
Findings of the Association for Computational Linguistics: ACL 2025, pages 18306–18321
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Mixture of Structural-and-Textual Retrieval
over Text-rich Graph Knowledge Bases

Yongjia Lei1, Haoyu Han2, Ryan A. Rossi3, Franck Dernoncourt3,
Nedim Lipka3, Mahantesh M Halappanavar4, Jiliang Tang2, Yu Wang1

1University of Oregon, 2Michigan State University,
3Adobe Research, 4Pacific Northwest National Laboratory

{yuwang, yongjia}@uoregon.edu, {hanhaoy1, tangjili}@msu.edu
{ryrossi, dernonco, lipka}@adobe.com, hala@pnnl.gov

Abstract
Text-rich Graph Knowledge Bases (TG-KBs)
have become increasingly crucial for answer-
ing queries by providing textual and structural
knowledge. However, current retrieval methods
often retrieve these two types of knowledge in
isolation without considering their mutual rein-
forcement and some hybrid methods even by-
pass structural retrieval entirely after neighbor-
ing aggregation. To fill in this gap, we propose
a Mixture of Structural-and-Textual Retrieval
(MoR) to retrieve these two types of knowledge
via a Planning-Reasoning-Organizing frame-
work. In the Planning stage, MoR generates
textual planning graphs delineating the logic for
answering queries. Following planning graphs,
in the Reasoning stage, MoR interweaves struc-
tural traversal and textual matching to obtain
candidates from TG-KBs. In the Organizing
stage, MoR further ranks fetched candidates
by their structural trajectory. Extensive ex-
periments demonstrate the superiority of MoR
in harmonizing structural and textual retrieval
with discovered insights, including uneven re-
trieving performance across different query log-
ics and the benefits of integrating structural tra-
jectories for candidate reranking. Our code is
available at https://github.com/Yoega/MoR.

1 Introduction

Text-rich Graph Knowledge Bases (TG-KBs), due
to their structured representation of textual doc-
uments, ubiquitously store textual and structural
knowledge (Jin et al., 2024b). For example, schol-
ars retrieve relevant research from paper manage-
ment systems to advance scientific discoveries
where nodes represent papers and edges denote
references (Lu et al., 2024). With large language
models (LLMs)-powered generators approaching
human intelligence in language comprehension and
generation, retrieving supporting knowledge from
TG-KBs to contextualize and ground generation
has become increasingly crucial for correctly an-
swering queries (Gao et al., 2023b; Ni et al., 2025).

Query Request

(b)

Q: Publications by Point Park
University authors on stellar
populations in tidal tails

(a)

𝑸𝐌𝐨𝐑
306

𝑸𝐒𝐭𝐫𝐮𝐜𝐭
552

74

𝑸𝐓𝐞𝐱𝐭
23

50

653 102

Textual
Retrieval

Paper Title:
A tale of two tails:
exploring stellar
populations in the tidal
tails of NGC 3256

Abstract: We … probe
the chaotic regions of
tidal tails in search of
stellar population …

(c)

𝑸𝐓𝐞𝐱𝐭 ≠ 𝑸𝐒𝐭𝐫𝐮𝐜𝐭

|𝑸𝐌𝐨𝐑| >|𝑸𝐓𝐞𝐱𝐭 ∪ 𝑸𝐒𝐭𝐫𝐮𝐜𝐭|

Retrieval Outcomes on MAG

Structural
Retrieval

Author

Field of Study
Paper

Institution

Textual vs Structural vs Mixture Retrieval

Structural RetrievalTextual Retrieval

Q: Publications by Point Park
University authors on stellar
populations in tidal tails

Figure 1: (a) Textual retrieval and structural retrieval.
(b) The effectiveness of retrieval methods varies across
different TG-KBs. (c) Within the same TG-KB, queries
addressed by textual (i.e., QText) and structural retrieval
(i.e., QStruct) exhibit both overlaps and distinctiveness.

Since supporting knowledge in TG-KBs typi-
cally exhibits in both the textual and structural
formats (Kolomiyets and Moens, 2011; Jin et al.,
2024b), retrieval methods should be tailored to both
formats effectively as shown in Figure 1(a). Tex-
tual retrieval methods retrieve textual knowledge
such as indexed documents based on its similarity
to the given query and can be broadly categorized
into lexical methods (e.g., BM25) and semantic
methods (e.g., Contriever) (Karpukhin et al., 2020;
Izacard et al., 2022). Structural retrieval methods
retrieve structural knowledge such as neighboring
entities (Jiang et al., 2023; Edge et al., 2024; Wang
et al., 2024) by applying graph traversal and graph
machine learning (Yasunaga et al., 2021; Tian et al.,
2024). Despite the advancements in both textual
and structural retrieval, they are often applied in-
dependently and fail to mutually reinforce each
other. As shown by Figure 1(b), neither structural
retrieval by following the logical structure of the
query nor textual retrieval by conducting Top-K
BM25 matching can achieve better performance on
both Amazon and MAG datasets simultaneously.

18306

https://github.com/Yoega/MoR

To effectively retrieve both textual and structural
knowledge from TG-KBs, recent works (Xia et al.,
2024; Li et al., 2024) aggregate neighboring doc-
uments to fuse structural knowledge into textual
narratives, followed by textual retrieval, with Xia
et al. (2024) filtering irrelevant neighbors by their
relations and Li et al. (2024) weighted aggregating
neighbors based on their fields. However, three
challenges remain. First, rewording aggregated
neighbors requires frequently invoking LLMs, re-
sulting in prohibitive resources for long documents
with exponentially growing neighbors. Second,
structural signals humans use to form logical plans
are completely discarded after neighbor aggrega-
tion. Third, rigid neighbor aggregation overlooks
varying desires for structural and textual knowledge
for different queries and TG-KBs. Even within the
same TG-KB, such as MAG in Figure 1(c), queries
answered by textual retrieval (i.e., QText) are differ-
ent from those by structural retrieval (i.e., QStruct).

To address the above three challenges, we in-
fuse the mixture-of-expert philosophy into retrieval
design and propose a Mixture Of Structural-and-
Textual Retrieval (MoR) in Figure 2. MoR begins
with a planning module that generates planning
graphs to outline query logics and preserve struc-
tural signals without rewording aggregated neigh-
bors, overcoming the first and second challenges.
Next, MoR interleaves structural traversal and tex-
tual matching in the reasoning module, enabling
these two retrievals to reinforce each other. Fi-
nally, MoR devises a structure-aware reranker in
the organization module that adaptively adjusts the
importance of retrieved textual/structural knowl-
edge, addressing the third challenge. Via Plan-
ning–Reasoning–Organizing, MoR intelligently re-
trieves structural and textual knowledge based on
query logical structure. Our key contributions are:

• Planning via Textual Graph Generation: We
define retrieval planning as generating textual
graphs that outline the logical structure, i.e., the
plan, for identifying entities relevant to the query.

• Reasoning via Mixture of Structural-and-
Textual Traversal: We devise a mixed traversal
by interweaving textual matching and structural
traversal to retrieve knowledge following query
logical structure depicted by the generated plan.

• Organizing via Structure-aware Rerank: With
candidates obtained from mixed traversal, we
propose a Structure-aware Rerank to select Top-
K candidates based on their traversal trajectory.

2 Preliminary

Notations: A Text-rich Graph Knowledge Base
(TG-KB) B generally consists of a set of connected
nodes V in the graph with each node v ∈ V associ-
ated with its corresponding document Dv ∈ D
and category Ev ∈ E . When retrieving nodes
with supporting documents from B for answering
a given query Q ∈ Q, we typically follow cer-
tain rationale encapsulating the underlying logic
of that query (Xu et al., 2024; Xue et al., 2024),
which can be characterized by a text-attributed
planning graph G. In many existing works (Jin
et al., 2024a; Wu et al.), this planning graph can
be usually decomposed into multiple reasoning
paths G = {Pi}|G|

i=1 where the ith reasoning path
Pi = (pi1 → pi2 →, ...,→ piLi) is a distinctive
reasoning chain of length Li encoding a unique
logic and the jth node pij corresponds to an en-
tity in B with its own category Epij and textual
restriction Tpij extracted from the query. For ex-
ample, in Figure 1(a), the query Publications by
Point... has a planning graph with two paths, i.e.,
P1 = (Institution → Author → Paper) and P2 =
(Field-of-Study→ Paper), where the category and
textual restriction of the first node on P1 are Ep11 =
Institution and Tp11 =< Point Park Univerisity >,
respectively. Comprehensive notations are summa-
rized in Table 6 in Appendix A.

Problem Setup: With the above notations, the
investigated problem is to retrieve entities C ⊆ V
answering a given query Q.

Textual Retrieval retrieves candidates based on
the textual signals of both the query and documents.
One common strategy is to retrieve candidates C̃
from the whole documents D that have Top-K tex-
tual similarity to query Q measured by lexical or se-
mantic similarity (Vijaymeena and Kavitha, 2016).
The textual retrieval used in MoR retrieves docu-
ments for a given query by matching them with
textual descriptions in the query, e.g., matching
stellar populations in tidal tails shown in Figure 1.

Structural Retrieval retrieves candidates by ap-
plying prescribed rules to structured databases such
as knowledge graphs and SQL (Guo et al., 2023).
Common strategies include graph-based traversal
(e.g., BFS, DFS) and rule fetching (Jiang et al.,
2023). Specifically, MoR conducts structural re-
trieval by traversing neighbors of certain categories
from the generated planning graph. For example,
in Figure 1(a), only "Paper" typed neighbors of the
Author can be traversed by our structural retrieval.

18307

Planning via Textual Graph Generation Reasoning via Mixed Traversal

Publications by Point Park University
authors on stellar populations in tidal tails

Reasoning Paths

< > Textual
Description

Paper

Institution

Author

<Point Park
University>

<Stellar
populations>

Planning Graph

Field of
Study

1 2

1

2

4 5

3

6

Path 1: 𝐈𝐧𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧 → 𝐀𝐮𝐭𝐡𝐨𝐫	 → 𝐏𝐚𝐩𝐞𝐫

7

4 5

Path 2: 𝐅𝐢𝐞𝐥𝐝	𝐨𝐟	𝐒𝐭𝐮𝐝𝐲 → 𝐏𝐚𝐩𝐞𝐫

Structurally
Retrieval

Textually
RetrievalNeighbor Node

Organizing by Structural Re-rank

1

2

4

1

2

5 6

7

4 5

Structure-aware Reranking

6 4 5 …... 5
Top-KLogic Flow

Figure 2: Our MoR framework consists of a planning module to generate a planning graph, a reasoning module to
conduct mixed traversal, and an organizing module to rerank the retrieved candidates.

3 Framework

In a nutshell, we formulate our MoR as the condi-
tional distribution PΘ(C|Q,B) of retrieved candi-
dates C given the user input query Q over TG-KB
B, which is further factorized into three distribu-
tions corresponding to our proposed three modules:
planning via generating the text-attributed plan-
ning graph G, reasoning via conducting mixture of
structural-and-textual traversal to obtain intermedi-
ate candidates C̃ following the generated planning
graph G, and organizing via applying structure-
aware reranking to the obtained candidates C̃, ob-
taining final candidates C:

PΘ(C|Q,B) =
∑

G∈G

[∑

C̃∈C

PΘ3(C|C̃, G,Q,B)︸ ︷︷ ︸
Organizing

× PΘ2(C̃|G,Q,B)︸ ︷︷ ︸
Reasoning

]
× PΘ1(G|Q,B)︸ ︷︷ ︸

Planning

where PΘ1(G|Q,B) is the probability distribu-
tion of generating the text-attributed planning
graph G given the input query Q and TG-KB B;
PΘ2(C̃|G,Q,B) is the probability distribution of
retrieving intermediate candidates C̃ given the plan-
ning graph G and the query Q via our mixed traver-
sal; PΘ3(C|C̃, G,Q,B) is the probability distribu-
tion of reranking the intermediate candidates so
that Top-K positions form the ground-truth entities
C. G/C denotes the space of all possible planning
graphs and all possible configurations of size-K
candidate node sets from all nodes V in TG-KB B.
The overall objective is to maximize the likelihood
of retrieving ground-truth candidates C for each
input query Q ∈ Q:

Θ∗ = argmax
Θ

∏

Q∈Q
PΘ(C|Q,B) (1)

Following the above paradigm, we next intro-
duce the three components: Planning via textual
graph generation in Section 3.1, Reasoning via
mixed traversal in Section 3.2, and Organizing via
structure-aware reranking in Section 3.3.

3.1 Planning via Textual Graph Generation

To effectively reason over the underlying logic of
queries and answer them, we propose a planning
module that constructs a planning graph to capture
their underlying logical structures. Unlike conven-
tional approaches relying on rigid heuristics, e.g.,
shortest-path retrieval in knowledge graphs (Luo
et al.; Delile et al., 2024), or step-by-step prompting
LLMs, which incur high computational costs (Sun
et al., 2023; Wang et al., 2024), our method gen-
erates the entire planning graph in one shot, elimi-
nating repeated LLM calls. More importantly, as
planning graphs integrate entity restrictions encod-
ing query-specific constraints and entity categories
capturing broader logical structure, our MoR can
generalize learned patterns and efficiently adapt to
new queries with the same underlying logic. For ex-
ample, any query with the form Papers associated
with <institution> and are in the field of <field>
shares the same patterns with the query in Figure 2.
Below, we first formalize the planning graph and
then optimize its generation.

3.1.1 Planning Graph Formulation
A planning graph G is a structured representation
where nodes represent entities and edges denote
their logical relations. Each entity is associated
with both a category and query-specific restriction.
For example, given the query Can you give me
publications by Point Park University authors on
stellar populations in tidal tails, the generated plan-
ning graph is: G = (Institution<Point Park Univer-
sity>→Author→ Paper← Field-of-Study<Stellar
Population>) with Institution, Author, Paper, Field-
of-Study as categories and <Point Park University>,
<Stellar Populations> as restrictions. Note that
edges in our planning graph can also possess dif-
ferent categories. For example, in the biomedical
TG-KBs, the relation between Disease and Drug en-
tities could be Indication or Contra-indication (Wu
et al.), adding a finer level of semantic distinction
to the relation.

18308

3.1.2 Planning Graph Optimization
To ensure that our generated planning graph cap-
tures the query logic, we train a textual graph gen-
erator to maximize the likelihood of generating
ground-truth planning graphs given their queries.
Formally, given the joint distribution of the training
pairs between queries and planning graphs P Train

Q×G,
we optimize the planning module PΘ1 by solving:

argmax
Θ1

E(Q,G)∼P Train
Q×G

logPΘ1(G|Q,B) (2)

To avoid the combinatorial explosion of exponen-
tially growing planning graph candidates (You
et al.), we decompose each planning graph into
multiple reasoning paths G = {Pi}|G|

i=1. Each path
Pi = (pi1 →, ...,→ piLi) represents a distinct
reasoning chain, where node pij denotes an entity
in TG-KB sharing the same textual category Epij
and satisfying the restriction Tpij from the query.
Given the sequential nature and textual formats of
these decomposed reasoning paths, LLMs can be
naturally employed here as the planning graph gen-
erator, which conducts next-token prediction by
predicting jth token tj conditioned on preceding
tokens t<j , the query Q and the TG-KB B:

PΘ1(G|Q) =
n∏

j=1

PΘ1(tj |t<j , Q,B). (3)

Note that our proposed planning graph generator is
not limited to LLMs. Any graph generative model
preserving both structural dependencies and textual
associations can be employed (Zhu et al.).

3.2 Reasoning via Mixed Traversal

Following the reasoning paths of the above plan-
ning graph G = {Pi}|G|

i=1, the reasoning module
conducts a mixed traversal by interweaving neigh-
bor fetching and textual matching to form interme-
diate candidates C̃, which are introduced next.

3.2.1 Structural Traversal
Following the definition in Section 2 that structural
retrieval follows prescribed rules for knowledge re-
trieval, here we set these prescribed rules to be iter-
atively performing layer-wise breadth-first-search
that traverses neighboring entities with categories
aligning with those in the reasoning paths. Con-
cretely, reasoning at the lth-step of the planning
path Pi, we check for each node v in candidates
set of last layer ∀v ∈ C̃l−1

i and fetch its neighbors

∀u ∈ Nv with the same category as the correspond-
ing node pil (i.e., Eu = Epil) in the reasoning path,
which can be mathematically formulated as:

C̃l,Struct
i = ∪

v∈C̃l−1
i
{u|u ∈ Nv, Eu = Epil} (4)

where C̃l,Struct
i denotes the set of structurally re-

trieved entities at the lth reasoning step according
to the path Pi and Eu = Epil ensures that the cate-
gory of the traversed neighbor u matches the cor-
responding entity category routine by the planning
graph, resonating the nature of rule-based struc-
tural retrieval. Note that the seeding candidates
C̃1,Struct
i at the very first layer are initialized by re-

trieving Top-K entities through textual matching,
i.e., C̃1,Struct

i = C̃1,Text
i , which is introduced next.

3.2.2 Textual Matching
In addition to retrieving structural knowledge, our
MoR also retrieves textual knowledge via Tex-
tual Matching, which retrieves candidates based
on their textual similarity to queries. For each
reasoning node pil at lth reasoning step along the
reasoning path Pi, we concatenate the query and
the textual restriction of pil, i.e., Q′ = [Q : Tpil],
then compute its textual similarity to documents
of nodes in TG-KB, i.e., ϕ(Q′,Dv),∀v ∈ V , and
finally retrieve the Top-K scored candidates:

C̃l,Text
i = TopK({v | v ∈ V, Ev = Epil}, ϕ(Q′,Dv)) (5)

Integrating candidates from structural traversal
and textual matching together, the final candidates
at lth-step of Pi are formed as:

C̃li = C̃l,Struct
i ∪ C̃l,Text

i ,∀l ∈ {1, 2, ..., Li} (6)

The integrated candidates C̃li serve as seeding
nodes initializing the next round of planning graph-
guided structural traversal and textual matching,
which creates a mutual reinforcement between
structural and textual knowledge since previously
retrieved two knowledge can both inform next
round of structural/textual knowledge retrieval.

We iteratively conduct mixed traversal for ev-
ery reasoning path Pi ∈ G and integrate re-
trieved entities together by taking their intersec-
tion, i.e., C̃ = ∩Pi∈GC̃Li

i , adhering to the fact
that candidates should simultaneously satisfy the
logic routine by all reasoning paths. Note that
no training is involved in the mixed graph traver-
sal, i.e., PΘ2(C̃|G,Q,B) = P (C̃|G,Q,B). Fu-
ture works could explore optimizing graph traver-
sal by rewards from agent-environment interac-
tions (Nguyen et al., 2024).

18309

3.3 Organizing via Structure-aware Rerank
Although the retrieved candidates from Section 3.2
strictly adhere to the prescribed rule given by the
planning graph, the sheer volume of candidates
misaligns with realistic constraints (e.g., Top-20
retrieval budget (Zeng et al., 2024)) and may even
cause difficulty to downstream executors such as
long-context challenges for LLMs. To better em-
ulate human reasoning, where multiple clues are
gathered, analyzed in relation to the query, and
synthesized into a coherent answer, we propose a
structure-aware reranker to organize and rerank the
candidates C̃, and select Top-K ones as the final
retrieved answers C. Instead of relying only on
textual features (Hu et al., 2019), our reranker as-
signs a ranking score based on features of structural
trajectories obtained from the mixed traversal in
Section 3.2, innovatively leveraging both structural
and textual knowledge in reranking.

Previously, C̃ is defined as intermediate retrieved
entities. To consider structural features in rerank-
ing, we pair each retrieved candidate in C̃ with its
corresponding traversal trajectory obtained from
the reasoning module. Specifically, each trajectory
Pi of length Li is featuring three types of attributes:

• Textual Fingerprint (TF): Concatenation of sim-
ilarity scores between the expanded query and
each node on the path:

∥∥Li

l=1
ϕ(Q′,Dpil).

• Structural Fingerprint (SF): Concatenation of
node categories at each step on the path:

∥∥Li

l=1
Epil

• Traversal Identifier (TI): Concatenation of the
indicator specifying whether each step uses a
structural or textual retrieval:

∥∥Li

l=1
Ipil .

We then train a reranker on these trajectories using
the cross-entropy loss. For a training query Q and
its associated candidate trajectory Pi, the loss is
computed as follows:

LΘ3 = −
∑

(Pi,Q)∈C̃

2∑

j=1

yij log(σ(f(
∥∥Li

l=1
Epil︸ ︷︷ ︸

Structural Fingerprint

:
∥∥Li

l=1
ϕ(Q′,Dpil)︸ ︷︷ ︸

Textual Fingerprint

:
∥∥Li

l=1
Ipil︸ ︷︷ ︸

Traversal Identifier

))j).

(7)

where f(·) is the reranker producing a score for
each (Q,Pi) pair, σ(·) denotes the softmax func-
tion, and yij ∈ {0, 1} indicates whether the i-th
candidate is a correct (positive) or incorrect (neg-
ative) match for Q. This formulation encourages
the reranker to assign higher scores to positive tra-
jectories, thereby improving ranking performance.

4 Experiment

4.1 Experimental Setup
We briefly introduce experimental settings to verify
our proposed MoR, including Datasets & Baselines,
Implementation Details, and Evaluation Metrics.
More details are in Appendix B.

Datasets & Baselines: We use three TG-KBs
from STaRK (Wu et al.) covering three knowledge
domains, including E-commerce Products (Ama-
zon), Academic Papers (MAG), and Biomedicine
(Prime). We compare our MoR with baselines
established by Wu et al. and categorize them
into textual/structural/hybrid-based ones. More
recent state-of-the-art hybird retrieval approaches
fro TG-KBs such as KAR (Xia et al., 2024) and
MFAR∗ (Li et al., 2024) are also compared.

Implementation Details: To enhance the plan-
ning capability of our planning module, we fine-
tune the Llama 3.2 (3B) on 1000 sampled queries
with their corresponding ground-truth planning
graphs, serving as the textual graph generator. In
the absence of ground-truths, we synthesize them
using LLMs. For the Prime dataset, we empirically
find that directly prompting LLMs can hardly gen-
erate accurate planning graphs due to the lack of
biomedical domain knowledge (Shen et al.). There-
fore, we adopt an alternative approach. First, we
instruct LLMs to extract triplets from each query
and then construct the planning graphs by merging
triplets with shared entities. During mixed traver-
sal, textual matching can be implemented using
any lexical or semantic methods. For this study,
we employ BM25 for Amazon and MAG and fine-
tune a contriever to complement the biomedical
knowledge for Prime. To initialize the structural
traversal, we employ textual matching to locate the
top 5 nodes that are most relevant to the query as
seeds. Additionally, at each layer, we incorporate
the top 10 nodes retrieved via textual matching and
append them to the current candidate set for the
next round of traversal. Notably, due to the uncer-
tainty of LLMs, the generated planning graphs can
be invalid. In this case, we will directly conduct
textual matching to retrieve candidates. For our ab-
lations without reranker, we employ Ada-002 (Wu
et al.) with cosine similarity as the scorer to rank
candidates for evaluating performance.

Evaluation Metrics: We follow Wu et al. for
evaluation by reporting Hit@1 (H@1), Hit@5
(H@5), Recall@20 (R@20), and mean reciprocal
rank MRR to evaluate in the full spectrum.

18310

Category Retrieval Baseline
AMAZON MAG PRIME AVERAGE

H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR H@1 H@5 R@20 MRR

Textual

BM25 (Wu et al.) 44.94 67.42 53.77 55.30 25.85 45.25 45.69 34.91 12.75 27.92 31.25 19.84 27.85 46.86 43.57 36.68
Ada-002 (Wu et al.) 39.16 62.73 53.29 50.35 29.08 49.61 48.36 38.62 12.63 31.49 36.00 21.41 26.96 47.94 45.88 36.79
Multi-ada-002 (Wu et al.) 40.07 64.98 55.12 51.55 25.92 50.43 50.80 36.94 15.10 33.56 38.05 23.49 27.03 49.66 47.99 37.33
DPR (Karpukhin et al., 2020) 15.29 47.93 44.49 30.20 10.51 35.23 42.11 21.34 4.46 21.85 30.13 12.38 10.09 35.00 38.91 21.31

Structural (KG) QAGNN (Yasunaga et al., 2021) 26.56 50.01 52.05 37.75 12.88 39.01 46.97 29.12 8.85 21.35 29.63 14.73 16.10 36.79 42.88 27.20
ToG (Sun et al., 2023) - - - - 13.16 16.17 11.30 14.18 6.07 15.71 13.07 10.17 9.62 15.94 12.18 12.18

Hybrid

AvaTaR (Wu et al., 2025) 49.87 69.16 60.57 58.70 44.36 59.66 50.63 51.15 18.44 36.73 39.31 26.73 37.56 55.18 50.17 45.53
KAR (Xia et al., 2024) 54.20 68.70 57.24 61.29 50.47 69.57 60.28 58.65 30.35 49.30 50.81 39.22 45.01 62.52 56.11 53.05
MFAR∗ (Li et al., 2024) 41.20 70.00 58.50 54.20 49.00 69.60 71.70 58.20 40.90 62.80 68.30 51.20 43.70 67.47 66.17 54.53
HYBGRAG (Lee et al., 2024) - - - - 65.40 75.31 65.70 69.80 28.56 41.38 43.58 34.49 50.91 58.35 54.64 52.15
MoR 52.19 74.65 59.92 62.24 58.19 78.34 75.01 67.14 36.41 60.01 63.48 46.92 48.93 71.00 66.14 58.77

Ablation
MoRw/o R 44.21 68.87 56.50 55.28 34.33 62.55 67.55 47.40 31.59 53.48 60.74 41.81 31.07 57.04 57.73 43.03
MoRw/o RT 34.04 53.41 45.16 42.85 51.81 73.54 74.17 61.68 28.95 46.12 49.54 36.56 36.39 56.73 55.73 45.53
MoRw/o RS 43.05 69.36 57.38 54.69 31.05 51.84 50.56 40.64 22.27 38.45 39.21 29.41 28.95 51.28 48.02 38.98

Table 1: Comparing different retrieval methods with our proposed MoR and its ablations on Amazon, MAG,
and Prime datasets. The best and runner-up results are in bold and underlined. Overall, MoR achieves the best
performance. Note that MFAR∗ denotes the best model variant proposed in (Li et al., 2024)

4.2 Overall Retrieval Performance
We compare MoR with other baselines on three
TG-KBs in Table 1. Generally, hybrid methods,
AvaTAR, KAR, MFAR∗, and our MoR, achieve
better performance than purely textual or struc-
tural methods owing to their ability to integrate
both structural and textual knowledge. Among all
baselines, our proposed MoR achieves the overall
best performance with a substantial margin on aver-
age, with the first ranking on MAG and the second
ranking on Amazon/Prime datasets. This demon-
strates the effectiveness of our proposed mixture of
structural and textual knowledge retrieval. Textual
retrieval performs better on Amazon than on MAG,
suggesting that Amazon queries rely more on tex-
tual knowledge. In contrast, its weaker perfor-
mance on MAG is due to MAG’s lower textual rich-
ness and stronger structural signals. This dispar-
ity aligns with the distribution analysis presented
by Wu et al. and supports our hypothesis that
queries in different TG-KB datasets require varying
desires for textual and structural knowledge. Mean-
while, structural retrieval methods such as conven-
tional knowledge graph-based ones perform poorly
because they are designed for graphs with minimal
textual information compared to TG-KBs. Differ-
ent from Amazon and MAG, all existing methods
without supervised tuning (e.g., Ada-002) exhibit
significantly lower performance on Prime. This is
due to the extreme domain expertise required in bi-
ology, where word-count-based, pre-trained textual
similarity-based, and even more powerful LLMs
are all poorly applicable here. Through fine-tuning,
MFAR∗ and our proposed MoR generally achieve
better performance, demonstrating the necessity of
domain-specific knowledge for answering queries
in knowledge-intensive domains.

4.3 Ablation Study

After verifying the superiority of MoR, we conduct
ablation studies to assess its different components,
including module and feature ablation.

4.3.1 Module Ablation
To assess the contribution of each module in
MoR, namely, Text Matching-based Retrieval,
Neighborhood-Fetching-based Structural Retrieval,
and Reranker, we conduct a series of ablation ex-
periments. First, we remove the Reranker, resulting
in the variant MoRw/o R. On top of that, we further
separately eliminate Text Retrieval and Structural
Retrieval, yielding MoRw/o RT and MoRw/o RS, re-
spectively. As shown in Table 1, the complete MoR
framework consistently achieves the highest perfor-
mance across all datasets, demonstrating the syn-
ergistic effect of the Textual Retriever, Structural
Retriever, and Reranker. After removing Reranker,
MoRw/o R exhibits a consistent performance drop
across all datasets and evaluation metrics. This
underscores the importance of the Reranker in re-
fining retrieval by filtering noisy candidates from
the intermediate reasoning stage. Eliminating Text
Retrieval, i.e., MoRw/o RT, leads to a notable perfor-
mance drop on Amazon but an unexpected improve-
ment on MAG. This suggests that while textual
knowledge benefits Amazon, it introduces mislead-
ing hard negatives that compromise the ranking
method (e.g., Ada-002) for MAG. Conversely, re-
moving Structural Retrieval, MoRw/o RS, results in
a slight performance decrease further on MAG, re-
inforcing the importance of structural knowledge
in MAG-related queries. These results underscore
the Reranker’s crucial role in adaptively harmoniz-
ing, balancing, and selecting knowledge from both
structural and textual retrieval experts.

18311

Dataset TF SF TI H@1 H@5 R@20 MRR

MAG

✔ ✘ ✘ 48.96 73.02 72.44 59.79
✘ ✔ ✘ 18.79 41.91 52.85 29.84
✘ ✘ ✔ 18.16 41.53 52.78 29.31
✔ ✔ ✘ 58.04 77.14 74.42 66.75
✔ ✘ ✔ 58.16 77.59 74.96 66.85
✘ ✔ ✔ 17.93 38.01 46.79 27.48
✔ ✔ ✔ 58.19 78.34 75.01 67.14

Amazon

✔ ✘ ✘ 51.21 74.05 59.79 61.27
✘ ✔ ✘ 8.09 24.48 25.62 16.94
✘ ✘ ✔ 5.84 16.62 12.94 11.57
✔ ✔ ✘ 50.91 73.38 59.58 61.15
✔ ✘ ✔ 51.09 73.56 59.61 61.14
✘ ✔ ✔ 8.09 24.48 25.62 16.94
✔ ✔ ✔ 52.19 74.65 59.92 62.24

Prime

✔ ✘ ✘ 35.23 59.44 63.15 46.02
✘ ✔ ✘ 12.95 30.48 43.33 21.44
✘ ✘ ✔ 11.81 27.81 40.36 19.73
✔ ✘ ✔ 35.80 60.12 63.40 46.50
✔ ✔ ✘ 35.70 60.01 63.21 46.19
✘ ✔ ✔ 13.20 32.27 48.01 22.95
✔ ✔ ✔ 36.41 60.01 63.48 46.92

Table 2: Ablation study investigating the importance of
three features, Textual Fingerprint (TF), Structural Fin-
gerprint (SF), and Traversal Identifier (TI), of the traver-
sal trajectories used in our Structure-aware Reranker.

4.3.2 Feature Ablation

The above ablation study highlights the crucial role
of Structure-aware Reranker in adaptively integrat-
ing structural and textual knowledge. To further
analyze the contributions of its three key features,
Textual Fingerprint (TF), Structural Finger-
print (SF), and Traversal Identifier (TI) defined
in Section 3.3, we conduct a feature ablation analy-
sis and report retrieval performance across different
feature configurations in Table 2. Overall, using
three features together yields the best performance
on both MAG and Amazon, highlighting their syn-
ergistic effect. Individually, TF contributes the
most and outperforms SF and TI on both datasets.
The reason is that based on the definition in Sec-
tion 3.3, TF directly captures the relevance between
the query and the retrieved nodes along the trajec-
tory, whereas SF and TI primarily characterize the
structural patterns and retrieval types, serving more
as complementary factors. Therefore, equipping
TF with these complementary factors (i.e., SF or
TI) yields around 10% additional gains on MAG.
This is because SF and TI help the reranker selec-
tively emphasize the relevance scores given by TF
for certain nodes along the path. However, this
boost is not observed on Amazon. We hypothesize
that the textual knowledge needed there is predom-
inantly derived from the final node on each path,
making the structural cues provided by SF and TI
less beneficial and even prone to overfitting. A
deeper analysis to further justify this hypothesis
is in Section 4.4. Overall, these findings under-
score the varying importance of structural features
in ranking across datasets.

Feature MAG Amazon Prime
H@1 R@20 MRR H@1 R@20 MRR H@1 R@20 MRR

Last Node 49.91 73.49 59.92 50.36 59.62 61.05 33.52 61.95 44.15
Full Path 58.19 75.01 67.14 52.19 59.92 62.24 36.41 63.48 46.92

Table 3: Comparing reranking performance using last
node in the retrieved trajectory and the whole trajectory.

Figure 3: Imbalance number of queries and performance
of different retrievers across different logical structures.

4.4 Further Analysis

This section understands MoR’s behavior by exam-
ining three questions, each of which enriches our in-
sight into MoR’s functionality and offers novel per-
spectives inspiring future query retrieval research.
More analysis can be found in Appendix C.

Do structure signals affect reranking? To as-
sess the impact of trajectory information on the
Reranker’s decision-making, we introduce a node-
based Reranker that constructs trajectory features
using only TF/SF/TI of the last node. In Table 3,
the path-based Reranker outperforms the node-
based variant, especially on MAG. This highlights
the critical role of trajectory features/structural
knowledge in reranking. The minor performance
boost on Amazon after switching to the full path tra-
jectory indicates its textual knowledge preference
over the last node rather than the whole trajectory.

How does MoR perform on different logical
structures? Figure 3 shows the average perfor-
mance of MoR on each query group categorized
by their logical structures, where "Others" refer
to queries with undefined logical structures in Wu
et al. MoR consistently outperforms structural and
textual retrievers across different logical structures.
Among all queries, MoR performs the worst on
"P → P" queries due to the ambiguity uniquely
caused by repeated "product" entities from multi-
step traversal. The average-performing “Others"
group underscores the utility of diverse planning
strategies for the same query. Lastly, the skewed
query distribution and retrieval performance across
planning patterns reflect the varying nature of real-
world planning needs. We hope these insights in-
spire data-centric reasoning and error control of
planning for heterogeneous query structures.

18312

(a)

(b)

Question

Recommend an NFL Seattle Seahawks

twin sheet set that matches my

Northwest Company NFL Seahawks

Curtain Panel Pair?

Planning

Graph

<Northwest Company NFL

Seahawks Curtain Panel Pair> →

<NFL Seattle Seahawks twin sheet set>

Question

Are there studies from the University of
Lausanne on frameless stereotactic
technology in Ionization chambers?

Planning

Graph

<University of Lausanne>→ →

 <frameless stereotactic technology

in Ionization chambers >

Product

Product

Institution Author

Paper

Figure 4: Saliency map visualization of query attention
over three entities along the retrieved paths.

Does MoR indeed adaptively leverage the tra-
jectory knowledge? To understand how our pro-
posed reranker prioritizes candidates in the Top-K
results, we visualize the saliency map by comput-
ing the gradient of ranking scores with respect to
the textual fingerprint (TF) of three nodes along the
traversed path, which quantifies their importance
for answering a given query. Figure 4 illustrates
this by analyzing trajectories for 100 ground-truth
candidates across 100 queries on the Amazon and
MAG datasets. Each dimension corresponds to a
traversed node, with the final one representing the
candidate itself. While the saliency score is con-
centrated in the last dimension for Amazon, MAG
exhibits a more evenly distributed saliency pattern,
where multiple nodes along the path contribute sig-
nificantly to ranking score computation. This sug-
gests that structural knowledge is more critical for
answering queries in MAG, aligning with the previ-
ously observed lower performance of purely textual
retrieval on MAG in Table 1. Further case studies
explain why the reranker attends different nodes
for different queries. In Figure 4(a), the reranker
favors the last two dimensions as the rich textual
restriction (i.e., "Northwest Company..." and "NFL
Seattle...") aids in identifying the correct node at
the corresponding reasoning step, as discussed in
Section 3.2. These correct nodes with higher simi-
larity scores with the query help guide the retrieval
process toward the ground truth. Conversely, in
Figure 4(b), since the first node ("University of
Lausanne") helps narrow the search space and the
last node ("frameless...") further filter candidates,
both nodes have high saliency scores. Overall, our
findings demonstrate that the reranker dynamically
adapts its reliance on structural and textual knowl-
edge depending on the dataset and query.

Figure 5: Traversal Identifier analysis in Top-20 re-
trieved candidates and information ratio in dataset.

Does MoR adaptively prioritize retrieval
methods for different datasets? To assess the
degree to which MoR adaptively leverages struc-
tural and textual retrieval across datasets, we cal-
culate the following three ratios: Structure/All,
Text/All: Fraction of structurally or textually re-
trieved candidates within the Top-20 retrieved can-
didates; Structure/Answer, Text/Answer: Frac-
tion of ground-truth candidates that are structurally
or textually retrieved among the Top-20; Structure
(Information), Text (Information): Ratio of word
counts of sampled relation/property requirements
used in query construction.

The results are shown in Figure 5. On the MAG
dataset, a majority of the Top-20 retrieved candi-
dates (67%) and over 95% of the correct answers
originate from structural retrieval. This under-
scores the critical role of structural signals in this
domain. The finding is consistent with the inher-
ently rich structural nature of MAG, evidenced by
the higher proportion of Structure (Information)
compared to Texture (Information), and is further
supported by the substantial performance gains ob-
served when structural features are incorporated,
as demonstrated in Table 2 and Table 3. For the
Amazon dataset, textual matching accounts for 52%
of the Top-20 candidates and contributes more an-
swers than structural traversal. This aligns with the
rich textual content observed in Amazon, as shown
in Figure 5. Overall, these results demonstrate that
MoR exhibits adaptive retrieval behavior across
datasets, effectively prioritizing the most informa-
tive retrieval strategy based on the underlying data
characteristics. This provides strong evidence that
MoR can dynamically coordinate between struc-
tural and textual retrieval sources.

18313

Method Planning Reasoning Organizing

Theoretical O(K · D) O(AdL−1) O(BdL−1)
Empirical (s) 0.971 0.463 0.0340
Empirical+Batch (s) – – 0.0134
Empirical+Parallel (s) – 0.398 –

Table 4: Theoretical and empirical time complexity for
each component during single-query retrieval. Batch
and parallel optimization are applied to the Organizing
and Reasoning stages, respectively.

Dataset 1-hop 2-hop 3-hop

Prime 0.059 s 0.068 s 0.072 s
Amazon 0.381 s 0.403 s 0.669 s
MAG 0.289 s 0.297 s 1.233 s

Table 5: Empirical traversal time across different hop
depths for each dataset.

4.5 Efficiency and Scalability of MoR
Since MoR consists of three stages, we conduct
the complexity analysis by analyzing each of these
stages theoretically and empirically. The results
are shown in Table 4, where K means the number
of tokens in the generated planning graph, D is the
model dimension following the GPT-style decod-
ing and key-value caching, d denotes the average
degree of node at each step, L means the number
of steps/layers in one path, and both A and B are
constant. Due to the limitations of LLMs, it is
hard to improve the efficiency of Planning. As the
traversal is independent, we have implemented the
parallel version to speed up Reasoning. For the
Organizing stage, we can easily use batch to com-
pute the ranking scores for multiple candidates and
queries simultaneously, improving the efficiency.

Based on the above analysis, the time complex-
ity for the whole framework is O(K · D + (A +
B)dL−1) ≈ O(dL−1), indicating that the com-
plexity exponentially grows as the length of the
reasoning path increases. To examine how time
complexity varies with path length, we empirically
analyze the scalability of MoR with respect to the
depth of reasoning paths. We group test queries by
the number of reasoning hops (e.g., 1-hop, 2-hop,
3-hop) and compare efficiency across these three
groups on three datasets. As shown in Table 5,
most queries can be processed within 1s. While
deeper queries naturally require more processing
time, MoR maintains significantly high efficiency
due to its step-wise traversal and adaptive fallback
to textual retrieval when necessary.

More detailed analysis of computational com-
plexity and scalability to large datasets can be
found in Appendix D.1 and Appendix D.2.

5 Related Work

Retrieval-augmented Generation (RAG): RAG
enhances generative tasks by retrieving relevant
information from external knowledge sources (He
et al., 2025; Gao et al., 2023b) and has been widely
used to improve question-answering (Liu et al.,
2023). With LLMs, RAG has been used for miti-
gating hallucinations (Yao et al., 2023), enhancing
interpretability (Gao et al., 2023a), and enabling
dynamic knowledge updates (Wang et al., 2024).
This work essentially leverages the idea of RAG to
retrieve supporting entities from TG-KBs to contex-
tualize answer generation. Depending on concrete
types of knowledge being retrieved, existing retriev-
ers can be categorized into structural and textual
retrieval, which are reviewed next.
Textual and Structural Retrieval: Early tex-
tual retrieval models, such as TF-IDF and
BM25 (Robertson et al., 2009), rely on lexical
similarity and keyword matching (Chen et al.,
2017; Yang et al., 2019; Mao et al., 2021). Mod-
ern approaches address this limitation by learn-
ing dense representations (Karpukhin et al., 2020).
Beyond textual retrieval, structural retrieval lever-
ages graph-based techniques to extract structured
knowledge. Methods such as graph traversal (Wang
et al., 2024; Jiang et al., 2023), community detec-
tion (Edge et al., 2024), and graph machine learn-
ing models, including graph neural networks (Ya-
sunaga et al., 2021; Mavromatis and Karypis,
2024), play a crucial role in structural retrieval.
Our approach integrates the strengths of both tex-
tual and structural retrieval by infusing the mixture-
of-expert philosophy into retrieval design.

Due to page limitation, a comprehensive version
of the related work is attached in Appendix F.

6 Conclusion
In this work, we propose a mixture of structural
and textual retrieval (MoR) to adaptively retrieve
structural and textual knowledge based on query de-
sire, which first utilizes a textual graph generator to
generate the planning graph, then performs a mixed
traversal and conducts organizing via a structure-
aware reranker to obtain final candidates. Exper-
iments demonstrate the advantages of our MoR
in harmonizing the retrieval of both textual and
structural knowledge with insightful discoveries,
including balancing retrieval performance across
queries with different patterns and query-adaptive
knowledge desire for structural/textual knowledge.

18314

7 Limitations

In this paper, we integrate a mixture of expert phi-
losophy into retrieval design and propose a Mix-
ture of structural-and-textual Retrieval (MoR) to
adaptively retrieve textual and structural knowl-
edge. The limitations of MoR can be categorized
into two main aspects in the following:

Lack of Domain-Specific Knowledge: Our pro-
posed MoR, similar to other baselines, does not ex-
hibit significantly higher performance on PRIME
than AMAZON and MAG. The reason is the lack
of biomedical knowledge required to comprehend
biomedical questions, extract key information, nav-
igate relevant entities and relations, and rerank
retrieved candidates. This suggests that current
state-of-the-art retrieval models, even paired with
LLMs’ intelligence, still struggle to handle domain-
specific knowledge effectively. Such limitations
may extend to other specialized domains, such as
finance and law. Future research could integrate
domain-specific knowledge into retrieval.

Reranking at Every Traversal Layer: Our cur-
rent MoR adaptively routes retrieved candidates
into the Top-K positions at the final layer via rerank-
ing, effectively implementing a conventional Mix-
ture of Experts (MoE) routing mechanism. Despite
the state-of-the-art performance we have achieved
in Table 1, this routing mechanism could also be
applied to intermediate layers, where after each
retrieval step, candidates are reranked, and only
Top-K proceeds to the next round of traversal and
retrieval. This enables every layer of mixed traver-
sal to emulate the router design of the MoE.

Multi-Trajectory Reranking: While our cur-
rent Structural Reranker is designed to compute
ranking scores by leveraging the full spectrum
of trajectory information from multiple traversed
paths ending at each candidate (as illustrated in Fig-
ure 2), our implementation currently utilizes only
the most informative trajectory (i.e., the one with
the longest traversed path) due to implementation
complexity. Future work should explore adaptive
methods to fully integrate the complete set of tra-
versed paths into the candidate ranking process and
compare the effectiveness of leveraging traversed
paths at different levels.

References
Payal Chandak, Kexin Huang, and Marinka Zitnik.

2023. Building a knowledge graph to enable pre-
cision medicine. Scientific Data, 10(1):67.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, pages 1870–1879, Vancouver, Canada.
Association for Computational Linguistics.

Julien Delile, Srayanta Mukherjee, Anton Van Pamel,
and Leonid Zhukov. 2024. Graph-based retriever cap-
tures the long tail of biomedical knowledge. ArXiv,
abs/2402.12352.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
ArXiv, abs/2404.16130.

Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong,
Haofen Wang, and Jiawei Zhang. 2023a. Chat-
rec: Towards interactive and explainable llms-
augmented recommender system. arXiv preprint
arXiv:2303.14524.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023b. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Shasha Li,
Zhihua Wen, Kaixuan Wang, and Ting Wang. 2023.
Retrieval-augmented gpt-3.5-based text-to-sql frame-
work with sample-aware prompting and dynamic re-
vision chain. In International Conference on Neural
Information Processing, pages 341–356. Springer.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan
Ding, Yongjia Lei, Mahantesh Halappanavar, Ryan A
Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al.
2024. Retrieval-augmented generation with graphs
(graphrag). arXiv preprint arXiv:2501.00309.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. 2025. G-retriever: Retrieval-augmented
generation for textual graph understanding and ques-
tion answering. Advances in Neural Information
Processing Systems, 37:132876–132907.

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-
sheng Li. 2019. Retrieve, read, rerank: Towards
end-to-end multi-document reading comprehension.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji rong Wen. 2023. Struct-
gpt: A general framework for large language model
to reason over structured data. In Conference on
Empirical Methods in Natural Language Processing.

18315

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar
Roy, Yu Zhang, Suhang Wang, Yu Meng, and Jiawei
Han. 2024a. Graph chain-of-thought: Augmenting
large language models by reasoning on graphs. In
Annual Meeting of the Association for Computational
Linguistics.

Bowen Jin, Yu Zhang, Sha Li, and Jiawei Han. 2024b.
Bridging text data and graph data: Towards semantics
and structure-aware knowledge discovery. In Pro-
ceedings of the 17th ACM International Conference
on Web Search and Data Mining, pages 1122–1125.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Oleksandr Kolomiyets and Marie-Francine Moens.
2011. A survey on question answering technology
from an information retrieval perspective. Informa-
tion Sciences, 181(24):5412–5434.

Meng-Chieh Lee, Qi Zhu, Costas Mavromatis, Zhen
Han, Soji Adeshina, Vassilis N. Ioannidis, Huzefa
Rangwala, and Christos Faloutsos. 2024. Hybgrag:
Hybrid retrieval-augmented generation on textual and
relational knowledge bases. ArXiv, abs/2412.16311.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Millicent Li, Tongfei Chen, Benjamin Van Durme, and
Patrick Xia. 2024. Multi-field adaptive retrieval.
arXiv preprint arXiv:2410.20056.

Lihui Liu, Yuzhong Chen, Mahashweta Das, Hao Yang,
and Hanghang Tong. 2023. Knowledge graph ques-
tion answering with ambiguous query. In Proceed-
ings of the ACM Web Conference 2023.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foer-
ster, Jeff Clune, and David Ha. 2024. The ai scientist:
Towards fully automated open-ended scientific dis-
covery. arXiv preprint arXiv:2408.06292.

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan.
Reasoning on graphs: Faithful and interpretable large
language model reasoning. In The Twelfth Interna-
tional Conference on Learning Representations.

Yuning Mao, Pengcheng He, Xiaodong Liu, Ye-
long Shen, Jianfeng Gao, Jiawei Han, and Weizhu
Chen. 2020. Generation-augmented retrieval for
open-domain question answering. arXiv preprint
arXiv:2009.08553.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.

2021. Generation-augmented retrieval for open-
domain question answering. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing.

Costas Mavromatis and George Karypis. 2024. Gnn-
rag: Graph neural retrieval for large language model
reasoning. ArXiv, abs/2405.20139.

Dang Nguyen, Viet Dac Lai, Seunghyun Yoon, Ryan A
Rossi, Handong Zhao, Ruiyi Zhang, Puneet Mathur,
Nedim Lipka, Yu Wang, Trung Bui, et al. 2024. Dy-
nasaur: Large language agents beyond predefined
actions. arXiv preprint arXiv:2411.01747.

Bo Ni, Zheyuan Liu, Leyao Wang, Yongjia Lei, Yuy-
ing Zhao, Xueqi Cheng, Qingkai Zeng, Luna Dong,
Yinglong Xia, Krishnaram Kenthapadi, et al. 2025.
Towards trustworthy retrieval augmented generation
for large language models: A survey. arXiv preprint
arXiv:2502.06872.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Junhong Shen, Neil Tenenholtz, James Brian Hall,
David Alvarez-Melis, and Nicolo Fusi. Tag-llm: Re-
purposing general-purpose llms for specialized do-
mains. In Forty-first International Conference on
Machine Learning.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Sai
Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung
yeung Shum, and Jian Guo. 2023. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph. In International Confer-
ence on Learning Representations.

Dhaval Taunk, Lakshya Khanna, Pavan Kandru, Va-
sudeva Varma, Charu Sharma, and Makarand
Tapaswi. 2023. Grapeqa: Graph augmentation and
pruning to enhance question-answering. Companion
Proceedings of the ACM Web Conference 2023.

Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang,
Ziqing Hu, Fang Wang, Nitesh V Chawla, and Pan-
pan Xu. 2024. Graph neural prompting with large
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence.

MK Vijaymeena and K Kavitha. 2016. A survey on sim-
ilarity measures in text mining. Machine Learning
and Applications: An International Journal.

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi
Zhang, and Tyler Derr. 2024. Knowledge graph
prompting for multi-document question answering.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19206–19214.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang,
Michihiro Yasunaga, Kaidi Cao, Vassilis Ioannidis,
Karthik Subbian, Jure Leskovec, and James Y Zou.

18316

2025. Avatar: Optimizing llm agents for tool us-
age via contrastive reasoning. Advances in Neural
Information Processing Systems, 37:25981–26010.

Shirley Wu, Shiyu Zhao, Michihiro Yasunaga, Kexin
Huang, Kaidi Cao, Qian Huang, Vassilis N Ioanni-
dis, Karthik Subbian, James Zou, and Jure Leskovec.
Stark: Benchmarking llm retrieval on textual and
relational knowledge bases. In The Thirty-eight Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track.

Yu Xia, Junda Wu, Sungchul Kim, Tong Yu, Ryan A
Rossi, Haoliang Wang, and Julian McAuley. 2024.
Knowledge-aware query expansion with large lan-
guage models for textual and relational retrieval.
arXiv preprint arXiv:2410.13765.

Mayi Xu, Yongqi Li, Ke Sun, and Tieyun Qian. 2024.
Adaption-of-thought: Learning question difficulty
improves large language models for reasoning. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
5468–5495, Miami, Florida, USA. Association for
Computational Linguistics.

Shangzi Xue, Zhenya Huang, Xin Lin, Jiayu Liu,
Longhu Qin, Tianhuang Su, Haifeng Liu, and Qi Liu.
2024. Enhancing the completeness of rationales for
multi-step question answering. In Proceedings of the
33rd ACM International Conference on Information
and Knowledge Management, pages 2753–2763.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 72–77.

Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan
Ning, and Li Yuan. 2023. Llm lies: Hallucinations
are not bugs, but features as adversarial examples.
arXiv preprint arXiv:2310.01469.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. Qa-gnn: Rea-
soning with language models and knowledge graphs
for question answering. In North American Chapter
of the Association for Computational Linguistics.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton,
and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In Interna-
tional conference on machine learning. PMLR.

Huimin Zeng, Zhenrui Yue, Qian Jiang, and Dong Wang.
2024. Federated recommendation via hybrid retrieval
augmented generation. 2024 IEEE International
Conference on Big Data (BigData).

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D Manning,
and Jure Leskovec. Greaselm: Graph reasoning en-
hanced language models. In International Confer-
ence on Learning Representations.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu,
Jieyu Zhang, Qiang Liu, and Shu Wu. A survey on
deep graph generation: Methods and applications. In
Learning on Graphs Conference. PMLR.

A Summary of Notations

Table 6: Notations and the corresponding descriptions.

Notations Definitions or Descriptions

B Text-rich Graph Knowledge Base (TG-KB)
V, E,D Set of Nodes, Categories and Documents of TG-KB
Dv, Ev Document and Category of Node v
Q ∈ Q Query Q from Query set Q

QStruct,QText Query targeted by structural and textual retrieval

G = {Pi}|G|
i=1 Planning Graph consisting of multiple reasoning paths

Pi = (pi1 → ... → piLi
) Reasoning path consisting of Li sequential entities

Epij
,Tpij

Textual category and restriction of path entity pij

C̃ Retrieved candidates after reasoning module.

C̃l
i = C̃l,Struct

i ∪ C̃l,Text
i

Retrieved candidates at lth layer for ith path including
structurally retrieved ones and textually retrieved ones.

C Final retrieved candidates after organizing module.
PQ×G Joint distribution of query and planning graph.
Nv Neighborhood of entity v
Ipil

Traversal Identifier of Structural and Textual Retrieval
PΘ1

Planning module with its parameters Θ1

PΘ2
Reasoning module with its parameters Θ2

PΘ3
Organizing module with its parameters Θ3

Dataset # Entities # Text Tokens # Relations Avg. Degree

AMAZON 1,035,542 592,067,882 9,443,802 18.2
MAG 1,872,968 212,602,571 39,802,116 43.5
PRIME 129,375 31,844,769 8,100,498 125.2

Table 7: Statistics of text-rich graph knowledge bases
in STaRK benchmark (Wu et al.).

B Experimental Details

B.1 Datasets

To evaluate the effectiveness of our proposed
framework, we conduct experiments using three
Text-rich Graph Knowledge Bases (TG-KBs) from
STaRK (Wu et al.). These TG-KBs cover a wide
range of domains, including product reviews (Ama-
zon), academic papers (MAG), and biomedical
knowledge (Prime). Each TG-KB comprises a tex-
tual graph and an associated corpus, with the cor-
pus containing documents linked to the nodes in
the graph. Queries are meticulously crafted for
each TG-KB and encompass varying levels of com-
plexity, which desire different levels of textual and
structural knowledge to answer.

Amazon: a dataset provides a realistic simula-
tion of product search and recommendation. Its
textual graph consists of four categories of nodes:
product, category, color, and brand. Nodes are in-
terconnected through relations such as has_brand
and has_category. Textual documents encapsulate

18317

Parameter Value Description

per_device_train_batch_size 4 Number of training samples per device.
gradient_accumulation_steps 8 Accumulates gradients over 8 steps.
num_train_epochs 100 Number of full passes on training dataset.
max_steps 1000 Maximum number of training steps; train-

ing stops once reached.
learning_rate 2e-4 Initial learning rate for the optimizer.
warmup_steps 5 Number of warm-up steps.
optim adamw_8bit 8-bit AdamW for efficient training.
lr_scheduler_type linear Linear decay of learning rate.
weight_decay 0.01 L2 regularization to prevent overfitting.
seed 3407 Random seed for reproducibility.

Table 8: Hyperparameter for planning graph generator.
properties of corresponding nodes, such as product
descriptions and customer reviews.

MAG: a comprehensive resource for academic
paper retrieval. In the textual graph, papers can be
connected to other nodes, such as field_of_study
via the paper_has_topic_field_of_study relation
and institution through a combination of rela-
tions like author_affiliated_with_institution and au-
thor_writes_paper. Each paper document includes
the title, abstract, and metadata, such as the pub-
lication date and venue, providing rich contextual
knowledge for retrieval and analysis.

Prime: a highly domain-specific dataset. It fo-
cuses on medical inquiries and is sourced from the
PrimeKG knowledge graph (Chandak et al., 2023),
which comprises ten entity types and eighteen rela-
tion types, offering multiple target node categories,
such as disease, gene/protein, and drug. The as-
sociated documents are aggregated from various
databases, providing a rich and diverse source of
medical knowledge.

Detailed dataset statistics are in Table 7.

B.2 Implementation Details

Planning Graph Generation: In Section 3.1, we
follow previous works (Luo et al.; Wu et al.) to lin-
earize the planning process by decomposing the
planning graph into sequential reasoning paths,
which can be generated by LLMs via next token
prediction. Given the lack of ground-truth plan-
ning graphs for training, we prompt LLMs to syn-
thesize these ground-truth planning graphs due to
their superior reasoning capability. Since the nodes
in planning graphs are entity categories/types, we
include Entity Type List in the prompt. We also
leverage in-context learning to help LLMs learn the
mapping between the query and the corresponding
planning graph. The detailed prompt for generat-
ing ground-truth planning graphs and parameters
for fine-tuning the planning graph generator (i.e.,
Llama 3.2-3B) are shown in Prompt 1 and Table 8.

Trajectory Collection: As mentioned in Sec-
tion 3.3, our reranker reorders the intermediate re-
trieved candidates based on their trajectory. To

Prompt 1: Planning Graph Generation
System Message: You are a planning graph finder agent.
Your role is to:
1. Identify the underlying **meta-path** from a given
question, which consists of the **entity types** at each
reasoning step.
2. Extract the **content restriction** for each **entity
type** based on the question. If there is no restriction for
an entity type, leave its value empty.
You will be provided with a predefined **Entity Type
List**. Only use the entity types from this list when
constructing the meta-path and restrictions. Your response
must be concise and strictly adhere to the specified
output format.

Entity Type List: Provide the entity type list.
Demonstrations: Examples for in-context learning.
Output Fromat: Metapath: "", Restriction: {}.

achieve this, we collect three key features: Textual
Fingerprint (TF), Structural Fingerprint (SF),
and Traversal Identifier (TI).

Textual Fingerprint (TF): We record the BM25
similarity scores between the query and the tra-
versed nodes computed. Since empirical observa-
tions indicate that the length of reasoning paths is
typically less than three, we fix the textual finger-
print to the length of three by padding additional 0
similarity scores for those reasoning paths whose
length is less than three, allowing for batch-wise
training. Additionally, we append the initial seman-
tic ranking score of the candidate computed using
cosine similarity coupled with Ada-002 embedding
to the end of three BM25-based similarity scores to
complement the lexical perspective. This vector is
then passed through a linear layer to be transformed
into an embedding of size 256. Note that this initial
ranking score is also used to select the intermediate
retrieved candidates used for reranking.

Structural Fingerprint (SF): We concatenate
the categories of all nodes in the corresponding
reasoning path as a text sequence. If the reasoning
path is shorter than three nodes, we prepend the
sequence with "padding" tokens to ensure a fixed
length. The structural fingerprint is then processed
using a transformer model, which converts the se-
quence into an embedding of size 768, followed by
a linear layer that projects it down to size 256.

Traversal Identifier (TI): We track whether
each node is retrieved via textual matching or struc-
tural traversal and encoding them with distinct val-
ues by initializing a learnable embedding matrix
mapping each traversal identifier encoding to a
3x256-dimensional embedding vector.

After obtaining all above three trajectory fea-

18318

tures, we concatenate their obtained vectors into a
unified vector (256 + 256 + 256x3 = 1280) and ap-
ply two fully connected layers to transform the
combined representation into a reranking score.
This score determines the final ranking.

C Additional Results

C.1 Planning Performance

To investigate the performance of our planning
graph generator, we conduct an experiment to eval-
uate the quality of the generated planning graphs
for queries. We view the planning graph as correct
if it enables the retrieval of at least one ground-truth
candidate by traversal following its structure. In
Table 9, most planning graphs are correct on MAG
and Amazon datasets, demonstrating their effective-
ness in guiding the traversal. Even for the domain-
specific Prime dataset, more than 60% of planning
graphs lead to correct retrieval, showing that LLMs
still generate accurate plans and effectively support
downstream reasoning and reranking.

Dataset MAG Amazon Prime

Accuracy (%) 88.85 70.03 60.44

Table 9: Performance of planning graph generator on
three datasets.

C.2 Query Pattern Analysis

Figure 6: Imbalance number of queries and performance
of different retrievers across different logic patterns.

Figure 6 illustrates the analysis of query patterns
in the MAG dataset. With richer relational informa-
tion, queries in this dataset form a wider variety of

patterns, including longer and more diverse struc-
tures. Similar to the Amazon dataset, we observe
a general trend where the performance of MoR de-
clines as the query count decreases across different
patterns. Beyond this overall trend, certain query
patterns in the MAG dataset stand out, such as
"P → A → P" (Product-to-Author-to-Product) and
"P → P" (Paper-to-Paper). Despite their relatively
high occurrence, MoR still performs worse on these
patterns. This is similar to low performance on the
"Product → Product" pattern observed in the Ama-
zon dataset, where repeated entity types appear
within a single query. Such repetition causes the
textual retriever to shift focus from the target to the
repeated entities, leading to lower performance.

D Efficiency Analysis

D.1 Computational Complexity of MoR

Since our Planning-Reasoning-Organizing frame-
work is multi-staged, we theoretically/empirically
analyze the time complexity of each component:

• Planning: the planning component generates the
textual planning graph by linearized token gener-
ation using a pre-trained language model, which
is the well-established technique for most LLMs.
Since our planning graph is category-based and
its textual description consists of simple terms
extracted directly from the query, the resulting
textual graph is relatively simple and maintains
a short token length. Therefore, the generation
is highly efficient and the time complexity is lin-
ear in the number of tokens, i.e., O(K ·D) with
K as the number of planning graph tokens and
D as the model dimension, following GPT-style
decoding and key-value caching.

• Reasoning: the reasoning component conducts
layer-wise breadth-first traversal following gen-
erated textual planning graphs, the time com-
plexity of which grows exponentially with the
layers/hops of traversal. Let L be the maximum
number of layers/hops across all reasoning paths,
c be the total number of distinct reasoning paths
decomposed from each planning graph, d be the
average node degree, and t denote the number
of nodes retrieved via textual similarity at each
layer. We begin our mixed traversal from a set of
s seed nodes and perform layerwise expansion
by retrieving neighbors of nodes from the pre-
vious layer (constrained by the prescribed node

18319

category at that corresponding layer in the plan-
ning graph). From the second layer onward, we
additionally incorporate the top-t nodes ranked
by textual similarity to the original query and
these textually retrieved nodes also contribute
neighbor expansion in the next layer. Assuming
z represents the time used for textual matching
and node entity constraint checking, the total
time complexity for reasoning by following c
reasoning paths is

O(c((((sd+ t)d+ t)...)d+ t︸ ︷︷ ︸
L

)z)

= O(csdL−1z + ct
dL−1 − 1

d− 1
z)

≈ O(AdL−1)

(8)

as s, t, c, z are typically constants with small val-
ues compared with the exponentially growing
paths and are absorbed together into A.

• Organizing: For each candidate given by the
retrieved path from reasoning stage, the organiza-
tion module calculates the ranking score, which
takes O(BdL−1) with dL−1 denotes the total
number of reasoning paths and B denotes the
time for calculating ranking score with the de-
fined neural network for each path.

Taking the above analysis together, the time com-
plexity of the entire framework is O(KD + (A+
B)dL−1) ≈ O(dL−1). Since our planning graph
generation follows the typical LLM decoding mech-
anism, it does not introduce additional time over-
head. Therefore, we do not focus on optimizing
this stage. Instead, we optimize the Reasoning and
Organizing stages, considering the exponentially
growing number of retrieved paths:

• Reasoning: we parallelize the traversal process,
as each reasoning path is explored independently.

• Organizing: we simultaneously evaluate a batch
of reasoning paths and their candidates.

We report the theoretically analyzed and empiri-
cally verified time complexity for one query re-
trieval in Table 4. To account for differences across
datasets and reduce the impact of stochasticity in
the experiments, we perform three runs per dataset
and report the average efficiency. We can see that
despite the exponentially growing time complex-
ity of reasoning and organizing, the empirical time
consumption is rather low.

Dataset Sequential (s) Parallel (s)
Amazon 0.416 0.271
MAG 0.891 0.846
Prime 0.081 0.076

Table 10: Sequential vs. parallel processing time of
different datasets.

D.2 Scalability of Mixed Traversal to
Large-scale TG-KBs

Our reasoning process conducts layer-wise breadth-
first traversal following generated textual planning
graphs, the time complexity of which grows ex-
ponentially with the increase of traversal depth.
The above analysis shows that the time cost (i.e.,
O(AdL−1)) is mainly governed by the average
node degree d and the reasoning hop L. There-
fore, even for large-scale TG-KBs, the traversal
remains efficient since most graphs are sparse and
the reasoning paths are reasonably short, both of
which have been empirically verified in (Wu et al.).

Moreover, the three TG-KBs in our experiments
are already large in scale while our reasoning traver-
sal method achieves significant efficiency in ad-
dressing each query (see Table 7 and Table 10).
Furthermore, thanks to the highly parallelizable
nature of our traversal process, this runtime can
be further reduced by leveraging multi-processing
over traversing multiple reasoning paths.

E Extending to Question Answering Task

Prior studies have shown that improved retrieval
often leads to improved question-answering out-
comes (Mao et al., 2020; Lewis et al., 2020). To
verify this positive correlation, we additionally eval-
uate the QA performance based on the retrieved
information. Specifically, we use LLM GPT-4o as
a judge to assess which retrieval method provides
more helpful context for answering the question,
allowing us to examine whether improvements in
retrieval quality can convert to better QA perfor-
mance. To mitigate hallucination, we enable LLM
to respond with "I don’t know" when neither re-
trieved candidate supports an answer. We sample
100 queries for each of the three TG-KBs and re-
trieve top-5 candidates by using both our proposed
MoR and the classical textual matching baseline
BM25. To mitigate the impact of positional bias,
we evaluate two different presenting orders for can-
didates retrieved by the two methods, resulting in
200 evaluations per dataset. The win ratios (i.e.,
the percentage of preferences) for both methods
across three datasets are reported in Table 11.

18320

Dataset BM25 MoR

MAG 27.0% 64.0%
Prime 33.0% 56.5%
Amazon 40.0% 42.5%

Table 11: Comparison of BM25 and MoR QA perfor-
mance across datasets.

F Comprehensive Related Work

F.1 Retrieval-augmented Generation (RAG)

With the unprecedented success of recent LLMs in
approaching human-level intelligence, retrieving
relevant knowledge to support downstream gener-
ation has become increasingly crucial. Retrieval-
augmented generation enhances generative tasks
by integrating relevant information from external
knowledge sources (He et al., 2025; Gao et al.,
2023b; Han et al., 2024) and has been widely
adopted to improve question-answering (Liu et al.,
2023). In the context of LLMs, RAG has been uti-
lized to mitigate hallucinations (Yao et al., 2023),
enhance interpretability (Gao et al., 2023a), and
enable dynamic knowledge updates (Wang et al.,
2024). This work leverages RAG to retrieve sup-
porting entities from TG-KBs, providing contex-
tual grounding for answer generation. Depending
on the type of knowledge retrieved, existing re-
trievers can be classified into structural and textual
retrieval approaches, which are reviewed next.

F.2 Textual and Structural Retrieval

Since real-world knowledge is commonly stored in
both textual and structural formats (Kolomiyets and
Moens, 2011), such as indexed texts and knowledge
graphs, each requires a retrieval method tailored
to its unique representation. Textual retriever re-
trieves knowledge based on its similarity to the
given query and can be categorized into: lexi-
cal methods (e.g., TF-IDF and BM25 (Robertson
et al., 2009)) and semantic methods (e.g., DPR
and Contriever (Karpukhin et al., 2020; Izacard
et al., 2022)). Despite their broad applicability, the
predefined linguistic rules and embedding-based
semantics may struggle to capture the structural
knowledge stored in graph-structured knowledge
bases such as knowledge graphs and text-rich net-
works. To address this challenge, structural re-
trieval has been proposed by using graph analysis
techniques (e.g., graph traversal (Wang et al., 2024;
Jiang et al., 2023; Zhang et al.; Edge et al., 2024))

and graph machine learning models (e.g., graph
neural networks (Yasunaga et al., 2021; Mavro-
matis and Karypis, 2024)). Early methods extract
local subgraphs of seeding nodes (Yasunaga et al.,
2021; Taunk et al., 2023) or pre-define paths ap-
proaching answers (e.g., shortest paths (Luo et al.;
Delile et al., 2024)). To avoid exponentially ex-
panding neighbors in the local subgraphs and break
the rigid logic routined by pre-defined paths, re-
cent advancements integrated LLMs to dynami-
cally adjust graph traversal (Sun et al., 2023; Wang
et al., 2024; Jin et al., 2024a). While promising,
frequently invoking LLMs introduces prohibitive
resource overhead. Despite the above advance-
ments in both textual and structural retrieval, they
are often applied independently and fail to mutually
reinforce each other. This motivates the recent re-
search trend of developing hybrid retrieval, which
is reviewed next.

F.3 Hybrid Retrieval
Recently, several works have explored hybrid
knowledge retrieval from TG-KBs. One ap-
proach (Xia et al., 2024; Li et al., 2024) aggre-
gate documents from neighboring nodes, with Xia
et al. (2024) applying relational filtering to remove
irrelevant neighbors and Li et al. (2024) weight-
ing neighbors based on field importance. Another
approach (Lee et al., 2024) uses LLMs to choose
either structural or textual retrieval. In contrast, our
proposed MoR fully leverages the graph structure
and rich texts by integrating textual matching and
graph traversal into a unified framework, enabling
a more seamless and interpretable interaction be-
tween structural and textual knowledge

18321

