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Abstract

The scope of the International Workshop on
Spoken Language Translation (IWSLT) has re-
cently broadened beyond traditional Speech
Translation (ST) to encompass a wider array
of tasks, including Speech Question Answer-
ing and Summarization. This shift is partly
driven by the growing capabilities of modern
systems, particularly with the success of Large
Language Models (LLMs). In this paper, we
present the Karlsruhe Institute of Technology’s
submissions for the Offline ST and Instruc-
tion Following (IF) tracks, where we leverage
LLMs to enhance performance across all tasks.
For the Offline ST track, we propose a pipeline
that employs multiple automatic speech recog-
nition systems, whose outputs are fused using
an LLM with document-level context. This
is followed by a two-step translation process,
incorporating additional refinement step to im-
prove translation quality. For the IF track, we
develop an end-to-end model that integrates
a speech encoder with an LLM to perform a
wide range of instruction-following tasks. We
complement it with a final document-level re-
finement stage to further enhance output quality
by using contextual information.

1 Introduction

This paper provides an overview of the systems
submitted by the Karlsruhe Institute of Technol-
ogy (KIT) to the Offline Speech Translation (ST)
and the Constraint Long Instruction-Following (IF)
tasks of IWSLT 2025. For the Offline track, we
participate in the unconstrained setting for the En-
glish→German language pair. For the IF task, we
participate in the constrained-long track, aiming
to perform Automatic Speech Recognition (ASR),
Speech Translation (ST), Spoken Question Answer-
ing (SQA), and Speech Summarization (SSUM)
across various languages.

* Equal Contribution
␅ Offline, ␃ Instruction-Following

A growing research trend in the field is the ap-
plication of Large Language Models (LLMs) to
speech processing tasks (Tang et al., 2023; Züfle
and Niehues, 2024; Chu et al., 2024b; Abouelenin
et al., 2025, among others), leveraging their strong
general knowledge and natural language under-
standing capabilities. These strengths make LLMs
particularly relevant to both the Offline ST and IF
tracks. Accordingly, in our submissions, we ex-
plore strategies for effectively integrating LLMs
into speech processing pipelines.

There are multiple approaches to leveraging
LLMs in speech systems. One strategy involves
incorporating LLMs as an additional step within a
cascaded architecture (Koneru et al., 2024a), where
they can perform task-specific refinement. This
modular approach allows each component to be
trained independently, benefiting from specialized
data. Alternatively, LLMs can be integrated in
an end-to-end fashion (Tang et al., 2023; Züfle and
Niehues, 2024; Chu et al., 2024b; Abouelenin et al.,
2025), allowing for better information flow and po-
tentially improving generalization to unseen tasks.

Although both the Offline and IF tasks fall un-
der the umbrella of speech processing, they differ
significantly in nature. In the offline setting, speed
and adaptability to unseen tasks are not primary
concerns. In contrast, the IF task demands flexibil-
ity and generalization, as the system must handle a
variety of instructions. This has an impact on the
architectures we choose for the different tracks.

For the Offline track, we utilize LLMs special-
ized on a specific task as refinement modules within
a cascaded architecture. This is common practice;
all systems submitted to IWSLT 2024 for this track
employed a cascaded architecture (Ahmad et al.,
2024), underlining its practical advantages in train-
ing the system due to availability in data, e.g for
low-resource languages (Liu et al., 2023), and sim-
plicity by decomposing into smaller tasks.

For the IF track, training a dedicated cascaded
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Figure 1: For the Instruction-Following track, we train an end-to-end SpeechLLM, while the Offline track relies
on an ensemble of existing models. To enhance the outputs from both tracks, we apply a post-editing model that
provides two main benefits: correcting scientific terminology and recovering context that may be lost due to the
segmentation of long audio sequences.

system for each task is not an efficient solution,
moreover, the goal of this track is to build a
model that can follow different instructions. Con-
sequently, we adopt an end-to-end approach us-
ing a Speech Large Language Model (Speech-
LLM). Nevertheless, for tasks such as ASR, ST,
and SSUM, we also include an additional refine-
ment step to enhance fluency and contextual con-
sistency in the output.

An overview of both systems exploiting LLMs
internally or via post-editing for refinement, can
be found in Fig. 1. We describe the details of each
system in the following sections. First, we present
the Offline ST track system in Section 2. Then, we
discuss the IF track system in Section 3.

2 Offline Track

The goal of the Offline ST track is to generate high-
quality translations across diverse domains without
latency constraints. Recent work has highlighted
the potential of LLMs for this task (Ahmad et al.,
2024; Koneru et al., 2024a). Building on these in-
sights, we integrate LLMs at multiple stages of our
speech translation pipeline. Below, we present a
high-level overview, with each component detailed
in the following sections.

We begin with long-form audio inputs, which
may span several minutes to hours. Due to memory
limitations and the lack of training data for such
durations, our ASR and MT systems cannot handle
these directly. Thus, we first segment the audio into
manageable chunks using a Voice Activity Detec-
tion (VAD)-based method, which is effective even
in noisy conditions.

The segmented audio is then transcribed into En-

glish using ASR. Rather than relying on a single
model, we adopt a fusion strategy, combining out-
puts from multiple ASR systems—including both
pre-trained models and a fine-tuned variant. This
approach, akin to model ensembling, leverages the
complementary strengths of different systems to
reduce errors.

We fuse the ASR outputs using an LLM, which
processes the combined hypotheses at the docu-
ment level. This allows for the incorporation of
broader context, resulting in more coherent and
accurate transcriptions.

The English text is then segmented into sen-
tences using the nltk tokenizer and translated into
German. For this, we fine-tune a translation LLM
on high-quality parallel data. To ensure quality, we
use a quality estimation model to filter out noisy
sentence pairs, keeping only high-confidence ex-
amples.

Finally, both the source transcript and the
machine-translated output are passed to an Au-
tomatic Post-Editing (APE) model. This model
refines the translations, producing polished final
outputs.

2.1 Segmentation

The segmentation module breaks long-form audio
into manageable segments for the ASR pipeline.
We explored two strategies: fixed-window chunk-
ing and content-aware segmentation.

Fixed-window chunking applies a uniform slid-
ing window and relies on transcript overlap to stitch
adjacent chunks. While effective on clean audio, it
often fails in noisy settings like the ITV or EPTV
datasets, leading to fragmented or duplicated text.
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Content-aware segmentation uses audio cues to
find natural cut points. Basic methods rely on
VADs like Silero (Team, 2021) or py-webrtcvad
(Wiseman, 2019), which work well in clean con-
ditions but struggle with noise. Instead, we use
an end-to-end speaker segmentation model from
Bredin and Laurent (2021), trained for noisy sce-
narios and capable of tracking up to three speakers.
While methods like SHAS (Tsiamas et al., 2022)
use wav2vec embeddings, they underperform in
the presence of background noise.

Even with smarter cut-point detection, uncon-
trolled segment lengths can hurt ASR performance.
Inspired by WhisperX (Bain et al., 2023), we en-
force length constraints by post-processing VAD
segments: overly long segments are split at their
lowest-confidence point, while overly short ones
are merged with neighbors (even across non-speech
gaps) until they reach the desired duration Chunk
Size.

Chunk Size Peloton EPTV ITV ACL

5 13.62 15.79 21.49 14.38
10 12.61 14.63 18.8 12.03
15 12.23 14.08 17.71 11.43
20 12.27 13.98 17.29 11.71
25 11.98 13.98 16.62 11.49

Table 1: Impact of chunk size during segmentation for
ASR. We report the WER scores using Whisper-v3 with
different chunk sizes. Best scores for each test set are
highlighted in bold.

To determine the optimal chunk size, we perform
a grid search using test sets from various domains,
with results shown in Table 1. We use the Whis-
per v3 model1 (Radford et al., 2023) and evaluate
it on the Peloton, EPTV, and ITV subsets from
the IWSLT 2024 development sets (Ahmad et al.,
2024), as well as the ACL 60/60 test set (Salesky
et al., 2023). A chunk size of 25 consistently yields
the best performance. We hypothesize that this is
due to the larger chunk size offering more contex-
tual information, aligning with prior work on the
benefits of long-form decoding in noisy conditions
(Koneru et al., 2024a; Yan et al., 2024).

2.2 Automatic Speech Recognition

After segmenting the audio into smaller chunks,
we send them to the ASR system for transcription.

1openai/whisper-large-v3

Since we participated in the language direction En-
glish→German, the audio needs to be transcribed
in English, a high-resource language. Many pub-
licly available pre-trained models excel at English
transcription, and we first evaluated several of them
individually. Specifically, we considered the Whis-
per variants v22 and v33(Radford et al., 2023), as
well as the recently developed multimodal LLM
Phi-44(Abouelenin et al., 2025).

To build a robust model for noisy scenarios, such
as those found in TV series, we further fine-tuned
Whisper Large v2 on the Bazinga dataset (Lerner
et al., 2022). The Word-Error-Rate (WER) for
these models on ITV and ACL 60/60 are reported
in Table 2.

Model ITV ACL

Whisper v2 17.04 11.55
Whisper v2 + Bazinga 16.87 11.23

Whisper v3 16.62 11.49
Phi-4 20.64 9.71

LLM-Fuse 17.03 10.77

Table 2: WER scores of ASR models on the ITV and
ACL test sets. LLM-Fuse indicates the post-edited out-
put of all ASR systems at document-level. Best scores
for each test set are highlighted in bold.

As shown in Table 2, there is no clear winner
across the two test sets. Our manual analysis fur-
ther reveals that different models tend to make dif-
ferent types of errors, suggesting that combining
these systems could be a promising strategy.

2.2.1 Fusing with LLM
To fuse the ASR outputs, token-level ensembling
is a viable approach—provided the vocabularies of
the systems are compatible. However, the vocabu-
lary used by Phi-4 differs from that of the Whisper
variants, limiting the effectiveness of this method.
Alternative techniques such as re-ranking offer
some promise but are unable to leverage document-
level context.

To overcome these limitations, we employ an
LLM to generate the final transcript based on the
outputs from individual ASR systems. Thanks to
their ability to process long contexts, LLMs enable
us to concatenate hypotheses from multiple chunks
and refine them collectively.

2openai/whisper-large-v2
3openai/whisper-large-v3
4microsoft/Phi-4-multimodal-instruct

234

https://huggingface.co/openai/whisper-large-v3
https://huggingface.co/openai/whisper-large-v3


However, an off-the-shelf LLM may not per-
form optimally for this specific task. To improve,
we propose fine-tuning the model using a dataset
generated through data augmentation. For this pur-
pose, we use monolingual English text from the
Europarl v7 and v10 datasets (Koehn, 2005), News-
Commentary v16, OpenSubtitles (Lison and Tiede-
mann, 2016), and the NUTSHELL dataset5 (Züfle
et al., 2025). With the exception of NewsCom-
mentary, the other datasets contain document-level
structure—episodes in the case of OpenSubtitles
and abstracts in the case of NUTSHELL.

We then employ the Text-to-Speech model VITS
(Kim et al., 2021) to synthesize audio from the se-
lected texts. This generated audio is subsequently
transcribed using Phi-4 and the Whisper variants.
As a result, we obtain ASR hypotheses for the
synthesized speech along with their corresponding
ground-truth references.

Next, we convert this data into a prompt format,
as described in Appendix App. A. We fine-tune the
LLM Llama 3 8B6(Grattafiori et al., 2024) using
LoRA (Hu et al., 2022), training it to predict the
reference transcription given the hypotheses pro-
duced by the different ASR systems. We illustrate
this in Fig. 1. We also report the ASR performance
of the LLM fusion approach in Table 2 and observe
that it does not outperform the individual systems.
However, as we demonstrate in the following sec-
tions, this fusion proves to be highly beneficial
when computing the final ST scores.

2.3 Speech Translation
The next step in the pipeline, after performing ASR,
is to translate the transcriptions into German. Since
the transcriptions are produced at the chunk level,
they often contain multiple sentences, some of
which may be incomplete. To address this, we
first concatenate all the text from a given talk and
then segment it into sentences using the NLTK tok-
enizer. This ensures that only complete sentences
are passed to the MT system, aligning with the way
such systems are typically trained.

2.3.1 Gold vs ASR Transcripts
Recently, several translation-focused LLMs have
been introduced, demonstrating strong perfor-
mance on high-quality input (Xu et al., 2024a;
Alves et al., 2024). However, their effective-
ness on noisy input—such as ASR-generated tran-

5Our submission is unconstrained by using this dataset.
6meta-llama/Llama-3-8B

Model Chrf2 (↑) MetricX (↓) COMET (↑)

Gold Transcript

Tower 7B 68.7 2.02 83.31
GemmaX2 9B 70.5 2.08 83.62

Whisper v3 ASR (Chunk size=25)

Tower 7B 66.1 2.46 81.01
GemmaX2 9B 66.4 2.65 80.74

Phi-4 ASR

Tower 7B 64.9 2.73 79.25
GemmaX2 9B 65.4 2.9 79.12

Table 3: Translation quality comparison between Gold
and ASR transcripts on the ACL 60/60 test set. Note
that higher is better for chrf2 and COMET scores and
lower for MetricX scores.

scripts—remains uncertain. To assess this, we first
evaluate the out-of-the-box translation quality of
two leading models: Tower7 (Xu et al., 2024a)
and GemmaX28 (Cui et al., 2025). We use the
COMET9 (Rei et al., 2022a), MetricX10 (Juraska
et al., 2024), and ChrF2 (Popović, 2015) metrics,
with results reported in Table 3 for the ACL 60/60
test set.

GemmaX2 outperforms Tower on gold tran-
scripts in terms of COMET scores, but its perfor-
mance drops significantly on ASR-generated input.
Interestingly, translation quality is lower when us-
ing transcripts from the Phi-4 ASR model, despite
it having the lowest WER in Table 2. We hypoth-
esize that this is due to inconsistencies in punctu-
ation and casing, which are not captured by WER
but can impact translation quality. This highlights
that lower WER does not always correlate with bet-
ter translations. As a result, we choose Tower 7B
as our base model for subsequent enhancements,
given its superior robustness to noisy input.

2.3.2 Quality-Filtered Finetuning for MT
Tower 7B is a multilingual model and we only
focus on English → German in our submisison.
Therefore, we adapt it to this specific language pair.
While plently of data is available for fine-tuning,
these also include low quality translation pairs.

Recent studies have demonstrated the impor-
tance of high-quality data during fine-tuning
(Finkelstein et al., 2024; Ramos et al., 2024; Xu
et al., 2024b). To this end, we leverage the Europarl

7Unbabel/TowerInstruct-7B-v0.2
8ModelSpace/GemmaX2-28-2B-v0.1
9Unbabel/wmt22-comet-da

10google/metricx-24-hybrid-xl-v2p6
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Model
ITV ACL

Chrf2 (↑) MetricX (↓) Chrf2 (↑) MetricX (↓) COMET (↑)

Whisper v3 ASR (Chunk size=25)

Tower 7B 41.4 4.25 66.1 2.46 81.01
Tower 7B Finetuned 41.5 4.19 67.7 2.27 82.05

LLM-Fuse

Tower 7B Finetuned 41.7 4.12 68 2.01 83.07
Tower 7B Finetuned + Tower 13B APE 42.1 4.03 69.6 1.84 83.31

Table 4: Analysis of translation quality of our ST system with different enhancements on the ITV and ACL test sets.
Note that higher is better for chrf2 and COMET scores and lower for MetricX scores. Best scores for each metric
per test set are highlighted in bold.

v7 and v10 datasets (Koehn, 2005), NewsCommen-
tary v16, and OpenSubtitles (Lison and Tiedemann,
2016) to extract high-quality translation pairs. We
employ the XCOMET11 quality estimation model
(Guerreiro et al., 2024) to rank the translation pairs
and select the top 500k based on quality scores.
Tower 7B is then fine-tuned on this curated dataset
using LoRA adapters (Hu et al., 2022), adapting it
for generating German translations.

2.3.3 Automatic Post-Editing Translations

As a final step, we aim to correct translation errors
through APE (Koneru et al., 2024b). To achieve
this, we fine-tune Tower 13B12 on a synthetically
generated APE dataset. Using our previously fine-
tuned model, we generate 100k (source, hypothe-
sis, reference) triplets by sampling a subset from
the top 500k high-quality sentence pairs. Then,
we transform into the prompt format as shown in
App. A. We choose the larger 13B model for this
task, as we expect it to be adaptable to correct the
output with limited fine-tuning. To train within
resource constraints, we follow the same approach
as before and fine-tune using LoRA adapters.

We present an overview of the ST scores in Ta-
ble 4 for the ITV and ACL 60/60 test sets. The
results show that fusing system hypotheses using
an LLM leads to improved ST performance on
both test sets (from 4.19 → 4.12 for ITV and
2.27 → 2.01 for ACL in MetricX). Additionally,
applying Automatic Post-Editing (APE) further en-
hances translation quality. As a result, our final
pipeline integrates multiple ASR systems fused via
an LLM, followed by initial translation generation
and post-editing to ensure high-quality output.

11Unbabel/XCOMET-XL
12Unbabel/TowerInstruct-13B-v0.1

2.4 Future Directions and Potential
Improvements

There are several potential avenues for improving
our approach in future iterations of the shared task.
First, while we did not explore it in this work, it
is unclear how well SHAS segmentation performs
when trained on noisy data. Semantic segmenta-
tion of noisy inputs could yield performance gains.
Second, incorporating LLM specific to the target
language (e.g. German LLM) for APE at the doc-
ument level could offer promising improvements.
Lastly, we experimented with Quality-Aware De-
coding (Koneru et al., 2025), which showed bene-
fits primarily when the quality of the ASR output
was high. Future research could focus on adapt-
ing the quality estimation component to perform
robustly under noisy or imperfect segmentation
conditions.

3 Instruction Following Long Track

The Instruction-Following (IF) Speech Processing
track in the scientific domain aims to benchmark
foundation models that can follow natural language
instructions—an ability well-established in text-
based LLMs but still emerging in speech-based
counterparts. The track covers four tasks: Auto-
matic Speech Recognition (ASR), Speech Transla-
tion (ST), Spoken Question Answering (SQA), and
Spoken Summarization (SSUM). ASR is evaluated
on English, ST on English → German, Chinese,
and Italian (en→{de, it, zh}), and SQA/SSUM
across all four directions (en→{en, de, it, zh}).

We participate in the Constrained Long track,
which focuses on long-form speech inputs (5–10
minutes). This track enforces limitations on both
model selection and training data. Specifically,
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only SeamlessM4T-Large13 (Communication et al.,
2023) and LLaMA-3.1-8B-Instruct 14 (Grattafiori
et al., 2024) are permitted as base models.

Our approach employs an end-to-end speech
model trained under these constraints, enhanced
with a post-editing stage for improved output qual-
ity similar to the Offline track.

3.1 Data

Data in the Constrained Setting For ASR and
ST, the provided datasets include EuroParl-ST
(Iranzo-Sánchez et al., 2020) and CoVoST 2 (Wang
et al., 2020). For the SQA task, the only resource
available is the extractive Spoken-SQuAD (Lee
et al., 2018). For SSUM, NUTSHELL (Züfle et al.,
2025), an abstract generation dataset for scientific
talks, is provided. As development data, the ACL
60/60 benchmark (Salesky et al., 2023) is made
available. Notably, the only in-domain datasets,
i.e., those based on scientific talks, are NUTSHELL
and ACL 60/60. Moreover, no multilingual data is
provided for SQA and SSUM.

Data Augmentation To address the limitations
of the constrained setting, we apply task-specific
data augmentation strategies15:

ASR: To introduce domain-specific data, we
augment the ASR training data using scientific ab-
stracts from NUTSHELL (Züfle et al., 2025). The
abstracts are split into sentences with nltk and then
converted to synthetic speech using SeamlessM4T-
Large.

ST: We do not augment the ST training data,
but construct an artificial en-it test set for the ACL
60/60 dataset, which lacks Italian. We translate
the English ACL 60/60 transcripts into Italian us-
ing both SeamlessM4T-Large and LLaMA-3.1-
8B-Instruct, and evaluate translation quality using
COMETKiwi (Rei et al., 2022b). SeamlessM4T-
Large achieves a slightly higher score (82.55 vs.
81.07), and is therefore used to generate the final
test set translations. The translation prompts for
LLaMA-3.1-8B-Instruct are detailed in App. B.3.

SQA: For SQA, we aim to: (1) support all lan-
guage pairs, (2) adapt to the scientific domain, and
(3) include abstractive QA, as required by the track.
Therefore, we transcribe NUTSHELL dev talks
using SeamlessM4T (audio split into 15-second

13facebook/seamless-m4t-v2-large
14meta-llama/Llama-3.1-8B-Instruct
15Augmented Dataset available at HuggingFace:

maikezu/data-kit-sub-iwslt2025-if-long-constraint

chunks at silence regions). We then use LLaMA-
3.1-8B-Instruct to generate two answerable and
one unanswerable QA pair per segment for all lan-
guage pairs. We balance the dataset by ensuring
that unanswerable questions comprise 5% of the
final set. Additionally, we generate a 250-sample
test set from a subset of the NUTSHELL test data.
Prompt templates are included in App. B.1

SSUM: To enable multilingual evaluation of
speech summarization, we translate the full NUT-
SHELL dataset (en→{de, it, zh}) using LLaMA-
3.1-8B-Instruct. Prompt details are provided in
App. B.2. As with SQA, we also generate a 250-
sample multilingual test set.

3.2 Model

In the constrained setting of the track, only the
speech foundation model SeamlessM4T-Large13

(Communication et al., 2023) and LLaMA-3.1-8B-
Instruct14 (Grattafiori et al., 2024) are permitted.

Architecture To integrate the speech encoder
and LLM in an end-to-end architecture, we use
Q-Former (Li et al., 2023; Tang et al., 2024) as a
projector. Specifically, we use a four transformer
layers and four learnable query tokens to bridge
the modality gap between the features from Seam-
lessM4T and LLaMA. During training, only the
projector is trained and the speech encoder and
LLM remain frozen.

Training We explore three training strategies: (1)
Direct fine-tuning on all available training data, (2)
ASR pretraining followed by fine-tuning, and (3)
contrastive pretraining, as proposed by Züfle and
Niehues (2024), followed by fine-tuning.

For contrastive pretraining, we use ASR data and
experiment with cosine similarity and Wasserstein
loss functions (Peyré and Cuturi, 2019; Le et al.,
2023). As shown in Table 5, contrastive pretraining
yields notable improvements over the other training
strategies. Consequently, this approach is adopted
for the final model submissions. Hyperparameter
details are given in Table 10 in App. B.4.

During initial experiments, our model struggled
to distinguish answerable from unanswerable SQA
questions. To improve this, we apply chain-of-
thought prompting: the model first tags the ques-
tion as answerable or not, then generates an an-
swer only if applicable. This stepwise approach
improves both classification and answer quality.
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Model

ASR ST SQA SSUM
ACL 60/60 ACL 60/60 Sp.-SQuAD NUTSHELL

WER COMET BERTScore BERTScore
en-en en-de en-it* en-zh en-en en-en

∼no pretrain 25.1 72.49 73.61 76.93 80.88 83.89
∼ASR pretrain 21.42 76.72 79.73 80.62 82.48 85.97
∼contr. cos. 18.82 77.31 80.27 80.76 82.53 86.07
∼contr. wasser. 19.07 77.33 80.06 81.34 82.66 86.6

∼ Model not trained on multilingual SSUM and SQA
Gold segmentation No segmentation (full audio used)

Table 5: Ablation studies on different pretraining methods for the instruction following task: No pretraining, ASR
pretraining and contrastive pretraining with either cosine similarity (contr. cos.) or Wasserstein distance (contr.
wasser.). Test sets marked with * are automatically generated due to lack of availability for this language pair (see
Section 3.1).

Segm. max secs. ASR (WER) ST (COMET)
en-en en-de en-it* en-zh

N/A 18.77 77.15 80.65 81.83

5 45.52 57.55 51.47 72.73
10 20.73 65.55 56.88 76.97
15 20.74 68.92 58.24 77.44
20 20.63 69.94 59.01 77.45
25 25.48 71.61 75.74 78.04
30 - 70.79 58.99 76.16
35 - 67.54 56.88 76.5

Gold segmentation VAD segmentation

Table 6: Ablation study on Voice Activity Detection
(VAD) segmentation using the IF contr. cos. model. on
the ACL 60/60 dataset. Test sets marked with * are au-
tomatically generated due to lack of availability for this
language pair (see Section 3.1). For ASR, segmenting
audio into chunks of up to 20 seconds yields the best
results, while for ST, 25-second chunks perform best.

3.3 Handling long audio

The IF Constrained Long track involves processing
audio inputs from five to ten minutes in duration.

ASR and ST Initial experiments revealed that
our model struggled with full-length audio inputs
for ASR and ST, even when trained with artificially
concatenated long-form sequences. To address this,
we segment the input audio prior to inference.

We use a Voice Activity Detection (VAD) ap-
proach (Sohn et al., 1999) to segment audio, as due
to track constraints, SHAS (Tsiamas et al., 2022)
is not permitted. For ASR, segmenting into chunks
of up to 20 seconds yields best performance and
for ST, segments of up to 25 seconds are more
effective. Ablation results are provided in Table 6.

Post-editing context ASR (WER) ST (COMET)
en-en en-de en-it* en-zh

No Post-Editing 20.63 71.61 75.74 78.04

1 21.09 70.54 75.0 77.22
3 20.96 71.91 75.88 77.17
5 20.43 71.64 75.69 77.20
10 21.88 71.90 75.53 77.14
15 50.07 71.95 75.88 77.19
20 50.12 71.82 75.55 77.20

VAD segmentation

Table 7: Ablation study on the context size of the poste-
diting model using the IF contr. cos. model. on the ACL
60/60 dataset. For ASR, a context size of 5 yields the
best results, for ST, a context size of 15. For en→zh,
post-editing does not lead to an improvement.

SQA and SSUM For SQA and SSUM, we use
the full audio. To handle long-form audio, we seg-
ment audio into 60-second chunks. Each chunk
is encoded, and the embeddings are concatenated
before being passed to the Q-Former and LLM, fol-
lowing Züfle et al. (2025). This strategy maintains
full end-to-end trainability. For audios exceeding
26.7 minutes, we truncate the input to fit within
memory constraints.

3.4 Post-Editing
To improve output quality, we use a post-editing
model that works on document level. This helps to
correct scientific terminology and it restores contex-
tual coherence that may be lost due to segmentation
of long audio inputs.

For ASR, we train the post-editing model on
the SeamlessM4T-Large transcriptions of the TTS-
generated scientific abstracts from NUTSHELL,
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ASR ST SQA SQA SSUM
Model ACL 60/60 ACL 60/60 Sp.-SQuAD NUTSHELL NUTSHELL

WER COMET BERTScore BERTScore BERTScore
en-en en-de en-it* en-zh en-en en-en* en-de* en-it* en-zh* en-en en-de* en-it* en-zh*

Phi-416 16.8 79.19 83.43 83.23 82.56 91.78 76.85 78.41 74.41 86.27 67.71 69.76 57.03
Qwen2 Audio17 20.14 72.35 74.23 77.19 87.35 89.0 71.81 73.7 69.62 84.88 63.06 64.17 51.79
Whisper18 + Llama 3.114 14.67 78.04 81.93 77.66 82.39 91.18 71.87 72.58 54.62 86.62 57.16 58.64 49.31
Seamless V213 18.91 73.64 78.78 75.26 – – – – – – – – –

IF contr. cos. 18.77 77.15 80.65 81.83 82.83 93.04 79.73 82.08 79.8 86.83 68.46 71.01 71.22
IF contr. cos. tag 19.82 76.95 80.69 81.75 82.86 93.17 80.81 82.49 80.53 86.52 68.31 71.06 71.09
IF contr. wasser. 17.93 72.47 79.12 80.88 82.79 93.42 80.65 82.46 80.47 86.86 68.45 71.08 71.37
IF contr. wasser. tag 17.78 74.06 78.87 81.10 82.80 93.24 80.87 82.76 80.32 86.89 68.76 71.16 71.54

IF contr. cos. 20.63 71.61 75.74 78.04 82.83 93.04 79.73 82.08 79.8 86.83 68.46 71.01 71.22
+ post-edit 20.43 71.95 75.88 77.19 × × 86.85 68.61 71.22 71.17

IF contr. cos. tag 33.24 69.37 73.36 75.83 82.86 93.17 80.81 82.49 80.53 86.52 68.31 71.06 71.09
+ post-edit 33.53 70.39 73.14 73.20 × × 86.54 68.42 71.16 71.01

IF contr. wasser. 21.88 71.61 76.78 78.21 82.79 93.42 80.65 82.46 80.47 86.86 68.45 71.08 71.37
+ post-edit 33.51 71.12 77.23 68.02 × × 86.88 68.68 71.12 71.24

IF contr. wasser. tag 22.07 71.84 76.29 78.24 82.80 93.24 80.87 82.76 80.32 86.89 68.76 71.16 71.54
+ post-edit 19.76 72.29 76.75 77.21 × × 86.90 68.95 71.30 71.41

Gold segmentation Voice Activity Detection (VAD) segmentation No segmentation (full audio used)
– Not supported by model × post-editing not applied, because context is not available

Table 8: Results for baseline models and our end-to-end trained instruction-following models (IF), developed for
the Constraint Instruction Following Long track. The IF models are pretrained using contrastive learning, with
either cosine similarity (contr. cos.) or Wasserstein distance (contr. wasser.). To improve performance on question
answering, we also experiment with tagging answers to indicate whether the question is answerable (+ tag). Test
sets marked with * are automatically generated due to lack of availability for this language pair and task (see
Section 3.1). The IF contr. wasser. tag + post-edit model was submitted to the shared task.

paired with the original text. For ST, we use the
ACL 60/60 development set, transcribed by our IF
model. The post-editing model setup is adapted
from Section 2.2.1, with two key differences: in
compliance with the constrained setting, we use
LLaMA-3.1-8B-Instruct14 (Grattafiori et al., 2024)
as the base model, and we predict the reference
using only a single system output, since in the IF
track we do not employ an ensemble.

We conduct experiments to examine the effect of
context size on post-editing performance. For ASR,
a context window of five sentences provides the
best results, while ST benefits from a 15-sentence
context. For en→zh, no performance gains are
achieved. These results are summarized in Table 7.
We also apply the post-editing model to SSUM
outputs, using the full summary as context.

3.5 Baselines

We compare our system to four baseline models.
We include two end-to-end Speech-LLMs: Phi-
416 (Abdin et al., 2024) and Qwen2 Audio17 (Chu
et al., 2024a), using default parameter settings pro-
vided on Hugging Face model cards and follow-
ing the prompts specified by the shared task. We
also evaluate a cascaded baseline using Whisper-

16microsoft/Phi-4-multimodal-instruct
17Qwen/Qwen2-Audio-7B-Instruct

large-v318 (Radford et al., 2023), and LLaMA-
3.1-8B-Instruct14 (Grattafiori et al., 2024) to fol-
low the instructions. Lastly, for ASR and ST, we
include SeamlessM4T-Large13 (Communication
et al., 2023), given that it also serves as the speech
encoder in our own end-to-end architecture.

3.6 Evaluation

We evaluate ASR with WER using JiWER, ST
using COMET19 (Rei et al., 2022a), and SQA and
SSUM using BERTScore (Zhang et al., 2020).

3.7 Development Results

All results can be found in Table 8. We evaluate our
approach against the baselines from Section 3.5,
as well as four end-to-end trained instruction-
following models (IF). Among these, we compare
two contrastive pretraining strategies (contr. cos.
and contr. wasser.), as outlined in Section 3.2. For
the SQA task, we also explore a chain-of-thought
variant (tag), as detailed in Section 3.2.

ASR and ST Using gold segmentation, we com-
pare our IF models against the baselines. Phi-
416 (Abdin et al., 2024) achieves the strongest
performance on ST, while Whisper18 (Radford
et al., 2023) performs best for ASR. However, our

18openai/whisper-large-v3
19Unbabel/wmt22-comet-da
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ASR ST SQA SSUM
Model WER COMET BERTScore (normalized) BERTScore (normalized)

en-en en-de en-it en-zh en-en en-de en-it en-zh en-en en-de en-it en-zh

Phi-416 (baseline) 0.17 0.55 0.56 0.51 0.42 0.35 0.36 0.39 0.17 0.16 0.19 0.04
IF contr. wasser. tag (ours) 0.15 0.74 0.77 0.77 0.41 0.35 0.39 0.41 0.23 0.21 0.25 0.37

Voice Activity Detection (VAD) segmentation No segmentation (full audio used)

Table 9: Official evaluation results for the IWSLT 2025 IF Speech Processing track in the long and constrained
setting.

IF models consistently outperform both Qwen2
Audio17 (Chu et al., 2024a) and SeamlessM4T-
Large13 (Communication et al., 2023). The latter
result confirms that our end-to-end architecture is
able to improve over the speech foundation model.

Under VAD segmentation, which is also used for
the shared task testset, we observe a performance
drop across all IF models, as expected. Apply-
ing post-editing partially mitigates this drop. For
ASR, post-editing only improves IF contr. cos
and IF contr. wasser. tag, bringing them close
to their gold-segmented counterparts. In ST, post-
editing yields consistent improvements for en→de
and en→it, but not for en→zh, likely due to the lim-
ited Chinese capabilities of the post-editing model
and sparse training data in that language.

SQA and SSUM On the SQA-NUTSHELL
dataset, all IF models outperform the baselines,
whereas on Spoken-SQuAD (which is extractive
and out-of-domain), this is not the case. For SSUM,
IF models consistently surpass the baselines, par-
ticularly in en→it and en→zh. Post-editing yields
slight gains for SSUM as well, though similar to
ST, no improvement is observed for en→zh.

Final Model We select IF contr. wasser. tag +
post-edit for our final submission. It offers the best
performance for ASR, SQA, and SSUM, and is
competitive with the other IF models in ST.

3.8 Results on IWSLT Official Test Set

Table 9 shows the performance of our final system
on the official IWSLT 2025 test sets provided by
the organizers (Abdulmumin et al., 2025). Our
system outperforms the baseline in ASR, ST, and
SSUM, and achieves stronger results in SQA across
all language pairs except for en→en.

4 Conclusion

This system paper presents KIT’s submissions
to the Offline and the IF Long tracks. By inte-

grating LLMs into both cascaded and end-to-end
architectures for speech processing, we demon-
strate their potential in handling a range of spo-
ken language tasks. For future work, we aim to
explore a unified architecture capable of produc-
ing high-quality translations while also supporting
instruction-following capabilities.
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Ondřej Bojar, Claudia Borg, Fethi Bougares, Roldano
Cattoni, Mauro Cettolo, Lizhong Chen, William
Chen, Raj Dabre, Yannick Estève, Marcello Federico,
Marco Gaido, Dávid Javorský, Marek Kasztelnik,
and 30 others. 2025. Findings of the iwslt 2025 eval-
uation campaign. In Proceedings of the 22nd Interna-
tional Conference on Spoken Language Translation
(IWSLT 2025), Vienna, Austria (in-person and on-
line). Association for Computational Linguistics. To
appear.

Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkin-
son, Hany Awadalla, Nguyen Bach, Jianmin Bao,

240

https://arxiv.org/abs/2412.08905


Alon Benhaim, Martin Cai, Vishrav Chaudhary, Con-
gcong Chen, and 1 others. 2025. Phi-4-mini tech-
nical report: Compact yet powerful multimodal lan-
guage models via mixture-of-loras. arXiv preprint
arXiv:2503.01743.

Ibrahim Said Ahmad, Antonios Anastasopoulos, Ondřej
Bojar, Claudia Borg, Marine Carpuat, Roldano
Cattoni, Mauro Cettolo, William Chen, Qianqian
Dong, Marcello Federico, Barry Haddow, Dávid Ja-
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.

Miguel Ramos, Patrick Fernandes, António Farinhas,
and Andre Martins. 2024. Aligning neural machine
translation models: Human feedback in training and
inference. In Proceedings of the 25th Annual Con-
ference of the European Association for Machine
Translation (Volume 1), pages 258–274, Sheffield,
UK. European Association for Machine Translation
(EAMT).

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022a. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Ricardo Rei, Marcos Treviso, Nuno M. Guerreiro,
Chrysoula Zerva, Ana C Farinha, Christine Maroti,
José G. C. de Souza, Taisiya Glushkova, Duarte
Alves, Luisa Coheur, Alon Lavie, and André F. T.
Martins. 2022b. CometKiwi: IST-unbabel 2022 sub-
mission for the quality estimation shared task. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 634–645, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Elizabeth Salesky, Kareem Darwish, Mohamed Al-
Badrashiny, Mona Diab, and Jan Niehues. 2023.
Evaluating multilingual speech translation under re-
alistic conditions with resegmentation and terminol-
ogy. In Proceedings of the 20th International Confer-
ence on Spoken Language Translation (IWSLT 2023),
pages 62–78, Toronto, Canada (in-person and online).
Association for Computational Linguistics.

Jongseo Sohn, Nam Soo Kim, and Wonyong Sung. 1999.
A statistical model-based voice activity detection.
IEEE Signal Processing Letters, 6(1):1–3.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao
Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA, and Chao
Zhang. 2024. SALMONN: Towards generic hearing
abilities for large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao
Chen, Tian Tan, Wei Li, Lu Lu, MA Zejun, and Chao
Zhang. 2023. Salmonn: Towards generic hearing
abilities for large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Silero Team. 2021. Silero models: pre-trained
enterprise-grade stt / tts models and benchmarks.
https://github.com/snakers4/silero-models.

242

https://doi.org/10.18653/v1/2024.naacl-long.148
https://arxiv.org/abs/2301.11716
https://arxiv.org/abs/2301.11716
https://aclanthology.org/2022.lrec-1.367/
https://aclanthology.org/2022.lrec-1.367/
https://api.semanticscholar.org/CorpusID:256390509
https://api.semanticscholar.org/CorpusID:256390509
https://api.semanticscholar.org/CorpusID:256390509
https://aclanthology.org/L16-1147/
https://aclanthology.org/L16-1147/
https://aclanthology.org/L16-1147/
https://doi.org/10.18653/v1/2023.iwslt-1.6
https://doi.org/10.18653/v1/2023.iwslt-1.6
https://doi.org/10.1561/2200000073
https://doi.org/10.1561/2200000073
https://doi.org/10.1561/2200000073
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://aclanthology.org/2024.eamt-1.22/
https://aclanthology.org/2024.eamt-1.22/
https://aclanthology.org/2024.eamt-1.22/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.52/
https://aclanthology.org/2022.wmt-1.60/
https://aclanthology.org/2022.wmt-1.60/
https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.18653/v1/2023.iwslt-1.2
https://doi.org/10.1109/97.736233
https://openreview.net/forum?id=14rn7HpKVk
https://openreview.net/forum?id=14rn7HpKVk
https://github.com/snakers4/silero-models


Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonol-
losa, and Marta R. Costa-jussà. 2022. SHAS: Ap-
proaching optimal Segmentation for End-to-End
Speech Translation. In Proc. Interspeech 2022, pages
106–110.

Changhan Wang, Anne Wu, and Juan Pino. 2020. Cov-
ost 2: A massively multilingual speech-to-text trans-
lation corpus. Preprint, arXiv:2007.10310.

John Wiseman. 2019. Wiseman/py-webrtcvad. GitHub
repository, Nov.

Haoran Xu, Kenton Murray, Philipp Koehn, Hieu
Hoang, Akiko Eriguchi, and Huda Khayrallah. 2024a.
X-alma: Plug & play modules and adaptive rejec-
tion for quality translation at scale. arXiv preprint
arXiv:2410.03115.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024b. Contrastive pref-
erence optimization: Pushing the boundaries of llm
performance in machine translation. In International
Conference on Machine Learning, pages 55204–
55224. PMLR.

Brian Yan, Patrick Fernandes, Jinchuan Tian, Siqi
Ouyang, William Chen, Karen Livescu, Lei Li, Gra-
ham Neubig, and Shinji Watanabe. 2024. CMU‘s
IWSLT 2024 offline speech translation system: A
cascaded approach for long-form robustness. In Pro-
ceedings of the 21st International Conference on
Spoken Language Translation (IWSLT 2024), pages
164–169, Bangkok, Thailand (in-person and online).
Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Maike Züfle, Sara Papi, Beatrice Savoldi, Marco Gaido,
Luisa Bentivogli, and Jan Niehues. 2025. Nutshell:
A dataset for abstract generation from scientific talks.
arXiv preprint arXiv:2502.16942.

Maike Züfle and Jan Niehues. 2024. Contrastive
learning for task-independent speechllm-pretraining.
Preprint, arXiv:2412.15712.

Maike Züfle, Sara Papi, Beatrice Savoldi, Marco Gaido,
Luisa Bentivogli, and Jan Niehues. 2025. Nutshell:
A dataset for abstract generation from scientific talks.
Preprint, arXiv:2502.16942.

A Offline Track - Prompts

LLM Fuse Prompt

Post -Edit the Automatic Speech
Recognition Transcripts from
different systems understanding
the context.

ASR Transcripts:

System1: {Whisper v2 Hyps}
System2: {Whisper v2 FT Hyps}
System3: {Phi -4 Hyps}
System4: {Whisper v3 Hyps}

Post -Edited Transcript:
{Reference}

MT APE Prompt

<|im_start|>user
Post -Edit the German Translation
of the English sentence.
English:
{src}
German:
{mt}
<|im_end|>
<|im_start|>assistant
Post -Edited German:
{ref}

B Instruction-Following Track - Prompts

B.1 Data Augmentation Prompts SQA
System Prompt:

You are a professional question
generator. Given a transcript ,
you will create three questions:
two that can be answered based on
the transcript and one that

cannot be answered (but is
relevant to the topic).
The answers should be full
sentences in the target language
specified.
Your response must be in valid
JSON format , with keys for '
questions ' and 'answers '.
Do not include any explanations
or additional text.\n

Prompt:

<Transcript >\n
Based on the transcript , generate
a JSON dictionary with the

following structure.
The questions and answers must be
in <trg lang >:\n

{{\n

243

https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2022-59
https://arxiv.org/abs/2007.10310
https://arxiv.org/abs/2007.10310
https://arxiv.org/abs/2007.10310
https://doi.org/10.18653/v1/2024.iwslt-1.22
https://doi.org/10.18653/v1/2024.iwslt-1.22
https://doi.org/10.18653/v1/2024.iwslt-1.22
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://arxiv.org/abs/2412.15712
https://arxiv.org/abs/2412.15712
https://arxiv.org/abs/2502.16942
https://arxiv.org/abs/2502.16942


' "questions ": [\n'
' {"q1": "First question in <
trg lang >", "a1": "Full -sentence
answer in <trg lang >"},\n'
' {"q2": "Second question in <
trg lang >", "a2": "Full -sentence
answer in <trg lang >"},\n'
f' {{"q3": "Third question in
<trg lang >", "a3": "N/A"}}\n'

]\n
}}\n
Ensure the response is a valid
JSON object with properly
formatted keys and values.

B.2 Data Augmentation Prompts SSUM
System Prompt:

A chat between a curious user and
a professional system for

translating ACL abstracts .\n

Prompt:

<abstract >\ nTranslate this
abstract to <trg lang >. Do not
provide any explanation or
additional text.

B.3 Data Augmentation Prompts ST
System Prompt:

You are a professional translator
. Your task is to provide
accurate , fluent , and natural
translations without adding
explanations , comments , or extra
content.

Prompt:

Translate the following English
text into <trg lang >. Do not
provide any explanation or
additional text.\n<text >

B.4 Hyperparameters Model Training

training Q-Former Num Query Token 4
parameters Q-Former Num Hidden Layers 4

Q-Former Num Attention Heads 12
Q-Former Seconds per Window 1/3
num GPUs 4
learning rate 1e-4
warmup ratio 0.03
optimizer adamw_torch
learning rate scheduler type cosine
model max length 2048
gradient clipping 1

pretraining num epochs 5
specific per device batch size 10

gradient accumulation steps 2
contrastive τ cos + wasser 0.1
contrastive τ nwp 0.5
sinkhorn loss p 2
sinkhorn loss blur 0.5

finetuning num epochs 2
specific per device batch size 2

gradient accumulation steps 10

Table 10: Hyperparameters for the trainings, which
are conducted on four NVIDIA GH200 96GB GPUs,
mostly following Züfle and Niehues (2024).
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