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Abstract
Text-to-SQL demands precise reasoning to con-
vert natural language questions into structured
queries. While large language models (LLMs)
excel in many reasoning tasks, their ability to
leverage Chain-of-Thought (CoT) reasoning
for text-to-SQL remains underexplored. We
identify critical limitations: zero-shot CoT of-
fers minimal gains, and Direct Preference Op-
timization (DPO) applied without CoT yields
marginal improvements. We propose ExCoT-
DPO, a novel framework that iteratively opti-
mizes open-source LLMs by combining CoT
reasoning with off-policy and on-policy DPO,
relying solely on execution accuracy as feed-
back. This approach eliminates the need for re-
ward models or human-annotated preferences.
Our experimental results demonstrate signifi-
cant performance gains: ExCoT-DPO improves
execution accuracy on BIRD from 57.37%
to 68.51% and on Spider from 78.81% to
86.59% for LLaMA-3 70B, with Qwen-2.5-
Coder demonstrating similar improvements.
Our best model achieves state-of-the-art per-
formance in the single-model setting on both
BIRD and Spider datasets, notably achieving
68.53% on the BIRD test set. 1

1 Introduction

Text-to-SQL, the task of translating natural lan-
guage questions into accurate SQL queries (Li
et al., 2024b; Yu et al., 2018), requires both domain
knowledge and precise reasoning about query struc-
tures. This task is particularly challenging due to its
reliance on schema linking (matching natural lan-
guage entities to database columns), handling com-
positional syntax (e.g., nested queries, joins), and
resolving ambiguities in user intent. In recent years,
large language models (LLMs) have demonstrated
remarkable capabilities in generating coherent, con-
textually rich responses with reasoning across a

1Our code is released at Arctic Training and trained models
are released at Huggingface: Qwen-2.5-coder-Arctic-ExCoT-
32B and Llama-3.1-Arctic-ExCoT-70B

range of domains (Jaech et al., 2024a; Guan et al.,
2025; DeepSeek-AI, 2025). These models are of-
ten trained with preference learning (Ouyang et al.,
2022; Rafailov et al., 2024) to promote the qual-
ity of their reasoning and accuracy on downstream
tasks. However, it remains an open question how
these LLMs can effectively leverage step-by-step
reasoning, also referred to as Chain-of-Thought
(CoT, Wei et al., 2022), to improve performance
in text-to-SQL, where errors in intermediate logic
(e.g., misaligned joins or aggregation) often propa-
gate irreversibly to final SQL outputs.

Prior work in text-to-SQL has explored spe-
cialized decoding strategies like execution-guided
parsing (Wang et al., 2021) or constrained infer-
ence (Scholak et al., 2021), but these methods typi-
cally focus on syntax correction rather than improv-
ing the model’s intrinsic reasoning. Meanwhile,
preference optimization techniques like DPO have
shown promise in aligning model outputs with
human preferences in dialogue and summariza-
tion (Rafailov et al., 2024), yet their applicability
to structured tasks like text-to-SQL remains under-
studied.

Our investigations reveal three key observations
that clarify the role of CoT in this setting: (1) zero-
shot CoT — without any dedicated training — does
not provides improvement over baseline methods
in text-to-SQL tasks, likely because unstructured
reasoning steps fail to address schema-specific de-
pendencies or syntactic constraints; (2) directly
applying Direct Preference Optimization (DPO)
to text-to-SQL problem without incorporating a
CoT does not substantially boost performance, as
the absence of intermediate reasoning steps limits
the feedback signal’s ability to pinpoint logical er-
rors; and (3) when CoT is integrated, even a simple
execution-based feedback signal can significantly
enhance the model’s reasoning through DPO. We
posit that the presence of intermediate reasoning
steps in CoT exposes errors in logic or structure,
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Figure 1: The workflow of ExCoT-DPO. (1) We use a well-designed prompt to obtain candidate data from a LLM
(GPT-4o is used in our experiment). We execute extracted SQLs on a local SQLite instance and compare the results
with the ground truth. We use the positive examples to supervised fine-tune (SFT) the base model and construct the
pairs for off-policy DPO. (2) We use the model trained with off-policy DPO to generate new candidate CoT data for
on-policy DPO. We repeat this process iteratively for multiple rounds.

thereby enabling the DPO process to correct those
errors more effectively.

Building on these observations, we propose
a novel framework, namely Execution-Guided
Chain-of-Thought Direct Preference Optimization
(ExCoT-DPO), as illustrated in Figure 1. ExCoT-
DPO aligns open-source LLMs to text-to-SQL
tasks by combining CoT with off-policy and on-
policy iterative DPO, using only execution accu-
racy as a feedback mechanism. Crucially, this ap-
proach does not rely on a specialized reward model
or human-annotated preference data; instead, it
leverages the model’s own reasoning traces and
downstream execution outcomes for iterative im-
provement. Notably, a similar conclusion in the
domain of math and coding has also been reached
by a concurrent research (DeepSeek-AI, 2025) that
the answer correctness alone can be an effective
signal. Our experiments demonstrate that the in-
troduction of CoT into a DPO training loop allows
the model to refine its reasoning steps, ultimately
leading to more accurate SQL queries.

In this paper, we make the following contribu-
tions: (1) We demonstrate that zero-shot CoT does
not offer gains in text-to-SQL, highlighting the ne-
cessity of explicit training and feedback mecha-
nisms. Meanwhile, we show that applying DPO
without CoT yields only marginal benefits, under-
scoring the importance of intermediate reasoning
paths for effective alignment. (2) We introduce
a simple yet powerful alignment strategy based
solely on execution feedback (i.e., whether a gener-
ated query is correct), demonstrating that detailed
CoT reasoning provides sufficient internal signals
for the model to self-correct. (3) We release mod-
els that achieve state-of-the-art performance in the
single-model text-to-SQL setting. Our contribu-
tions include both the Llama-3.1 70B-based and

Qwen-2.5-Coder 32B-based models, with our best
model reaching 68.51% and 68.53% execution ac-
curacy on the challenging BIRD benchmark dev
set and test set, respectively.

Our work has broader implications for aligning
LLMs to structured output tasks. By showing that
execution feedback and self-generated reasoning
traces suffice for iterative improvement, we reduce
reliance on costly human annotations or reward
models. This approach could generalize to other
domains requiring precise structured generation,
such as code synthesis or logical reasoning, where
intermediate steps naturally admit validation (e.g.,
unit tests or formal verification).

2 Related Work

The text-to-SQL task focuses on converting natural
language queries into SQL commands to enable
easy interaction with structured databases. Early
work in this domain, such as Spider (Yu et al.,
2018), established the complexity of the task by
introducing benchmarks for cross-domain general-
ization and complex queries. Recent approaches to
text-to-SQL can be broadly categorized into fine-
tuning-based and prompting-based methods.

Fine-Tuning-Based Methods Fine-tuning pre-
trained language models has been a dominant strat-
egy in text-to-SQL research. RAT-SQL (Wang
et al., 2019) introduced a relation-aware schema en-
coding mechanism to enhance schema linking and
query comprehension. PICARD (Scholak et al.,
2021) improved SQL query generation with con-
strained decoding, ensuring syntactic validity dur-
ing generation. RESDSQL (Li et al., 2023) de-
coupled schema linking and skeleton parsing for
better modularity and adaptability. Furthermore,
CodeS (Li et al., 2024a) contributed open-source
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models that emphasized transparency and repro-
ducibility in fine-tuned text-to-SQL systems.

Prompting-Based Methods Prompting large lan-
guage models (LLMs) has gained attention due to
its flexibility and minimal reliance on fine-tuning.
ACT-SQL (Zhang et al., 2023) applied chain-of-
thought reasoning in prompts to handle complex
queries. Gao et al. (2023) evaluated LLMs on
text-to-SQL tasks in zero-shot and few-shot set-
tings, highlighting their effectiveness in reducing
task-specific training. DIN-SQL (Pourreza and
Rafiei, 2024) used a decomposed in-context learn-
ing approach, leveraging sub-query decomposi-
tion and self-correction. Similarly, CHESS (Ta-
laei et al., 2024) proposed contextual harnessing to
streamline SQL synthesis. CHASE-SQL (Pourreza
et al., 2024) employed multi-agent modeling with
divide-and-conquer, chain-of-thought reasoning,
and instance-aware example generation. CHASE-
SQL utilizes multiple prompts to generate SQL
queries and refines them through a selection mech-
anism, optimizing for higher accuracy by selecting
the best candidate from a set of generated SQL
queries.

Other works have tackled key challenges
like schema linking, ambiguity resolution, and
confidence calibration. Semantic matching in
CRUSH4SQL (Kothyari et al., 2023) addressed
schema hallucination for improved linking accu-
racy. Reflexion (Shinn et al., 2024) incorporated
verbal reinforcement learning to iteratively refine
SQL outputs. Calibration techniques, such as Ra-
machandran and Sarawagi (2024), utilized model
probabilities for better confidence scoring, while
Tian et al. (2023) explored strategies for eliciting
calibrated confidence directly from LLMs. XiYan-
SQL (Gao et al., 2024) introduces a multi-generator
ensemble framework that builds on similar con-
cepts from CHASE-SQL. It combines multiple
SQL generators and refines the output through an
ensemble strategy, improving both the diversity and
accuracy of generated SQL queries. XiYan-SQL
uses a refiner to correct errors in the generated
queries and a selection model to choose the best
candidate from multiple generated SQL queries.
The framework also integrates in-context learning
and supervised fine-tuning to further enhance the
quality of the SQL generation.

Different from these works, ExCoT-DPO uni-
fies CoT and Direct Preference Optimization using
only execution accuracy, eliminating the need for

reward models or human annotation. This enables
iterative, self-guided improvement of open-source
LLMs, bridging CoT reasoning and preference
alignment in text-to-SQL. While our work demon-
strates strong single-model performance, ExCoT-
DPO is orthogonal to prompting-based frameworks
and can be combined with those.

3 Execution-Guided Chain-of-Thought
Preference Optimization

3.1 Overview

Text-to-SQL translation presents a unique chal-
lenge for large language models (LLMs), which
must bridge the gap between complex natural lan-
guage utterances and precise structured queries.
Although chain-of-thought (CoT) reasoning has
shown promise in many tasks, its effectiveness in
text-to-SQL generation has not been fully explored.
Moreover, while Direct Preference Optimization
(DPO) can be used to align a model’s outputs with
desired behaviors, naive applications of DPO with-
out explicit reasoning often yield only marginal per-
formance gains. To address these challenges, we in-
troduce ExCoT-DPO, an approach that seamlessly
integrates CoT reasoning with DPO, using only
execution-based correctness feedback (i.e., com-
paring the query’s result to the gold standard) to
refine model performance.

Our method involves three key steps. First,
we generate diverse chain-of-thought solutions for
each text-to-SQL instance, ranging from simple to
complex. Second, we apply an execution-based
verification mechanism to label the correctness of
each solution, thereby creating pools of correct
(win) and incorrect (lose) responses. Finally, we
perform preference optimization in both off-policy
and on-policy settings. This multi-stage strategy
reinforces correct solutions and demotes incorrect
ones, progressively improving the model’s reason-
ing and query construction. By iterating these steps,
we continuously refine the model without relying
on human-annotated preferences or reward mod-
els. As we show later, combining CoT reasoning
with DPO under execution feedback substantially
advances text-to-SQL performance compared to
zero-shot CoT or DPO alone.

3.2 Chain-of-Thought Generation

CoT Prompting Chain-of-Thought (CoT) rea-
soning provides a transparent path for LLMs to
break down the query-construction process into
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intermediate steps. We explore three variants of
CoT generation: (1) No-CoT (Direct SQL). The
model produces an SQL query directly from the
input question and table schema, without reveal-
ing any intermediate reasoning. This baseline ap-
proach has the advantage of simplicity but often
lacks interpretability and, as we show, fails to sig-
nificantly leverage the model’s internal reasoning
capabilities. (2) Simple-CoT. Here, the model gen-
erates a short, high-level reasoning trace before
outputting the final SQL. These concise rationales
provide some insight into how the query is con-
structed but do not break down complex questions
into sub-problems. Although improvements over
No-CoT can be modest, Simple-CoT can serve as
a stepping stone to more elaborate reasoning. (3)
Complex-CoT (Divide-and-Conquer). In com-
plex real-world queries, a single chain of reasoning
may not suffice to capture the multiple steps and
sub-questions inherent in text-to-SQL. We there-
fore adopt a divide-and-conquer strategy akin to
Pourreza et al. (2024), where the problem is de-
composed into smaller sub-questions. Each sub-
question is analyzed independently and answered
with an intermediate SQL, which can in turn be
referenced or combined to form a solution to the
original query.

The exact prompts used in each type of prompt-
ing can be found in Appendix A. Specifically, we
begin with an analysis of the overall question and
outline a pseudo-SQL template covering the re-
quired joins, filters, and aggregations. We then split
the task into self-contained sub-questions, each
associated with its own pseudo-SQL. These sub-
queries are computed and combined in a later “con-
quer” step to produce a comprehensive SQL so-
lution. Finally, we include a Simplification and
Optimization Stage where we merge or refine sub-
queries to create a more efficient final SQL. This
hierarchical structure helps the model handle the
recursive nature of SQL operations, especially in
queries involving nested sub-selects or multiple
levels of aggregation.

CoT Data Synthesis To generate reliable CoT
exemplars, we employ few-shot prompting with
GPT-4o (OpenAI, 2024), which serves as our syn-
thetic base model in this stage. We prepare prompts
by randomly selecting examples from the BIRD
and Spider training sets (9.2k and 8.6k examples,
respectively) and providing three exemplars per
prompt. Importantly, we supply the table schema

and user question but exclude ground-truth SQL to
encourage diverse and creative reasoning.

For each question, we generate multiple candi-
date solutions (up to 32), each potentially including
a different intermediate reasoning chain. These out-
put chains are then processed by our verification
pipeline (detailed in Section 3.3), which automat-
ically executes the final SQL in a local database
to judge correctness. To accommodate different
reasoning styles and ensure robust coverage, we
produce both short and complex CoTs.

After verification, only correct solutions — i.e.,
those whose execution output matches the ground-
truth query’s result — are retained. This yields
a high-quality Supervised Fine-Tuning (SFT) set,
ultimately including 5.6k verified examples from
BIRD and 6.1k from Spider. Generating multiple
candidate CoTs per question boosts the chance of
obtaining valid solutions, effectively making GPT-
4o’s creativity work in our favor.

3.3 Off-Policy DPO Alignment
Despite leveraging GPT-4o for diverse CoT solu-
tions, not all generated SQL queries are correct.
Simple heuristics such as discarding incorrect out-
puts risk under-utilizing the data. Instead, we adopt
an off-policy variant of Direct Preference Optimiza-
tion (Pattnaik et al., 2024; Xu et al., 2023), where
each question’s verified correct solutions (win) and
its incorrect solutions (lose) form explicit prefer-
ence pairs.

Execution-Based Feedback To label solutions
as correct or incorrect, we embed each relevant
database schema in a local SQLite instance. We
parse the final SQL from the model’s output—by
convention, this is the last code block in the chain-
of-thought reasoning. We then compare the query’s
execution result to the ground-truth query result.
Solutions that yield the same result are marked as
correct, reflecting functional equivalence even if
the SQL syntax differs.

Preference Pair Construction After tagging
each solution as correct or incorrect, we arrange
them into positive (win) and negative (lose) pools.
Inspired by Pattnaik et al. (2024) and Xu et al.
(2023), we measure the edit distance between each
correct and incorrect pair, selecting those with the
largest discrepancies for our final off-policy DPO
training set. This strategy offers a type of “curricu-
lum” in which the model is exposed to maximally
dissimilar solutions, making the preference signal
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more salient and reinforcing a clear boundary be-
tween correct and incorrect reasoning.

Learning with Off-Policy DPO Using these
preference pairs, we fine-tune the base model to
align its outputs toward correct solutions. Con-
cretely, DPO adjusts model parameters so that, for
each pair of responses, the likelihood of generating
the winning solution is higher than that of generat-
ing the losing one. By leveraging both correct and
incorrect examples, we preserve rich data on how
queries can go wrong, thus guiding the model away
from pitfalls in future generations.

3.4 On-Policy Iterative DPO with Execution
Feedback

Although off-policy DPO on GPT-4o–generated
data yields tangible performance gains, these syn-
thetic solutions do not perfectly match the evolving
distribution of the model under training. To address
this mismatch, we further refine the model via on-
policy DPO, where newly generated solutions from
the evolving model are incorporated back into the
training loop.

Multi-Round On-Policy Loop Our iterative re-
finement proceeds as follows: (1) Start with Off-
Policy DPO. We first train the model using off-
policy preference pairs derived from GPT-4o’s out-
puts. This step produces an initial model that is
better aligned toward correct solutions. (2) On-
Policy Generation and Verification. We use the
newly updated model to generate fresh solutions
(including chain-of-thought reasoning) for each
question. We parse and execute these queries in a
local database to verify correctness. (3) On-Policy
DPO Training. We form win–lose pairs based on
execution feedback and conduct a new round of
DPO fine-tuning, aligning the model’s preferences
toward the correct solutions it has just produced.
(4) Iterate. We repeat on-policy generation and
training for multiple rounds (e.g., three or more).
Each round shifts the model’s distribution of gener-
ated solutions, prompting it to discover new correct
queries that were previously out of reach. Though
conceptually simple, this cycle steadily increases
the model’s execution accuracy, demonstrating that
repeated exposure to newly verified solutions can
effectively correct remaining errors.

3.5 Sampling Strategy
We employ a dynamic strategy for selecting which
pairs of responses to include in our DPO training:

(1) Off-Policy Setting. We select pairs displaying
maximum edit distance between correct and incor-
rect SQL. Pilot experiments showed that when op-
erating on synthetically generated solutions from
GPT-4o, maximizing differences between positive
and negative pairs more effectively highlights the
model’s most glaring mistakes. (2) On-Policy Set-
ting. In contrast, for on-policy refinement, we se-
lect pairs with smaller edit distance. Intuitively,
these pairs reflect subtle errors in the model’s own
distribution; correcting them can lead to rapid incre-
mental improvements. Our pilot study suggested
that, once the model has been partially aligned,
focusing on near-miss solutions helps it refine its
understanding more efficiently. We include the
results in Section 4.

Through this combination of chain-of-thought
generation, execution-based verification, and off-
and on-policy DPO, our ExCoT-DPO framework
provides a powerful self-guided learning paradigm.
The model consistently advances its text-to-SQL
generation quality by leveraging intermediate rea-
soning, identifying correct solutions through exe-
cution feedback, and solidifying these discoveries
via preference optimization. Notably, our approach
requires neither human-curated rankings nor explic-
itly learned reward models, confirming that execu-
tion accuracy can serve as an effective and scalable
alignment signal for text-to-SQL tasks.

4 Experiments

4.1 Experimental Settings

We conduct our experiments on two prominent
cross-domain text-to-SQL benchmarks: the BIRD
dataset (Li et al., 2024b), consisting of 9.2k train-
ing queries, and the Spider dataset (Yu et al., 2018),
containing 8.6k training queries. Following stan-
dard practice, we measure performance using two
metrics: (1) execution accuracy (EX%), which
reflects how often a generated SQL query returns
the same result as the ground truth, and (2) validity
(Valid%), indicating whether the generated query
parses and executes successfully without errors.

Model Initialization and Additional Data We
primarily initialize our models from Llama-3.1
70B, a 70B-parameter LLM. To investigate the gen-
erality of our approach, we also employ Qwen-2.5-
Coder 32B (Hui et al., 2024; Yang et al., 2024),
another code-focused LLM with 32B parameters.
Before specializing in SQL tasks, we expose each
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Model CoT Type BIRD Spider

EX% Valid% EX% Valid%

Base Model
LLaMA-3.1 70B (Dubey et al., 2024) No 57.37 92.83 78.81 98.74
LLaMA-3.1 70B Simple 52.61 94.72 77.83 99.44
Qwen-2.5-Coder 32B (Hui et al., 2024) No 58.93 89.31 79.32 99.72
Qwen-2.5-Coder 32B Simple 54.11 94.13 77.83 99.44

Stage 1: SFT with GPT-4o data
LLaMA-3.1 70B No 62.03 94.72 83.00 98.65
LLaMA-3.1 70B Simple 58.54 91.60 80.76 99.58
LLaMA-3.1 70B Complex 58.14 91.20 81.42 99.02
Qwen-2.5-Coder 32B Complex 59.65 91.13 81.23 99.12

Stage 2: Off-Policy DPO
LLaMA-3.1 70B Simple 64.39 96.74 83.93 99.53
LLaMA-3.1 70B Complex 66.30 98.50 82.49 99.86
Qwen-2.5-Coder 32B Complex 66.23 98.04 83.98 99.95

Stage 3: On-Policy Iterative DPO
LLaMA-3.1 70B No 59.97 96.74 81.00 98.14
LLaMA-3.1 70B Simple 65.12 97.20 84.26 99.77
LLaMA-3.1 70B Complex 68.51 98.50 86.59 99.91
Qwen-2.5-Coder 32B Complex 68.25 98.37 85.14 99.95

Baselines
XiYanSQL-QwenCoder 32B (Gao et al., 2024) No 63.75 95.83 81.42 99.72
OpenAI GPT-4o (OpenAI, 2024) No 54.69 90.87 76.53 99.21
OpenAI GPT-4o Simple 54.04 94.79 76.01 99.35
Anthropic Claude 3.5-Sonnet (Anthropic, 2024) No 50.13 89.05 69.91 99.07
OpenAI o1-mini (Jaech et al., 2024a) Built-in 52.41 86.38 75.13 98.09
OpenAI o3-mini Built-in 53.72 97.00 72.80 95.99

Table 1: Experimental results of ExCoT-DPO. Execution accuracy (EX%) and SQL validity (Valid%) on BIRD
(dev set) and Spider (test set). Base Model refers to the checkpoint trained only on broad natural language tasks.
Stage 1 (SFT) adds GPT-4o-generated data to the supervised fine-tuning. Stage 2 (Off-Policy DPO) refines the
model using preference pairs from GPT-4o–generated CoTs. Stage 3 (On-Policy Iterative DPO) further improves
the model using repeated rounds of self-generated CoTs and execution-based verification.

base model to a range of supervised natural lan-
guage datasets. This step improves the model’s
general language understanding and helps it handle
broader reasoning patterns, thus laying a stronger
foundation for subsequent fine-tuning on text-to-
SQL.

Supervised Fine-Tuning (SFT) We perform one
round of SFT on both the text-to-SQL data (approx-
imately 12k queries across BIRD and Spider) and
the aforementioned natural language datasets. All
experiments are conducted on 64 NVIDIA H100
GPUs. We set the local batch size to 2 per GPU
(i.e., a global batch size of 128), use a learning rate
of 1 × 10−5, and train for 2 epochs. Each SFT
stage takes 448 GPU hours. As shown in Table 1
(Stage 1), we also incorporate into the SFT pro-
cedure a subset of GPT-4o-generated data, where
each query has at least one verified correct SQL (cf.
Section 3 for details on GPT-4o CoT generation).

Preference Optimization Subsequent to SFT,
we carry out both off-policy and on-policy DPO
(see Sections 3.3–3.4). Similar to SFT, we use 64
NVIDIA H100 GPUs with a local batch size of 1
per GPU (i.e., 64 globally) and a learning rate of
1×10−6. We train for 2 epochs in each DPO round.
We conduct 1 round of off-policy DPO, followed
by 2 rounds of on-policy DPO. The total compute
cost for DPO is 160 GPU hours.

Chain-of-Thought Generation For our off-
policy preference optimization, we rely on GPT-4o
to produce up to 32 chain-of-thought (CoT) solu-
tions per query. We then execute these queries in a
local SQLite environment to determine correctness.
In the on-policy setting, the model under training
itself generates new solutions (also up to 32 per
query), which are again verified via execution. We
parse each CoT to retrieve the final SQL block for
execution. Pairwise comparisons between correct
(win) and incorrect (lose) solutions feed into DPO
updates.
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Variant BIRD Spider

EX% Valid% EX% Valid%

1×Off + 2×On 68.51 98.50 86.59 99.91

2×On-Policy 66.30 98.96 84.16 99.77
3×On-Policy 67.08 98.37 86.21 99.81

Table 2: Effect of pure on-policy DPO vs. applying both
off-policy and on-policy DPO. We compare our default
strategy (1 round of off-policy DPO and 2 rounds of
on-policy DPO) with the variants where we remove the
off-policy DPO round, or replace it with another round
of on-policy DPO round.

4.2 Experimental Results

Main Results Table 1 summarizes our main re-
sults on the BIRD and Spider benchmarks. Notably,
for LLaMA-3.1 70B model (Dubey et al., 2024),
our Complex Reasoning approach improves BIRD
performance from 58.14% to 68.51% with both
off-policy and on-policy DPO, representing a sig-
nificant 10.37% gain. Similarly, on Spider, our
Complex Reasoning approach improves the SFT
model’s performance of 82.49% to 86.59%. On
both datasets, our approach achieves state-of-the-
art performance in the single-model setting. With
Qwen-2.5-Coder 32B (Hui et al., 2024) model as
the base model, our Complex Reasoning approach
outperforms recent work XiyanSQL (Gao et al.,
2024) which uses the same base model, demon-
strating the effectiveness of our approach. Our
best model even outperforms state-of-the-art pro-
prietary models, including OpenAI o1-mini (Jaech
et al., 2024b) and o3-mini, which are built with
chain-of-thought ability and optimized for reason-
ing. Notably, ExCoT achieves 68.53% on BIRD
test set, the highest performance among single mod-
els, as shown in Table 4.

Additionally, a case study is provided in Ap-
pendix B.

Effect of Zero-Shot Chain-of-Thought Prompt-
ing As shown in Table 1, we can observe that
injecting a Simple CoT prompt does not provide
meaningful performance improvement for LLaMA-
3.1, Qwen-2.5-Coder or GPT-4o, suggesting that
short, informal reasoning traces may not suffi-
ciently guide the model toward accurate SQL.

Effect of SFT with GPT-4o Data (Stage 1)
Adding correct solutions generated by GPT-4o to
our supervised training set yields modest improve-
ments in execution accuracy. For instance, Llama-

DPO Round Strategy BIRD

EX% Valid%

Off-Policy
Random 64.08 98.31
Nearest 61.99 98.70
Furthest 66.30 98.50

On-Policy
Random 66.36 97.65
Nearest 67.21 97.72
Furthest 66.95 98.31

Table 3: Effect of different sampling strategies (curricu-
lums) for off-policy and on-policy DPO (1 round).

3.1 70B with no-CoT SFT increases from 57.37%
to 62.03% on BIRD and from 78.81% to 83% on
Spider. Therefore, incorporating additional syn-
thetic data does enhance coverage of diverse query
patterns. For complex CoT setting, the model can
learn the format of CoT from the GPT-4o output,
setting the stage for further gains through prefer-
ence optimization.

Effect of Off-Policy DPO (Stage 2) Off-policy
DPO provides a more pronounced jump in perfor-
mance. Llama-3.1 70B with Complex CoT goes
from 58.14% in SFT to 66.30% execution accu-
racy on BIRD, and from 81.42% to 82.49% on Spi-
der. A similar trend appears for Qwen-2.5-Coder
(66.23% on BIRD and 83.98% on Spider). These
improvements underscore how leveraging both cor-
rect and incorrect solutions — rather than just dis-
carding mistakes — helps the model internalize
fine-grained distinctions between correct and incor-
rect SQL.

To verify the effectiveness of this stage, we con-
duct an ablation study where we remove the off-
policy DPO round, or replace it with another round
of on-policy DPO. As shown in Table 2, involv-
ing off-policy DPO achieves better performance,
as it provides diverse data to prepare the model for
further on-policy DPO rounds.

Effect of On-Policy Iterative DPO (Stage 3) In
the final stage, on-policy iterative updates yield
the highest execution accuracy. With Complex
CoT, Llama-3.1 70B reaches 68.51% on BIRD and
86.59% on Spider, while Qwen-2.5-Coder achieves
68.25% on BIRD and 85.14% on Spider. We note
that even No-CoT variants see minor gains, but the
biggest improvements occur under Complex CoT
— reinforcing our core assertion that detailed rea-
soning chains synergize effectively with iterative
preference alignment. Notably, the baseline that is
trained with DPO on SQLs without the CoT reason-
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Figure 2: Number of valid data pairs and correspond-
ing execution accuracy on BIRD across successive
training stages. Although the pool of valid preference
pairs decreases after off-policy DPO, each additional
on-policy round of iterative DPO continues to boost exe-
cution accuracy, demonstrating that smaller yet targeted
sets of self-generated examples effectively refine the
model’s reasoning and SQL generation capabilities.

ing path only outperforms the corresponding base
model trivially by 2.6% and 2.2% on BIRD and Spi-
der, respectively. This suggests lack of reasoning
path prevents the model from learning meaningful
feedback signals in preference optimization.

Validity of Generated SQL Across all methods,
the vast majority of queries remain syntactically
valid (i.e., >90% valid). Indeed, off-policy and
on-policy DPO push validity above 97% for most
configurations. This high ratio ensures that im-
provements in execution accuracy are not merely
byproducts of more well-formed queries; rather, the
models are increasingly converging on functionally
correct queries.

Effect of Sampling Strategies for Off-Policy and
On-Policy DPO As a pilot study to understand
the best curriculum setting, we train 1 round of off-
policy and on-policy DPO with different sampling
strategies, as described in Section 3.5. Based on
the results shown in Table 3, we choose the furthest
and nearest strategies for off-policy and on-policy
DPO, respectively.

Diminishing Effect of More DPO Rounds We
also add another round of on-policy DPO to explore
if it can further improve the LLaMA model’s per-
formance. As shown in Figure 2, the pool of valid
preference pairs decrease significantly with more
DPO rounds (from over 2,000 in the SFT stage to
around 560 in the third on-policy round), indicat-
ing the exhaustion of contrastive pairs. The perfor-
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Figure 3: Number of CoT tokens across different train-
ing stages.

Model BIRD

Dev EX% Test Ex%

ExCoT-32B 68.32 68.19
ExCoT-70B 68.51 68.53

SFT CodeS-15B 58.47 60.37
SFT CodeS-7B 57.17 59.25
DeepSeek 236B 56.13 56.68

Mistral 123B 53.52 55.84
GPT-4 46.35 54.89

Table 4: Results on BIRD test set comparing against
other single models.

mance gains also exhibit a diminishing trend: while
early on-policy rounds can lift accuracy substan-
tially, later iterations yield narrower improvements
or even degrade the performance. This indicates
that while iterative refinement is crucial for pol-
ishing the model’s reasoning and SQL generation,
each additional round contributes less benefit —
suggesting an eventual plateau in performance with
repeated rounds.

Chain-of-Thought Length in Different Stages
As shown in Figure 3, we track how the average
chain-of-thought (CoT) length (measured by the
total number of tokens in the reasoning portion of
each output) evolves across various stages of train-
ing. The CoT length increases from 560 tokens at
the initial SFT stage to 910 tokens by the final on-
policy round. This trend suggests the ExCoT-DPO
process not only boosts the model’s accuracy but
also encourages it to elaborate further on interme-
diate reasoning steps.

5 Conclusion and Future Work

In this paper, we show that combining chain-of-
thought (CoT) reasoning with direct preference
optimization (DPO) can substantially boost text-to-
SQL performance. Our ExCoT-DPO framework
relies solely on execution accuracy to iteratively
refine open-source LLMs, eliminating the need for
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reward models or human annotations. The result-
ing gains on both BIRD and Spider demonstrate
that aligning CoT with DPO offers a powerful path
toward more accurate and self-guided text-to-SQL
generation. Combined with SFT, ExCoT-DPO im-
proves execution accuracy on BIRD from 57.37%
to 68.51% and on Spider from 78.81% to 86.59%
for LLaMA-3.1 70B while also proven to be effec-
tive on another LLM, Qwen-2.5-Coder.

Concurrent works (DeepSeek-AI, 2025; Kimi-
AI, 2025) show that a free-style CoT process with
the simple execution feedback can significantly
improve model’s performance tasks. We constraint
our CoT template in this work, and we leave this
free-style format as our feature work. Also, this
work only applies offline-DPO to enhance model’s
text-to-SQL capability. More advanced approach,
like Online-DPO (Guo et al., 2024), PPO (Ouyang
et al., 2022), and GRPO (Shao et al., 2024), are left
for feature exploration.

Limitations

Despite the value of chain-of-thought reasoning,
our approach may still struggle under highly in-
tricate schemas featuring complicated table rela-
tionships and domain-specific conventions. These
specialized schemas frequently require deeper do-
main expertise or extensive training examples to
ensure the model captures all relevant details. Fur-
ther exploration of preference optimization with
agents can mitigate these issues. Moreover, al-
though exposing intermediate reasoning paths can
foster greater transparency, it does not guarantee
fully consistent or coherent logic at every step.
Chain-of-thought traces may contain partial truths,
redundant steps, or contradictions, which can com-
plicate error diagnosis and reduce end-user confi-
dence in the final SQL queries.

Broader Impact

Our work enhances text-to-SQL automation, de-
mocratizing data access for non-experts in domains
like healthcare or policy. However, errors in gen-
erated queries could propagate risks in critical ap-
plications; while execution feedback improves va-
lidity, users must verify outputs to avoid harmful
decisions. Biases in training data or schemas may
also perpetuate inequities if unchecked. Releas-
ing models and data promotes transparency but
requires safeguards against misuse (e.g., circum-
venting database security).
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A Prompt Templates for CoT Data Generation

Non-Chain-of-Thought Prompt
System:
You are an AI assistant helping a data analyst write SQL queries to answer questions.
User:
Below I will provide a DB schema and a question that can be answered by querying the provided DB. You
will then write a SQL query enclosed in ‘‘‘sql ...‘‘‘ that answers the question (and nothing else).
Database Schema: { Schema }
Question: { Question }

Chain-of-Thought Prompt
System:
You are an AI assistant helping a data analyst write SQL queries to answer questions.
User:
Below I will provide a DB schema and a question that can be answered by querying the provided DB. You
will then write out your thought process in detail followed by a single SQL query enclosed in ‘‘‘sql
...‘‘‘ that answers the question.
Database Schema: { Schema }
Question: { Question }

Chain-of-Thought Prompt (Divide and Conquer)
System:
As a Text2SQL assistant, your main task is to formulate an SQL query in response to a given natural
language inquiry. This process involves a chain-of-thought (CoT) approach, which includes a ’divide and
conquer’ strategy.
In the ’divide’ phase of this CoT process, we break down the presented question into smaller, more
manageable sub-problems using pseudo-SQL queries. During the ’conquer’ phase, we aggregate the
solutions of these sub-problems to form the final response.
Lastly, we refine the constructed query in the optimization step, eliminating any unnecessary clauses and
conditions to ensure efficiency.
User:
Below I will provide a DB schema and a question that can be answered by querying the provided DB. You
will then write out your thought process in detail followed by a single SQL query enclosed in ‘‘‘sql
...‘‘‘ that answers the question.
Database Info: Database Schema: { Schema }
Question: Question: { Question }
Main Question: { Main Question } Analysis: { Analysis }
Pseudo SQL: “‘sql { Pseudo SQL } “‘
Sub-questions:
1. { Sub-question } Analysis: { Analysis } Pseudo SQL: “‘sql { Pseudo SQL } “‘
2. { Sub-question } Analysis: { Analysis } Pseudo SQL: “‘sql { Pseudo SQL } “‘
Final SQL Assembly: “‘sql { SQL } “‘
Optimization: { Analysis } “‘sql { Optimized SQL } “‘

Table 5: Chain-of-Thought prompts used in our CoT data generation.
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B Case Study

We illustrate how our method progressively refines
text-to-SQL answers on a very hard BIRD query
by sampling each model 32 times to evaluate their
success rate:

Question. For the school with the highest average
score in Reading in the SAT test, what is its
FRPM count for students aged 5-17?

Goal. Identify the FRPM count for students aged
5-17 from the frpm table for the school with
the highest average SAT Reading score from
the satscores table.

Incremental Improvements Across Training
Stages Table 6 shows how many correct vs. incor-
rect solutions were generated at various stages for
this particular example (BIRD index 10). Notably,
GPT-4o failed to produce any correct solution in
32 trials for this query. After off-policy DPO on
GPT-4o–generated data, the model discovered a
single correct SQL. In on-policy rounds, where
the model used its own generations as feedback,
the number of correct solutions climbed further
(5 at Round 1), demonstrating how iterative align-
ment via execution-based feedback unearths better
queries.

Stage #Correct #Wrong

GPT-4o Generation 0 32
Off-Policy DPO 1 31
On-Policy DPO (Round 1) 5 27
On-Policy DPO (Round 2) 4 28

Table 6: Outcome of different training stages on the
BIRD example (index 10). Each row shows how many
correct vs. incorrect solutions were produced among 32
generated candidates.

Representative Chain-of-Thoughts and Final
Queries Below, we highlight simplified excerpts
of chain-of-thought (CoT) outputs from four snap-
shots: (1) GPT-4o, (2) Off-Policy DPO, (3) On-
Policy DPO Round 1, and (4) On-Policy DPO
Round 2. While each stage’s CoT differs in specific
reasoning steps, they converge on similar final SQL
templates that identify the school with the highest
SAT Reading score and retrieve its FRPM count
for students aged 5-17.

(1) GPT-4o (No Correct Solutions)
CoT Excerpt: “. . . We need to identify the school
with the highest SAT Reading score, then join the
frpm table to fetch the FRPM count. . . . ”

WITH highest_reading AS (...)
SELECT FRPM_Count FROM frpm
WHERE CDSCode IN (SELECT cds
FROM highest_reading);

Most GPT-4o attempts used complex subqueries or
incorrect join conditions, resulting in 0/32 correct
outputs despite the correct conceptual approach.

(2) Off-Policy DPO (1 Correct Solution)

CoT Excerpt: “. . . We can directly join
satscores and frpm on the school code and
order by AvgScrRead descending. . . . ”

SELECT T2.‘FRPM Count (Ages 5-17)‘
FROM satscores AS T1
INNER JOIN frpm AS T2

ON T1.cds = T2.CDSCode
ORDER BY T1.AvgScrRead DESC
LIMIT 1;

Off-policy DPO discovered a correct solution by
prioritizing direct joins and ordering, ensuring a
valid query within the SQLite environment.

(3) On-Policy DPO Round 1 (5 Correct Solu-
tions)

CoT Excerpt: “. . . To avoid errors, we directly
join tables and order by reading scores. . . . ”

SELECT T2.‘FRPM Count (Ages 5-17)‘
FROM frpm T2
JOIN satscores T1

ON T1.cds = T2.CDSCode
ORDER BY T1.AvgScrRead DESC
LIMIT 1;

On-policy Round 1 produced multiple correct so-
lutions by varying table aliases and consistently
applying the correct ordering logic.

(4) On-Policy DPO Round 2 (4 Correct Solu-
tions)

CoT Excerpt: “. . . Simplify by using a single join
query and ordering directly. . . . ”

SELECT frpm.‘FRPM Count (Ages 5-17)‘
FROM frpm
JOIN satscores

ON frpm.CDSCode = satscores.cds
ORDER BY satscores.AvgScrRead DESC
LIMIT 1;

In Round 2, the model maintained high accuracy
with slight variations in table aliasing and ordering
logic.
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Summary of Observations In this case, GPT-4o
struggled to produce valid SQL due to unnecessary
complexity. Our method:

1. Off-Policy DPO corrected GPT-4o’s ap-
proach by favoring direct joins and clear or-
dering.

2. On-Policy DPO consistently generated cor-
rect SQL by iteratively refining successful pat-
terns.
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