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Abstract

Lay paraphrasing aims to make scientific in-
formation accessible to audiences without tech-
nical backgrounds. However, most existing
studies focus on a single domain, such as
biomedicine. With the rise of interdisciplinary
research, it is increasingly necessary to compre-
hend knowledge spanning multiple technical
fields. To address this, we propose Sci-LoRA,
a model that leverages a mixture of LoRAs fine-
tuned on multiple scientific domains. In par-
ticular, Sci-LoRA dynamically generates and
applies weights for each LoRA, enabling it to
adjust the impact of different domains based
on the input text, without requiring explicit
domain labels. To balance domain-specific
knowledge and generalization across various
domains, Sci-LoRA integrates information at
both the data and model levels. This dynamic
fusion enhances the adaptability and perfor-
mance across various domains. Experimental
results across twelve domains on five public
datasets show that Sci-LoRA significantly out-
performs state-of-the-art large language models
and demonstrates flexible generalization and
adaptability in cross-domain lay paraphrasing.

1 Introduction

Lay paraphrasing aims at making the technical or
specialist text comprehensible for non-expert au-
diences. In an era of abundant specialized knol-
wedge, lay paraphrasing plays a crucial role in
making intricate scientific information and con-
cepts accessible and understandable to people lack
of technical expertise, fostering public understand-
ing of science and its impact. With the growing
prevalence of interdisciplinary research and collab-
oration, scientific contents from diverse domains is
increasingly reaching the general public. It is par-
ticularly important to make the interdisciplinary in-
formation comprehensible to the cross-domain non-
expert audience for minimizing misunderstandings
and fostering effective cross-domain collaboration.

Table 1 presents examples of interdisciplinary re-
search content along with their layman-friendly
paraphrased versions. For example, the term "in-
fluenza A/H1N1 hemagglutinin (HA)" can be sim-
plified to "flu virus" for audiences without a biology
background. Similarly, the mathematical expres-
sion of a graph, "G = (V,E)", where V represents
vertices, can be rephrased as "each point represents
a version of the virus" for those unfamiliar with
computer science concepts.

However, existing works on lay paraphras-
ing are limited to a single domain, such as
biomedicine (Guo et al., 2024; Fonseca and Co-
hen, 2024), scientific news (Liu et al., 2024c), etc.
Though the most recent study has expanded the
scope of lay paraphrasing to translate technical lan-
guage into general-audience language across mul-
tiple domains (Cheng et al., 2025), the models are
still only fine-tuned on separate domain-specific
data, assuming domain knowledge is available dur-
ing inference and not fully leveraging the cross-
domain knowledge. These studies focus on devel-
oping one model within a specified domain while
overlooking the generalization of the model across
multiple domains, resulting in potential misinter-
pretations of cross-domain concepts. Besides, it
is hard for those models to adapt to unseen infor-
mation when new scientific interdisciplinary fields
emerge. They often require full-scale retraining,
which is inefficient and time-consuming.

To address the above challenges, this paper ex-
plores the "mixed-domain scenario", where scien-
tific content may span one or multiple domains.
We introduce Sci-LoRA, a model that leverages a
mixture of LoRAs fine-tuned on a diverse set of sci-
entific domains. Unlike conventional models that
are fine-tuned for one specific domain, Sci-LoRA
adopts a multi-LoRA serving architecture, enabling
continuous improvement as new LoRA modules
can be added and updated for newly emerging do-
mains. To effectively utilize cross-domain knowl-
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Table 1: Examples of interdisciplinary scientific contents and lay paraphrasing for the general audience.

Technical Contents Lay Paraphrasing
CS + Art History: We propose a four-step human-AI col-
laboration workflow to support the discovery and clustering
of these backdrops. Focusing on the painted backdrops of
the American Civil War, we present Backdrop Explorer, a
content-based image retrieval (CBIR) system incorporating
computer vision and novel user interactions.

We developed a system called Backdrop Explorer to help
people find and organize images of painted backdrops from
the American Civil War. It uses advanced computer tech-
nology to analyze and group similar images. The process
involves four steps where humans and artificial intelligence
work together to make searching easier and more interactive.

CS + Computational Biology: We suggest representing anti-
genic drifts within influenza A/H1N1 hemagglutinin (HA)
protein as a graph, G = (V,E), where V is the set of ver-
tices representing each possible sequence and E is the set of
edges representing single amino acid substitutions.

We suggest using a network-like diagram to track how the
flu virus changes over time. In this diagram, each point
represents a version of the virus, and lines between them
show small changes in the virus’s building blocks.

CS + Chemistry: Constructing a robust deep learning model
for assessing materials’ structure-property relationships re-
mains a non-trivial task due to highly flexible model archi-
tecture and the challenge of selecting appropriate material
representation methods. In this regard, we develop advanced
deep-learning models and implement them for predicting
the quantum-chemical calculated properties (i.e., formation
energy) for an enormous number of crystal systems.

Building a strong deep learning model to understand the
relationship between the structure of materials and their
properties is still a difficult task. This is because the models
can be very complex, and it’s not always easy to choose the
best way to represent the materials. To tackle this, we’ve
developed advanced deep learning models that can predict
certain properties of materials, like formation energy, for a
large number of crystal systems.

edge, an adapter weight generator is designed to
dynamically generate and assign weights to each
LoRA, adjusting the influence based on the rel-
evance of different domains. Specifically, a text
encoder is trained using contrastive learning to
better distinguish representations across domains.
Then, weights are calculated based on the simi-
larity between input text and domain adapter rep-
resentations. To further enhance cross-domain
generalization, a dynamic LoRA fusion module
is employed to integrate domain-specific knowl-
edge from mixture of LoRAs with generalized in-
formation from the mixture of data. This approach
allows Sci-LoRA to effectively generalize across
domains while maintaining domain-specific accu-
racy. Sci-LoRA significantly broadens access to
cross-domain scientific content for non-expert au-
diences and facilitates interdisciplinary research
collaboration. Contributions are summarized as:

• We propose Sci-LoRA, a model that leverages
a mixture of LoRAs fine-tuned on multiple
scientific domains, designed for the automatic
cross-domain lay paraphrasing task.

• We design the adapter weight generator and
dynamic LoRA fusion that generate adaptive
weights and integrate domain-specific knowl-
edge with generalizd information.

• Extensive experiments over ten evaluation
metrics on five public datasets across twelve
different domains demonstrate the superior ef-
fectiveness and generalization capability of
Sci-LoRA over state-of-the-art models.

2 Related Work

2.1 Lay Paraphrasing

Lay paraphrasing focuses on rewriting the text
written from the technical experts to the gen-
eral audience without specialized domain knowl-
edge (Cheng et al., 2025; Guo et al., 2024). Recent
methods on lay summarization or lay paraphras-
ing tasks are restricted to a single domain. For
example, large language models are finetuned and
deployed to generate lay/plain language text in the
biomedicine domain (Guo et al., 2024; Fonseca
and Cohen, 2024; Attal et al., 2023; Tang et al.,
2023; Guo et al., 2021), science and engineering
domain (Cardenas et al., 2023), news domain (Liu
et al., 2024c), and literature domain (Liu et al.,
2023). These studies focus on developing one
model within a specified domain while overlook-
ing the generalization of the model for multiple
domains. Besides, these works mainly focus on
summarization instead of paraphraph paraphrasing.
Given the imbalanced data distribution across vari-
ous domains (Cheng et al., 2025) and the growing
prominence of interdisciplinary research fields, we
aim to develop an effective and efficient method
that performs well and demonstrates robustness for
the cross-domain lay paraphrasing task.

2.2 Mixture of Loras

As the parameter scale increases for large language
models (LLMs), parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019; Han et al., 2024)
strategies like Low-Rank Adaptation (LoRA) (Hu
et al., 2022) efficiently adapting LLMs to multi-
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ple data domains by fine-tuning a small subset
of parameters. Motivated by the multisource do-
main adaptation of Mixture of Experts (MoE) (Cai
et al., 2024; Guo et al., 2018), which is an ensem-
ble method with a combination of sub-modules or
experts for improving the overall performance in
diverse tasks, mixture of LoRAs combines multi-
ple low-rank modules to enhance adaptability and
performance for more efficient and effective model
tuning in different data domains.

Recent works on mixture of LoRAs can be
roughly divided into three categories: (1) linear
merge, where different LoRAs have the same static
weights (Yadav et al., 2024; Yu et al., 2024; Huang
et al., 2023); (2) router, additional linear layers
for LoRA selection or rule-based LoRA selec-
tion (Feng et al., 2024; Zhang and Li, 2024; Zhao
et al., 2024a; Liu et al., 2024a; Muqeeth et al., 2024;
Buehler and Buehler, 2024); and (3) trainable gat-
ing networks, modeling the optimal distribution
of combination weights for various LoRAs (Wu
et al., 2024; Xu et al., 2024; Prabhakar et al., 2024;
Zhao et al., 2024c; Luo et al., 2024; Zhao et al.,
2024b; Lv et al., 2024). For the lay paraphrasing
or summarization task, studies leverage LoRA for
efficient fine-tuning on biomedical articles (Malik
et al., 2024; Kim et al., 2024). However, these
works only focus on LoRA tuning in a specific
biomedical domain. Motivated by mixture of Lo-
RAs, we focus on generalization for cross-domain
lay paraphrasing based on mixture of scientific Lo-
RAs.

3 Methodology

3.1 Background
3.1.1 Low-Rank Adaptation
Low-Rank Adaptation (LoRA) (Hu et al., 2022) is
a parameter-efficient fine-tuning method designed
for finetuning LLMs by integrating trainable low-
rank matrices instead of updating all parameters of
LLMs during training. Consider a weight matrix
W ∈ Rdin×dout within the original LLMs, where
din and dout are input and output dimensions, re-
spectively. LoRA injects two low-rank matrices,
A ∈ Rdin×r and B ∈ Rr×dout , where the rank
r ≪ min(din, dout). Instead of directly updating
W , LoRA modifies model’s forward process for
one layer as the following:

f(x) = Wx+△Wx = Wx+BAx (1)

where x ∈ Rdin denotes the input.

3.1.2 Problem Formulation
Lay paraphrasing is the process of rephrasing sci-
entific or technical language into simpler, and
more accessible language that can be easily un-
derstood by a general audience. Let Dmulti =
{D1, D2, . . . , Dn} represent n different techical
domains data, where Di = {Xi, Yi}. Xi is
the technical text (inputs) and Yi is the general-
audience text (outputs). Xi = {x1, x2, · · · , xm},
Yi = {y1, y2, · · · , ym}, where m is the number
of textual documents. Given a LLM M, and a
set of LoRA adapters {△θ1,△θ2, · · · ,△θn} for n
different domains, where each adapter is trained
on its corresponding training splitted domain data
Di. In the multi-domain lay paraphrasing scenario,
∀x ∈ Dmulti, the generated text is expressed as:

y = M(θ, α1 · △θ1, · · · , αn · △θn, x) (2)

where θ is the original parameters of the LLM
M, and α is the weight generated from the LoRA
adapters weight generator.

3.2 Sci-LoRA Framework

In this section, we describe our proposed Sci-LoRA
as shown in Figure 1 for serving the mixture of
LoRAs in multi-domain scenarios. Our proposed
model Sci-LoRA contains three major components:
the domain LoRAs training module (Sec. 3.2.1),
the adapter weight generator (Sec. 3.2.2), and the
dynamic LoRA fusion strategy (Sec. 3.2.3).

3.2.1 Domain LoRAs Training
We use the pre-trained Qwen2.5-7B-Instruct as the
base model for Sci-LoRA because it is an open-
source model under the Apache-2.0 license and
it shows good performance for generating long
texts (Team, 2024). For each specific domain, we
train one LoRA adapter on the domain training
set based on Qwen2.5-7B-Instruct model. In to-
tal, we train twelve LoRA adapters correspond-
ing to twelve different domains. During the in-
ference stage, Sci-LoRA can dynamically select
the weighted mixture of LoRAs for a given text
without domain tags.

3.2.2 Adapter Weight Generator
Although the input text originates from a specific

domain, it often incorporates interdisciplinary tech-
nical knowledge. To leverage the strengths of differ-
ent domain-specific LoRAs, we design an Adapter
Weight Generator that effectively and dynamically
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Figure 1: The Sci-LoRA framework including the adapter weight generator and dynamic LoRA fusion. All text
encoder modules are the same text encoder trained on a subset of training data across all domains.

integrates and utilizes LoRAs across multiple do-
mains. The Adapter Weight Generator includes a
trained text encoder, and a weight generator.

Text Encoder Directly using a pre-trained text
encoder to obtain embeddings for the input text
results in highly similar cosine similarity values
with embeddings from various domain represen-
tations (Sec. 4.2.2 and Sec. C). To better differ-
entiate representations among domains, we fine-
tune a text encoder, Sentence-BERT (Reimers and
Gurevych, 2019)), using contrastive learning. The
text encoder is fine-tuned on a subset of training
data across all domains. Specifically, the train-
ing dataset D consists of positive paired samples
(xi, xj) where xj : j ̸= i, xj ∈ Dom(xi) from
the same domain, and negative paired samples
(xi, xk) where xk : xk /∈ Dom(xk) randomly se-
lected from other domains. The training process
is achieved through a contrastive loss (Oord et al.,
2018) as:

L =
e−∥xi−xj∥2/τ

e−∥xi−xj∥2/τ +
∑m

k=1 e
−∥xi−xk∥2/τ

(3)

where m is the number of negative pairs to each
positive pair, and τ is the softmax temperature.

Weight Generator Since each LoRA is fine-
tuned on domain-specific textual data, it can be
represented by a set of domain-related data points.
Rather than using the average embedding of ran-
domly sampled data points from the training set,

which can overlook important patterns in the data,
we employ the k-means clustering algorithm to
identify k clusters within the embeddings of the
training set. Random sampling may select over or
under-representation of certain parts of the dataset
while clusting-based approach ensures a more bal-
anced and systematic coverage. To ensure a more
representative and structured sampling approach,
we select the data points closest to the centroids of
these clusters:

e∗j = arg min
E(xi)∈Cj

∥E(xi)− cj∥2 (4)

where cj = 1
|Cj |

∑
E(xi)∈Cj

E(xi) is the centroid
for its corresponding cluster Cj , and E(·) is the
fine-tuned Text Encoder. The final representation
for each domain-specific adapter is expressed as:

r△θi =
1

K

K∑

j=1

e∗j (5)

where K is the total number of clusters.
During inference, the weight αi of input text xi

for its domain adapter △θi can be generated as:

αi =
1

1 + ∥E(xi)− r△θi∥2
(6)

where E(·) is the fine-tuned text encoder and r△θi

is from Eq. 5.
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Table 2: Dataset statistics reported in the format of technical (source) / non-technical (target) summaries.

Dataset #Doc. Avg. # Sentence Avg. Sentence Len. FKGL DCRS
PLOS 27,525 11.99 / 8.32 23.30 / 23.51 15.04 / 14.76 11.06 / 10.91
eLife 4,828 7.18 / 17.97 23.14 / 20.56 15.57 / 10.92 11.78 / 8.83
CELLS 62,886 12.82 / 7.54 22.08 / 22.63 16.79 / 16.67 6.78 / 7.01
SciTechNews 2,431 8.78 / 6.59 22.31 / 23.87 16.33 / 15.80 7.14 / 7.59
VTechAGP 4,409 13.68 / 11.66 27.68 / 26.38 15.74 / 14.78 6.92 / 6.72

3.2.3 Dynamic LoRA Fusion
To effectively balance domain-specific knowledge

and generalization, we propose dynamic LoRA fu-
sion module consisting of domain-specific LoRA
aggregation and unified LoRA for multi-domain
generalization. First, all domain-specific LoRAs
are merged with learned LoRA weights α in Eq. 6.
We proceed to integrate these LoRA parameters
△θ into the LLM with parameter θ. The special-
ized representation for text input xi is expressed
as:

rspecialized = M(θ +

n∑

i=1

ai△θi, xi) (7)

where n is the number of domains. Next, a single
LoRA △θ0 is trained on data across all domains to
capture more generalized features. The generalized
representation for input text xi is expressed as:

rgeneralized = M(θ +△θ0, xi) (8)

where θ is the original parameter for model M.
This ensures that broad patterns across domains are
captured, avoiding overfitting to specific domain.
Finally, we combine rspecialized and rgeneralized as:

r̂ = β · rspecialized + (1− β) · rgeneralized (9)

where β controls the balance between domain-
specialized and general knowledge.

4 Experiments

4.1 Evaluation Settings
4.1.1 Datasets
In our experiments, we evaluate our proposed
model over five public datasets: PLOS (Gold-
sack et al., 2022), eLife (Goldsack et al., 2022),
CELLS (Guo et al., 2024), SciTechNews (Cardenas
et al., 2023), and VTechAGP (Cheng et al., 2025).
All these public datasets include technical abstracts
and corresponding non-technical summaries. We
follow the same training, validation, and testing

splits as these datasets originally have used 1. Ta-
ble 2 provides detailed statistics of each dataset.
Description of each dataset and explanation of Ta-
ble 2 are provided in Sec. B in the Appendix. Given
the multiple domains and the unbalanced training
data shown in Table 2, we conduct experiments to
explore the generalization of Sci-LoRA and other
LLMs for the cross-domain lay paraphrasing task.

4.1.2 Baselines and Evaluation Metrics
We compare Sci-LoRA with the following state-of-
the-art LLM baselines: ChatGPT (gpt-3.5-turbo-
0613) (Brown et al., 2020), GPT-4o (Achiam
et al., 2023), Phi-3 (Phi-3-mini-128k-instruct) (Ab-
din et al., 2024), Phi-3.5 (Phi-3.5-mini-instruct),
OPT (opt-6.7b) (Zhang et al., 2022), LLaMA3
(Llama-3.2-3B-Instruct) (Dubey et al., 2024),
Qwen2.5 (Qwen2.5-7B-Instruct) (Team, 2024),
Mistral (Mistral-7B-Instruct-v0.3) (Jiang et al.,
2023), Mixtral (Mixtral-8x7B-Instruct-v0.1) (Jiang
et al., 2024), and DSPT5 (Cheng et al., 2025). For
evaluation metrics, we follow (Cheng et al., 2025)
to use embedding-based metrics: BERTScore
(F1) (Zhang* et al., 2020), BLONDE (F1) (Jiang
et al., 2022), sentence-level and document-level
BLEU (Lin and Och, 2004); Word-based met-
rics: ROUGE1, ROUGE2 (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005); End-to-end
metrics: COMET (Rei et al., 2022); Simplicity:
SARI (Xu et al., 2016), and Readability: FRES
(Flesch Reading-Ease Score) (Flesch, 1979).

4.1.3 Parameter Settings
We implement Sci-LoRA in PyTorch and fine-
tune vairous LoRA adapters for each domain using
LLaMA-Factory (Zheng et al., 2024). For domain
LoRAs training, the learning rate is 1e-4, batch size
is 4 per device, LoRA rank is 8, document maxi-
mum length is 2048. For adapter weight generator,
the learning rate is 1e-5, batch size is 16, sampling
size is 500, the number of clusters is 10. It is cho-

1We re-split SciTechNews as the original training set does
not have the abstract and summary pairs.
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Table 3: Results over six evaluation metrics. Another four metrics are reported in Table 4.

CELLS PLOS eLife News ALS AAD ENG LAHS NRE SCI BUS VM
d-BLEU (%)

OPT 4.45 5.31 2.45 2.50 24.88 23.10 23.00 36.78 20.26 19.44 20.16 14.32
LLaMA3 4.38 3.51 3.27 2.61 20.73 20.78 19.61 21.92 20.77 19.35 22.40 18.61
Phi-4 6.31 6.30 1.90 1.32 25.55 28.71 24.45 36.59 24.42 20.96 29.67 21.78
Mistral 5.27 4.47 3.12 2.61 28.62 28.63 24.53 22.14 11.55 17.18 16.32 13.66
Mixtral 6.36 7.43 3.05 2.88 13.64 28.12 14.96 20.00 13.58 14.93 13.12 7.29
Qwen2.5 9.26 10.18 3.98 4.26 25.55 28.71 24.40 36.59 24.42 20.56 23.55 24.33
GPT-3.5 6.70 7.08 1.74 3.07 15.39 15.59 13.75 16.99 14.11 12.84 17.20 13.62
GPT-4o 5.10 5.76 2.65 2.92 11.05 12.40 9.65 13.60 10.78 9.06 9.54 9.10
DSPT5 - - - - 24.95 33.53 24.98 38.80 28.11 21.31 35.31 23.42
Sci-LoRA 11.15 12.43 6.09 4.61 31.03 38.97 28.31 40.33 29.61 23.31 32.86 29.55

BERTScore (F1 %)
OPT 81.53 82.47 77.53 76.08 82.09 81.01 79.75 82.41 83.64 79.58 84.60 82.30
LLaMA3 80.22 75.11 74.86 77.12 82.59 80.72 81.57 82.72 82.60 81.44 83.20 81.64
Phi-4 82.64 83.04 78.28 76.20 84.98 82.55 83.57 86.24 84.75 82.91 85.22 84.37
Mistral 79.36 80.29 80.48 77.01 84.69 81.86 83.31 82.82 81.27 80.13 80.73 81.92
Mixtral 81.38 82.04 80.49 76.80 80.92 77.09 79.26 80.79 78.50 78.93 76.28 75.09
Qwen2.5 82.36 82.70 80.72 77.90 84.98 82.55 83.16 86.24 84.75 82.85 84.11 84.37
GPT-3.5 82.14 82.62 80.35 77.83 84.67 82.48 83.52 84.75 84.65 83.05 85.17 83.89
GPT-4o 81.13 81.81 80.23 77.34 83.55 81.80 81.81 83.88 83.43 81.32 83.46 82.53
DSPT5 - - - - 85.48 83.70 84.41 87.27 85.51 82.90 87.97 84.20
Sci-LoRA 83.00 83.35 81.40 78.82 86.01 84.37 84.30 87.25 86.18 83.51 86.51 85.90

BLONDE (F1 %)
OPT 14.08 5.52 4.08 4.95 33.08 38.01 9.05 43.37 30.89 8.35 35.21 11.03
LLaMA3 14.42 5.46 4.38 4.45 31.90 42.79 9.92 45.22 31.51 8.43 43.49 11.43
Phi-4 17.97 5.07 3.94 6.14 36.02 40.64 9.52 46.14 34.18 8.57 43.33 12.32
Mistral 16.28 10.87 4.67 7.23 37.09 44.69 9.54 42.12 30.38 8.72 38.01 11.45
Mixtral 17.15 19.73 5.07 4.07 27.48 38.50 11.02 31.56 24.63 10.77 25.64 8.30
Qwen2.5 18.80 21.46 4.97 9.10 36.02 40.64 9.27 46.14 34.18 8.47 34.22 31.32
GPT-3.5 16.78 17.85 4.19 4.03 27.73 30.99 11.80 30.67 26.70 11.13 11.54 21.79
GPT-4o 16.19 17.61 4.81 4.17 22.58 26.83 5.93 27.14 21.77 8.48 24.55 18.37
DSPT5 - - - - 36.75 44.11 9.62 48.51 36.60 8.22 35.53 30.69
Sci-LoRA 18.12 16.81 4.99 10.13 36.99 50.99 10.28 48.32 40.41 14.75 46.58 39.09

ROUGE1 (%)
OPT 35.43 33.49 30.43 28.51 48.22 32.95 42.26 48.68 48.02 40.67 43.70 46.96
LLaMA3 33.90 37.81 32.54 30.40 45.65 41.42 42.86 45.01 46.06 41.55 44.52 41.78
Phi-4 39.46 40.17 28.11 25.17 52.90 46.51 48.39 56.03 51.67 46.05 52.17 48.60
Mistral 31.44 33.42 35.63 28.09 52.35 45.33 48.20 52.32 47.74 43.41 43.36 47.94
Mixtral 37.72 40.84 36.68 30.00 43.44 37.31 39.39 42.41 41.06 38.09 35.43 33.38
Qwen2.5 40.55 42.75 37.57 31.85 52.90 46.51 47.54 56.03 51.67 45.58 47.53 48.60
GPT-3.5 38.42 40.55 31.74 30.25 51.50 45.61 47.97 50.32 51.38 46.06 50.35 48.31
GPT-4o 37.27 39.88 35.06 30.20 47.32 42.74 42.31 47.08 47.56 40.67 44.13 43.94
DSPT5 - - - - 54.48 50.84 51.73 59.67 56.47 47.14 60.75 50.28
Sci-LoRA 43.10 45.59 42.59 32.68 56.90 52.69 51.45 59.59 57.30 48.62 56.90 53.80

METEOR (%)
OPT 27.70 25.45 21.70 20.47 37.92 28.90 34.35 44.62 33.88 32.53 34.70 36.19
LLaMA3 29.29 23.55 20.18 25.82 41.90 33.67 32.02 45.51 33.49 30.77 31.87 30.11
Phi-4 36.83 36.75 17.74 22.03 40.88 39.85 39.08 49.26 41.31 37.15 43.09 37.56
Mistral 27.98 24.97 20.70 21.61 41.24 41.58 40.94 44.38 37.82 34.10 33.86 37.62
Mixtral 30.92 31.91 19.56 22.79 30.24 30.54 29.97 33.98 30.42 28.86 26.28 24.35
Qwen2.5 30.40 31.88 21.21 22.90 40.88 39.85 38.47 49.26 41.31 36.20 37.67 37.56
GPT-3.5 28.55 28.15 16.07 21.16 38.94 36.86 37.47 41.68 39.71 36.06 40.56 36.09
GPT-4o 30.81 31.38 18.88 24.01 33.77 33.32 31.73 36.68 35.18 30.23 32.23 31.66
DSPT5 - - - - 40.50 42.51 40.74 52.67 45.05 36.65 50.56 38.01
Sci-LoRA 32.29 35.02 28.98 23.87 45.51 46.71 42.73 53.37 47.59 40.18 48.36 44.00

SARI
OPT 37.27 37.54 37.27 39.69 35.38 31.92 37.24 36.49 34.66 36.97 40.68 37.49
LLaMA3 40.13 37.61 42.47 40.70 35.93 34.45 35.61 33.17 35.10 37.28 37.62 36.23
Phi-4 40.95 42.26 40.46 37.83 40.14 39.39 38.73 38.98 38.49 38.61 42.96 41.13
Mistral 41.69 38.72 45.20 43.68 40.86 43.41 41.32 32.40 33.09 34.92 32.48 36.45
Mixtral 40.10 39.99 42.95 39.43 35.28 35.53 34.37 32.07 33.77 35.71 35.46 33.36
Qwen2.5 40.38 40.08 44.03 43.02 40.14 39.39 38.74 38.98 38.49 38.74 39.15 41.13
GPT-3.5 40.12 39.60 42.66 39.34 37.83 35.41 36.90 34.50 36.61 38.53 40.07 38.07
GPT-4o 39.93 39.60 43.04 39.48 35.99 33.65 34.96 32.56 34.9 36.73 36.25 36.11
DSPT5 - - - - 37.31 36.01 38.21 38.95 37.23 37.11 48.67 36.50
Sci-LoRA 41.15 40.07 47.64 43.76 41.32 44.26 41.64 42.88 41.77 40.60 45.08 42.45
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Table 4: Results of the remaining four evaluation metrics over all baselines. The abbreviations stands for CELLS,
PLOS, eLife, SciTechNews, Agriculture and Life Science, Architecture, Arts and Design, Engineering, Liberal Arts
and Human Sciences, Natural Resources and Environment, Science, Business, and Veterinary Medicine.

CELLS PLOS eLife News ALS AAD ENG LAHS NRE SCI BUS VM
s-BLEU (%)

LLaMA3 1.84 1.35 0.58 0.84 8.37 14.42 12.72 15.36 7.02 5.20 12.61 8.20
Phi-4 4.08 4.58 0.44 1.33 8.95 13.43 9.72 19.82 7.55 8.22 16.03 9.32
Mistral 1.51 1.42 0.85 0.76 11.46 14.70 13.74 11.72 5.51 3.89 12.10 10.37
Mixtral 2.55 2.58 0.82 0.92 4.03 4.52 3.94 6.52 4.40 4.05 1.75 4.05
Qwen2.5 3.07 3.23 1.22 1.58 8.95 13.43 9.72 19.82 7.55 8.22 15.49 9.32
GPT-3.5 2.56 2.58 0.75 1.10 4.53 5.74 4.34 6.25 4.08 4.20 8.17 4.51
GPT-4o 2.15 2.12 0.75 0.88 3.84 3.61 3.51 6.70 4.06 3.32 3.42 3.55
DSPT5 - - - - 10.84 14.09 11.25 22.12 9.19 8.13 20.30 11.38
Sci-LoRA 3.99 4.06 1.22 2.20 10.21 18.38 11.69 23.99 13.84 9.86 15.76 11.32

ROUGE2 (%)
OPT 9.77 10.91 5.77 5.79 26.78 21.90 22.67 33.34 21.11 20.79 21.38 14.29
LLaMA3 7.97 6.11 6.51 5.28 24.62 23.17 22.99 36.49 24.84 22.53 15.58 12.09
Phi-4 14.59 15.80 5.86 4.72 27.50 23.37 23.38 35.59 26.53 21.45 29.32 22.02
Mistral 8.98 6.75 7.76 4.07 28.99 28.18 26.58 30.50 23.37 18.78 18.36 12.98
Mixtral 9.83 11.26 9.09 4.92 16.25 18.98 13.83 18.92 15.82 13.81 14.14 11.44
Qwen2.5 11.92 13.25 9.23 6.23 27.50 23.37 23.20 35.59 26.53 20.59 23.35 22.02
GPT-3.5 9.54 10.50 7.63 5.06 20.08 16.75 17.88 21.89 19.67 16.55 21.76 17.54
GPT-4o 8.70 9.81 8.04 4.96 14.87 13.54 12.43 17.23 14.75 11.36 14.58 12.15
DSPT5 - - - - 28.58 27.55 27.02 40.24 30.83 21.97 39.61 24.63
Sci-LoRA 14.02 15.89 11.31 6.90 32.16 30.98 27.62 40.92 33.19 24.26 34.50 28.24

COMET (%)
OPT 74.74 77.73 74.74 71.86 80.45 71.81 81.42 77.90 78.89 76.13 81.01 76.41
LLaMA3 79.17 77.43 78.40 74.80 82.92 76.06 82.80 81.87 84.54 80.07 83.39 83.44
Phi-4 78.87 80.05 73.62 70.84 83.24 76.06 82.02 81.86 83.23 79.90 83.56 83.58
Mistral 77.84 78.45 80.13 74.46 81.05 72.00 79.22 79.72 81.01 79.23 81.31 82.42
Mixtral 79.46 79.26 77.98 74.24 78.57 68.67 75.52 75.98 73.99 74.46 69.64 68.16
Qwen2.5 78.95 79.90 79.09 74.32 83.42 76.06 81.22 81.86 83.23 80.33 82.60 83.58
GPT-3.5 80.23 79.69 77.20 75.22 85.49 80.30 84.00 83.29 85.79 82.98 85.29 84.10
GPT-4o 79.97 80.26 77.50 75.39 84.47 78.71 81.72 82.33 84.95 80.67 83.86 83.71
DSPT5 - - - - 81.37 75.90 80.64 81.76 82.09 77.15 84.07 78.36
Sci-LoRA 79.10 80.29 82.95 76.00 83.79 78.02 82.90 82.62 84.66 80.87 85.40 84.67

FRES
OPT 34.05 34.26 34.05 39.77 34.05 40.87 31.62 29.69 42.11 32.73 21.33 32.43
LLaMA3 49.55 50.57 50.36 49.86 50.16 49.75 41.29 39.67 49.25 40.79 40.58 49.86
Phi-4 34.15 33.54 23.26 33.44 35.07 51.89 32.63 30.50 42.82 33.65 21.43 42.31
Mistral 51.06 53.10 53.61 42.72 33.75 50.57 31.72 41.09 51.38 43.63 41.70 43.02
Mixtral 49.35 49.15 48.94 41.40 41.40 41.29 32.73 39.37 41.09 41.19 39.16 40.08
Qwen2.5 43.43 43.43 53.41 42.11 35.07 51.98 32.43 30.50 42.82 33.34 23.04 42.31
GPT-3.5 41.29 41.80 40.69 33.14 42.11 42.41 33.85 31.72 41.70 34.15 29.69 42.21
GPT-4o 41.90 42.00 49.04 42.31 50.97 43.83 42.31 40.99 50.36 42.11 32.83 50.16
DSPT5 - - - - 33.65 41.50 31.62 28.17 41.19 32.33 21.74 33.34
Sci-LoRA 44.36 44.36 54.93 41.38 44.86 41.80 33.82 32.48 42.80 33.44 22.53 34.12

Table 5: Ablation study over Sci-LoRA components in College of Architecture, Arts, and Design domain from
VTechAGP Dataset. Due to limited space, ablation results on all domains are in Table 8 and Table 9 in Appendix.

Model s-BLEU d-BLEU BERTScore BLONDE ROUGE1 ROUGE2 METEOR COMET SARI FRES
Pre-trained 5.63 12.69 81.97 27.56 42.46 13.87 33.98 80.05 34.64 35.17
Multi-LoRAs 19.78 34.39 83.30 46.43 47.83 26.51 41.77 77.20 40.76 42.41
Single LoRA 13.43 28.71 82.55 40.64 46.51 23.37 39.85 76.06 39.39 51.89
AWGRandom 23.08 34.74 83.46 48.14 48.81 26.16 40.48 77.30 41.58 42.41
AWGK-Means 23.17 37.08 83.72 50.02 51.13 28.28 43.91 77.83 43.56 42.31
AWGContrastive 18.06 38.62 84.03 50.00 52.07 30.86 44.89 77.97 44.00 41.29
w/o Fusion 14.86 31.22 81.59 44.02 50.82 22.62 41.42 78.59 43.63 44.03
Sci-LoRA 18.38 38.97 84.37 50.99 52.69 30.98 46.71 78.02 44.26 41.80
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sen by grid search {5, 10, 15, 20} on the validation
set. The weight parameter β is 0.5. We use the
same prompt "Generate another version of the pro-
vided text for general audiences" for Sci-LoRA and
all baselines. For LoRA tuning Sci-LoRA, we fol-
low the early stopping strategy when selecting the
model for testing. The model is evaluated on the
validation set after every training epoch. The time
for training is around 3 hours. The experiments are
conducted on eight Nvidia A100 GPUs.

4.2 Results and Analysis

4.2.1 Main Results
The experimental results across five datasets span-
ning twelve domains are presented in Table 3 and
Table 4. Note that Mixtral, GPT-3.5, and GPT-4o
are pre-trained models, DSPT5 is a full-size model
fine-tuned separately for each domain, and all other
models utilize LoRA fine-tuning applied to a fu-
sion of all data. We observe that: (1) In general,
fine-tuned models outperform pre-trained gener-
alist models such as Mixtral and GPT-4o, high-
lighting the necessity of fine-tuning for specialized
tasks. (2) The fully fine-tuned DSPT5 model out-
performs other LoRA fine-tuned baselines because
it is fine-tuned separately for each domain. Note
that other LoRA refers to a single generalist LoRA
finetuned on all domains. This ensures that its
performance is not influenced by data from other
domains, allowing it to specialize more effectively.
In contrast, the LoRA fine-tuned baselines use a
single LoRA adapter trained on data from all do-
mains, which may lead to cross-domain interfer-
ence and reduced specialization. (3) Our proposed
Sci-LoRA achieves the best performance among
all pre-trained models, LoRA fine-tuned models,
and separate domain fine-tuned DSPT5. We think
that Sci-LoRA effectively mitigates cross-domain
interference while improving generalization by dy-
namically fusing multiple LoRAs with adaptive
weighting.

4.2.2 Ablation Study

To assess the performance of each component
in Sci-LoRA, we conducted the ablation study
as shown in Table 5. Note that all models use
the same base model of Qwen2.5-7B-Instruct for
fair comparison. We explore different methods
of adapters training, adapters weight generation
(AWG) and adapters weight fusion. We observe
that: (1) In general, fine-tuning separate LoRAs for

Table 6: Mean human evaluation ratings 1-5 (the higher
the better) of different models on all five datasets. Re-
ported from left to right are: comprehensiveness, lay-
ness, meaning preservation, conciseness, and fluency.

COM LAY MP CON FLU ICC
OPT 3.65 2.13 2.69 2.33 2.46 0.76
LLaMA3 3.47 3.10 2.73 2.72 2.87 0.72
Phi-4 3.53 2.77 2.27 2.20 2.71 0.75
Mistral 3.48 2.64 2.73 2.93 2.80 0.28
Mixtral 3.42 2.67 2.72 2.89 2.64 0.64
Qwen2.5 3.78 2.86 2.80 2.77 3.31 0.75
GPT-4o 3.25 2.68 3.08 3.53 3.15 0.75
Sci-LoRA 3.82 2.88 3.45 3.47 3.40 0.80

each domain (Multi-LoRAs) yields better perfor-
mance than using a single LoRA across all domains.
This is because a single LoRA captures more gen-
eralized information, making it less effective for
domain-specific tasks. However, Multi-LoRAs di-
rectly leverage fine-tuned domain adapters, assum-
ing that domain information is available during
inference. (2) To fully leverage the benefits of fine-
tuned domain-specific LoRAs, we explored various
approaches for the adapter weight generator. Uti-
lizing k-means for domain adapter representation
learning outperforms random sampling followed
by averaging embeddings for LoRA representation.
Furthermore, incorporating a fine-tuned text en-
coder with contrastive learning further enhances
domain adaptation performance. (3) The dynamic
fusion module plays a critical role in enhancing text
generation quality. Without properly mixing Lo-
RAs, embeddings from different adapters are sim-
ply averaged, which can negatively impact perfor-
mance. By integrating all components, Sci-LoRA
achieves the best results, demonstrating its effec-
tiveness in cross-domain lay paraphrasing.

We also analyze the impact of fine-tuning a text
encoder using contrastive learning by visualizing
t-SNE embeddings from five datasets. Before fine-
tuning, embeddings from different domains are in-
termingled, indicating that the pre-trained encoder
does not effectively capture domain-specific fea-
tures. After contrastive learning, domain separation
improves, forming distinct clusters, though some
overlap remains, particularly between CELLS and
PLOS due to shared biomedical content. Addi-
tionally, some embeddings from different domains
remain close, reflecting inherent semantic similari-
ties, such as overlapping topics between SciTech-
News and Life. More analysis is in Sec. C.
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Figure 2: t-SNE visualization (before contrastive learning and after contrastive learning) of text embeddings from
CELLS, eLife, SciTechNews, PLOS and ENG in VTechAGP datasets.

4.2.3 Human Evaluation

Following a similar setting as (Cheng et al., 2025;
Liu et al., 2024b; Li et al., 2024; Song et al., 2024),
our evaluation uses a random sample of 15 abstracts
from the total test split of all five datasets con-
sidering the workload. Judges are presented with
both the academic abstract and generated general-
audience abstracts from 8 models for each data
sample in total of 120 abstracts. Using a 1-5 Lik-
ert scale, the judges are asked to rate the model
output based on five criteria: comprehensiveness,
layness, meaning preservation, conciseness, and
fluency. The human evaluation setup is discussed
in detail in Figure 3 in the Appendix.

The human evaluation results are presented in Ta-
ble 6. Overall, Sci-LoRA demonstrates the best per-
formance in comprehensiveness, meaning preser-
vation, and fluency. Pre-trained models (i.e. Mix-
tral, GPT-4o) show high conciseness with mini-
mal redundancy. However, they also miss detailed
domain-specific contents due to their more gener-
alized training paradigms. Fine-tuned models (i.e.
OPT, Phi-4, etc.) can provide more comprehensive
domain information but tend to produce verbose or
repetitive outputs at the same time. By dynamically
selecting the most relevant domain knowledge, Sci-
LoRA effectively integrates domain-specific infor-
mation while maintaining the highest level of mean-
ing preservation. It also avoids generating verbose
explanations and unnecessary elaborations. Flu-
ency is primarily influenced by pre-training, as it is
a general text generation metric. Since Sci-LoRA
is built on Qwen2.5, it inherits high fluency from

Qwen2.5. For layness, all models have some room
for improvement. This challenge is particularly ev-
ident for highly specialized texts (i.e. biomedical
domain text), where fully paraphrasing technical
content into non-technical language without com-
promising meaning preservation remains difficult.
We also report the intraclass correlation coefficient
(ICC) – average fixed raters ICC, which is used
to determine if items or subjects can be rated reli-
ably by different raters. We observe that GPT4o,
Qwen2.5, Phi-4, OPT and ours Sci-LoRA show
good reliability. Mixtral and LLaMA3 show mod-
erate reliability. Mistral shows poor reliability.

5 Conclusion

In this paper, we propose Sci-LoRA 2, a mixture
of scientific LoRAs designed for cross-domain
lay paraphrasing. Without requiring domain-
specific information during inference, Sci-LoRA
dynamically generates weights for domain-specific
adapters. To enhance domain representation learn-
ing, a customized text encoder is fine-tuned us-
ing contrastive learning. Sci-LoRA then integrates
these domain-specific adapters through a dynamic
LoRA fusion module to facilitate cross-domain text
generation. We evaluate Sci-LoRA against multi-
ple state-of-the-art baselines across 12 different
domains and 5 distinct datasets, using 10 automatic
evaluation metrics as well as human assessment.
Extensive experimental results demonstrate that
Sci-LoRA consistently outperforms existing SOTA
models in the cross-domain lay paraphrasing task.

2Code: https://github.com/gjiaying/Sci-LoRA
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6 Limitations

Sci-LoRA has the following limitations currently:
(1) Scaling Sci-LoRA to accommodate hundreds
of different domains is difficult. The current im-
plementation relies on PEFT 3 to load and merge
LoRAs, with domain-specific LoRA weights com-
puted dynamically during inference for each batch
of input text. As the number of domains increases,
inference latency is expected to grow significantly.
(2) Sci-LoRA does not support unseen domains
without training data, as each domain-specific
adapter requires fine-tuning on its respective do-
main data. To address this limitation, we will ex-
plore few-shot learning techniques for low-resource
domains for the future work. (3) Sci-LoRA is de-
signed to integrate multiple LoRAs into a single
base model. Our experiments have focused on
Qwen2.5-7B-Instruct, as this pre-trained model has
demonstrated strong inference performance. How-
ever, results may vary for different base models.
We will investigate LoRA fusion across multiple
pre-trained models to assess broader applicability
in future work.
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A More Related Works

Text paraphrasing aims at rewriting text by differ-
ent words or sentence structures while keeping the
original meaning (Zhou and Bhat, 2021). Text sim-
plification modifies syntax and lexicon to improve
the understandability of language for young read-
ers (Al-Thanyyan and Azmi, 2021). Lay summa-
rization involves generating a simplified summary
of a technical or specialist text that is suitable for
a non-expert audience (Goldsack et al., 2024; Gi-
annouris et al., 2024). Lay paraphrasing focuses
on rewriting the text written from the technical ex-
perts to the general audience without specialized
domain knowledge (Cheng et al., 2025; Guo et al.,
2024). Table 7 shows examples of differences for
the above four tasks.

B Dataset Analysis

In our experiments, we evaluate our model over five
widely used public datasets: PLOS (Goldsack et al.,
2022), eLife (Goldsack et al., 2022), CELLS (Guo

et al., 2024), SciTechNews (Cardenas et al., 2023),
and VTechAGP (Cheng et al., 2025). We followed
the original training, validation and testing split-
ting for PLOS, eLife, CELLS and VTechAGP. For
SciTechNew, because the training set does not have
abstract pairs while the validation and testing sets
have the scientific and non-technical paraphraph
pairs, we randomly resplit the dataset from original
validation and testing sets into training, validation
and testing sets by 0.8:0.1:0.1. In the following, we
describe each dataset in detail.

• PLOS (Goldsack et al., 2022) consists of ab-
stracts from biomedical articles paired with
non-technical lay summariesin science and
medicine domain sourced from the peer-
reviewed journals of The Public Library of
Science publisher.

• eLife (Goldsack et al., 2022) dataset contains
scientific abstracts paired with non-technical
lay summaries in the field of biomedical and
life sciences derived from an open-access peer-
reviewed journal.

• CELLS (Guo et al., 2024) is the paragraph-
paired dataset of scientific abstracts and
expert-authored plain language summaries in
the biomedicine field derived from biomedical
journals for the lay language generation task.

• SciTechNews (Cardenas et al., 2023) is a
text-to-text science journalism dataset con-
sisting of scientific papers paired with their
corresponding press release snippet mined
from ACM TechNews about scientific achieve-
ments and technology.

• VTechAGP (Cheng et al., 2025) is an
academic-to-general-audience text paraphrase
dataset derived from electronic theses and
dissertations across eight different colleges
sourced from Virginia Tech Graduate School
and Digital Libraries.

Following (Cheng et al., 2025), we report some
basic dataset statistics in Table 2, including the
number of documents for each public dataset, the
average number of sentences for each document,
and the average sentence length for the source and
target texts, respectively. We also report Flesch-
Kincaid Grade Level (FKGL) and Dale-Chall Read-
ability Score (DCRS) follows (Goldsack et al.,
2022). Both FKGL and DCRS estimate the U.S.
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grade level required to comprehend a given text.
FKGL calculates this based on the total count of
sentences, words, and syllables in the text. In con-
trast, DCRS evaluates readability by considering
the average sentence length and the number of fa-
miliar words, referencing a lookup table of the
3,000 most commonly used English words.

C Ablation Study

Table 8 and Table 9 present the complete re-
sults of the ablation study on Sci-LoRA’s compo-
nents across 12 scientific domains over five dis-
tinct datasets. From both tables, we observe that
fine-tuning pre-trained models with LoRA (both
Multi-LoRAs and Single LoRA) significantly en-
hances performance. In most cases, fine-tuning a
dedicated LoRA for a specific domain yields better
results than using a single LoRA across all do-
mains. However, there are notable exceptions. For
instance, on the eLife and SciTechNews datasets, a
single LoRA outperforms multiple domain-specific
LoRAs. This is likely due to the relatively small
training dataset sizes for these domains, making
it challenging to learn robust representations with
limited data. Additionally, some topics in the eLife
dataset are closely related to the biomedical do-
main, which aligns with CELLS—the largest train-
ing dataset. As a result, fine-tuning a single LoRA
across all datasets allows it to leverage knowledge
from CELLS, leading to improved performance.

All components of Sci-LoRA—the k-means-
based adapter weight generator, the contrastive-
learning-trained text encoder, and the dynamic fu-
sion module—play crucial roles in its effectiveness.
When integrated, these components enable Sci-
LoRA to consistently outperform other methods
across multiple key metrics. Notably, it achieves
the highest scores in sentence BLEU, document
BLEU, BERTScore, ROUGE-1, ROUGE-2, ME-
TEOR, and SARI across most domains, demon-
strating that domain-specific fine-tuning signifi-
cantly enhances text generation quality. One no-
table observation is that for COMET, an end-to-end
evaluation metric, pre-trained models consistently
yield the best performance. Further exploration into
improving Sci-LoRA’s end-to-end performance re-
mains an avenue for future research.

To analyze the impact of the fine-tuned text en-
coder using contrastive learning as discussed in
Sec. 3.2.2, we present t-SNE visualizations of the

text embeddings generated by the encoder both be-
fore and after contrastive learning. The embeddings
are from five datasets: CELLS, eLife, SciTech-
News, PLOS, and ENG in VTechAGP. For better
demonstration, we select the largest domain ENG
from VTechAGP for visualization. As shown in
Figure 2, the data points corresponding to differ-
ent domains (CELLs, eLife, SciTechNews, PLOS,
ENG) are intermingled. There is no clear sepa-
ration between the domains, indicating that the
embeddings produced by the pre-trained text en-
coder (without contrastive learning) do not cap-
ture domain-specific features effectively. The cen-
tral point (average embedding) for each domain is
shown as a star in Figure 2. The closeness of points
from different domains indicates that embeddings
for different domains are overly similar, making it
difficult to differentiate between them.

After using contrastive learning for fine-tuning
the text encoder as discussed in Sec. 3.2.2, the
embeddings exhibit much clearer separations be-
tween domains. Each domain forms a distinct
cluster, demonstrating that the contrastive learn-
ing process successfully pushed embeddings from
different domains apart while pulling embeddings
within the same domain closer. Note that embed-
dings of PLOS dataset (red points) and embeddings
of CELLS dataset (blue points) are still intermin-
gled after contrastive learning. This is because as
discussed in CELLS (Guo et al., 2024), CELLS
dataset has an overlap with PLOS dataset (Gold-
sack et al., 2022), and text in both datasets are
mainly from biomedical domain. In addition, there
still exist text embeddings from different domains
that are intermingled (overlapped data points with
different colors). This is because the data may in-
herently have overlapping features across domains.
For example, some text samples may contain con-
tent relevant to both the green cluster (eLife do-
main) and the orange cluster (SciTechNews do-
main), causing their embeddings to appear closer
in the high-dimensional space. This also validates
that there may be semantic similarities between cer-
tain domains. For instance, both SciTechNews and
eLife could have overlapping topics such as scien-
tific advancements, which makes their embeddings
similar and distance closer.

18537



Figure 3: Human evaluation guideline.
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Table 7: An example of the differences among text paraphrasing, text simplification, lay summarization and lay
paraphrasing. The example input text is from VTechAGP dataset and results are generated by ChatGPT.

Input Text
Thin filament pyrometry is a proven technique used to measure flame temperature by capturing the spectral radiance
produced by the immersion of silicon carbide filaments in a hot gas environment. In this study a commercially available
CMOS color camera was used, and the spectral response of each color channel was integrated with respect to the
assumed graybody radiation spectrum to form a look up table between color ratio and temperature. Interpolated filament
temperatures are then corrected for radiation losses via an energy balance to determine the flame temperature. Verification
of the technique was performed on the Holthuis and Associates Flat Flame Burner, formerly known as the Mckenna
Burner, and the results are directly compared to literature values measured on a similar burner. The results are also
supported by radiation corrected measurements taken using a type B thermocouple on the same burner setup. An error
propagation analysis was performed to determine which factors contribute the most to the final measurement uncertainty
and confidence intervals are calculated for the results. Uncertainty values for a single point measurement were determined
to be between ±15 and ±50 K depending on the color ratio and the total uncertainty associated with day-to-day changes
in the measurement setup was found to be ±55 K.
Text Paraphrasing
Thin filament pyrometry is an established method for measuring flame temperatures by analyzing the spectral radiance
emitted when silicon carbide filaments are immersed in a hot gas. In this study, a commercially available CMOS
color camera was utilized, and the spectral response of each color channel was integrated with the assumed graybody
radiation spectrum to create a lookup table correlating color ratio to temperature. The filament temperatures obtained
through interpolation were adjusted for radiation losses using an energy balance to determine the flame temperature. The
method was validated using the Holthuis and Associates Flat Flame Burner (previously known as the Mckenna Burner),
and the results were directly compared with literature values from similar burners. Additionally, radiation-corrected
measurements from a type B thermocouple on the same setup supported the findings. An error propagation analysis
identified the key contributors to measurement uncertainty, and confidence intervals were calculated. The uncertainty for
a single measurement ranged from ±15 to ±50 K, depending on the color ratio, while day-to-day variations in the setup
introduced an uncertainty of ±55 K.
Text Simplification
Thin filament pyrometry is a reliable method for measuring flame temperature by analyzing the light emitted when silicon
carbide filaments are placed in hot gas. In this study, a CMOS color camera was used, and a table was created to link
color ratios to temperature based on the assumed radiation spectrum. Filament temperatures were adjusted for radiation
losses to calculate the flame temperature. The method was tested on a Flat Flame Burner, also known as the Mckenna
Burner, and the results matched previously published data. Additional tests using a type B thermocouple confirmed the
findings. An analysis of errors showed which factors affected measurement accuracy the most, with uncertainties ranging
from ±15 to ±50 K for single measurements and ±55 K for variations in the setup over time.
Lay Summarization
Thin filament pyrometry is a technique used to measure how hot a flame is by analyzing the light given off by a small
filament placed in the flame. In this study, researchers used a camera to measure light colors and linked these to
temperatures using a pre-made chart. They adjusted the results to account for energy lost as heat and tested the method
on a standard burner. The findings matched results from other studies and were confirmed with another temperature-
measuring tool. The researchers also identified factors that affect accuracy and found that temperature measurements
could vary by about 15 to 55 K due to setup changes.
Lay Paraphrasing
Thin filament pyrometry is a method used to measure flame temperatures by analyzing the light emitted from a small
silicon carbide filament placed in hot gas. In this study, researchers used a regular CMOS color camera to capture light
colors and created a chart to link color ratios to temperatures based on expected radiation patterns. They adjusted the
temperature measurements to account for heat loss and tested their method on a standard burner setup, known as the Flat
Flame Burner or Mckenna Burner. The results matched previous studies and were confirmed with another tool called a
type B thermocouple. The researchers also examined what factors caused measurement errors and calculated that single
temperature readings could vary by 15 to 50 K, while changes in the setup added an uncertainty of about 55 K.
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Table 8: Full ablation study over Sci-LoRA components across 12 domains in all five datasets. (Part I)

s-BLEU d-BLEU BERTScore BLONDE ROUGE1 ROUGE2 METEOR COMET SARI FRES
CELLS

Pre-trained 2.34 5.41 81.80 16.83 37.84 9.67 32.79 81.55 40.32 34.66
Multi-LoRAs 3.11 9.51 82.35 19.09 40.55 11.95 29.84 78.77 40.43 43.53
Single LoRA 3.07 9.26 82.36 18.80 40.55 11.92 30.40 78.95 40.38 43.43
AWGRandom 2.48 6.83 81.33 14.37 36.85 9.92 27.78 77.82 40.16 43.63
AWGK-Means 2.41 6.58 81.30 15.26 36.74 9.79 27.99 78.11 40.24 43.73
AWGContrastive 2.56 7.09 81.49 16.42 37.38 10.08 27.98 77.92 40.33 43.53
w/o Fusion 2.09 6.24 80.66 15.71 37.54 9.88 27.23 77.59 40.86 44.14
Sci-LoRA 3.99 11.15 83.00 18.12 43.10 14.02 32.29 79.10 41.15 44.36

PLOS
Pre-trained 2.44 6.18 82.44 17.80 40.65 10.67 33.12 81.68 40.03 34.36
Multi-LoRAs 3.09 10.15 82.68 19.58 42.69 13.25 31.78 79.88 40.24 43.43
Single LoRA 3.23 10.18 82.70 21.46 42.75 13.25 31.88 79.90 40.08 43.43
AWGRandom 2.23 6.24 81.13 14.63 37.37 10.00 28.88 78.75 39.46 45.25
AWGK-Means 2.35 6.38 81.20 13.90 37.45 10.13 29.23 78.95 39.62 45.46
AWGContrastive 2.39 6.57 81.41 16.64 37.97 10.22 28.54 78.66 39.62 44.95
w/o Fusion 2.52 6.25 80.85 14.56 42.32 10.97 33.58 79.53 40.03 44.24
Sci-LoRA 4.06 12.43 83.35 16.81 45.59 15.89 35.20 80.29 40.07 44.36

eLife
Pre-trained 0.85 3.17 80.52 5.00 36.19 8.27 20.36 79.44 42.67 42.51
Multi-LoRAs 1.19 3.99 80.48 4.04 37.37 9.05 21.31 78.84 43.84 53.21
Single LoRA 1.22 3.98 80.72 4.97 37.57 9.23 21.21 79.09 44.03 53.41
AWGRandom 1.12 6.25 81.24 4.36 41.95 10.10 27.66 81.82 47.39 55.13
AWGK-Means 1.17 6.52 81.39 4.39 42.38 10.31 27.92 82.06 47.63 54.93
AWGContrastive 1.19 6.58 81.62 4.89 42.22 10.41 28.40 82.54 47.80 54.83
w/o Fusion 0.93 3.11 81.13 4.06 38.50 9.28 23.07 81.76 44.11 54.35
Sci-LoRA 1.22 6.09 81.40 4.99 42.59 11.31 28.98 82.95 47.64 54.93

SciTechNews
Pre-trained 0.95 2.82 77.37 9.07 30.30 5.10 24.43 76.29 39.15 34.76
Multi-LoRAs 1.84 4.09 78.00 8.74 31.93 5.92 22.89 74.35 43.35 41.29
Single LoRA 1.58 4.26 77.90 9.10 31.85 6.23 22.90 74.32 43.02 42.11
AWGRandom 2.03 4.09 78.01 9.04 31.60 6.11 21.79 73.64 43.66 41.09
AWGK-Means 2.07 4.11 78.83 9.60 31.73 6.79 22.99 73.81 43.52 41.19
AWGContrastive 2.19 4.17 78.88 9.89 32.29 6.88 22.21 75.15 43.42 41.29
w/o Fusion 1.18 4.03 78.30 8.91 30.39 6.22 23.09 74.36 42.68 38.26
Sci-LoRA 2.20 4.61 78.82 10.13 32.68 6.90 23.87 76.00 43.76 41.38

College of Agriculture and Life Sciences (VTechAGP)
Pre-trained 3.92 13.04 84.15 10.71 48.78 16.96 35.58 85.46 36.91 34.97
Multi-LoRAs 8.73 27.00 84.97 16.05 52.49 27.97 41.29 82.88 40.12 34.76
Single LoRA 8.95 25.55 84.98 36.02 52.90 27.50 40.88 83.42 40.14 35.07
AWGRandom 9.01 26.61 84.77 36.92 52.52 26.97 40.51 82.65 39.72 34.36
AWGK-Means 9.26 26.67 84.92 35.90 53.10 27.30 40.96 82.84 40.45 42.82
AWGContrastive 9.91 26.83 84.83 36.41 53.20 27.93 40.91 82.97 40.72 42.56
w/o Fusion 6.18 24.67 84.47 22.22 52.74 27.39 40.56 82.66 40.38 40.86
Sci-LoRA 10.21 31.03 86.01 36.99 56.90 32.16 45.51 83.79 41.32 44.86

College of Architecture, Arts, and Design (VTechAGP)
Pre-trained 5.63 12.69 81.97 27.56 42.46 13.87 33.98 80.05 34.64 35.17
Multi-LoRAs 19.78 34.39 83.30 46.43 47.83 26.51 41.77 77.20 40.76 42.41
Single LoRA 13.43 28.71 82.55 40.64 46.51 23.37 39.85 76.06 39.39 51.89
AWGRandom 23.08 34.74 83.46 48.14 48.81 26.16 40.48 77.30 41.58 42.41
AWGK-Means 23.17 37.08 83.72 50.02 51.13 28.28 43.91 77.83 43.56 42.31
AWGContrastive 18.06 38.62 84.03 50.00 52.07 30.86 44.89 77.97 44.00 41.29
w/o Fusion 14.86 31.22 81.59 44.02 50.82 22.62 41.42 78.59 43.63 44.03
Sci-LoRA 18.38 38.97 84.37 50.99 52.69 30.98 46.71 78.02 44.26 41.80
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Table 9: Full ablation study over Sci-LoRA components across 12 domains in all five datasets. (Part II)

s-BLEU d-BLEU BERTScore BLONDE ROUGE1 ROUGE2 METEOR COMET SARI FRES
College of Engineering (VTechAGP)

Pre-trained 3.57 10.74 82.88 6.39 44.78 14.45 34.85 83.84 35.85 26.20
Multi-LoRAs 9.72 24.45 83.57 9.52 48.39 23.38 39.08 82.02 38.73 32.63
Single LoRA 9.72 24.40 83.16 9.27 47.54 23.20 38.47 81.22 38.74 32.43
AWGRandom 11.13 25.18 83.72 9.44 48.74 24.60 39.79 81.69 40.55 32.43
AWGK-Means 11.60 25.77 83.59 9.74 48.74 24.87 39.99 81.56 41.32 32.33
AWGContrastive 11.69 25.95 83.92 9.94 49.54 24.94 40.59 82.25 41.64 33.33
w/o Fusion 9.33 23.74 83.86 9.69 46.52 22.16 38.78 82.81 38.48 33.85
Sci-LoRA 11.69 28.31 84.30 10.28 51.45 27.62 42.73 82.90 41.64 33.82

College of Liberal Arts and Human Sciences (VTechAGP)
Pre-trained 6.95 14.62 84.35 30.19 48.16 19.00 39.44 83.42 33.34 33.34
Multi-LoRAs 20.38 37.63 86.30 45.29 56.44 36.19 49.57 81.86 40.75 30.80
Single LoRA 19.82 36.59 86.24 46.14 56.03 35.59 49.26 81.86 38.98 30.50
AWGRandom 23.26 35.87 86.35 45.44 56.20 36.04 49.16 81.89 40.20 30.20
AWGK-Means 23.44 38.47 86.66 48.92 57.45 37.46 51.10 82.20 42.26 30.09
AWGContrastive 23.92 38.71 86.62 48.83 57.93 37.95 51.41 82.56 42.56 30.90
w/o Fusion 18.07 37.69 86.31 42.23 56.96 35.41 49.37 82.44 39.72 32.73
Sci-LoRA 23.99 40.33 87.25 48.32 59.59 40.92 53.37 82.62 42.88 32.48

College of Natural Resources and Environment (VTechAGP)
Pre-trained 3.96 12.24 84.34 23.64 49.13 16.96 37.53 85.81 35.85 35.27
Multi-LoRAs 11.12 26.78 85.11 35.63 53.79 29.24 43.89 83.25 40.91 42.82
Single LoRA 7.55 24.42 84.75 34.18 51.67 26.53 41.31 83.23 38.49 42.82
AWGRandom 11.66 27.60 85.48 38.64 54.67 29.93 45.09 84.17 40.82 41.50
AWGK-Means 11.76 28.07 85.51 38.43 54.96 30.21 45.14 84.08 40.72 41.80
AWGContrastive 11.93 28.80 85.71 38.64 54.93 30.30 45.80 84.35 40.93 42.90
w/o Fusion 11.44 27.04 85.01 35.10 52.36 29.95 42.81 83.05 39.87 43.22
Sci-LoRA 13.84 29.61 86.18 40.41 57.30 33.19 47.59 84.66 41.77 42.80

College of Science (VTechAGP)
Pre-trained 3.50 10.30 82.33 6.20 43.32 13.45 33.89 82.70 37.26 34.36
Multi-LoRAs 11.07 20.96 82.91 8.57 46.05 21.45 37.15 79.90 38.61 33.65
Single LoRA 8.22 20.56 82.85 8.47 45.58 20.59 36.20 80.33 38.74 33.34
AWGRandom 8.57 21.19 82.78 8.49 44.86 20.48 35.43 80.18 38.27 33.14
AWGK-Means 8.92 22.31 82.92 8.67 46.03 22.05 37.22 80.03 39.17 33.65
AWGContrastive 8.93 22.87 82.94 13.40 46.13 22.23 37.91 80.11 39.96 33.40
w/o Fusion 8.15 20.56 82.64 8.46 45.19 20.81 36.73 80.85 38.04 33.95
Sci-LoRA 9.86 23.31 83.51 14.75 48.62 24.26 40.18 80.87 40.60 33.44

Pamplin College of Business (VTechAGP)
Pre-trained 4.13 12.78 84.27 28.00 47.04 17.90 36.78 85.38 38.38 23.97
Multi-LoRAs 16.03 29.67 85.22 43.33 52.17 29.32 43.09 83.56 42.96 21.43
Single LoRA 15.49 23.55 84.11 34.22 47.53 23.35 37.67 82.60 39.15 23.04
AWGRandom 15.29 26.85 85.41 41.07 53.11 27.92 43.90 83.48 41.07 21.62
AWGK-Means 15.82 28.69 85.71 42.39 54.02 28.85 44.81 84.14 42.07 21.33
AWGContrastive 16.09 29.38 85.90 43.39 54.78 28.86 44.58 84.08 42.92 21.84
w/o Fusion 13.10 22.31 84.57 35.42 53.30 23.70 42.51 84.43 40.31 23.62
Sci-LoRA 15.76 32.86 86.51 46.58 56.90 34.50 48.36 85.40 45.08 22.53

Virginia Maryland College of Veterinary Medicine (VTechAGP)
Pre-trained 3.57 11.12 83.49 22.99 46.25 15.08 34.88 84.83 36.98 43.12
Multi-LoRAs 9.80 24.33 83.99 31.49 49.37 22.87 37.83 82.68 39.81 33.14
Single LoRA 9.32 21.78 84.37 31.32 48.60 22.02 37.56 83.58 41.13 42.31
AWGRandom 10.92 22.38 84.20 33.06 47.25 22.47 35.17 81.91 36.61 32.53
AWGK-Means 11.01 29.11 85.11 39.98 52.65 27.69 42.22 84.35 42.17 33.24
AWGContrastive 11.81 29.26 85.48 39.32 52.95 27.97 42.78 84.58 42.20 33.94
w/o Fusion 9.80 22.80 84.00 28.83 48.16 22.76 39.58 81.48 40.26 33.95
Sci-LoRA 11.32 29.55 85.90 39.09 53.80 28.24 44.00 84.67 42.45 34.12
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