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Abstract

This article describes the QUESPA team
speech translation (ST) submissions for the
Quechua to Spanish (QUE–SPA) track fea-
tured in the Evaluation Campaign of IWSLT
2025: dialectal and low-resource speech trans-
lation. This year, there is one main submission
type supported in the campaign: unconstrained.
This is our third year submitting our ST sys-
tems to the IWSLT shared task and we feel
that we have achieved novel performance, sur-
passing last year’s submission. This year we
submit three total unconstrained-only systems
of which our best (contrastive 2) system uses
last year’s best performing pre-trained language
(PLM) model for ST (without cascading) and
the inclusion of additional Quechua–Collao
speech transcriptions found online. Fine-tuning
of Microsoft’s SpeechT5 model in a ST set-
ting along with the addition of new data and
a data augmentation technique allowed us to
achieve 26.7 BLEU. In this article, we present
the three submissions along with a detailed de-
scription of the updated machine translation
system where a comparison is done between
synthetic, unconstrained, and other data for
fine-tuning.

1 Introduction

In this article, we describe three systems that were
submitted to the IWSLT 2025 Low-Resource Track
for Speech Translation (ST). The IWSLT task is
particularly challenging for low-resource languages
(LRLs) due to the lack of data needed to create,
or even fine-tune, a pre-trained language model
(PLM). While many problems are solvable with
APIs provided by large corporations such as Chat-
GPT or Gemini, it is still the case that for LRLs,
zero-to-few shot approaches are needed where
corporate-level APIs do not contain enough data
either. Here, we describe three main approaches
that extend previous approaches submitted in the
past three iterations of IWSLT (Ahmad et al., 2024;

Agarwal et al., 2023; Anastasopoulos et al., 2022)
where the best score gotten for ST until this pub-
lishing based on BLEU (Papineni et al., 2002) for
the Quechua to Spanish task was: 19.7, submittted
by this same team QUESPA.

Quechua is an indigenous language spoken by
more than 8 million people in South America. It is
mainly spoken in Peru, Ecuador, and Bolivia where
the official high-resource language (HRLs) is Span-
ish. It is a highly inflective language based on its
suffixes which agglutinate and found to be similar
to other languages like Finnish. It is worthwhile to
note that previous work (Ortega and Pillaipakkam-
natt, 2018; Ortega et al., 2020) has been somewhat
successful in identifying the inflectional proper-
ties of Quechua such as agglutination where an-
other HRLs, namely Finnish, can aid for translation
purposes achieving nearly 20 BLEU on religious-
based (text-only) tasks. The average number of
morphemes per word (synthesis) is about two times
larger than English. English typically has around
1.5 morphemes per word and Quechua has about
3 morphemes per word. There are two main re-
gion divisions of Quechua known as Quechua I and
Quechua II. This data set consists of two main types
of Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO:quy) and Cusco, Peru (Quechua Col-
lao ISO:quz) which are both part of Quechua II and,
thus, considered a “southern” languages. We label
the data set with que - the ISO norm for Quechua
II mixtures.

The QUESPA team this year consists of four or-
ganizers from four different institutions: Northeast-
ern University, Pompeu Fabra University, Carnegie
Melon University and University of Pretoria. A
new organizer has been introduced this year who
has expertise in machine translation (MT) of
African languages. All of the IWSLT 2024 or-
ganizers have continued to work on the project
with exception of one. Three of the four organizers
have had experience with the QUE–SPA language
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pair in the past and submitted have already submit-
ted three times to IWSLT, making this article the
fourth submission with an increase of BLEU score
for each year’s submission. We report the QUESPA
consortium submission for the IWSLT 2025 and
once again focus on the low-resource task at hand
by combining all the two dialects Quechua I and II
into one. However, we specifically make use of the
Quechua II variant in Collao (ISO:quz), given the
discovery of a new corpus.

The rest of this article is organized as follows.
Section 2 presents the related work. Since we
would like to highlight the addition of our MT com-
parisons and systems by a new author, we present
a section dedicated to the MT delivery in Section
3.1. Afterwards, we present experiments for the
for QUE–SPA low-resource track are presented in
Section 3 and present their results in Section 4 pro-
vides.

2 Related Work

In this section, we first cover the different ap-
proaches used in previous speech processing shared
tasks for Quechua (Section 2.1). We then discuss
prior work that used a similar strategy to our pri-
mary submission to the unconstrained track (Sec-
tion 2.2).

2.1 Quechua Speech Processing

The previous iteration of IWSLT (Agarwal et al.,
2023) was the first time that Quechua–Spanish
was featured in the low-resource ST track. Due
to the small amount of available paired data, the
participants focused on exploiting PLMs for speech
and/or text in the unconstrained track. The teams
all converged on using XLS-R 128 (Babu et al.,
2021) as the pre-trained speech encoder, while
NLLB 200 (NLLB Team et al., 2022) was the most
popular text PLM. However, the teams used the
PLMs in very different manners. QUESPA (E. Or-
tega et al., 2023) separated the PLMs into distinct
systems for an ASR+MT cascade, GMU (Mbuya
and Anastasopoulos, 2023) performed full fine-
tuning on XLS-R for direct ST, and NLE (Gow-
Smith et al., 2023) combined the two PLMs via
adapter fine-tuning. By using PLMs for both the
input and output modalities, NLE and QUESPA
obtained the best performances at 15.7 and 15.4
BLEU respectively. For the constrained track, de-
veloping a usable system was far more difficult to
achieve. In this setup, the best performing model

was a direct ST system by GMU that achieved 1.46
BLEU. The QUESPA team adopted a near-identical
strategy to achieve 1.25 BLEU.

Quechua–Spanish ST was also featured as part
of a similar competition in the 2022 edition of
AmericasNLP (Ebrahimi et al., 2022). Similar
to IWSLT 2023, participants experimented with
different ways of leveraging PLMs. XLS-R and
NLLB were popular choices, but some teams also
experimented with DeltaLM (Ma et al., 2021) and
Whisper (Radford et al., 2023).

Quechua was most recently part of the 2023
ML-SUPERB Challenge (Shi et al., 2023), which
tasked participants on evaluating different self-
supervised (SSL) speech encoders on long-tail lan-
guages. Chen et al. (2023a) found that XLS-R 128
outperformed all other SSL encoders on Quechua,
further validating its popularity in the other compe-
titions.

2.2 Multilingual Speech Processing

Multilingual training is a common strategy to facil-
itate cross-lingual transfer learning, with the goal
of boosting performance on LRLs. While this is
generally done by pairing HRLs with low-resource
ones, it can also be beneficial in settings where only
LRLs are available. Chen et al. (2023b) trained
multilingual ASR systems on 102 languages, each
in a low-resource setting, and obtained state-of-
the-art (SOTA) results on the FLEURS benchmark
(Conneau et al., 2023). Radford et al. (2023) and
Peng et al. (2023) then combined multilingual ASR
and ST at scale, developing SOTA models through
supervised training on hundreds of thousands of au-
dio samples. Our strategy for the unconstrained
track can be viewed as a combination of these
two methods, enhancing performance on Quechua–
Spanish using multilingual ST training with other
LRLs.

3 Quechua-Spanish

In this section we present our experiments for the
QUE–SPA dataset provided in the low-resource ST
track at IWSLT 20251, identical to the dataset from
IWSLT 2024. As a reminder, the audio consists of
contains 1 hour and 40 minutes of unconstrained
speech along with its corresponding translations
and nearly 48 hours of ASR data (with transcrip-
tions) from the Siminichik (Cardenas et al., 2018)

1https://github.com/Llamacha/IWSLT2025_
Quechua_data
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corpus. Additionally, an MT dataset is offered from
previous neural MT work (Ortega et al., 2020). The
audio and corresponding transcriptions along with
their translations are mostly made of radio broad-
casting from the mountainous region in the Andes,
Peru. This dataset has been used in other tasks
but not in its entirety (Ebrahimi et al., 2023, 2022;
Zevallos et al., 2022a). This year there has been
a new addition to the dataset provided by the task
which is a machine-translated and post-edited text
of the Huqariq corpus (Zevallos et al., 2022b) that
was used last year by this team (Ortega et al., 2024)
for augmentation of the best performing T5 model
(Raffel et al., 2020).

We present the three submissions for uncon-
strained task ony as this year the constrained task
has been abandoned:

1. a primary unconstrained system consisting
of a Mamba ASR model (Zhang et al., 2024)
fine-tuned with unconstrained data and cas-
caded the best performing NLLB MT system
from our case study;

2. a contrastive 1 unconstrained system con-
sisting of a Whisper (Radford et al., 2023)
ASR model fine-tuned with the unconstrained
data and cascaded with the best performing
NLLB MT system from our case study;

3. a contrastive 2 unconstrained system con-
sisting of a SpeechT5 model (Ao et al., 2021)
fine-tuned for speech translation with two data
augmentation techniques and an additional
newly introduced corpus based on Quechua
Collao (iso: quz) (Paccotacya-Yanque et al.,
2022).

We present the experimental settings and results
for unconstrained systems starting off with the MT
case studies in Section 3.1. Then, we describe the
task further in Section 3.2. Primary, Contrastive 1
and Constrastive 2 descriptions are found in Sec-
tions Sections 3.3, 3.4 and 3.5, respectively. After-
wards, we offer results and discussion in Section 4.

3.1 Machine Translation
Our MT systems were all trained by fine-tuning the
1.3B parameter version2 of the NLLB_200 (NLLB
Team et al., 2022). For fine-tuning, we set max-
imum token lengths of 128 for both inputs and

2https://huggingface.co/facebook/nllb-200-1.
3B

outputs. Each model was trained for 10 epochs
with a batch size of 8 for both training and evalua-
tion, using 5 beams during generation. We saved
model checkpoints every 10,000 steps and set a
random seed of 65 to ensure reproducibility.

We trained four models, with each model using
a different training dataset. The first three mod-
els were trained strictly on datasets provided in
the shared task. The first model was fine-tuned on
the unconstrained data (U; Cardenas et al. 2018).
We then increased the training data using the pro-
vided additional_mt_text dataset (A; Ortega
et al. 2020) to train the second model. This data
consists of texts from JW300 (Agić and Vulić,
2019) and Hinantin websites. For the third model,
we further expanded the training data by incorpo-
rating the provided synthetic data (S; Zevallos
et al. 2022b) dataset. The sizes of the training data
for the three models are 573, 15,857, and 17,265
sentences, respectively.

The fourth model was trained on the largest avail-
able dataset. In this setting, we used additional
resources (AR) including SMOL (Caswell et al.,
2025), GATITOS (Jones et al., 2023), spanish-to-
quechua,3 and cuzco-quechua-translation-spanish4.
The SMOL and GATITOS datasets consist of
863 and 3,717 sentences, respectively. The two
latter datasets each contain over 100k sentences
(103k and 106k), though we observed overlap be-
tween them. To address this, we deduplicated the
Quechua sentences after merging the datasets. Af-
ter merging all available datasets, including those
provided in the shared task, and performing dedu-
plication, the total number of training sentences
amounted to 167,052.

For each of the four models, we experimented
with two different validation datasets. The first was
the 125 parallel sentences provided for validation
in the shared task. In the second, we expanded this
set by adding the 2,500-sentence JW300 validation
dataset, also provided in the shared task. In the lat-
ter setup, our goal was to ensure more generalizable
models. However, we identified several issues in
the JW300 validation data that required preprocess-
ing, including instances where the source and target
sentences were identical. After preprocessing and
cleaning, the expanded validation set consisted of

3https://huggingface.co/datasets/
somosnlp-hackathon-2022/spanish-to-quechua

4https://huggingface.co/
datasets/pollitoconpapass/
cuzco-quechua-translation-spanish
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Model-[Data]
BLEU CHRF

Vs Vl Ts Tl Trw Trm Vs Vl Ts Tl Trw Trm
MT-[U] 18.5 18.5 17.3 17.3 11.8 11.4 53.9 53.8 54.1 54.1 46.5 46.0
MT-[U + A] 19.5 19.3 18.0 17.5 15.0 14.8 54.7 54.3 54.9 54.3 52.4 51.8
MT-[U + A + S] 14.6 14.3 13.3 13.6 12.3 11.6 48.0 47.7 48.4 48.8 46.9 47.4
MT-[U + A + S + AR] 15.1 14.2 13.2 13.3 12.4 12.5 48.4 48.5 48.1 48.2 46.9 47.3

Table 1: Performance of the four models on the validation and test sets. We also report results on transcripts
generated from the test set, evaluated on models trained with the large validation set. KEY: T = test set, V =
validation set, Tr = transcripts. s and l denote the small and large validation sets, respectively. w and m denote the
Whisper and Mamba models, respectively. U = unconstrained, A = additional_mt_text, S = synthetic, AR =
additional resources.

2,309 parallel sentences.
Table 1 presents the performance of the four

machine translation models across different evalua-
tion setups, measured using both BLEU and CHRF
scores. Overall, the results indicate that while more
data leads to better performances, the quality of the
additional data matters. The first model, MT-[U],
shows decent performance with a BLEU score of
18.5 on the large validation set and 17.3 on the test
set, with strong CHRF scores ranging between 46
and 54. The second model, MT-[U + A], achieves
better BLEU and CHRF scores, particularly on the
transcript evaluations.

The third model, MT-[U + A + S], which incor-
porates synthetic data, shows a noticeable decline
in both BLEU and chrF scores across all evaluation
sets—most prominently on the test and validation
sets. This drop suggests that the inclusion of syn-
thetic data, if not carefully curated, can adversely
affect model performance. The final model, MT-[U
+ A + S + AR], demonstrates a slight improvement
over MT-[U + A + S] across the evaluation sets.
However, it does not fully recover the performance
lost when synthetic data was added to MT-[U + A].
This outcome highlights a crucial insight: although
expanding training data with additional and diverse
resources can enhance model generalization, intro-
ducing even a small amount of lower-quality data
can undermine those gains. Careful data quality
control is therefore essential when scaling datasets
for low-resource machine translation.

3.2 Unconstrained Setting

Just like in IWSLT 2024, the organizers provided
a total of 48 hours of audio along with their cor-
responding transcriptions. In addition, we trans-
lated the 48 hours of audio provided by the or-
ganizers into Spanish. Furthermore, we utilized a

portion of the AmericasNLP5 (ANLP) 2022 speech
translation competition corpus, which consists of
19 minutes of Guarani and 29 minutes of Bribri,
fully translated into Spanish. Although it is not a
Quechua corpus, these languages have morpholog-
ical similarities with Quechua, so we decided to
experiment to see if that improves our models. As
a new addition, we used the data set from previ-
ous work on Quechua Collao (Paccotacya-Yanque
et al., 2022) which, much like the IWSLT 2025
corpus, is part of the Quechua II division. Finally,
all the datasets described in this section allowed for
further fine-tuning of the previously trained end-to-
end speech translation model.

3.3 Primary System

The Primary System for the unconstrained set-
ting consists of a cascaded architecture, where the
output of an automatic speech recognition (ASR)
model is passed as input to a machine translation
(MT) model. For the ASR component, we employ
ConMamba (Jiang et al., 2024), a recent extension
of the Mamba architecture that integrates convo-
lutional modules into its encoder blocks, inspired
by Conformer (Gulati et al., 2020). This hybrid
design enhances the model’s ability to capture both
global and local dependencies. The encoder archi-
tecture comprises a sequence of modules: an ini-
tial feedforward layer with residual connection, a
bidirectional Mamba module (BiMamba) for long-
range dependency modeling, a convolutional layer
for local context enhancement, and final layer nor-
malization and refinement through another feedfor-
ward module (Tang et al., 2024). This combination
results in a balanced and efficient encoding mecha-
nism for speech signals.

5https://turing.iimas.unam.mx/americasnlp/
2022_st.html
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Figure 1: Overiew of the cascaded Contrastive 1 system. The input audio is passed into Whisper, which auto-
regressively generates a Quechua transcription. The transcription hypothesis is then passed to NLLB to be translated
into Spanish.

On the decoder side, we incorporate Cross-
Mamba, a unidirectional variant tailored for se-
quential processing without native cross-attention.
CrossMamba simulates cross-attention by concate-
nating key and query sequences, retaining only the
relevant portion of the output. This mechanism
allows for effective integration of encoder context
through a structured decoding pipeline: normal-
ization, unidirectional Mamba (UniMamba), a sec-
ond normalization step, CrossMamba integration,
and a final feedforward refinement. We train both
ConMamba and Conformer models using publicly
available recipes6, experimenting with small (S)
and large (L) configurations (144/512 dimensions,
12+4/12+6 layers). Training is performed over 110
epochs using AdamW with a Noam scheduler (30k
warm-up steps), and audio is tokenized with a BPE
tokenizer trained for each language using Speech-
Brain7. Once the speech is transcribed, we feed the
resulting text into the machine translation model
previously described, leveraging its capabilities to
produce the final translated output in a cascaded
speech translation setup.

3.4 Contrastive 1 System

The Contrastive 1 system is a simple ASR+MT cas-
cade. We develop the ASR module by fine-tuning
Whisper Large V3 (Radford et al., 2023) on the

6https://github.com/xi-j/Mamba-ASR
7https://github.com/speechbrain/speechbrain/

tree/develop/recipes/LibriSpeech/Tokenizer

entire 48 hours of unconstrained Quechua ASR
data in ESPnet (Watanabe et al., 2018). Whisper
consists of a Transformer encoder and Transformer
decoder (Vaswani et al., 2017). The bidrectional en-
coder receives mel audio features as input, whereas
the decoder is conditioned on a language identity
tag and the encoder output (Figure 1). The model
is trained for 22K steps with the Adam optimizer
(Kingma and Ba, 2015). We use a scheduler that
linearly warms up the learning rate to a peak value
of 1e-5 for 1500 steps, followed by exponential
decay for the remainder of training (Vaswani et al.,
2017). ASR inference is performed with greedy
decoding, the results of which are then passed to
the NLLB-based MT model described in Section
3.1.

3.5 Contrastive 2 System
The Contrastive 2 System for the unconstrained
setting consists of a pre-trained model called
SpeechT5 (Ao et al., 2022) , which was trained on
960 hours of audio from LibriSpeech. SpeechT5
consists of 12 Transformer encoder blocks and 6
Transformer decoder blocks, with a model dimen-
sion of 768, an internal dimension (FFN) of 3,072,
and 12 attention heads. Additionally, the voice
encoder’s pre-net includes 7 blocks of temporal
convolutions. Both the pre-net and post-net of
the voice decoder used the same configuration as
in Shen et al. (2018), except that the number of
channels in the post-net is 256. For the text en-

264

https://github.com/xi-j/Mamba-ASR
https://github.com/speechbrain/speechbrain/tree/develop/recipes/LibriSpeech/Tokenizer
https://github.com/speechbrain/speechbrain/tree/develop/recipes/LibriSpeech/Tokenizer


Team QUESPA BLEU and CHRF Scores

Unconstrained 2025

System Description BLEU CHRF
primary mamba asr + nllb mt 14.8 51.8
contrastive 1 whisper-v3 asr + nllb mt 15.0 52.4
contrastive 2 speechT5 + anlp + da-tts + nlpaug* + quz 26.7 48.6

Unconstrained 2024

primary speechT5 + aug 16.0 52.2
contrastive 1 speechT5 + anlp + da-tts + nlpaug* 19.7 43.1
contrastive 2 whisper asr + nllb mt 11.1 44.6

Table 2: Team QUESPA results for the Quechua to Spanish low-resource task at IWSLT 2025.

coder/decoder’s pre/post-net, a shared embedding
layer with a dimension of 768 is utilized. For vec-
tor quantization, two codebooks with 100 entries
each are used for the shared codebook module. The
model was trained using the normalized training
text from the LibriSpeech language model as unla-
beled data, which contains 400 million sentences.
Training was optimized using Adam (Kingma and
Ba, 2015), with a learning rate that linearly in-
creases during the first 8% of updates up to a maxi-
mum of 0.0002.

We fine-tuned SpeechT58 for Speech Translation
using the SpeechT5 fine-tuning recipe9 for Speech-
Translation with the same hyperparameter settings.
We used the 48 hours of audio provided by the or-
ganizers (anlp). We applied a data augmentation
technique called nlpaug (noise, distortion, dupli-
cation)10 (Ma, 2019), resulting in a total of 96h:
48h original + 48h synthetic data + 15 hours of
Quechua Collao (Paccotacya-Yanque et al., 2022)
(quz) .

4 Results and Discussion

Results are presented in Table 2. When compared
to IWSLT 2024 (Ahmad et al., 2024; Ortega et al.,
2024), it is clear that Speech Translation as a task
is best performed using a multi-lingual transformer
such as the Speech T5 model. Addtionally, by
fine-tuning the Speech T5 model, we were able to
increase the score by a dramatic 7 BLEU points by
the addition of data found online. Additionally, the
introduction of the latest Whisper model (version 3)
seems to show promising increases when compared
to last year’s result by this team.

8https://github.com/microsoft/SpeechT5
9https://github.com/microsoft/SpeechT5/tree/

main/SpeechT5
10https://github.com/makcedward/nlpaug

5 Conclusion and Future Work

Our submission to the IWSLT 2025 (Abdulmumin
et al., 2025) evaluation campaign for low-resource
and dialect speech translation has included novel-
ties based on the most state-of-the-art techniques
for ASR and ST. The addition of three new charac-
teristics: 1) a new Quechua Collao corpus (referred
to as quz) and 2) the introduction of a stateless ASR
model (Mamba) along with 3) a machine transla-
tion case study. These three new inclusions have
brought to light what MT systems, corpus, and
ASR models work best with the language pair when
compared to last year’s work.

Next year, we plan to include more human an-
notation and experimentation with the model pre-
sented here since the BLEU score achieved (26.7)
warrant further investigation and annotation. We
also believe that we have localized a Speech Trans-
lation recipe that we allow further iterations of data
in the future to achieve even better performance.
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Bojar, Claudia Borg, Marine Carpuat, Roldano
Cattoni, Mauro Cettolo, William Chen, Qianqian
Dong, Marcello Federico, Barry Haddow, Dávid Ja-
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