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Abstract

Recent advances in large language models have
led to numerous task-specialized fine-tuned
variants, creating a need for efficient model
merging techniques that preserve specialized
capabilities while avoiding costly retraining.
While existing task vector-based merging meth-
ods show promise, they typically apply uni-
form coefficients across all parameters, over-
looking varying parameter importance both
within and across tasks. We present Sens-
Merging, a sensitivity-guided coefficient ad-
justment method that enhances existing model
merging techniques by operating at both task-
specific and cross-task levels. Our method an-
alyzes parameter sensitivity within individual
tasks and evaluates cross-task transferability to
determine optimal merging coefficients. Exten-
sive experiments on Mistral 7B and LLaMA2-
7B/13B models demonstrate that Sens-Merging
significantly improves performance across gen-
eral knowledge, mathematical reasoning, and
code generation tasks. Notably, when com-
bined with existing merging techniques, our
method enables merged models to outperform
specialized fine-tuned models, particularly in
code generation tasks. Our findings reveal im-
portant trade-offs between task-specific and
cross-task scalings, providing insights for fu-
ture model merging strategies.

1 Introduction

The rapid advancement of large language models
(LLMs) has significantly enhanced performance
across a diverse range of tasks (Touvron et al.,
2023; Zhao et al., 2023). As these models con-
tinue to be fine-tuned for specialized domains, the
necessity to merge these specialized models into
a unified framework becomes increasingly critical
(Yang et al., 2024; Goddard et al., 2024). While
multi-task learning has been proposed as a solution,
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Figure 1: Sens-Merging functions as a plug-and-play
enhancement to existing task vector-based merging tech-
niques. Notably, when integrated with DARE, it sur-
passes even specialized code models in code generation.

it incurs substantial training costs and requires si-
multaneous access to data and labels for all tasks
(Sanh et al., 2022; Fifty et al., 2021). Recently,
researchers have developed parameter-level model
merging methods that not only comply with data
privacy regulations but also improve efficiency by
eliminating the need for retraining (Yadav et al.,
2023; Yu et al., 2024b).

In the context of model merging, task vectors
(Ilharco et al., 2023a) have emerged as a power-
ful component for representing task-specific ca-
pabilities. These vectors, defined as the differ-
ences between parameter values before and after
fine-tuning, enable effective integration of special-
ized knowledge from different models. While task
vector-based merging methods (Yadav et al., 2023;
Yu et al., 2024b) have shown promising results,
their reliance on uniform coefficients for each task
and parameter limits their potential effectiveness.
This uniformity implies that every task and every
parameter is treated with equal importance dur-
ing the merging process. Consequently, it over-
looks the fact that parameters within each layer
demonstrate varying levels of importance for spe-
cific tasks, and parameters from different tasks con-
tribute distinctly during the merging process.
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To address these challenges, we propose Sens-
Merging, a sensitivity-guided merging coefficient
adjustment method that functions as a plug-and-
play enhancement to existing task vector-based
merging techniques. Our method operates at two
levels: within individual tasks and across different
tasks, allowing for fine-grained control over param-
eter importance. Within each task-specific model,
we perform parameter sensitivity analysis to high-
light critical layers that significantly impact perfor-
mance. Concurrently, across different tasks, we
conduct task sensitivity analysis to prioritize mod-
els that enhance the performance of others. By com-
bining these two factors, we derive the final merg-
ing coefficients, which are then applied to merge
the corresponding layers. Figure 1 highlights how
Sens-Merging enhances existing task-vector tech-
niques like Task Arithmetic (Ilharco et al., 2023b)
and DARE (Yu et al., 2024b). Notably, when com-
bined with DARE, Sens-Merging enables merged
models to outperform specialized fine-tuned mod-
els, particularly in code generation.

To empirically demonstrate the effectiveness of
Sens-Merging, we conduct extensive experiments
by combining it with existing model merging ap-
proaches. We merged three widely adopted fine-
tuned models—specializing in general knowledge
(Chat), mathematical reasoning (Math), and code
generation (Code)—derived from the LLaMA2-
7B/13B and Mistral 7B families. The integration
of our Sens-Merging not only improves baseline
merging performance but enables merged models
to surpass individual fine-tuned models. Notably,
when merging Code model with Math and Chat
models using Sens-Merging, it achieves superior
performance on coding tasks compared to code-
specific fine-tuning alone. These results indicate
that model merging can effectively address the chal-
lenges of training a single model for complex tasks
by integrating the specialized capabilities of multi-
ple fine-tuned models.

To sum up, our contributions include: (1) We
propose a novel model merging coefficient de-
termination method based on both task-specific
and cross-task sensitivity analysis. (2) Through
comprehensive evaluations, we validate that our
proposed method enhances model merging perfor-
mance across various domains. (3) We empirically
demonstrate that different task-specific models con-
tribute unequally to model merging, and parameter
importance varies across different layers within
each model. (4) We validate that each scaling ap-

proach presents distinct trade-offs: task-specific
scaling excels in specialized domains like math-
ematics but offers limited general benefits, while
cross-task scaling achieves broader performance
gains at the cost of peak task-specialized perfor-
mance.

2 Related Work

Modeling merging (Yang et al., 2024; Goddard
et al., 2024), as a complementary approach to
training-based methods, has the capability to in-
tegrate multiple task-specialized models into a uni-
fied one (Wortsman et al., 2022; Stoica et al., 2024,
Ainsworth et al., 2023; Yu et al., 2024b), to improve
model performance on individual tasks by merging
checkpoints without requiring additional training
(Yadav et al., 2023; Ilharco et al., 2023b), and to al-
leviates the issue of catastrophic forgetting (Alexan-
drov et al., 2024). According to whether the based
models are in same architecture, the model merging
methods can be divided into heterogeneous model
merging and homogeneous model merging.

Heterogeneous Model Merging. A brunch of
work (Avrahami et al., 2022; Nguyen et al., 2023)
attempts to perform architecture transformation be-
fore merging, aiming to transform multiple models
with different architectures into a unified one. How-
ever, these approaches often rely on the learning
process to align the models, which can potentially
degrade their performance. Recent research in this
direction often builds upon the concept of mode
connectivity (Freeman and Bruna, 2017; Frankle
et al., 2020; Tatro et al., 2020), which suggests
the existence of a connected path between multi-
ple local minima of models, along which the loss
remains nearly constant. Furthermore, Entezari
et al. (2022) revealed that models permuted to the
same loss basin can be merged by averaging their
weights. Following these intuitions, more recent
works (Ainsworth et al., 2023; Jordan et al., 2023;
Stoica et al., 2024) focus on permutation strategies
to achieve better heterogeneous model merging.

Homogeneous Model Merging. Task-specific
models initialized from the same pre-trained model
can often be merged without considering permu-
tation symmetry (Wortsman et al., 2022; Ilharco
et al., 2023b). One of the most straightforward ap-
proaches to model merging is to directly weighted
average the parameters of base models (Shoemake,
1985; Wortsman et al., 2022). However, the per-
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Figure 2: Overall framework of our Sens-Merging method. Sens-Merging adjusts layer-wise scaling coefficients for
task-specialized fine-tuned models through two mechanisms: task-specific scaling and cross-task scaling.

formance of simple average merging is often sub-
optimal, as task-specific features are typically not
uniformly distributed. Task Arithmetic (Ilharco
et al., 2023b) enhances the merging process by in-
troducing task vectors, suggesting that simple arith-
metic operations on these vectors can effectively
edit models and produce a merged model. Building
on the concept of task vectors, both DARE (Yu
et al., 2024b) and Ties (Yadav et al., 2023) em-
ploy pruning-then-scaling methods to merge task
vectors, based on the assumption that not all param-
eters contribute equally to the final performance.
This also aligns with our perspective. While DARE
is primarily designed for merging models with mi-
nor parameter changes, WIDEN (Yu et al., 2024a)
aims at merging models with significant parameter
shifts by disentangling weight components.

Another line of research on model merging lever-
ages information derived from the activations of
training data. For example, Matena and Raffel
(2022) suggested a probability-space approach,
which uses the Fisher information matrix to iden-
tify the importance of model parameters and pro-
posed Fisher Merging. Jin et al. (2023) introduced
RegMean, a data-less merging method that merges
models in parameter space by solving a linear sys-
tem constructed from data and model parameters.
We posit that activations play a crucial role in iden-
tifying the key parameters within task vectors rele-
vant to downstream tasks. To this end, we propose
a novel sensitivity-guided activation method to fa-
cilitate more effective merging of key features.

3 Methodology

Our Sens-Merging method combines two levels
of sensitivity analysis: layer-wise analysis within
individual models and cross-task analysis across
different models to achieve a balanced parameter
competition. For layer-wise analysis, we compute
sensitivity scores using gradient information from
calibration datasets. For cross-task analysis, we
evaluate model alignment through logits compar-
ison. These two components determine the final
merging coefficients used to merge corresponding
layers into a unified model, as shown in Figure 2.

3.1 Preliminary

Considering K task-specialized fine-tuned mod-
els {05k, - .. HéFT} derived from a common pre-
trained backbone fprg, model merging aims to
merge them into a single model 8, that can ef-
fectively handle all tasks simultaneously. The task-
specific capabilities of each fine-tuned model are
captured by task vectors, defined as the difference
between the fine-tuned parameters and the pre-
trained backbone:

Sty = 0k — Oprp, fork € {1,...,K}.

Task vector-based merging aggregates these task
vectors to construct a merged model:

K

Om = Oprg + Z}\ * 5tk'
k=1

where the coefficient A represents the importance
of each merged task vector.
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3.2 Task-Specific Scaling

To accurately balance the parameters within indi-
vidual task models, we conduct layer-wise sensitiv-
ity analysis by measuring each layer’s contribution
to model performance through aggregating param-
eter sensitivities within that layer.

Parameter Sensitivity. We define parameter sen-
sitivity as the change in loss when setting that pa-
rameter to zero. A parameter is considered highly
sensitive if zeroing it results in a significant loss
increase. For a fine-tuned model with parameters
Gé}T = [01, ..., 0], where N represents the total
number of parameters, the j-th parameter can be
expressed as 0;1' =[0,...,0;, ...,0]. With gradients
of the loss relative to H?FT represented as V 1, L,
the sensitivity of the j-th parameter for a speScFiTﬁc
sample x; from task ¢; is determined as:

Sii = 165) TV gis L(a)] (1)

The rationale behind this sensitivity definition
stems from the first-order Taylor expansion of
L(xy,) relative to 6;. In essence, Sjlk provides an
approximation for how the loss might change in
the absence of 0;:

(03) "V, Lwx) = L(B5er) — L(Oger—0;) )

To estimate the parameter sensitivity S;ii for task
t;, we randomly sample m instances from the
task training set as calibration samples. The fi-
nal sensitivity score S;i aggregates the individual

sensitivities across all sampled instances: S;L =
>h1 S
7

Layer-Wise Sensitivity and Normalization.
The layer-wise sensitivity sﬁ is then calculated by
summing the sensitivities of all parameters within
each layer, thereby reflecting each layer’s overall
contribution to the model’s performance. To allow
for meaningful comparisons of these importance
scores across different models, we apply Lo nor-
malization to the sensitivities of all layers. Conse-
quently, the task-specific sensitivity scaling factors
ozé are defined as:

. sl
w=2. 8 ai=r 3)
jeP, i]|2

where P; denotes the set of parameters in layer [,
and L is the total number of layers in the model.

3.3 Cross-Task Scaling

While task-specific sensitivity focuses on the impor-
tance of layers within individual tasks, it is equally
essential to evaluate how each task-specific model
influences other tasks during the merging process.
Cross-task sensitivity captures the interdependen-
cies and shared representations between different
tasks, ensuring that the merged model benefits from
common features and decision-making processes.
The measurement of cross-task influence begins
with evaluating logits alignment between different
task-specific models. Specifically, for calibration
samples from task ¢;, we compute the alignment
score between model HéZFT and the expert model for

task ;, ngﬁ’ using the Lo distance between their
output logits:

i = Hfg;h(l"]k) - faégw(fﬂiﬂlz 4)
where fp(x) denotes the output logits of model
0 for input z, and || - ||2 represents Lo distance.
This alignment score quantifies how closely the
predictions of model H?FT match those of the ex-
pert model for task ngFT, providing insight into the
degree of shared knowledge and representational
similarity between tasks. To obtain a comprehen-
sive measure of cross-task sensitivity for a specific
task model HéiFT, we aggregate the alignment scores
across all other tasks. This aggregation process in-
volves computing the normalized alignment:

K
T
1=1,i#7

The resulting cross-task scaling factor 7; serves as
a crucial metric that quantifies model 9§iFT’s ability
to transfer knowledge across tasks. Higher values
of 7; indicate superior cross-task generalization ca-
pabilities, suggesting that the model has learned
robust representations that are valuable across mul-
tiple tasks. Conversely, lower values of 7; reflect
greater task-specific specialization, indicating that
the model’s features are more narrowly focused on
its primary task.

3.4 Integration with Merging Methods

Our Sens-Merging method combines task-specific
scaling factor ozé and the cross-task scaling factor 7;
into a plug-and-play module, which can be seam-
lessly integrated with existing task vector-based
model merging methods. To effectively combine
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these sensitivity factors, we employ a two-step pro-
cess. First, we multiply the task-specific scaling
factor ai- with the cross-task scaling factor 7; to cap-
ture both task-specific and cross-task importance.
Then, we apply a softmax function with tempera-
ture T" to normalize these products and obtain the
final scaling coefficients:

ot = Softmax(7; - o, T) (6)

The final step involves computing the merged
model parameters 95\4 for each layer [. We start
with the base model parameters Hllme and incorpo-
rate weighted contributions from all K fine-tuned
models. The contribution of each task-specific
model is scaled by its normalized coefficient o
and multiplied by K to preserve the magnitude of
updates:

K
0?\4 = ell)ase + Z K- 05 ) (Qé#r - HIIDaSC) %)

=1
4 Experiments

Baselines. We evaluate the effectiveness of our
Sens-Merging method by comparing it against both
individual task-specific models and several estab-
lished model-merging techniques, including Task
Arithmetic, Ties-Merging, and DARE-Merging.
Task Arithmetic (Ilharco et al., 2023b) enhances the
merging process by introducing task vectors, sug-
gesting that simple arithmetic operations on these
vectors can effectively edit models and produce a
merged model. Building on the concept of task vec-
tors, both DARE (Yu et al., 2024b) and Ties (Yadav
et al., 2023) employ pruning-then-scaling methods
to merge task vectors, based on the assumption that
not all parameters contribute equally to the final
performance. We refer readers to Appendix 7.1 for
detailed hyperparameter settings for the merging
methods.

Models & Dataets Our experimental evaluation
focuses on three model families: LLaMA-2 7B
(Touvron et al., 2023), Mistral 7B (Jiang et al.,
2023), and LLaMA-2 13B (Touvron et al., 2023),
each covering distinct specializations in: general
knowledge (Chat), mathematical reasoning (Math),
and code generation (Code). Additional details
regarding the model variants and their sources are
provided in Appendix 7.2.

We assess performance using seven benchmark
datasets across three domains: MMLU (Hendrycks

et al., 2020), HellaSwag (Zellers et al., 2019) and
Truthful QA (Lin et al., 2022) for assessing gen-
eral knowledge and reasoning capabilities; GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021) for testing mathematical reasoning profi-
ciency; HumanEval (Chen et al., 2021) and MBPP
(Austin et al., 2021) for evaluating code genera-
tion ability. To ensure consistent and unbiased
assessment, model performance is evaluated using
zero-shot accuracy, with pass@1 rate specifically
measuring code generation correctness.

Calibration Data For the calibration process,
we strategically selected a compact set of domain-
specific data: 10 random samples per model from
established datasets (GSM8K (Cobbe et al., 2021)
for Math models, MBPP (Austin et al., 2021) for
Code models, and Stanford Alpaca (Taori et al.,
2023) for Chat models). This deliberate small-
scale data sampling significantly enhances compu-
tational efficiency while maintaining effectiveness.
Importantly, our analysis confirms that even with
this limited calibration data, we observe stable and
distinguishable divergence patterns in loss measure-
ments across different models, providing reliable
signals for sensitivity score computation.

4.1 Main Results

Merging Models with Sense-Merging. We eval-
uate the effectiveness of Sens-Merging by applying
it as a plug-and-play module to enhance existing
task-vector-based baselines. As shown in Table 1,
Sens-Merging consistently improves average per-
formance across all domains when merging Chat,
Math, and Code variants of the LLaMA2-7B model.
Across all methods, integrating Sens-Merging leads
to notable performance gains.

(1) Significant Improvement in Task Arith-
metic: Sens-Merging brings a substantial boost
to Task Arithmetic, raising the average score from
29.03 to 34.78 — a 19.22% relative improvement
(5.58 points). In contrast, Ties-Merging and DARE,
which already apply parameter pruning to reduce
interference, see more moderate gains of 0.4 and
0.27 points respectively, yet still benefit from Sens-
Merging. (2) Domain-Specific Enhancements:
In general knowledge, Sens-Merging consistently
improves performance on MMLU and HellaSwag
across all methods. For mathematical reason-
ing, the combination of Ties-Merging and Sens-
Merging achieves the highest GSM8K (47.69) and
MATH (7.80) scores. In code generation, Task
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Use General Knowledge

Mathemetical Reasoning Code Generation

Method Sens MMLU HellaSwag TruthfulQA  GSMSK  MATH MBPP HumanBval ~/erage
Chat 46.38 57.79 45.17 23.43 4.86 0.3 0.6 25.50
Math \ 40.05 56.30 32.56 48.60 8.50 21.8 12.8 31.52
Code 40.76 57.87 33.17 7.13 3.62 26.8 55 24.98
Tk Arithmetic X 4150 49.63 37.45 47.34 6.46 135 73 20.03

v 4612 59.10 36.84 4229 7.12 33.1 189 34.78
Tios-Morging X 4575 56.63 39.89 46.93 7.74 29.1 17.1 34.73

v 46.03 56.87 40.02 47.69 7.80 29.8 17.7 35.13
DARE X 4678 5757 38.19 44.05 6.96 31.6 189 34.86

/4681 5824 37.33 4473 6.98 323 19.5 35.13

Table 1: Performance evaluation of merged LLaMA2-7B Models (Chat, Math, Code) across 7 task-specific datasets

Method Use General Knowledge Mathemetical Reasoning Code Generation Average
Sens MMLU HellaSwag TruthfulQA GSMSK MATH MBPP HumanEval
Chat 59.05 65.97 55.69 42.53 9.16 49.6 42.7 46.37
Math \ 60.77 58.68 44.68 63.38 22.74 38.1 23.8 44.59
Code 50.58 53.19 45.29 31.69 4.84 50.9 40.9 39.63
Task Arithmetic X 47.34 46.80 41.00 52.16 13.26 32.1 29.9 37.51
v 62.43 61.94 45.29 59.74 17.06 54.4 34.1 47.85
Ties-Merging X 57.20 57.59 48.71 55.50 15.00 48.4 40.2 46.09
v 57.36 57.94 48.12 56.25 15.56 49.9 41.5 46.66
DARE X 55.36 55.77 42.84 57.39 15.00 49.4 39.0 44.97
v 58.22 58.92 46.88 58.45 16.46 55.1 43.3 48.19

Table 2: Performance evaluation of merged Mistral 7B Models (Chat, Math, Code) across 7 task-specific datasets

Arithmetic with Sens-Merging significantly im-
proves MBPP (13.5 to 33.1) and HumanEval (7.3
to 18.9). (3) Outperforming Individual Models:
Sens-Merging enables merged models to surpass
their individual fine-tuned counterparts, particu-
larly in code generation. For instance, merging
Chat, Math, and Code models increases MBPP
accuracy from 26.8 to 32.3 and HumanEval from
12.8 to 19.5. This shows that model merging can
effectively integrate specialized capabilities, even
outperforming direct fine-tuning on complex tasks.

The smaller gains observed on TIES/DARE com-
pared to the larger improvements on Task Arith-
metic stem from differences in parameter space.
Task Arithmetic operates on the full model, allow-
ing our sensitivity score to fully exploit its discrim-
inative potential. In contrast, TIES/DARE prune
50-80% of the parameters before merging, leav-
ing fewer parameters for Sens-Merging to optimize.
As a result, many potentially valuable parameters
are removed early, limiting the effectiveness of our
method in these settings.

Using Different Model Architecture. To verify
the generalizability of our method across architec-
tures, we conduct experiments using Mistral-7B
models. Our method demonstrates consistent per-
formance improvements despite the architectural
differences from LLaMA-based models. As shown

in Table 2, when combined with Task Arithmetic
and DARE, Sens-Merging demonstrated remark-
able performance gains, surpassing the original
baselines by 10.34 and 3.22 points respectively
across all evaluated datasets. With Task Arithmetic,
our method shows impressive gains across domains:
11.58 points in general knowledge, 4.86 points in
mathematical reasoning, and 8.45 points in code
generation. When combined with DARE, Sens-
Merging particularly excelled in code generation,
achieving a 5-point improvement over the original
DARE and even outperforming task-specialized
fine-tuned models. This superiority is evidenced
by higher scores on coding benchmarks: 55.1 ver-
sus 50.9 on MBPP and 43.3 versus 40.0 on Hu-
manEval.

Scaling to Larger Model Size. We further evalu-
ate the scalability of our method using the LLaMA-
2 13B fine-tuned models. As presented in Table
3, our approach maintains consistent performance
gains at larger scales. Sens-Merging with Task
Arithmetic demonstrates particularly strong im-
provements, outperforming the baseline by 5.68
points across all datasets, with notably impressive
gains in code generation (14.75 points). When
combined with Ties-Merging, Sens-Merging ex-
cels in mathematical reasoning tasks. Specifically,
it achieves a 3.77% relative improvement (1.98
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Use General Knowledge

Mathemetical Reasoning Code Generation

Method Sens MMLU HellaSwag TruthfulQA ~ GSMSK  MATH MBPP HumanBval ~Veraee
Chat 53.17 60.73 40.88 32.37 6.70 16.5 79 31.18
Math \ 5273 61.10 37.09 55.50 10.84 28.8 15.9 37.42
Code 52.65 60.42 40.64 27.29 5.74 21.3 10.4 31.21
Task Arithmetic ¥ 3222 57.52 41.49 49.89 732 241 0.1 3452

v 5588 61.84 39.05 53.07 8.84 42.6 20.1 40.20
Ties-Merging X 5548 60.65 39.05 52.46 9.90 40.4 213 39.89

v 5520 60.64 39.17 54.44 10.20 413 20.6 40.22
DARE X 5543 61.51 40.51 55.19 9.08 39.1 20.1 40.13

v 5565 61.66 40.64 55.42 9.08 39.3 20.7 40.35

Table 3: Performance evaluation of merged LLaMA2-13B Models (Chat, Math, Code) across 7 task-specific datasets

General Knowledge

Mathemetical Reasoning

Code Generation

Method MMLU HellaSwag TruthfulQA ~ GSMSK  MATH MBPP HumanBval /e3¢

Task Arithmetic  41.50  49.63 37.45 4734 6.46 135 73 29.03
+task-specific 4157 49.60 37.94 48.29 7.84 133 7.3 29.41
+ cross-task 4599  59.07 36.35 42.00 7.00 3.1 183 33.40
+Sens-Merging 4612  59.10 36.84 42.29 7.12 33.1 18.9 3478

Ties-Merging 4575 56.63 39.89 46.93 7.74 29.1 17.1 34.73
+task-specific 4734 56.63 38.68 46.63 7.92 29.3 17.7 34.89
+ cross-task 4520 5710 40.17 47.89 7.32 29.6 17.3 34.94
+ Sens-Merging  46.03 56.87 40.02 47.69 7.80 29.8 17.7 35.13

Table 4: Ablation studies on task-specific scaling and cross-task scaling for Task Arithmetic in LLaMA2 7B models.

points) on the GSM8K dataset and a 3.03% relative
improvement on the MATH dataset.

4.2 Ablation Studies

To evaluate each component, we perform ablation
studies using task-specific and cross-task scaling
within Task Arithmetic and Ties-Merging. As
shown in Table 4, Task Arithmetic shows task-
dependent behavior. Task-specific scaling im-
proves MATH by 1.38 points (21.36% relative gain)
but has limited impact elsewhere. In contrast, cross-
task scaling boosts general knowledge and code
generation by 4.28 and 14.8 points, respectively,
though it reduces math accuracy by 4.8 points.
Overall, cross-task scaling achieves the highest av-
erage gain of 5.37 points. For Ties-Merging, simi-
lar trends emerge. Task-specific scaling yields the
best MMLU score (47.34), highlighting its strength
in factual knowledge retention. Cross-task scal-
ing improves TruthfulQA and GSMSK, indicating
better generalization, but offers smaller gains on
specialized tasks. The best overall performance
(35.13) is achieved when Ties-Merging is com-
bined with Sens-Merging, balancing performance
across all domains.

Therefore, each scaling method involves a trade-
off: task-specific scaling excels at enhancing spe-
cialized capabilities (particularly mathematical rea-
soning) but with limited broader impact, while
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Figure 3: Layer-wise sensitivity scores across different
task-specific models, with the Top-5 most sensitive lay-
ers highlighted in red.

cross-task scaling offers stronger overall perfor-
mance improvements at the cost of sacrificing some
task-specific excellence.

S In-depth Analysis

5.1 Scaling Factors Analysis

Layerwise Sensitivity Distribution. Figure 3 re-
veals distinct layer-wise sensitivity patterns across
model specializations: the Chat model peaks at
layer 10, leveraging lower layers for language pro-
cessing; the Math model shows maximum sensi-
tivity around layer 15, emphasizing middle layers
for mathematical reasoning; and the Code model
exhibits a unique dual-peak pattern, reflecting its
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Merging Use General Knowledge

Mathematical Reasoning Code Generation

Methods Models . MMLU HellaSwag TQA  GSMSK  MATH MBPP HumanBval ~/erae
Chat 46.38 5779  45.17 23.43 4.86 03 0.6 255

/ Math / 40.05 5630 3256 48.60 8.50 21.8 12.8 31.52
Code 40.76 5787 33.17 7.13 3.62 26.8 55 24.98

X 4136 4977 36.96 4534 6.96 138 73 2878

Task ~ Chat&Math s 6 58.02 3721 45.49 7.14 30.1 17.7 34.48
Arithmetic oL X 4054 56.63  32.80 50.42 9.38 26 10.4 31.82
aarode v 4367 5915  33.90 42.08 7.12 27.8 16.5 32.89

X 4584 5648 39.17 48.29 7.86 30.1 17.1 34.98

Ties- ~ Chat&Math 0 oses 56.63  40.02 48.98 7.92 313 17.7 35.49
Merging X 4252 5830 3672 45.11 8.44 29.1 14.6 33.54
Math&Code 45 4 5855  36.96 45.49 8.54 30.3 14.8 3391

X 4672 5804 3953 44.88 6.58 303 20.1 35.16

DARE Chat&Math - 4¢ 78 58.12 3953 45.03 7.06 316 20.7 35.55
Mah&Code X 4393 5921  33.78 39.80 6.34 296 17.1 32.83

a&tode 0 4308 5925  33.90 40.41 6.82 29.8 17.1 33.04

Table 5: Performance evaluation of two merged fine-tuned LLaMA2-7B models (Chat&Math and Math&Code)

across seven task-specific datasets.

Stage Task-specific Coefficients

Cross-task Coefficients

Ties (80% drop)  Ties (disjoint merging)

Time Required 2 min 31 sec

1 min 53 sec

3 min 4 sec 1 min 13 sec

Table 6: Computational time (in minutes:seconds) of merging components in Sens-Merging and TIES-Merging,
demonstrating the lightweight nature of our approach on LLaMA?2 7B Math model.

need for both linguistic processing in lower layers
and logical reasoning in middle layers. Thus, by
leveraging layer-wise sensitivity, we enhance the
weights of the layers that are most critical to perfor-
mance, thereby ensuring that specialized functions
are optimally preserved.

Models LLaMA27B Mistral 7B LLaMA2 13B
Chat 0.3095 0.2454 0.2958
Math 0.5062 0.6379 0.5284
Code 0.1843 0.1167 0.1758

Table 7: Cross-task scaling coefficients across Chat,
Math, and Code models.

Cross-Task Sensitivity Scaling. In Table 7, we
observe consistent variations in cross-task scaling
factors across task vectors. Math models show the
highest scaling coefficients (0.51-0.64), followed
by Chat models (0.25-0.31), and Code models
(0.12-0.18). These coefficients reveal that: math-
ematical reasoning provides strong transferable
skills across tasks, chat abilities facilitate general
language understanding, while coding skills are
more specialized and less transferable.

5.2 Merge Two Fine-tuned Models

We also evaluate Sens-Merging on two-model com-
binations: Chat & Math and Math & Code. We

omit Chat & Code due to its significantly lower per-
formance compared to the three-model setup. As
shown in Table 5, Sens-Merging outperforms base-
lines in two-model settings, delivering a 5.70-point
gain in Task Arithmetic. On code generation, it im-
proves MBPP performance by 3.99% (1.2 points)
over Ties-Merging and 4.29% (1.3 points) over
DARE. Interestingly, for both Ties-Merging and
DARE, merging only Chat and Math models outper-
forms the full three-model combination, achieving
higher average scores (34.98 vs. 34.73 and 35.16
vs. 34.86, respectively). This suggests that the
Math model may already capture much of the Code
model’s capabilities, and reducing model count
helps minimize parameter interference, leading to
better overall performance.

5.3 Computational Resource Consumption

To evaluate the efficiency of our Sens-Merging
framework, we measure the computational over-
head involved in computing task-specific and cross-
task scaling coefficients, as well as the weight drop-
ping and merging stages in the Ties method. All
measurements are performed on CPU core. As
summarized in Table 6, for the LLaMA?2 7B Math
model, determining the task-specific coefficients
requires 2 minutes and 31 seconds, while comput-
ing the cross-task coefficients takes 1 minute and
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Calibration MMLU HellaSwag TruthfulQA Math GSM8K MBPP HumanEval Average
Task Arithmetic (10 samples)  46.12 59.10 36.84 42.29 7.12 33.1 18.9 34.78
Task Arithmetic (20 samples)  46.63 58.76 37.34 4298  6.88 33.1 17.7 34.77
Table 8: Performance comparison of Task Arithmetic with different calibration sample sizes.
Method MMLU HellaSwag TruthfulQA Math GSM8K MBPP HumanEval Average
Task Arithmetic 47.34 46.80 41.00 52.16 13.26 32.1 29.9 37.51
WIDEN 49.97 50.12 46.14 48.45 12.30 41.6 43.3 41.70
Sens-Merging (TA)  62.43 61.94 45.29 59.74 17.06 544 34.1 47.85
TIES 57.20 57.59 48.71 55.50 15.00 48.4 40.2 46.09
DARE 55.36 55.717 42.84 57.39 15.00 494 39.0 44.97

Table 9: Performance comparison between WIDEN and Sens-Merging on merging Mistral-7B models.

53 seconds. The task-specific calculation is slightly
slower due to gradient information and backward
propagation, compared to the forward pass needed
for the logits-based cross-task estimation. Despite
this, the time taken for the TIES method to drop
80% of the model’s weights is 3 minutes and 4
seconds and another 1 minute and 13 seconds for
disjoint merging. The lightweight nature of our cal-
ibration process ensures that Sens-Merging remains
practical and accessible, requiring only marginal
computational resources beyond those needed for
standard model merging approaches, while deliv-
ering superior performance across the evaluation
metrics.

5.4 Impact of Calibration Data

To evaluate the sensitivity of our method to cali-
bration data size, we conducted experiments using
both 10 and 20 calibration samples per model. As
shown in Table 8, increasing the calibration data
size from 10 to 20 samples results in minimal per-
formance variation across all tasks.

The results indicate that while calibration data
selection is an important consideration, our method
remains robust even with a small number of sam-
ples. The stable and distinguishable differences
in loss and logits across models provide sufficient
signal for effective sensitivity estimation. This con-
firms the practical efficiency of our approach and
supports the use of lightweight calibration without
significant compromise in performance.

5.5 Comparison with WIDEN

We further compare our Sens-Merging framework
with WIDEN (Yu et al., 2024a), a method that iden-
tifies important parameters using magnitude and
directional criteria. While WIDEN performs well

on models with large weight divergence (e.g., pre-
trained and fine-tuned checkpoints), it shows re-
duced effectiveness when merging closely related
task-specific models such as Mistral-7B variants.
As shown in Table 9, WIDEN improves general
knowledge but falls short on math tasks, revealing
limitations in preserving task-specific performance
across models. In contrast, our Sens-Merging con-
sistently enhances performance across all domains.

Importantly, Sens-Merging is designed as a plug-
and-play module that seamlessly integrates with ex-
isting model merging frameworks such as TIES and
DARE, further boosting their performance. This
flexibility enables users to adopt Sens-Merging
without extensive architectural modifications. Fi-
nally, unlike WIDEN, which relies solely on param-
eter statistics, Sens-Merging leverages activation-
based calibration data to guide the merging process.
This allows precise control over task-specific be-
haviors, particularly in long-to-short (L2S) reason-
ing scenarios (Wu et al., 2025).

6 Conclusion

We introduce Sens-Merging, a novel method that
determines model merging coefficients by analyz-
ing parameter sensitivity both within specific tasks
and across multiple tasks. Through extensive eval-
uation on Mistral 7B and LLaMA-2 7B/13B model
families, we demonstrate that Sens-Merging en-
hances model merging performance across multi-
ple domains, consistently outperforming both exist-
ing merging techniques and individually fine-tuned
models. This improvement is particularly pro-
nounced in code generation tasks, where merged
models achieve superior results compared to spe-
cialized fine-tuning.
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Limitations

While Sens-Merging demonstrates remarkable per-
formance in model merging, achieving consis-
tent improvements across various benchmarks, it
shares fundamental limitations with existing task
arithmetic-based methods. For example, our cur-
rent implementation primarily addresses homoge-
neous model merging where base models share
identical architectures. While this focus allows
us to achieve state-of-the-art results in such sce-
narios, extending Sens-Merging to heterogeneous
architectures remains an exciting direction for fu-
ture research. Moreover, our method is specifi-
cally designed for large language models and has
been primarily validated with LoRA fine-tuned
models, where weight differences between spe-
cialized models are relatively constrained. For
smaller-scale models or fully fine-tuned models
with larger weight divergences, our approach may
require adaptations.

Ethics Statement

This study utilizes publicly available datasets for
our models. Prior research endeavors have gener-
ally taken ethical considerations into account. We
have manually inspected a subset of samples and
found no explicit ethical concerns, including vio-
lent or offensive content. Nonetheless, it is crucial
to highlight that the output generated by large lan-
guage models lacks the degree of control we might
assume. Consequently, we are prepared to imple-
ment measures to mitigate any unforeseen outputs.
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7 Appendix

7.1 Hyperparameters

Both baselines and our Sens-Merging enhanced
baselines use the same hyperparameters for fair
comparison. For Task Arithmetic, we use a default
scaling coefficient of A = 1, which maintains the
original magnitude of task vector when adding the
pretrained backbone. However, the DARE method
has been observed to be more sensitive to variations
in both the scaling coefficient A and the drop rate
parameter 7. To achieve a balanced performance,
we set the scaling coefficient to A = 0.5 and es-
tablish a default drop rate of » = 0.5 for DARE.
Similarly, for Ties-Merging, which requires the
specification of a masking ratio, we set the default
mask ratio to r = 0.7 across all experiments.

7.2 Model Variants and Sources

We evaluate our method across multiple fine-tuned
variants of LLaMA2-7B, Mistral 7B, and LLaMA?2-
13B models, focusing on specialized capabilities
in instruction-following (Chat), mathematical rea-
soning (Math), and code generation (Code). Ta-
ble 10 summarizes the fine-tuned variants used for
LLaMA2-7B along with their corresponding Hug-
ging Face identifiers and use cases. For complete-
ness, we also include similarly fine-tuned versions
from other base models: Mistral 7B (Table 11)
and LLaMA2-13B Table 12. These variants are
obtained from publicly available checkpoints and
are used consistently across all compression and
merging experiments reported in this work.
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Model Type Hugging Face Identifier Use Case

Pretrained Base Model meta-llama/Llama-2-7b-hf General language modeling
LLaMA2-7B Chat-Tuned Model meta-1lama/Llama-2-7b-chat-hf ~ Dialogue and instruction-following
Math-Tuned Model TIGER-Lab/MAmmoTH-7B Mathematical reasoning
Code-Tuned Model mrmg8488/1lama-2-coder-7b Code generation

Table 10: Fine-tuned variants and corresponding Hugging Face identifiers for LLaMA-2 7B models.

Model Type Hugging Face Identifier Use Case
Pretrained Base Model mistralai/Mistral-7B-v0.1 General language modeling
Mistral 7B Chat-Tuned Model mistralai/Mistral-7B-Instruct-v0. 1 Dialogue and instruction-following
Math-Tuned Model TIGER-Lab/MAmmoTH2-7B Mathematical reasoning
Code-Tuned Model Nondzu/Mistral-7B-codealpaca-lora Code generation

Table 11: Fine-tuned variants and corresponding Hugging Face identifiers for Mistral 7B models.

Model Type Hugging Face Identifier Use Case
Pretrained Base Model meta-llama/Llama-2-13b-hf General language modeling
LLaMA2-13B Chat-Tuned Model meta-llama/Llama-2-13b-hf Dialogue and instruction-following
Math-Tuned Model TIGER-Lab/MAmmoTH-13B Mathematical reasoning
Code-Tuned Model emre/llama-2-13b-code-chat Code generation

Table 12: Fine-tuned variants and corresponding Hugging Face identifiers for LLaMA-2 13B models.
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