
Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025), pages 274–281
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

LIA and ELYADATA systems for the IWSLT 2025 low-resource speech
translation shared task

Chaimae Chellaf*,1,4, Haroun Elleuch*,1,2, Othman Istaiteh*,1, Fortuné Kponou*,1,3

Fethi Bougares1,2, Yannick Estève1, Salima Mdhaffar1

1LIA (France), 2Elyadata (Tunisia), 3UAC/IMSP (Benin), 4LundiMatin (France)
Correspondence: salima.mdhaffar@univ-avignon.fr

Abstract

In this paper, we present the approach and sys-
tem setup of our participation in the IWSLT
2025 low-resource speech translation shared
task. We submitted systems for three lan-
guage pairs, namely Tunisian Arabic to English,
North Levantine Arabic to English, and Fongbé
to French. Both pipeline and end-to-end speech
translation systems were explored for Tunisian
Arabic to English and Fongbé to French pairs.
However, only pipeline approaches were inves-
tigated for the North Levantine Arabic–English
translation direction. All our submissions are
based on the usage of pre-trained models that
we further fine-tune with the shared task train-
ing data.

1 Introduction

The International Workshop on Spoken Language
Translation (IWSLT) is an annual scientific confer-
ence dedicated to the study and advancement of
spoken language translation technologies. It serves
as a platform for researchers and practitioners to
present their work on speech translation, encom-
passing areas such as automatic speech recogni-
tion (ASR) and machine translation (MT). IWSLT
has played a pivotal role in the advancement of
spoken language translation (ST) by providing a
structured environment to evaluate and compare
different approaches. Its emphasis on real-world
challenges, such as low-resource languages and
real-time translation, has contributed to the devel-
opment of more robust and versatile translation
systems. IWSLT 2025 (Abdulmumin et al., 2025)
proposes two shared tasks: High-resource ST and
Low-resource ST. Several language pairs were pro-
posed this year for the low-resource task. In this
paper, we focus on Tunisian Arabic-English, North
Levantine-English and Fongbé-French language
pairs. This paper describes the approach and sys-
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tem setup of the joint participation of LIA and
Elyadata in the tasks as mentioned earlier.

For the Tunisian Arabic-English and
Fongbé–French tracks, both end-to-end (E2E) and
pipeline approaches were explored. In contrast,
only pipeline approaches were investigated for
the North Levantine Arabic–English track. For
E2E approaches, we focus on fine-tuning self-
supervised learning (SSL) models and Whisper
models (Radford et al., 2023a). All systems are
trained with an unconstrained setup, which means
that any resource, including pre-trained language
models, can be used, except for evaluation
sets. We particularly investigate the SAMU-like
approach (Khurana et al., 2022) to enrich the SSL
speech encoder with semantic information. For
pipeline approaches, we focus on fine-tuning large
language models (LLMs).

The remaining of the paper is structured as fol-
lows: Section 2 presents the related work. Section
3 is dedicated to describe our systems for Tunisian
Arabic to English. The experiments for Fongbé
to French and for North Levantine to English are
presented, respectively, in sections 4 and 5. Section
6 concludes the paper and discusses future work.

2 Related Work

The Speech Translation task has received consid-
erable attention from the research community, and
numerous approaches have been proposed. Tradi-
tional speech translation (ST) approaches follow a
cascade architecture (Matusov et al., 2005; Kumar
et al., 2015; Laurent et al., 2023), where an auto-
matic speech recognition (ASR) system is followed
by a machine translation (MT) module applied to
the ASR output. Recent advances in deep neural
networks for both ASR and MT have led to sub-
stantial improvements in the overall performance
of ST systems.

More recently, end-to-end speech translation
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models (Bérard et al., 2018; Duong et al., 2016;
Bérard et al., 2016) have gained attention as an
alternative to the traditional cascade architecture.
These models aim to directly translate speech in
a source language into text or speech in the tar-
get language without requiring intermediate text
transcriptions. End-to-end models reduce latency,
avoid error propagation between ASR and MT com-
ponents, and can be optimized globally for the final
translation objective.

With the emergence of robust transformer-based
architectures and multilingual pretraining meth-
ods, such as those used in SeamlessM4T (Seam-
less Communication et al., 2023), speech transla-
tion systems have gained momentum, leading to
diversity in model architectures and training meth-
ods. Meta’s SeamlessM4T stands out as a unified
multimodal system capable of handling speech-to-
text translation across 101 input and 96 output lan-
guages. OpenAI’s Whisper (Radford et al., 2023a)
is an automatic speech recognition (ASR) system
that also offers speech-to-text translation capabili-
ties. Trained on 680,000 hours of multilingual and
multitask supervised data, Whisper demonstrates
robustness to accents, background noise, and tech-
nical language. It supports transcription in multiple
languages and translation from those languages
into English. Of the 680,000 hours of labelled au-
dio used by Whisper, 117,000 hours cover 96 other
languages. The dataset also includes 125,000 hours
of X→EN translation data. Beyond Whisper and
SeamlessM4T, several other models have emerged
that employ self-supervised learning (SSL) to en-
hance performance in speech translation. Wav2vec
2.0 (Baevski et al., 2020), introduced by Facebook
AI, is one of the earliest SSL-based models that sig-
nificantly improved ASR performance. Wav2vec
2.0 is typically coupled with a Transformer decoder
for speech translation. Building on this founda-
tion, w2v-BERT (Chung et al., 2021) and HuBERT
(Hsu et al., 2021) models have been developed. In
this paper, we investigate these recent advances in
speech-to-text translation systems to participate in
the IWSLT low-resource speech translation shared
task.

3 Tunisian Arabic-English Experiments

3.1 Data

The Tunisian Arabic dataset (LDC2022E01) used
in our experiments was developed and provided
by LDC2 to the IWSLT 2025 participants. It com-

prises 383h of Tunisian conversational speech with
manual transcripts, from which 160h are also trans-
lated into English. Thus, it is a three-way parallel
corpus, comprising audio, transcript, and transla-
tion. This LDC data constitutes the basic condition
of the dialect task. Arabic dialects are the infor-
mal form of communication in everyday life in
the Arab world. Tunisian Arabic is one of sev-
eral Arabic dialects. There is no standard written
Arabic form that all Tunisian speakers share. How-
ever, the transcripts of Tunisian conversations of
the LDC2022E01 Tunisian Arabic dataset follow
the rules of the Tunisian Arabic CODA – Conven-
tional Orthography for Dialectal Arabic (Habash
et al., 2012).

3.2 Pipeline ST

3.2.1 ASR systems

Two ASR systems have been trained for the
Tunisian dialect. The first ASR system (Primary)
is based on the w2v_Bert 2.0 (Barrault et al., 2023)
speech encoder. In addition to the speech encoder
model, we incorporate an extra layer with 1024
neurons and LeakyReLU as the activation function,
followed by a fully-connected layer and a final
37-dimensional softmax layer, each dimension cor-
responding to a character. The weights of these
two additional layers were randomly initialized. In
contrast, the weights of the speech encoder part for
SSL models in the neural architecture were initial-
ized using pre-trained weights. The fine-tuning is
done with the LDC2022E01 training set using a
character-level CTC loss function. We optimize
the loss with an Adam optimizer of learning rate
equal to 1× 10−5 for both the speech encoder and
Adadelta with learning rate equal to 1.0 for the
linear layer.

The second ASR system (contrastive 1) is
trained with the same dataset and is based on the
Whisper-large-v3 model (Radford et al., 2023b).

We fine-tune this Whisper model for the ASR
task with the LDC2022E01 dataset. we used
AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 1e− 5 and weight decay of
0.01. The encoder was left unfrozen throughout
the training, which consisted of 10 epochs with a
warmup of 500 steps, a patience of two epochs for
early stopping, and a maximum gradient norm of
2.0. Training was performed using FP16 precision
with a sampling rate of 16 kHz, and the data was
randomly sorted. We set the batch size per GPU
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to 8 and used 4 H100 80GB GPUs with a gradient
accumulation factor of 4, resulting in an effective
batch size of 128 (8 × 4 GPUs × 4 accumulation
steps). We used a beam size of 8 for decoding, with
decode ratios ranging from 0.0 to 1.0. The model
was optimized using a negative log-likelihood loss.

We use the SpeechBrain toolkit to train ASR
systems (Ravanelli et al., 2024).

3.2.2 MT model
We fine-tuned a machine translation model
(contrastive3) based on the NLLB-200 1.3B ar-
chitecture (Costa-Jussà et al., 2022), a multilingual
transformer model designed to support high-quality
translation across over 200 languages, including
many low-resource ones. This model was specif-
ically adapted for the task of translating Tunisian
Arabic into English.

Fine-tuning was performed using the
LDC2022E01 translation training set, with
optimization carried out using the Cross-Entropy
loss function. We used the AdamW optimizer with
a learning rate of 1× 10−5 and a batch size of 16,
with a beam size of 8 for decoding. We use the
HuggingFace framework to train the MT model.

3.3 End-to-end ST

The entire dataset used to train the E2E system
includes 160 hours of data with gold translations
provided for the task, and 223 hours without trans-
lations, which we automatically translated using
the MT system described in Section 3.2.2. We filter
a portion of the 223 hours of translated data using
the BLASER score to improve translation quality.

SAMU-XLSR (Khurana et al., 2022) is a multi-
lingual multimodal semantic speech representation
learning framework where the speech transformer
encoder XLS-R is fine-tuned using semantic su-
pervision from the pre-trained multilingual seman-
tic text encoder LaBSE (Feng et al., 2022a). The
training and modeling details follow the original
paper (Khurana et al., 2022). In this work, we
use the same training framework except that we
trained our model starting from another speech en-
coder: w2v_Bert 2.0 (Barrault et al., 2023) and an-
other semantic text encoder BGE M3-Embedding
(Chen et al., 2024). We use the CommonVoice-v19
(Ardila et al., 2020) to train this model. In this
paper, we refer to this model as SAMU-BGE.

We use the standard encoder-decoder architec-
ture for our translation model. The training of
our E2E ST model is divided into three stages.

First, we specialize the SAMU-BGE model with
the Tunisian ST dataset. Second, we fine-tune
the mBart model for text-to-text translation from
Tunisian to English. Once our speech encoder
(SAMU-BGE) and our decoder (mBart) are fine-
tuned, we initialize the encoder and decoder using
these models. A feed-forward network projection
layer is used to connect the encoder and decoder,
bridging the two modules. The described system
presents our Primary ST system.
For the contrastive 1 system, we use Whisper-
large-v3 to train the ST model. The training of
our model is separated into two stages. First, we
train an end-to-end ASR model (the ASR model is
described in Section 3.2.1). Then, once our ASR
model is trained, we fine-tune this Whisper model
for the translation task. We used AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 1e-5 and weight decay of 0.01. The encoder was
left unfrozen throughout the training, which ran for
10 epochs with a warmup of 500 steps, a patience
of two epochs for early stopping, and a max gra-
dient norm of 2.0. Training used FP16 precision
with a sampling rate of 16 kHz, and the data was
randomly sorted. We set the batch size per GPU
to 8 and used 4 H100 80GB GPUs with a gradient
accumulation factor of 4, resulting in an effective
batch size of 128 (8 × 4 GPUs × 4 accumulation
steps). We used a beam size of 8 for decoding, with
decode ratios ranging from 0.0 to 1.0. The model
was optimized using a negative log-likelihood loss.
We combined different augmentations to perform
data augmentation: speed perturbation (resample
the audio signal at a rate that is similar to the orig-
inal rate, to achieve a slightly slower or slightly
faster signal), frequency drop (randomly drops sev-
eral frequency bands to zero) and chunk drop (an
augmentation strategy that helps a model learn to
rely on all parts of the signal, since it can’t expect
a given part to be present).
For the contrastive 2 system, we use Whisper-
large-v3 to train the ST model without the step of
ASR fine-tuning and without data augmentation.
We apply the same parameters described for the
contrastive 1 system.

3.4 Results

3.4.1 Results for ASR

The ASR results in terms of word error rate (WER)
are reported in Table 1 on the development datasets
and the internal test provided by the organisers.
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Table 1: WER (%) results for Tunisian dialect ASR.

Dev Test Int Test1 Test2

Primary 36.3 39.63 38.6 40
Contrastive 1 36.78 40.43 39.2 40.3

3.4.2 Results for ST
The ST results in terms of BLEU scores are re-
ported in Table 2 on the development datasets and
the internal test provided by the organisers.

Table 2: BLEU results for Tunisian dialect to English
translation.

Dev Test Int Test1 Test2

Primary 25.04 21.41 22.3 21
Contrastive 1 24.72 21.12 22 20.3
Contrastive 2 24.63 20.40 21.6 19.2
Contrastive 3 23.77 20.23 21.4 19.6

4 Fongbé-French Experiments

4.1 Data
The dataset used in our experiments comprises a
total of 61 hours of speech. For the end-to-end
speech translation (ST) task, we used the entire
dataset. We also used internal data for the au-
tomatic speech recognition (ASR) task, by using
Fongbé transcripts we collected for a 36 hour sub-
set. To ensure a fair comparison between the end-
to-end and cascade systems, we excluded the vali-
dation and test portions of the ST dataset from the
ASR training set.

Table 3: ST and ASR dataset description

Experiments Split Hours Sentences

ASR Train 29 19.9k
ASR Valid 3.54 2.4k
ASR Test 3.93 2.5k

ST Train 48 29.5k
ST Valid 6.1 4.1k
ST Test 5.9 3.9k

4.2 Pipeline ST
4.2.1 ASR system
We conducted three automatic speech recognition
(ASR) experiments for ASR. In the first experi-
ment, Fongbé transcripts containing diacritics were

used to establish a baseline, referred to as ASR
With Diacritics. The second experiment was per-
formed using transcripts without diacritics (ASR
Without Diacritics). In the third, we introduced
a novel diacritic substitution strategy: monosyl-
labic words containing diacritics were systemat-
ically replaced by their base syllables appended
with a unique numerical identifier (ASR with Sub).
This method was designed to retain key linguistic
distinctions while modifying the representation of
diacritics, potentially improving the model’s abil-
ity to generalize across phonetically similar pat-
terns. For each setting, we trained a separate Sen-
tencePiece tokenizer (Kudo and Richardson, 2018)
at the character level using the combined training
and validation sets. The resulting vocabulary sizes
were 62, 44, and 36 for the diacritics, no-diacritics,
and substitution settings, respectively. All ASR
models shared the same architecture, consisting
of an AfriHuBERT speech encoder followed by
three fully connected layers with 1024 dimensions.
Training was performed using Connectionist Tem-
poral Classification (CTC) loss over 50 epochs.
The ASR model trained without diacritics achieved
the lowest WER of 17.02%, outperforming both
the model trained with diacritics (21.98%) and the
substitution-based model (22.18%), as detailed in
Table 4.

Table 4: WER (%) results for Fongbé ASR

Dev Test

ASR with Diacritics 17.25 21.89
ASR without Diacritics 12.71 17.02
ASR with Sub 24.63 22.18

4.2.2 MT model

We fine-tuned three versions of the NLLB-200 1.3B
model on Fongbé manual transcriptions: one with
diacritics, the second without diacritics, and a third
using diacritic-substituted sentences, as described
in the previous section. The model trained on dia-
critic transcriptions achieved the best performance,
followed by the substitution-based model. The re-
sults show in Table 5 highlight the importance of
diacritics in Fongbé for translation quality, while
also demonstrating that the substitution approach
offers a competitive alternative positioned between
the performance of models trained with and with-
out diacritics.
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Table 5: BLEU (%) results for Fongbé MT

Dev Test

MT With Diacritics 58.9 55.41
MT Without Diacritics 47.39 44.95
MT with Sub 57.56 53.88

4.3 Fongbe Speech Translation system

We explored the use of various speech en-
coders—specifically HuBERT-147, AfriHuBERT,
and XLS-R-1B in combination with different text
decoders, including mBART and NLLB. All exper-
imental results are presented in Table 6.

For the cascade experiments, we paired each
ASR system with its corresponding machine trans-
lation (MT) system. The best-performing cascade
system combines ASR with diacritics and MT with
diacritics, and is designated as the Primary sys-
tem. The second-best system, referred to as Con-
trastive 1, used both ASR and MT models trained
on diacritic-substituted data. The third system,
Contrastive 2, employed ASR and MT models
trained on data without diacritics.

In the end-to-end setting, for experiments in-
volving XLS-R-1B, we applied a semantic align-
ment strategy inspired by the method proposed
in Khurana et al. (2022), using translated labels.
SAMU, which builds on XLS-R-1B, integrates
a frozen Language-Agnostic BERT Sentence En-
coder (LaBSE) (Feng et al., 2022b) as the mas-
ter model to align Fongbé speech embeddings and
French text embeddings in a shared XLS-R repre-
sentation space.

We also investigated the impact of several data
augmentation techniques, including speed pertur-
bation, frequency drop, and chunk drop. Our best
end-to-end systems combined the AfriHuBERT en-
coder with the NLLB decoder, and the SAMU
model with NLLB, both enhanced by these aug-
mentations. Among them, the SAMU-NLLB sys-
tem achieved the highest performance in the end-to-
end speech translation task, ranking fourth overall
among all submitted systems. Consequently, we
selected the SAMU-NLLB end-to-end system as
the Contrastive 3 submission.

4.4 Results

Overall, for the Fongbé Speech Translation task,
we proposed both cascade and end-to-end systems.
All cascade systems outperformed the end-to-end

Table 6: BLEU results for Fongbé to French translation.

Dev Test

Primary 59.24 39.6
Contrastive 1 54.87 37.23
Contrastive 2 48.39 32.76
Contrastive 3 41.60 28.32

approach, with a gap of approximately ~11 BLEU
points between the best-performing cascade sys-
tem and the submitted end-to-end system (SAMU-
NLLB + Data Augmentation). This performance
difference highlights the potential for improving
end-to-end models through more effective encoder
adaptation techniques for the decoder, aiming to
narrow the gap between end-to-end and cascade
performance. The superiority of cascade systems
can be attributed, in part, to the use of in-domain
ASR data for fine-tuning the decoder, which pro-
vides a more aligned and semantically rich input
for the translation model.

5 North Levantine-English Experiments

5.1 Data

5.1.1 ASR dataset
The training data consisted of the Babylon Lev-
antine corpus (LDC2005S08) and the Levantine
Arabic QT (LDC2006T07), both provided by LDC,
along with an additional 23 hours of Levantine
speech automatically extracted from the QASR
dataset using the best performing dialect identifica-
tion model from Elleuch et al. (2025) 1. QASR
is the largest publicly available Arabic speech
recognition dataset, consisting of 2,000 hours of
transcribed speech collected from the broadcast
domain. It includes both dialectal and Modern
Standard Arabic (MSA) speech, as well as code-
switching (Mubarak et al., 2021).

5.1.2 MT dataset
The training data for the North Levantine to En-
glish machine translation task consisted of two dis-
tinct corpora. The first is the UFAL Parallel Cor-
pus of North Levantine 1.0, provided to partici-
pants in the IWSLT 2025 shared task. This corpus

1Whisper-large-v3 encoder trained on the ADI-20-53
dataset for Arabic dialect identification. This dataset com-
prises 53 hours of speech for 20 country-level dialects. The
Levantine subset included speech segments identified as Jor-
danian, Palestinian, Syrian, and Lebanese.
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comprises approximately 120,000 lines of parallel
North Levantine, MSA, and English textual data.

The second corpus is Levanti2, which includes
500,000 sentence pairs in Levantine colloquial Ara-
bic (covering Palestinian, Syrian, Lebanese, Jorda-
nian, and Egyptian dialects) and their English trans-
lations. Levanti comprises 42,000 real sentences
that have been manually translated and validated.
Additionally, it includes 466,000 high-quality syn-
thetic sentence pairs, carefully generated using
Claude Sonnet 3.5 (Anthropic, 2024). These syn-
thetic examples were created based on diverse dic-
tionary entries and carefully curated examples to
enhance the semantic and lexical diversity of the
corpus.

5.2 Pipeline ST
5.2.1 ASR systems
We submitted two ASR systems for the North
Levantine Arabic to English track, employing the
Whisper-large-v3 in an encoder-decoder configu-
ration, trained on a dataset that combines dialectal
and Modern Standard Arabic (MSA) transcribed
speech. The first system, contrastive 1, augmented
the Levantine dataset with an equal number of MSA
utterances, while the second system, primary, fur-
ther fine-tuned contrastive 1 solely on the Levan-
tine datasets (LDC2005S08 and LDC2006T07) to
specialize the model for Levantine dialects.

5.2.2 MT model
We trained two machine translation (MT) models
using the HuggingFace framework, both based on
the NLLB-200 1.3B model. The first MT model
was fine-tuned on the entire Levanti dataset using
a learning rate of 1 × 10−5 and a batch size of 8.
The second MT model was fine-tuned on the UFAL
Parallel Corpus and the non-synthetic portion of
the Levanti dataset, using the same learning rate
1× 10−5 and a batch size of 6, with a beam size of
5 for decoding.

Following extensive experimentation on the de-
velopment and test sets, we selected the second
MT model (trained on the UFAL Corpus and non-
synthetic Levantine data) for the final Levantine-to-
English translation task, as it outperformed the first
model in terms of translation quality.

We then constructed two cascaded systems
(contrastive 1 and contrastive 2) using the trained
ASR systems.

2https://huggingface.co/datasets/guymorlan/
levanti

5.3 ST candidates selection
To evaluate and rank outputs from different ASR-
MT combinations, we used the BLASER-REF
quality estimation model (Dale and Costa-jussà,
2024; Seamless Communication et al., 2023).
BLASER-REF is a reference-based model that es-
timates translation quality using SONAR embed-
dings (Duquenne et al., 2023), which map both
speech and text from different languages into a
shared latent space, making the model inherently
language and modality-agnostic.

The model takes three inputs: the original speech
signal, a system-generated translation, and a refer-
ence translation. As human reference translations
were unavailable, we used the transcription as the
reference. The speech input was encoded using
the SONAR Arabic speech encoder, which was
trained on Modern Standard Arabic (MSA); we
applied it to Levantine speech due to the lack of a
Levantine-specific encoder. The transcription and
translation were encoded using the SONAR text en-
coder, which supports the source (North Levantine
Arabic) and target (English) languages.

For each utterance, we generated 10 candidate
outputs from five ASR and two MT models—the
same systems described in Sections 5.2.1 and 5.2.2
with additional variants—and selected the output
with the highest BLASER-REF score on a scale
from 1 to 5, where higher scores indicate better
quality; this combination is considered our pri-
mary system for ST.

5.4 Results
5.4.1 Results for ASR
The ASR results in terms of word error rate (WER)
are reported in Table 7 on the development set 2024
(Dev), test set 2024 (Test), and test set 2025 (Test
2025) provided by the organisers. The Primary
system outperformed the Contrastive 1 system on
both Dev and Test sets.

Table 7: WER (%) results for North Levantine dialect
ASR.

Dev Test

Primary 38.43 41.06
Contrastive 1 38.92 42.86

5.4.2 Results for ST
The ST results in terms of BLEU score (BLEU) are
reported in Table 8 on the development set 2024
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(Dev), test set 2024 (Test), and test set 2025 (Test
2025) provided by the organisers.

Table 8: BLEU results for North Levantine dialect to
English translation.

Dev Test Test 2025

Primary 29.64 28.02 22.56
Contrastive 1 28.74 26.87 21.02
Contrastive 2 28.88 26.61 21.45

6 Conclusion

This paper describes the translation systems devel-
oped by LIA and ELYADATA for three tracks of
the IWSLT 2025 Evaluation Campaign, focusing
on low-resource speech translation. The targeted
language pairs are Tunisian Arabic–English, North
Levantine Arabic–English, and Fongbé–French.
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