12 100.00

Table 33: Subtitling Task: automatic evaluation scores on tst2023 en→de. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems.
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B.5 Low-Resource SLT

North Levantine Arabic→English (Unconstrained Condition)
Team System BLEU↓ COMET chrF2
KIT primary 23.34 0.704 45.09
LIA primary 22.56 0.719 44.72
KIT contrastive2 21.93 0.697 44.67
LIA contrastive2 21.45 0.694 43.13
LIA contrastive1 21.02 0.698 42.92

ALADAN primary 20.02 0.661 39.91
KIT contrastive1 19.11 0.683 40.95

AIB Marco contrastive4 16.47 0.683 37.96
AIB Marco contrastive3 16.22 0.667 37.48
AIB Marco contrastive1 15.82 0.646 36.23

JHU contrastive1 15.39 0.657 35.91
JHU primary 14.64 0.649 36.23

AIB Marco primary 12.01 0.655 34.19
AIB Marco contrastive2 10.53 0.573 27.69

Table 34: Automatic evaluation results for the North Levantine Arabic to English task, unconstrained Condition.
A lowercase, no-punctuation variant of chrF2 is reported. The Unbabel/wmt22-comet-da model was used
for COMET computation, with the source side (Arabic transcript) unmodified and the target side lowercased and
with removed punctuation. The AIB Marco team did not submit a system description paper.

Bemba→English (Unconstrained Condition)
Team System BLEU
JHU primary 32.6
KIT primary 28.8
KIT contrastive2 28.1
JHU contrastive1 27.0
KIT contrastive1 27.0
JHU contrastive2 26.7

Team System WER
KIT ASR primary 33.2
JHU ASR primary 35.7

Table 35: Automatic evaluation results for the Bemba to English task, unconstrained Condition.

Bhojpuri→Hindi (Unconstrained Condition)
Team System BLEU chrF2
GMU contrastive1 3.4 23.0
GMU contrastive2 2.0 16
GMU primary 3.9 24.0
JHU contrastive1 10.7 34.0
JHU contrastive2 7.8 32.0
JHU primary 10.5 34.0

IIITH BUT contrastive1 10.2 32.0
IIITH BUT primary 9.9 33.0

Table 36: Automatic evaluation results for the Bhojpuri to Hindi task, unconstrained Condition.
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Estonian→English (Unconstrained Condition)
Team System BLEU chrF2 COMET

AIB Marco contrastive1 29.3 55.8 0.7944
AIB Marco contrastive2 23.3 48.3 0.7601
AIB Marco primary 30.9 57.4 0.7958

GMU contrastive1 30.2 53.4 0.7746
GMU contrastive2 29.6 52.9 0.7760
GMU primary 29.8 53.1 0.7767

Table 37: Automatic evaluation results for the Estonian to English task, unconstrained condition.

Irish→English (Unconstrained Condition)
Team System BLEU chrF2

AIB Marco contrastive1 7.8 32.0
AIB Marco contrastive2 12.5 34.0
AIB Marco primary 12.5 34.0

GMU contrastive1 8.4 32.0
GMU contrastive2 6.7 30.0
GMU primary 13.4 34.0
JHU contrastive1 12.0 33.0
JHU contrastive2 12.3 33.0
JHU primary 11.6 33.0

Table 38: Automatic evaluation results for the Irish to English task, unconstrained Condition.

Maltese→English (Unconstrained Condition)
Team System BLEU chrF2

KIT primary 58.9 76.5
SETU-DCU primary 56.7 81.9

KIT contrastive2 56.2 75.0
KIT contrastive1 55.2 74.4

SETU-DCU contrastive1 52.6 72.1
UOM primary 52.4 72.3
UOM contrastive1 52.4 72.3
UOM contrastive2 52.3 72.1

SETU-DCU contrastive2 44.7 65.5
JHU primary 41.4 68.6
JHU contrastive1 36.5 64.2

UOM-DFKI primary (e2e) 35.1 59.0
JHU contrastive2 24.8 55.8

UOM-DFKI contrastive1 (e2e) 18.5 42.0

Table 39: Automatic evaluation results for the Maltese to English task, Unconstrained Condition. e2e denotes
end-to-end system.

Maltese→English (Constrained Condition)
Team System BLEU chrF2
UOM primary 0.5 15.6

Table 40: Automatic evaluation results for the Maltese to English task, Constrained Condition.
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Marathi→Hindi (Constrained Condition)
Team System BLEU chrF2
SRI-B contrastive1 22.6 50.0
SRI-B contrastive2 24.0 52.0
SRI-B primary 23.7 52.0

Table 41: Automatic evaluation results for the Marathi to Hindi task, Constrained Condition.

Marathi→Hindi (Unconstrained Condition)
Team System BLEU chrF2
GMU contrastive1 44.3 68.0
GMU contrastive2 41.5 66.0
GMU primary 43.4 67.0
JHU contrastive1 40.7 65.0
JHU contrastive2 40.0 65.0
JHU primary 41.4 65.0

Table 42: Automatic evaluation results for the Marathi to Hindi task, Unconstrained Condition.

Quechua→Spanish (Unconstrained Condition)
Team System BLEU chrF2
GMU contrastive1 12.9 46.4
GMU contrastive2 13.0 46.4
GMU primary 12.7 46.2
JHU contrastive1 11.0 46.7
JHU primary 9.0 43.5

QUESPA contrastive1 15.0 52.4
QUESPA contrastive2 26.7 48.6
QUESPA primary 14.8 51.8

Table 43: Automatic evaluation results for the Quechua to Spanish task, Unconstrained Condition.

Fongbe→French (Unconstrained Condition)
Team System BLEU chrF2
LIA primary 39.6 56.7
LIA contrastive1 37.23 54.96
LIA contrastive2 32.76 50.09
LIA contrastive3 28.32 46.08

GMU primary 31.96 48.01
JHU primary 5.96 23.21
JHU contrastive1 6.26 23.27
JHU contrastive2 5.6 23.27

Table 44: Automatic evaluation results for the Fongbe to French task, Unconstrained Condition.
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B.6 Dialectal SLT

Tunisian Arabic→English (Unconstrained Condition)
test22 test23

Team System BLEU chrF BLEU chrF
KIT primary 22.7 44.4 21.4 42.3
KIT contrastive1 21.2 43 19.3 40.9
KIT contrastive2 21.4 43.7 19.2 41.1
LIA primary 22.3 44.3 21.0 42.5
LIA contrastive1 22.0 43.9 20.3 41.6
LIA contrastive2 21.6 43.4 19.2 40.3
LIA contrastive3 21.4 43.2 19.6 41.2
GMU primary 20.3 43.2 17.8 40.6
GMU contrastive1 19.2 42.8 17.3 40.0
GMU contrastive2 18.9 42.4 17.3 40.1
SYSTRAN primary 19.2 36.0 17.5 33.9
MBZAI primary 11.7 34.0 10.4 32.2
JHU primary 8.2 30.4 6.8 27.6
JHU contrastive1 30.7 42.8 7.3 27.9
JHU contrastive2 28.6 42.4 5.5 26.1

Table 45: Automatic evaluation results for the Tunisian to English Speech Translation task, Unconstrained Con-
dition. Primary systems are ordered in terms of the official metric BLEU on test23. We also report chrF score.

Tunisian Arabic ASR (Unconstrained Condition)
test22 test23

Team System WER CER WER CER
GMU primary 38.0 19.7 39.9 22.3
LIA primary 38.6 19.2 40.0 21.4
LIA contrastive1 39.2 44.4 40.3 22.5
AMIRBEK primary 39.9 20.0 41.0 22.3
SYSTRAN primary 40.6 21.0 41.8 23.3

Table 46: Word Error Rate (WER) and Character Error Rate (CER) of the ASR component of submitted cascaded
systems on test22 and test23 after Arabic-specific normalization for e.g. Alif, Ya, Ta-Marbuta on the hypotheses
and transcripts before computing WER/CER. Systems are ordered in terms of the official metric WER on test23.
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B.7 Instruction Following

en-en
Model Metric

Organization Condition Role ASR-WER ↓ SQA-BERTScore ↑ S2TSUM-BERTScore ↑
SHORT

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.07 0.46 -
MEETWEEN UNCONSTRAINED PRIMARY 0.18 0.17 -
NLE CONSTRAINED PRIMARY 0.13 0.50 -

CUNI-NL UNCONSTRAINED
PRIMARY 0.15 0.21 -
CONTRASTIVE 0.25 0.15 -

IST UNCONSTRAINED PRIMARY 0.15 0.14 -
LONG

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.17 0.42 0.17
KIT CONSTRAINED PRIMARY 0.15 0.41 0.23

en-de
Model Metric

Organization Condition Role S2TT-COMET ↑ SQA-BERTScore ↑ S2TSUM-BERTScore ↑
SHORT

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.77 0.36 -
NLE CONSTRAINED PRIMARY 0.71 0.38 -

CUNI-NL UNCONSTRAINED
PRIMARY 0.72 0.21 -
CONTRASTIVE 0.69 0.21 -

IST UNCONSTRAINED PRIMARY 0.34 0.22 -
LONG

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.55 0.35 0.16
KIT CONSTRAINED PRIMARY 0.74 0.35 0.21

en-it
Model Metric

Organization Condition Role S2TT-COMET ↑ SQA-BERTScore ↑ S2TSUM-BERTScore ↑
SHORT

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.81 0.40 -
NLE CONSTRAINED PRIMARY 0.75 0.42 -

LONG
MICROSOFT-PHI UNCONSTRAINED BASELINE 0.56 0.36 0.19
KIT CONSTRAINED PRIMARY 0.77 0.39 0.25

en-zh
Model Metric

Organization Condition Role S2TT-COMET ↑ SQA-BERTScore ↑ S2TSUM-BERTScore ↑
SHORT

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.81 0.33 -
NLE CONSTRAINED PRIMARY 0.76 0.35 -
IST UNCONSTRAINED PRIMARY 0.34 0.21 -

LONG
MICROSOFT-PHI UNCONSTRAINED BASELINE 0.51 0.39 0.04
KIT CONSTRAINED PRIMARY 0.77 0.41 0.37

Table 47: Complete results for the IF Task, including the BASELINE (Phi4-Multimodal). For each team, it is
indicated whether the submission was under CONSTRAINED or unconstrained settings, and if it was PRIMARY or
CONTRASTIVE. Bold indicates the best track-wise (SHORT and LONG) result per language direction, and underline
indicates the overall best result among tracks.
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