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Abstract

Machine learning (ML) models are increas-
ingly used to support clinical decision-making.
However, real-world medical datasets are of-
ten noisy, incomplete, and imbalanced, leading
to performance disparities across patient sub-
groups. These differences raise fairness con-
cerns, particularly when they reinforce existing
disadvantages for marginalized groups. In this
work, we analyze several medical prediction
tasks and demonstrate how model performance
varies with patient characteristics. While ML
models may demonstrate good overall perfor-
mance, we argue that subgroup-level evaluation
is essential before integrating them into clinical
workflows. By conducting a performance anal-
ysis at the subgroup level, differences can be
clearly identified—allowing, on the one hand,
for performance disparities to be considered
in clinical practice, and on the other hand, for
these insights to inform the responsible devel-
opment of more effective models. Thereby,
our work contributes to a practical discussion
around the subgroup-sensitive development and
deployment of medical ML models and the in-
terconnectedness of fairness and transparency.

1 Introduction

Medical machine learning (ML) models are trained
on datasets containing diverse patient characteris-
tics. However, when certain subgroups are over-
or underrepresented, models may show unequal
performance, raising fairness concerns. Address-
ing such disparities requires evaluation across sub-
groups—ideally with an intersectional perspective
that considers overlapping dimensions of disadvan-
tage (Foulds et al., 2019; Wang et al., 2022). This
leads to the central question: How should we ad-
dress subgroup performance disparities in the
context of fairness in medical ML?

Fairness is a multifaceted concept that frequently
arises in the context of machine learning systems.

A common definition describes fairness in decision-
making as the ‘absence of any prejudice or fa-
voritism toward an individual or group based on
their inherent or acquired characteristics’ (Mehrabi
et al., 2021). Therefore, an ML system can be
considered unfair if, despite the goal of achiev-
ing equally good performance across different sub-
groups, it exhibits substantial performance dispar-
ities. Those disparities often result from bias, for
example through biased training data (data bias) or
a biased algorithm itself (algorithmic bias). Both
terms encompass various subtypes of bias, such
as minority bias, missing data bias or cohort bias
that can lead to a poorer performance for certain
subgroups (Ueda et al., 2024).

In machine learning, representation and perfor-
mance disparities have been documented across
modalities. For instance, large language models
used in clinical settings may perpetuate stereo-
types or marginalize certain identities when so-
ciodemographic diversity is absent in training data
(Alnegheimish et al., 2024; Lohse et al., 2024).
Similar issues arise in structured EHR modeling,
where label noise and skewed sampling exacerbate
subgroup-specific errors (Sivarajkumar et al., 2023;
Seyyed-Kalantari et al., 2020).

To address these challenges, prior work has
taken different approaches. Some studies aim to
improve dataset diversity or subgroup visibility in
clinical training data (Rawat et al., 2024; Abra-
ham and Idrobo, 2024). Others propose fairness-
aware optimization objectives or subgroup-specific
tuning to reduce performance gaps (Sivarajku-
mar et al., 2023). The importance of documen-
tation and benchmarking has also been empha-
sized—especially in clinical imaging and founda-
tion models—through standardized evaluation pro-
tocols across sensitive attributes (Jin et al., 2024).

Our work contributes to this growing field by
offering a structured analysis of subgroup variation
across three real-world multimodal medical predic-
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tion tasks: mortality, triage, and graft failure, and
advocating for routine reporting and subgroup vali-
dation as an integral part of the ethical assessment
of medical ML model evaluation.

2 Experiment

We conduct our experiments on three multimodal
clinical datasets, each containing textual data (e.g.,
clinical notes), structured static data (e.g., demo-
graphics), and, in two cases, time-series data (e.g.,
vital signs). All tasks involve patient-level predic-
tions in distinct clinical settings.

Mortality Based on the MIMIC-III (Johnson
et al., 2016) dataset from a US intensive care unit,
this task involves predicting in-hospital mortality
after the first 48 hours of admission (Yang and Wu,
2021). Data includes demographics, time-series
vitals, and admission notes. It is framed as a bi-
nary classification and evaluated using AUC-ROC
(ROC) and AUPRC (PRC).

Graft Failure This dataset comes from a German
transplant center and includes structured data (e.g.,
demographics, comorbidities), time-series labs and
vitals, and clinical texts. The task is to predict graft
failure within 360 days of each visit, using binary
classification with ROC and AUPRC as metrics.

Triage This dataset contains semi-structured am-
bulance records from a German emergency depart-
ment, including structured features (e.g., vitals,
pain score, Glasgow Coma Scale) and short text
notes, describing the accident and situation of pa-
tient. The task is to classify patient urgency ac-
cording to the Manchester Triage System (MTS), a
multi-class classification problem evaluated using
precision, recall, and F1 score.

2.1 Methods

We employ different machine learning models tai-
lored to the characteristics of each dataset. The
choice of method is influenced not only by the data
modality and task complexity, but also by hardware
constraints at the data hosting sites.

For Mortality prediction, we use a multimodal
architecture that integrates irregular time-series and
text data through interpolation-based embeddings
and time-aware attention. Modalities are fused
using interleaved self- and cross-attention layers,
following the approach of Zhang et al. (2022) and
Ravichandran et al. (2024). In the Graft Failure

task, we apply a fast Gradient Boosting Regres-
sor capable of handling static and time-series data
as well as clinical notes, as described in Roller
et al. (2022). For Triage, we apply a hybrid ap-
proach built around a transformer model for pro-
cessing textual information, which is extended with
a feed-forward network to integrate key structured
features, as outlined in Maschhur et al. (2024). Ad-
ditionally, expert rules are incorporated to better
reflect aspects of the MTS and increase the recall
for the most urgent classes.

2.2 Setup

Each model is trained on a predefined training set
and evaluated on a fixed test set, referred to as
the reference test. Using the same trained model,
we then conduct a series of subgroup analyses by
filtering the test set according to patient characteris-
tics—for example, selecting only patients under 18
years old, or only female patients. Then, we com-
pare the model’s performance on each subgroup
against its performance on the full reference test
set to investigate disparities across different patient
groups.

2.3 Subgroup Analysis Results

Table 1-3 present results from our subgroup anal-
ysis across the three tasks. We observe that while
overall performance is strong on the full test sets,
notable variations emerge across subpopulations.

Mortality
Test-Set ROC - PRC
Reference 0.89 - 0.61
High Age (>75) 0.86 - 0.59
Male 0.90 - 0.65
Female 0.88 - 0.57
White 0.89 - 0.62
Black 0.86 - 0.45
Asian 0.91 - 0.56
Hispanic 0.97 - 0.77
Other 0.90 - 0.70

Table 1: Subgroup Analysis of the Mortality Task, using
AUC-ROC (ROC) and Area under the Precision-Recall
Curve (PRC).

Mortality: The model performs well overall
(see Table 1), but subgroup differences are notable
in PRC, which are more sensitive to class imbal-
ance. For instance, PRC is highest among male
(0.65) and Hispanic patients (0.77), but substan-
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Graft Loss
Test-Set ROC - PRC
Reference 0.94 - 0.55
Low Age 0.96 - 0.72
High Age 0.93 - 0.51
Male 0.95 - 0.61
Female 0.94 - 0.49
Donor Alive 0.98 - 0.70
Donor Dead 0.93 - 0.53

Table 2: Subgroup Analysis of the Graft Failure Predic-
tion Task, using AUC-ROC (ROC) and Area under the
Precision-Recall Curve (PRC).

tially lower for women (0.57) and Black patients
(0.45), suggesting a performance disparity, partic-
ularly in recall-sensitive settings. The score even
further decreases for Black women to PRC=0.36
(not shown in the table).

Graft Failure: Similarly to above, subgroup
differences are particularly notable in PRC (see Ta-
ble 2). Predictions are most reliable for younger
patients (PRC=0.72), male patients (0.61), and re-
cipients of organs from living donors (0.70). Perfor-
mance drops for older patients, women, and cases
with deceased donors—groups that may require
additional calibration or targeted support.

Reference Test Children (<18)
Labels Prec Rec F1 Prec Rec F1

Green 0.53 0.40 0.46 0.47 0.42 0.44

Yellow 0.63 0.47 0.54 0.65 0.56 0.60

Orange 0.20 0.53 0.29 0.33 0.40 0.36

Red 0.21 0.86 0.34 0.30 0.78 0.44

Male Female
Green 0.53 0.39 0.45 0.53 0.42 0.47
Yellow 0.63 0.48 0.55 0.63 0.46 0.53

Orange 0.23 0.57 0.32 0.17 0.49 0.25

Red 0.27 0.87 0.41 0.16 0.85 0.26

High Age (>85) No Age

Green 0.59 0.38 0.46 0.44 0.27 0.33

Yellow 0.60 0.53 0.56 0.48 0.43 0.45

Orange 0.13 0.44 0.20 0.45 0.45 0.45

Red 0.16 0.88 0.27 0.36 0.67 0.47

Table 3: Subgroup Analysis on Triage Prediction

Triage: For children, less serious cases (red, or-
ange) can be detected (lower recall). The overall
performance (see Table 3) of male and female pa-
tients, instead, is roughly similar to the reference
test set. Only the precision of the most serious class
decreases for women, while it increases for men.
In the case of old patients, above the model shows
for red and orange a very strong performance drop.
Finally, in cases where patient data does not in-
clude any age—and missing crucial information

can occur frequently in real-world data of emer-
gency care—we can see a drop in recall within all
classes. Using solely the transformer-based ma-
chine learning model, we can see a similar pattern
(see Appendix).

3 Analysis

3.1 Medical Analysis
In the following, a brief analysis from a medical
perspective is provided.

Mortality ICU settings offer rich data but cannot
fully capture bedside clinical judgment, which is
hard to textualize and prone to bias. Early ICU as-
sessments, especially under stress, may introduce
human biases that models can reproduce. Biologi-
cal differences, such as higher baseline blood pres-
sure in Black patients, may also skew mortality
predictions if not properly accounted for.

Graft Loss Graft loss risk is inversely linked
to kidney function, estimated via creatinine-based
eGFR. This is less reliable for frail patients with
low muscle mass (common in elderly), possibly
explaining reduced PRC. Gender bias may arise
from the overrepresentation of men and the use
of creatinine instead of sex-adjusted eGFR. Bet-
ter performance in living-donor transplants may
reflect generally improved outcomes, although this
is harder to interpret due to many confounding vari-
ables.

Triage Medically, triage is a challenging task,
as the “correct” category often requires diagnos-
tic confirmation, which is not considered for the
given task. Even experienced nurses frequently
mislabel cases, and paramedics may overtriage due
to time pressure or to err on the side of caution.
Known biases—such as overtriaging children and
undertriaging cardiorespiratory symptoms—are re-
flected in model performance, which deviates most
in children and the elderly. Overall, the label noise
and potential misclassification limit the validity of
model evaluation. Reliable ground truth is essential
for meaningful ML applications in this context, but
a manual analysis shows a large number of false
triage labels in the real-world data (about 30%).

3.2 Technical Analysis
Data Distribution All datasets are highly im-
balanced with respect to the target events—such
as mortality, graft failure, or red triage—which
are rare and make machine learning tasks more
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challenging. Event frequency also varies across
subgroups and between training and test sets, and
subgroup sizes differ significantly, both in terms
of total patients and percentage of target events.
These factors can all impact model performance.

For instance, in the Mortality dataset, Asian
patients make up only 2% of the data (train and
test), compared to 71% for White patients, which
may contribute to lower performance if subgroup-
specific characteristics are important for prediction.
However, despite representing 9% of the popula-
tion, the model performs worse on Black patients
than on Asians (2%) or Hispanics (3%). Interest-
ingly, the mortality rate for Black patients is only
9%, compared to an overall average of 13%. The
gender ratio is roughly 55:45 (male:female), which
could also contribute to performance differences.

Similar patterns are observed in the other two
datasets (see Appendix), suggesting that subgroup
composition likely affects model performance but
cannot fully explain the observed disparities.

Significance To examine concerns about spuri-
ous variation in small subgroups, where few pos-
itive cases can skew results, we conduct a one-
sided nonparametric bootstrap hypothesis test on
the Mortality task. We test if the model performed
significantly better on one subgroup (A) than an-
other (B). Overall, while we can see certain trends
on particular subgroups of the Mortality data, the
test found no significant performance differences
between men and women, Hispanics and Whites, or
Whites and Asians. However, the model does per-
form significantly better for Whites compared
to Blacks1.

4 Discussion

Our results highlight the variability of ML model
performance across patient subgroups on different
multimodal datasets in multiple tasks. While over-
all metrics may suggest good performance, a closer
look reveals that models can underperform for
specific subgroups, such as older patients, individ-
uals from certain ethnic groups, but also patients
with lower data quality or a particular transplant.
This poses a potential risk, particularly in clini-
cal decision-making, where complex and difficult
decisions must be made for vulnerable patient pop-
ulations.

1Corresponding confidence intervals as well as further de-
tails about the significance test, are reported in the Appendix.

As we have shown, fairness can be understood as
the requirement that different subgroups should ex-
hibit similar performance and that the model should
not ‘favor’ any particular subgroup. However, in
order to be fair and to pursue the goal of achiev-
ing equal performance across all subgroups, trans-
parency is essential. First, it must be recognized
that the model performs differently across different
subgroups. With this knowledge of the subgroup-
specific performance disparities a particular model
can still be used—especially since, in many real-
world scenarios, achieving fairness in the sense of
identical performance for all subgroups may not
be feasible. But for that to be responsible, it is
important that these models are accompanied by
documentation similar to an ‘information leaflet’
or a ‘package insert’ (Samhammer et al., 2023; Ott
and Dabrock, 2022) that includes subgroup-level
performance metrics, an overview of the training
data distribution, and disclaimers when certain sub-
groups are likely underrepresented. The EU AI
Act even demands a respective documentation for
high-risk AI systems (European Union, 2024). To
this end, best practices and standards for report-
ing subgroup performance need to be developed.
Such information can then guide clinicians in in-
terpreting predictions, managing uncertainty, and
identifying when to override or ignore model out-
puts.

At the same time, this transparency must not
become a substitute for fairness, allowing largely
unfair and biased models to be used uncritically and
thereby reinforcing existing inequalities. Rather,
transparency and fairness must be closely inter-
twined, with the recognition of poorer performance
for certain subgroups prompting targeted efforts to
improve outcomes specifically for those groups.

Ultimately, the goal should not be to prevent the
use of models that do not perform equally for all
possible subgroups, but to ensure they are used
with awareness, and that this insight is used to
improve the model specifically for those disadvan-
taged groups. A biased model with clear warn-
ings and transparent evaluation may still bring
benefit in clinical practice, especially in settings
where no decision support exists otherwise. How-
ever, it is precisely this transparency enabled by
subgroup analysis that can help further improve the
model or even develop a new model specifically
for those subgroups that are otherwise underrepre-
sented. Finally, the knowledge about surprising per-
formance discrepancies across patient subgroups
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can also trigger further research, as the under-
lying causes could also be medical rather than
solely data-driven.

5 Conclusion

In this paper, we presented a pragmatic perspective
on fairness challenges in medical machine learning.
Through empirical subgroup analyses on three di-
verse clinical tasks, we showed that performance
disparities across patient populations are not only
common but often hidden by aggregate metrics.
Since ‘one size fits all’ solutions, where ML models
aim but fail to perform equally across all subgroups,
are rarely adequate in real-world scenarios, we have
demonstrated the importance of linking fairness
and transparency: making biases visible, reporting
subgroup-specific performance, and acknowledg-
ing data limitations. Also, we need further efforts to
help overcome access barriers to clinical research
and optimal care, as this would also help to im-
prove medical datasets used to develop and train
fair models. Likewise, best practices and standards
for evaluating and reporting subgroup performance
need to be developed. This transparency serves two
purposes: it allows physicians to weigh in on the
model’s performance across subgroups for clinical
decision-making, and at the same time, it enables
targeted optimization of the model for those groups
that are currently disadvantaged. In doing so, we
can foster more responsible use of ML models in
healthcare.

Bias Statement

We define the considered biases as performance
disparities across patient subgroups based on par-
ticular characteristics, such as age, gender, ethnic-
ity, but also data quality or donor. These biases
are harmful because they can lead to misdiagnosis
or suboptimal care for marginalized groups—for
example, by underpredicting mortality risk in older
or female patients, or by providing less accurate
triage classifications for children. Such disparities
may reinforce existing inequalities in clinical care.

Our work demonstrates that these behaviors arise
due to underrepresentation in training data, label
noise, and missing information in real-world medi-
cal datasets. We advocate for transparent subgroup
reporting, which enables clinicians and developers
to identify when model outputs should be ques-
tioned or overridden. In doing so, we aim to pro-
mote safer, more equitable AI integration into clin-

ical practice.

Limitations

Our subgroup analyses are exploratory and based
on straightforward demographic or clinical splits
(e.g., age, gender), without a principled approach
to subgroup formation. Future work should ex-
plore systematic strategies for identifying mean-
ingful subgroups, particularly to ensure fair model
performance across underrepresented or multiply
marginalized patient groups by applying a decid-
edly intersectional perspective. Additionally, while
we account for performance differences, we do
not explicitly quantify uncertainty or statistical sig-
nificance across all datasets and subgroups. The
clinical datasets we rely on also exhibit label noise,
missing values, and potential bias in documentation
practices (e.g., in triage labels or notes), which can
affect both model training and evaluation. Finally,
generalizability may be limited, as two datasets are
from Germany and one from a single US hospital.
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Reference Test Children (<18)
Labels Prec Rec F1 Prec Rec F1

Green 0.52 0.28 0.37 0.44 0.29 0.35

Yellow 0.58 0.64 0.61 0.61 0.69 0.64

Orange 0.22 0.48 0.30 0.27 0.36 0.31

Red 0.44 0.45 0.45 0.50 0.28 0.36

Male Female
Green 0.54 0.27 0.36 0.51 0.29 0.37
Yellow 0.58 0.65 0.61 0.59 0.64 0.61
Orange 0.23 0.50 0.32 0.21 0.46 0.29

Red 0.49 0.43 0.46 0.38 0.47 0.42

High Age (>85) No Age

Green 0.60 0.25 0.35 0.46 0.20 0.28

Yellow 0.56 0.70 0.62 0.50 0.75 0.60

Orange 0.18 0.46 0.26 0.11 0.09 0.10

Red 0.32 0.44 0.37 0.67 0.33 0.44

Table 4: Subgroup Analysis on Triage Prediction with
ML model

A.2 Data Point and Patient Frequencies

Due to limited space and due to the fact that the
main text can be easily understood without the de-
tailed tables about data points and patient frequen-
cies, we present them here in the Appendix (Tables
5, Table 7 and 6).

Table 5 presents the distribution of patients
across subgroups for the mortality prediction task
in the training and test sets. The table shows the
absolute number of patients per subgroup, with the
number of deaths in parentheses. Additionally, it
reports the percentage of patients in each subgroup
relative to the total dataset, and the mortality rate
within each subgroup (i.e., percentage of deaths
among subgroup members, also shown in parenthe-
ses).

Table 7 shows the distribution of patients and
their datapoints over time within training and test
data of one split. The original split into training
and test for the cross validation did not take pos-
sible subgroup information into account. Instead
the split for the cross validations was conducted
based on an equal distribution of patients with their
number of included data points. Note, as kidney
disease is a life long treatment, and our electronic
patient record contains data over a long time, we
make a forecast each time we insert new data for a
patient (e.g. regular checkup or hospitalization).

Table 6 presents the label distribution in the
Triage dataset. Each column represents a subgroup,
showing its proportion within the overall dataset
(percent) and the number of patient cases per triage
class within that subgroup, along with the corre-
sponding percentages relative to the subgroup total.

A.3 Significance Test on Mortality
To test if the model performed significantly bet-
ter on one subgroup (A) than another (B) in the
Mortality task, we ran a one-sided nonparamet-
ric bootstrap hypothesis test. We computed PRC
for each subgroup across 1,000 bootstrap resam-
ples (sampling with replacement) and calculated
the distribution of the pairwise difference (PRCA

– PRCB). A one-sided p-value was then derived
as the proportion of differences ≤ 0. Differences
were considered significant at p < 0.05.

This method also mitigates concerns about spu-
rious variation in small subgroups, where few pos-
itive cases can skew results. Bootstrapping esti-
mates performance variability due to sampling and
helps distinguish real model bias from chance.

In this context, Table 8 presents the confidence
intervals of the different subgroups of the Mor-
tality dataset. In many cases, particularly for the
smaller subgroups, the confidence intervals show a
large performance fluctuations.
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Size Train Size Test
Subgroups Freq. Absolute Percent Freq. Absolute Percent
Reference Test 14068 (1852) 100% (13%) 3099 (359) 100% (12%)
High Age (>75) 3776 (664) 27% (17%) 834 (24) 27% (3%)
Male 7794 (997) 55% (13%) 1732 (193) 56% (11%)
Female 6274 (855) 45% (14%) 1367 (166) 44% (12%)
White 10002 (1276) 71% (13%) 2229 (253) 72% (11%)
Black 1285 (112) 9% (9%) 270 (24) 9% (9%)
Asian 335 (45) 2% (13%) 61 (9) 2% (15%)
Hispanic 451 (36) 3% (8%) 106 (8) 3% (8%)
Other 1995 (383) 14% (19%) 433 (66) 14% (15%)

Table 5: Frequency of patients of Mortality task in subgroups within train and test.

Labels All Children Male Female High Age No Age
Green 3134 (34.82%) 293 (30.58%) 1492 (34.31%) 1638 (35.35%) 700 (38.76%) 30 (32.97%)
Yellow 4951 (55.00%) 518 (54.07%) 2366 (54.42%) 2572 (55.50%) 977 (54.10%) 44 (48.35%)
Orange 792 (8.80%) 129 (13.47%) 413 (9.50%) 378 (8.16%) 113 (6.26%) 11 (12.09%)
Red 124 (1.38%) 18 (1.88%) 77 (1.77%) 46 (0.99%) 16 (0.89%) 6 (6.59%)
percent (9001) 100% 10.64% 48.31% 51.48% 20.02% 1.01%

Table 6: Data Distribution Triage Prediction, showing the distributions of the four labels green, yellow, orange and
red across the subgroups, as well as the overall percentage of patients of that group in the overall dataset.

Train Test
Subgroups Patients Data Points (Target) Patients Data Points (Target)
Reference Test 1552 10321 (727) 297 43945 (2813)
Low Age (<30) - 1025 (65) - 4335 (322)
High Age (>75) - 449 (94) - 1401 (120)
Male 953 6391 (404) 183 27425 (1690)
Female 599 3930 (323) 114 16520 (1123)
Donor Alive 533 3427 (170) 97 13085 (703)
Donor Dead 1019 6894 (557) 200 30860 (2110)

Table 7: Graft Failure: Frequency of patients and datapoints in train in test set within one split of cross validation

Subgroups Mean Confidence Interval
Middle Age (>45) 0.6802 [0.5639, 0.7830]
High Age (>75) 0.5957 [0.5050, 0.6830]
Male 0.6554 [0.5920, 0.7170]
Female 0.5801 [0.5039, 0.6610]
White 0.6183 [0.5600, 0.6730]
Black 0.4444 [0.2320, 0.6341]
Asian 0.5891 [0.2608, 0.9351]
Hispanic 0.7642 [0.4290, 0.9851]
Other 0.6976 [0.5830, 0.7991]

Table 8: Mortality Prediction: Confidence intervals (95%) of AUPRC based on 1,000 iterations of a one-sided
bootstrap hypothesis test.
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