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Abstract

This paper presents CMU’s submission to the
IWSLT 2025 Simultaneous Speech Transla-
tion (SST) task for translating unsegmented
English speech into Chinese and German text
in a streaming manner. Our end-to-end speech-
to-text system integrates a chunkwise causal
Wav2Vec 2.0 speech encoder, an adapter, and
the Qwen2.5-7B-Instruct as the decoder. We
use a two-stage simultaneous training proce-
dure on robust speech segments curated from
LibriSpeech, CommonVoice, and VoxPopuli
datasets, utilizing standard cross-entropy loss.
Our model supports adjustable latency through
a configurable latency multiplier. Experi-
mental results demonstrate that our system
achieves 44.3 BLEU for English-to-Chinese
and 25.1 BLEU for English-to-German transla-
tions on the ACL60/60 development set, with
computation-aware latencies of 2.7 seconds and
2.3 seconds, and theoretical latencies of 2.2 and
1.7 seconds, respectively.

1 Introduction

CMU’s submission to the IWSLT 2025 Simulta-
neous Speech-to-Text Translation track (Abdulmu-
min et al., 2025)1 is an end-to-end model that effec-
tively translates unbounded English speech input
into German and Chinese text without speech seg-
mentation.

Translating unbounded speech presents unique
challenges. Unlike segmented speech translation,
it requires the model to maintain and process the
speech and translation history so that translation
quality, theoretical latency, and computation cost
can be balanced (Papi et al., 2024a,b). Large
language models (LLMs) have recently shown
strong performance in improving speech trans-
lation quality (Zhang et al., 2023; Chen et al.,
2024; Huang et al., 2023; Xu et al., 2024; Ah-
mad et al., 2024), and modern LLMs now support

1https://iwslt.org/2025/simultaneous

long-context inference due to architectural and al-
gorithmic advances (Han et al., 2024; Su et al.,
2024). These two advantages were recently unified
in InfiniSST (Ouyang et al., 2025), which frames
simultaneous translation as a multiturn dialogue
and enables inference on unbounded speech with
minimal computational overhead.

Our system is built upon the InfiniSST frame-
work and consists of:

1. A chunkwise causal Wav2Vec 2.0 Large en-
coder (Baevski et al., 2020b), which incremen-
tally processes the unbounded speech input.

2. The Qwen2.5-7B-Instruct LLM (Qwen et al.,
2025), which receives the encoded speech fea-
tures and performs simultaneous translation
using a specially designed key-value (KV)
cache management strategy.

However, a major limitation in speech translation
research is the scarcity of high-quality parallel
speech-text data. Only several hundred hours are
available on resources such as EuroParl-ST (Iranzo-
Sánchez et al., 2020) and CoVoST2 (Wang et al.,
2021b). To scale InfiniSST training beyond this
constraint, we synthesize training data by translat-
ing transcripts from automatic speech recognition
(ASR) datasets into target-language text using an
LLM.

Our experiments on the ACL60/60 development
set (Salesky et al., 2023) demonstrate that increas-
ing the amount of synthesized speech translation
data consistently improves translation quality, with
gains observed even beyond 3,000 hours of train-
ing data. Additionally, we find that Qwen2.5-7B-
Instruct significantly outperforms Llama3.1-8B-
Instruct (Grattafiori et al., 2024) on English-to-
Chinese translation and achieves comparable per-
formance on English-to-German translation.
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Figure 1: Model Architecture

2 Task Description

The IWSLT 2025 Simultaneous Speech-to-Text
Translation track2 focuses on translating unseg-
mented speech into target-language text using pre-
trained large language models (LLMs) and speech
encoders. The evaluation data consists of unseg-
mented ACL talks. For English-to-German, sys-
tems are additionally tested on accented speech,
while a dedicated development set is provided for
Czech-to-English.

Systems are evaluated on both translation qual-
ity and latency. Latency is measured using Stream-
LAAL (Papi et al., 2024a), while translation quality
is assessed using BLEU (Papineni et al., 2002) and
neural metrics such as COMET (Guerreiro et al.,
2024), BLEURT (Sellam et al., 2020), etc.

We participate in two language directions:
English-to-Chinese and English-to-German. For
both directions, we submit models operating in the
low-latency regime—achieving StreamLAAL ≤ 2
seconds for German and ≤ 2.5 seconds for Chinese
on the development set.

3 System Description

3.1 Model Architecture

Our model architecture builds upon In-
finiSST (Ouyang et al., 2025), a simultaneous
speech translation system designed to efficiently
handle unbounded streaming speech input and

2https://iwslt.org/2025/simultaneous

generate target text incrementally. The architecture
comprises three primary components: 1) a
streaming speech encoder that incrementally
computes representations from partial speech
without redundant computations; 2) a speech-
to-token embedding adapter that aligns speech
representations with the LLM’s token embedding
space; and 3) a multi-turn LLM decoder that
dynamically processes speech inputs and produces
translations interactively, as shown in Figure 1.

Streaming Speech Encoder We adapt the pre-
trained Wav2Vec 2.0 speech encoder (Baevski et al.,
2020a)3 with several modifications. First, we re-
place the convolutional positional embedding with
rotary positional embeddings (RoPE), due to its bet-
ter performance on long sequence tasks. Second,
we replace the original bidirectional attention with
chunk-wise causal attention, where each chunk con-
sists of 48 frames from wav2vec (equivalent to 960
ms). In chunk-wise causal attention, each frame
can attend to frames within the same chunk and
all preceding chunks, but not future ones. Third,
to limit the context length and computational load,
we use a sliding window approach, allowing chunk
i to attend only to the hidden states from chunks
within the window [i− ws + 1, i], where ws = 10
represents the window size.

Speech-to-Token Embedding Adapter Outputs
from the speech encoder typically have longer se-

3https://dl.fbaipublicfiles.com/fairseq/
wav2vec/wav2vec_vox_960h_pl.pt
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quence lengths compared to the corresponding
transcripts, and their embedding dimensions dif-
fer from those expected by the LLM. To address
this, we incorporate two 1D convolutional layers
with kernel size 2 and stride 2, effectively reducing
the length of the encoder output sequence. Subse-
quently, a linear projection layer maps these con-
volutional outputs to match the LLM embedding
space. This adapter downsamples input sequences
by a factor of 4, converting each speech chunk of
48 frames into 12 embedding vectors.

Multi-turn LLM Decoder The decoder gener-
ates the target text and emits a special EOS token
when additional speech input is needed. We uti-
lize the Qwen2.5-7B-Instruct (Qwen et al., 2025)4

and structure the inputs using a multi-turn dialogue
format. We also report results obtained with Llama-
3.1-8B-Instruct (Grattafiori et al., 2024)5 used as
the decoder.

3.2 Data Synthesis
We utilize three ASR datasets for data synthe-
sis: LibriSpeech-v12 (Panayotov et al., 2015),
CommonVoice-v11.0 (Ardila et al., 2020), and Vox-
Populi (Wang et al., 2021a). The English tran-
scripts are translated into Chinese and German us-
ing the 4-bit quantized Qwen2.5-32B-Instruct
model6. For LibriSpeech and VoxPopuli, whose ut-
terances are segmented from longer speech record-
ings, we condition the translation on up to three
preceding utterances to provide additional context.
The prompt is shown below.

<|im_start|>system
You are a professional translator.
<|im_end|>
<|im_start|>user
Given an English sentence along with its
preceding sentences, translate the given
sentence into Chinese. Do not include any
other text.

|Preceding Sentences|
{}
|End of Preceding Sentences|

|Sentence to Translate|

4https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

5https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

6https://huggingface.co/Qwen/Qwen2.
5-32B-Instruct-AWQ

Dataset # Robust Segments Hours

LibriSpeech 174112 1393
VoxPopuli 85874 687

CommonVoice 221717 1774

Total 481703 3854

Table 1: Statistics of synthesized data for model train-
ing.

{}
|End of Sentence to Translate|
<|im_end|>
<|im_start|>assistant

Given (speech, transcript, translation) triplets,
we first use Montreal Forced Aligner (McAuliffe
et al., 2017) to align speech and transcript words,
and then align transcript words with translation
words using SimAlign (Jalili Sabet et al., 2020)
with LaBSE model (Feng et al., 2022). In this way,
we obtain a mapping between speech and each
translation word.

Let mi denote the right boundary timestamp of
the speech segment aligned with the i-th translation
word. To ensure monotonic alignment, we enforce
mi = max(mi,mi−1). We then divide each utter-
ance into fixed-duration chunks of 960 ms and con-
struct a translation trajectory (s1, y1), (s2, y2), · · ·,
where each sj is a 960 ms speech chunk and
yj = (ylj , · · · , yrj ) is the translation span such
that mi ≤ 960 · j for all i ∈ [lj , rj ].

While segmented utterances mostly consist of
clean human speech, real-world scenarios often
include non-speech segments. To improve model
robustness, we create robust segments by slicing
unsegmented speech from LibriSpeech and Vox-
Populi into 30-chunk segments7. If a segment starts
in the middle of an utterance, we shift the start to
align with the utterance boundary. The trajectory
for a robust segment is constructed by concatenat-
ing the trajectories of all included utterances.

Since CommonVoice consists of short, single-
sentence utterances not derived from long speech,
we simulate robust segments by concatenating ran-
domly sampled utterances interleaved with ran-
domly inserted silence intervals.

The data statistics are shown in Table 1.

730 · 960 ms = 28.8 seconds.
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LLM Data English-Chinese English-German

Llama-3.1-8B-Instruct
LS+CV 39.3 / 2092 / 2691 21.1 / 1430 / 2183

LS+CV+VP 40.8 / 2159 / 2673 23.7 / 1503 / 2109

Qwen2.5-7B-Instruct LS+CV+VP 44.3 / 2189 / 2739 25.1 / 1689 / 2306

Table 2: Translation quality and latency across different combinations of LLMs and training data evaluated on
ACL60/60 development set. LS, CV, and VP refer to the LibriSpeech, CommonVoice, and VoxPopuli datasets,
respectively. Metrics are reported as A / B / C, where A is BLEU, B is StreamLAAL, and C is StreamLAAL_CA.
Incorporating synthetic speech translation data from VP leads to an improvement of at least 1 BLEU point.
Additionally, Qwen2.5-7B-Instruct significantly outperforms Llama-3.1-8B-Instruct in Chinese translation, with a
gain of approximately 4 BLEU points.

3.3 Training

We train our model using standard cross-entropy
loss on the target translation tokens, including the
special EOS token, derived from robust speech seg-
ments we constructed. Additionally, for each robust
segment, we randomly sample a latency multiplier
m ≤ 12 and merge every m consecutive chunks as
the data augmentation.

The training is conducted in two stages. Initially,
we freeze the LLM and only train the speech en-
coder and adapter components. In the subsequent
stage, we freeze the speech encoder, adapter and
LLM, and conduct LORA finetuning (Hu et al.,
2022).

3.4 Inference on Unbounded Speech

During inference, we segment the continuous in-
put speech into fixed-length chunks of 960 ms. To
manage latency, we vary the latency multiplier, en-
suring translations are generated only after accu-
mulating a predefined number of chunks. At each
inference step, the newly received speech chunks
are processed by both the speech encoder and the
LLM, where KV caching is used to avoid redundant
computations.

The speech encoder first processes new chunks
along with relevant cached context. The result-
ing speech features are then downsampled by the
adapter into a reduced set of embeddings, matching
the LLM’s input requirements. The LLM subse-
quently generates translations based on these em-
beddings.

The decoder uses a sliding window strategy to
maintain context, combining the cached represen-
tations of initial system instructions with the most
recent generated tokens similar to Han et al. (2024).
We concatenate the KV cache of instruction with
those of the most recent 1K tokens and apply RoPE

on top of them. Then the LLM generates transla-
tions conditioned on this combined KV cache.

4 Experiments

4.1 Setup

We use the Adam optimizer (Kingma and Ba, 2015)
with cosine learning rate decay and 1,000 warmup
steps. Training is conducted in two stages. In Stage
1, we update only the speech encoder and adapter,
using a maximum learning rate of 2e-4. In Stage
2, we freeze the speech encoder and train the LLM
with LoRA (Hu et al., 2022)8, using a maximum
learning rate of 1e-4. Each stage is trained for
one epoch with a maximum effective batch size
of 57.6K tokens. We leverage PyTorch Lightning9

and DeepSpeed ZeRO10 to train the model on a
node of 8 NVIDIA L40S GPUs.

During inference, we use beam search with beam
size 4, repetition penalty 1.2, and ngram_no_repeat
5. We set test-time latency multiplier to 3 for
English-to-Chinese and 2 for English-to-German.
The results are evaluated with BLEU, StreamLAAL
and StreamLAAL_CA.

4.2 Results

Results are presented in Table 2. While the syn-
thetic speech translation data from LibriSpeech
and CommonVoice already includes over 3K hours
of speech, adding additional synthetic data from
VoxPopuli consistently improves BLEU scores by
at least 1 point. Moreover, replacing Llama-3.1-
8B-Instruct with Qwen2.5-7B-Instruct leads to a
notable gain in translation quality, particularly for

8rank = 32, alpha = 16, dropout = 0.1, applied to all linear
layers.

9https://github.com/Lightning-AI/
pytorch-lightning

10https://github.com/deepspeedai/DeepSpeed
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English–Chinese, with an improvement of over 3
BLEU points.

5 Conclusion

In this paper, we presented CMU’s simultaneous
speech translation system built upon the InfiniSST
framework for the IWSLT 2025 SST task. Our
end-to-end model employs a chunkwise causal
Wav2Vec 2.0 encoder, a adapter, and the Qwen2.5-
7B-Instruct decoder. We demonstrated that syn-
thesizing training data by translating large-scale
ASR datasets significantly alleviates the limitations
posed by limited parallel data, achieving substantial
improvements in translation quality. Our experi-
ments indicated that the addition of synthesized
data from VoxPopuli provided consistent gains,
and the Qwen2.5-7B-Instruct decoder notably out-
performed alternatives, particularly in English-to-
Chinese translation. The proposed model effec-
tively balances translation quality and computa-
tional latency, showcasing strong performance in a
realistic, unbounded speech scenario.
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