
Findings of the Association for Computational Linguistics: ACL 2025, pages 17878–17899
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play
Visual Games with Keyboards and Mouse

Muyao Li1* Zihao Wang1* Kaichen He1 Xiaojian Ma2 Yitao Liang1†

1Peking University 2BIGAI

Abstract

Recently, action-based decision-making in
open-world environments has gained signifi-
cant attention. Visual Language Action (VLA)
models, pretrained on large-scale web datasets,
have shown promise in decision-making tasks.
However, previous work has primarily focused
on action post-training, often neglecting en-
hancements to the foundation model itself. In
response, we introduce Act from Visual Lan-
guage Post-Training (ActVLP), a novel train-
ing paradigm. ActVLP distinctively enhances
the foundation model prior to action-specific
tuning by first post-training it on a curated set
of environment-specific visual and linguistic
tasks using self-supervised learning. This ini-
tial stage significantly improves the model’s
capabilities in world knowledge, visual recog-
nition, and spatial grounding. Subsequently,
this strengthened VLM undergoes action post-
training via imitation learning on trajectory
datasets. Following this paradigm, we de-
velop JARVIS-VLA, the first VLA model
in Minecraft that can follow human instruc-
tions on over 1k different atomic tasks, includ-
ing crafting, smelting, cooking, mining, and
killing. Our experiments demonstrate that our
ActVLP paradigm leads to a significant 40%
improvement over the best agent baseline on
a diverse set of atomic tasks. Furthermore,
JARVIS-VLA surpasses traditional imitation
learning-based policies in Minecraft, achiev-
ing state-of-the-art performance. We have
open-sourced the code, models, and datasets
to foster further research. The project page
can be found at https://craftjarvis.
github.io/JarvisVLA.

1 Introduction

Pretraining foundation models on large-scale, noisy
internet datasets has become a mainstream ap-
proach in NLP and vision (Dosovitskiy, 2020;

*Equal contribution
†Corresponding author. Email: yitaol@pku.edu.cn

Achiam et al., 2023; Wang et al., 2024b; Team
et al., 2023). The success of models like GPT
and LLAMA (Touvron et al., 2023; OpenAI, 2023)
has shown that large, capable language models
can infer and execute tasks described by language
prompts. However, this paradigm has yet to
achieve similar success in the decision-making
domain (Yang et al., 2023; Cheng et al., 2024).
In particular, while OpenAI’s Video Pre-Training
(VPT) model (Baker et al., 2022) has attempted
to apply a similar approach in Minecraft, it still
relies heavily on imitation learning (IL) after
collecting large-scale YouTube videos of human
play. VPT’s approach of pretraining with imi-
tation learning, followed by downstream super-
vised fine-tuning and reinforcement learning, made
significant strides—culminating in the successful
ObtainDiamond, a key challenge in Minecraft1.

Despite this success, the reliance on next-action
prediction in imitation learning limits the develop-
ment of robust, multi-task decision-making abili-
ties (Brohan et al., 2022; Wu et al., 2023; Team
et al., 2024; O’Neill et al., 2023). Moreover, this
pretraining paradigm struggles to generalize to un-
seen environments or tasks due to the intricacies
of the interactions between observations and be-
havior, whereas language tokens are more stan-
dardized. To overcome these challenges, a new
approach has emerged that leverages pretrained
Vision Language Models (VLMs) for decision-
making. These models, known as Vision Language
Action models (VLAs), integrate language under-
standing with action generation and can be further
enhanced through post-training on visual-language
tasks (Kim et al., 2024; Zhen et al., 2024). A more
detailed discussion can be found in Figure 1 (left)
and Section 2.2.

However, much like traditional imitation learn-
1Diamond tools are considered a grand challenge, with

experienced human players taking up to 20 minutes (24,000
actions) to craft them.

17878

https://craftjarvis.github.io/JarvisVLA
https://craftjarvis.github.io/JarvisVLA

Figure 1: We present JARVIS-VLA, a novel Vision-Language-Action (VLA) model trained with ActVLP paradigm, post-trained
on vision language tasks (non-decision-making tasks) before training on trajectory datasets to have better decision-making
capabilities.

ing, current VLA approaches predominantly focus
on action post-training. In these models, the learn-
ing objective is to generate correct actions based
on large-scale cross-task imitation data. We pro-
pose that, in addition to action generation, under-
standing the environment and incorporating task-
related knowledge could be equally important for
achieving more flexible and generalizable decision-
making. To this end, we introduce a novel train-
ing paradigm—Vision Language Post-Training
(ActVLP)—which integrates visual-language tasks
into the post-training phase of VLA models. Fol-
lowing the above paradigms, we obtain the first
VLA models in Minecraft that can follow human
instructions on over 1k different atomic tasks, in-
cluding crafting, smelting, cooking, mining, and
killing.

Our contributions are as follows: (1) We pioneer
the use of VLA in the open-world environment of
Minecraft by introducing JARVIS-VLA, a power-
ful model achieving state-of-the-art performance
in action-based decision-making. (2) We introduce
the concept of Vision Language Post-Training and
identify key visual-language guidance strategies
that enhance decision-making. (3) We investigate
the scaling laws of VLA models, demonstrating
that expanding the scale of non-trajectory vision-
language tasks during post-training leads to sig-
nificant improvements in downstream task perfor-
mance. (4) We open-source the code, models, and

datasets to support further research in this area.

2 Learning to Act from Vision Language
Post-Training

In this section, we present a detailed introduction to
ActVLP, a new paradigm for training VLA models.
One of the most significant improvements is that we
investigate a post-training stage prior to imitation
learning. Specifically, we instantiate this paradigm
in our proposed model, JARVIS-VLA. We begin
by discussing the architecture for JARVIS-VLA
in Section 2.1, followed by an explanation of the
training pipeline in Section 2.2 and the datasets
used in Section 2.3.

2.1 Model Structure

As illustrated in Figure 1, JARVIS-VLA employs
an architecture similar to Llava (Li et al., 2024a)
but with slight modifications. The structural frame-
work, consists of several key components:: 1) Vi-
sual Encoder: A Vision Transformer (Dosovitskiy,
2020) that processes raw image pixels and converts
them into a sequence of fixed-size image patches.
2) Image Projection Module: A lightweight two-
layer MLP that projects image patch embeddings
into the same representational space as word em-
beddings. 3) Language Model Transformers (Tou-
vron et al., 2023; Bai et al., 2023): A powerful
autoregressive language model that serves as the

17879

Large Language Models

ViT

What tool should be
used to kill sheep?

Stage I: World Knowledge Post-Training

Large Language Models

ViT

How many sheep
can be seen?

Stage II: Visual Knowledge and Spatial
Grounding Post-Training

Large Language Models

ViT

<ins> Kill the bigger
red sheep. </ins>

Stage III: Downstream Instruction
Following Post-Training

Next-Token Prediction
Supervised Finetuning

Next-Token Prediction
Supervised Finetuning

Next-Token Prediction
Imitation Learning

Large Language Models

ViT

<ins> Kill the bigger
red sheep. </ins>

Large-scale Multi-Task Pre-Training on
Decision-Making Datasets

Next-Token Prediction
Imitation Learning

Traditional VLA Training Our Multi-Stage Post-Training VLA Pipeline

Figure 2: Previous VLA methods usually directly use imitation learning to finetune original vision-language models on large-scale
multi-domain decision-making datasets to predict the actions (Kim et al., 2024; Brohan et al., 2023). Our ActVLP training
pipeline includes three stages: 1) post-training language models on text-only world knowledge with next-token prediction
supervised fine-tuning, 2) post-training both vision encoder and language models on multimodal vision-language alignment
and spatial grounding datasets with next-token prediction supervised fine-tuning, and 3) post-training only language models on
multi-modal instruction following datasets with imitation learning.

core of the system, facilitating multimodal reason-
ing and decision-making.

Unlike OpenVLA (Kim et al., 2024), our frame-
work is designed for partially observable environ-
ments. To accommodate this, we adopt a non-
Markovian architecture by incorporating a history
of observation images within the prompt. This ap-
proach ensures that the model retains temporal con-
text, which is crucial for tasks requiring multi-step
reasoning and long-horizon decision-making. In
our experiments, we employ Llava-Next (Li et al.,
2024a) and Qwen2-VL (Wang et al., 2024b) as
base vision language models, as both models pro-
vide robust support for multi-image understanding,
enabling enhanced perception and reasoning.

Another key distinguishing feature of JARVIS-
VLA compared to prior VLA models is the in-
tegration of an action decoder. This module is
responsible for decoding both discrete and contin-
uous actions. For discrete actions, we consolidate
related action dimensions into unified categories
to reduce redundancy and improve efficiency. For
continuous actions, we discretize the action space
into bins, which are then mapped to discrete to-
kens. These tokens are subsequently appended to
the vocabulary of the original foundation model,
allowing the model to generate both textual and
action-based outputs in a unified manner.

Instead of retraining the base VLM’s tokenizer,
we adopt a strategy inspired by RT-2 (Brohan et al.,
2023), repurposing the least frequently used tokens
from the language tokenizer’s vocabulary to rep-
resent action semantics. Specifically, we replace
the 51 least-used tokens, allocating 22 tokens for
mouse control (e.g., cursor movements) and 29

tokens for special keyboard inputs (e.g., function
keys and command shortcuts), which can be found
in Appendix A. We introduce no other modifica-
tions to the original VLM architecture to maintain
model generalizability and ensure broad compat-
ibility across different foundation models. This
design choice allows JARVIS-VLA to be easily in-
tegrated with various pre-trained multimodal mod-
els while preserving their inherent capabilities.

2.2 Training Pipeline

Traditional VLA methods typically employ pre-
trained VLMs and train them via imitation learning
on large-scale trajectory data, which includes tex-
tual instructions, visual observations, and action
token sequences, as illustrated in Figure 2(left).
These methods assume that VLMs, pretrained on
diverse internet-scale data, possess strong general-
ization and fitting capabilities. Consequently, they
are fine-tuned directly on downstream decision-
making tasks, leveraging multi-scenario data to
enhance action understanding and generalization.

However, learning world knowledge from action-
labeled trajectory data is inherently challeng-
ing (Baker et al., 2022). Moreover, the lack of
large-scale action-labeled datasets makes it chal-
lenging to pretrain expansive models using only
trajectory data (O’Neill et al., 2023).

To address these challenges, ActVLP enhances
the VLM through a structured post-training pro-
cess, utilizing data that follows the same format as
pretraining but is more relevant to decision-making
tasks. As shown in Figure 2(right), our training
pipeline consists of three stages.
Stage I: Post-Training Language Models. We

17880

Figure 3: Illustration of various post-training datasets. Models can post-train on various vision-language datasets using a
unified tokenizer and support diverse vision-language applications, such as question answering, image captioning, image/video
question answering, visual grounding (including points and bounding box), and decision-making. More examples can be found
in Appendix D.

first refine the language transformer of the VLM
using large-scale textual datasets related to world
knowledge in downstream environments, e.g.,
Minecraft. During this stage, vision-related com-
ponents, including the ViT and vision adapter mod-
ules, are frozen. This step enhances the model’s
understanding of decision-making contexts before
incorporating multimodal alignment.

Stage II: Post-Training Vision Encoder and Lan-
guage Models. Following language post-training,
we fully unfreeze the VLM and fine-tune it using
captioning, visual question-answering (VQA), and
spatial grounding datasets, which are multimodal
and have images in datasets. This stage ensures
improved vision-language alignment, enhancing
the model’s capacity to integrate world knowledge
with visual perception. Both Stage 1 and Stage 2
employ next-token prediction through supervised

fine-tuning, with the optimization objective being:

LSFT = −
∑

i=1

logPθ(xi | xv, xins, x1:i−1) (1)

where xv denotes visual tokens, xins represents the
instruction, and x corresponds to the answer. This
loss function maintains consistency with the stan-
dard causal mask training approach.
Stage III: Action Post-Training for Interaction.
The final stage of our pipeline is action post-
training, where the VLM transitions from a pas-
sive observer to an active agent. During this ac-
tion post-training, the VLM is fine-tuned on tra-
jectory data (D). The model learns to map textual
instructions (xins) and current visual observations
(ot ∈ RH×W×3) to action chunks at:t+τ . The imi-
tation learning objective is to maximize the likeli-

17881

hood of these expert actions:

LIL = −
∑

t=1

log πθ(at:t+τ | ot, xins) (2)

where πθ is the learned policy parameterized by
θ. We employ action chunking as this technique
promotes temporally coherent and improves train-
ing efficiency (Kim et al., 2025). In this stage,
the vision-related modules remain frozen. while
the language tokenizer is modified to incorporate
action tokens, and the language transformer under-
goes full parameter fine-tuning.

This structured pipeline ensures that the VLM
is progressively refined before being adapted to
trajectory-based imitation learning, resulting in
improved world knowledge acquisition, vision-
language alignment and grounding, and action gen-
eralization in decision-making tasks.

2.3 Datasets
To support the ActVLP training pipeline, we
constructed a large-scale multimodal dataset.
This dataset includes both non-trajectory task
datasets for post-training and trajectory datasets
for downstream imitation learning. The non-
trajectory datasets are divided into three categories:
knowledge-based question answering, vision lan-
guage alignment, and spatial grounding. These
categories are designed to enhance the model’s
decision-making capabilities before trajectory fine-
tuning. For trajectory datasets, we collected over
7.4 million frames of Minecraft gameplay data, in-
cluding expert actions from diverse sources such
as human-playing (Baker et al., 2022), youtube
videos, and existing agents (Wang et al., 2024c).

The dataset for world knowledge comprehension
comprises approximately 277K entries that signif-
icantly bolster textual understanding, employed
during training stage I. The visual-language align-
ment dataset incorporates 35K keyframes enhanced
with advanced Vision-Language Models to produce
both captions and question-answer pairs, facilitat-
ing multimodal supervised fine-tuning in the subse-
quent training stage. The spatial grounding dataset
focuses on detailed object localization, generat-
ing over 404K data points that are instrumental in
refining spatial understanding for ActVLP mod-
els. Both the visual-language alignment datasets
and the spatial grounding datasets primarily uti-
lize Minecraft observations, which strengthen the
VLM’s understanding of the world and are used to
support training stage II.

Imitation Learning Trajectory Dataset. VLA
training is constructed on a dataset of human game-
play trajectories, particularly from the OpenAI con-
tractor dataset in Minecraft (Baker et al., 2022),
which includes diverse tasks. We also incorporated
an additional 3M rollout frames from VPT (Baker
et al., 2022) and JARVIS-1 (Wang et al., 2024c)
agents. For structured GUI-based tasks like craft-
ing and smelting, we synthesized 6.4M expert data
entries to improve imitation learning. This trajec-
tory data was partitioned into two distinct subsets.
First, over 100 random trajectories for each MCU
benchmark task were allocated for targeted fine-
tuning. The remaining data, approximately 10
billion tokens, was then utilized for action post-
training. Representative examples of our datasets
are shown in Figure 3, with further details in Ap-
pendix D.

3 Experiments

Our experiments (starting from subsection 4.2) aim
to address the following questions:
Q1: How do JARVIS-VLA compare to sota open-
world agents and imitation learning methods?
Q2: Is vision language post-training the true cause
of the performance improvement?
Q3: Whether VLAs exhibit scaling laws and how
ActVLP influences them?
Q4: Is ActVLP sensitive to different VLM back-
bones? Due to space constraints, we quickly re-
spond with an affirmative no, detailed experiment
discussion deferred to Appendix F.

3.1 Experimental Setup

Evaluation Environment. We use Minecraft
1.16.5 as our experimental platform (Guss et al.,
2019). As an open-world game with a substan-
tial knowledge base on platforms such as Reddit
and wiki (Fan et al., 2022), Minecraft poses sig-
nificant challenges to agents while simultaneously
offering rich resources for research. To ensure fair
comparisons, we align the action and visual obser-
vation spaces with those of human players (Baker
et al., 2022). Additionally, we hide information
unavailable to human players as well, such as agent
location and inventory stats.
Benchmark and Evaluation Metrics. We con-
duct evaluations using two broad benchmarks: (i)
the agent’s capacity to interact with the Minecraft
environment to complete tasks; and (ii) vision-
language tasks (e.g., question answering, spatial

17882

Model Model Size
Mine Blocks Kill Entities Craft Items Smelt Items

Avg. Avg. Avg. Avg.

VPT-BC (Baker et al., 2022) 248M 0.15 0.38 0.33 0.55 0.35 0.44 0.30 0.50 0.45 0.41 0.10 0.00 0.05
VPT-RL (Baker et al., 2022) 248M 0.05 0.35 0.25 0.35 0.25 0.28 0.50 0.30 0.62 0.55 0.05 0.35 0.20
STEVE-1 (Lifshitz et al., 2024) 248M 0.20 0.35 0.54 0.30 0.75 0.38 0.45 0.20 0.70 0.57 0.25 0.40 0.33
GROOT (Cai et al., 2024c) 248M 0.56 0.40 0.67 0.50 0.50 0.52 0.45 0.35 0.25 0.40 0.35 0.25 0.30
MineDreamer (Zhou et al., 2024) 7B 0.25 0.40 0.55 0.30 0.70 0.39 0.50 0.25 0.30 0.42 0.30 0.30 0.30

Qwen2-VL (raw) 7B 0.77 0.60 0.79 0.93 0.80 0.84 0.83 0.53 0.40 0.60 0.03 0.10 0.07
Qwen2-VL (IL) 7B 0.70 0.73 0.75 0.97 0.83 0.86 0.73 0.67 0.50 0.65 0.17 0.37 0.29
JARVIS-VLA-Qwen2 7B 0.80 0.95 0.88 0.97 0.93 0.95 0.87 0.83 0.63 0.77 0.77 0.70 0.70

Table 1: Evaluation results of different policies on Minecraft tasks, Each group includes multiple tasks (at least 5), and the
Avg. column reports the average success rate within each group. Qwen2-VL, Qwen2-VL (IL) and JARVIS-VLA-Qwen2-VL
represent the training on the original qwen checkpoint, post-training on only large-scale imitation learning trajectories, and
post-trained on VLP intermediate model. Qwen2-VL (ActVLP) achieves the highest success rates across all task groups.

grounding) designed to assess the VLM’s under-
standing of Minecraft-specific knowledge. For the
instruction-following tasks, we adopt the MCU
Benchmark (Lin et al., 2023), focusing on four
categories—Mine Blocks, Kill Entities,
Craft Items, and Smelt Items—that rep-
resent a wide range of typical game-play behaviors
in Minecraft. Notably, Craft and Smelt require
2D GUI manipulation through the mouse (cover-
ing thousands of item categories), whereas Mine
and Kill involve recognizing, navigating, and in-
teracting with targets in a 3D environment. Each
category contains at least 5 distinct tasks. For in-
stance, the Mine Blocks category includes min-
ing iron ore with a stone pickaxe, oak logs
with bare hands, grass , dirt , and obsidian

with a diamond pickaxe. Our evaluation set in-
cludes both simpler tasks (e.g., mining oak logs)
and more complex ones (e.g., mining obsidian for
over 10 seconds) that have proven challenging for
prior state-of-the-art agents (Cai et al., 2024c; Lif-
shitz et al., 2024). We perform each task at least 30
times and report the success rate per task, as well
as the average success rate within each category.
To ensure fairness, maximum execution steps for
selected tasks match those reported by Lin et al.
(2023). For vision-language assessments, the task
formulations are illustrated in Figure 3. We pro-
vide human-written ground-truth answers and em-
ploy an LLM-as-judge to evaluate the performance
of various VLMs (GPT-4o, Llava, Qwen-VL, and
our post-trained VLMs). Detailed information on
these vision-language benchmarks and results can
be found in Appendix E.

Training and VLA Configurations.. Our train-
ing pipeline follows the process described in Sec-
tion 2.2: we first obtain a visual-language post-
training intermediate model, then further train

it on trajectory tasks to produce the JARVIS-
VLA. We conduct experiments using two popu-
lar frameworks: Qwen2-VL (Wang et al., 2024b)
and Llava (Li et al., 2024a). We develop a dis-
cretized action tokenizer specific to Minecraft,
comprising 51 tokens that represent camera move-
ments and button actions. We utilize the trl SFT
Trainer (von Werra et al., 2020) for finetuning and
deploy the VLA with vLLM (Kwon et al., 2023).
Training is carried out on 32 A800-80G GPUs,
while inference runs on a single NVIDIA RTX
3090. Further training details are provided in Ap-
pendix B.
Baselines. We compare our model with: 1)
VPT (Baker et al., 2022), including both the be-
havior cloning (VPT-BC) and reinforcement learn-
ing (VPT-RL) variants; 2) STEVE-1(Lifshitz et al.,
2024), a text-conditioned policy that combines
VPT and MineCLIP(Fan et al., 2022) for instruc-
tion following; 3) GROOT (Cai et al., 2024c),
which uses video prompts as task instructions;
and 4) MineDreamer (Zhou et al., 2024), which
leverages a vision-language model and a diffusion
model to guide the STEVE-1 policy. Each method
follows the default configuration provided in the
MCU benchmark for a fair comparison.

3.2 VLA Performance Evaluation

We present the performance results of our proposed
model across four categories from the MCU bench-
mark (Lin et al., 2023), as shown in Table 1. For
each MCU task, we collect over 100 random trajec-
tories, which are used to fine-tune base VLMs to
create our final VLA models.

We evaluate three variants of the VLMs as base
models: 1) Qwen2-VL (raw): the original VLM
checkpoint, fine-tuned directly on the task-specific
dataset. 2) Qwen2-VL (IL): first undergoes ac-

17883

tion post-training, then trained on the same task-
specific fine-tuning dataset. 3) JARVIS-VLA-
Qwen2-VL: first post-trained using our proposed
ActVLP paradigm, then fine-tuned on the same
dataset. Performance is measured by the average
success rate across tasks within each category. Our
results show that JARVIS-VLA-Qwen2-VL, post-
trained using our approach, consistently outper-
forms prior methods across almost all tasks.

Remarkably, even without task-specific post-
training, raw Qwen2-VL model, fine-tuned on
downstream tasks, outperforms several previous
baselines, including STEVE-1 (Lifshitz et al.,
2024) and GROOT (Cai et al., 2024c), which were
trained using large-scale imitation learning. This
highlights the effectiveness of using a robust pre-
trained VLM as the base model for the policy, lead-
ing to strong performance even without additional
fine-tuning.

Notably, we observe a significant performance
boost with ActVLP post-training. For tasks such as
Craft Items and Smelt Items, where pre-
vious methods struggled, JARVIS-VLA-Qwen2-
VL achieves success rates more than double those
of the baseline models. This underscores the effec-
tiveness of our off-trajectory vision-language task
strategy. Furthermore, JARVIS-VLA-Qwen2-VL
outperforms Qwen2-VL (IL) by over 15%, despite
using only 21% of the training trajectory data. In
crafting category tasks, the JARVIS-VLA model
surpasses traditional baselines by more than double,
outperforming models like VPT-BC (Baker et al.,
2022) and STEVE-1 (Lifshitz et al., 2024) on tasks
such as "Craft crafting table" (). This significant
improvement is primarily due to the use of ViT in
VLM and high-resolution processing, which are
crucial for tasks like crafting and smelting that de-
mand precise control in the GUI interface. This sug-
gests that integrating off-trajectory vision-language
tasks into the training pipeline enhances decision-
making capabilities, enabling more accurate action
predictions in VLA models. Further analysis and
additional experiments will be presented in the next
section.

3.3 Ablation on Training Paradigm
To assess the impact of visual-language post-
training, we designed an additional baseline,
Qwen2-VL-7B (one-stage). It is co-trained on the
original checkpoint of Qwen2-VL, using the com-
bination of non-trajectory datasets and trajectory
datasets in a single unified training stage. After

Model

Qwen2-VL(raw) 0.53 0.40 0.03 0.10
Qwen2-VL-7B (one-stage) 0.10 0.40 0.07 0.13
ActVLP-Qwen2-VL 0.83 0.63 0.77 0.70

Table 2: Ablation results for different training paradigms.
We use Qwen2-VL (raw) as the baseline and compare it against
Qwen2-VL-7B (one-stage) and JARVIS-VLA-Qwen2-VL on
four Minecraft tasks: "craft diamond sword", "craft ladder",
"cook beef", and "smelt iron ingot".

training for one epoch, Qwen2-VL-7B (one-stage)
is fine-tuned on MCU tasks. We compare it with
JARVIS-VLA-Qwen2-VL, which is post-trained
in three separated steps.

The results presented in Table 2 indicate that sep-
arating visual-language post-training from action
learning, rather than merging all stages into a sin-
gle training phase, yields a significant performance
boost. For instance, when comparing our JARVIS-
VLA-Qwen2-VL to the one-stage co-finetuning
approach, we observed substantial improvements,
including approximately 57% on the "Smelt iron
ingot " task and 23% on the "Crafting the lad-
der " task. We hypothesize that dedicated post-
training on visual-language datasets enhances the
foundational capabilities of the VLM, providing a
more advantageous starting point for subsequent
imitation learning.

3.4 Ablation on Non-Trajectory Datasets

In this section, we focus on the post-training of
Qwen2-VL using various non-trajectory vision-
language tasks to investigate the specific contri-
butions to its enhanced performance.

To understand the impact of different task en-
hancements, we conduct an ablation study by
dividing the non-trajectory datasets and training
Qwen2-VL separately on three types of tasks: spa-
tial grounding, vision language alignment, and
knowledge-based question-answering, which are
all related to Minecraft games. This results in
three variants of the VLM, each augmented with
one of these capabilities—spatial grounding, vi-
sual recognition, and world knowledge. All models
are finetuned using the same gameplay dataset and
imitation learning techniques. We also develop a
benchmark, detailed in Appendix E, to evaluate
these capabilities. For this evaluation, we select
three long-sequence atomic tasks: "Craft the dia-
mond sword" (), "Mine the obsidian" (), and
"Cook the beef" (), as downstream instruction-
following tasks.

17884

Figure 4: The relation between downstream task success rate, training loss, and training steps. The curve shows that scaling
downstream finetuning trajectories can scale up the success rate when the loss is lower than 0.22.

Figure 5: Ablation results on different post-training datasets. We select knowledge datasets, visual question-answering
datasets, and spatial grounding datasets to conduct ablation experiments. Our goal is to evaluate which capabilities and post-
training datasets most significantly influence downstream decision-making tasks.

The results of our ablation studies, presented in
Figure 5, demonstrate that post-training with non-
trajectory vision-language tasks significantly en-
hances the core capabilities of the VLM across the
respective benchmarks. Notably, after fine-tuning,
models enhanced with spatial grounding exhibit
the most substantial improvement in downstream
decision-making tasks. These findings underscore
the effectiveness of non-trajectory post-training
in boosting the performance of Vision-Language-
Action models in decision-making tasks, even
when the focus is on a single task. We find that non-
trajectory vision-language tasks, which are essen-
tial for agent pipelines (Wang et al., 2023, 2024c),
are more effective for fine-tuning end-to-end VLA
models. This demonstrates the connection between
developing LLM-based agent pipelines with sepa-
rate modules and fine-tuning end-to-end VLA mod-
els.

3.5 Scaling Experiments

Recent work on large language models (LLMs)
trained on vast amounts of text via next-token pre-
diction has shown strong scaling laws (Wei et al.,
2022; Du et al., 2024; Lin et al., 2024; Wang et al.,
2024e). We investigate whether VLAs, obtained
through post-training on VLMs, exhibit similar
scaling behavior. Specifically, we explore two ques-
tions: Q1) Can scaling up downstream imitation

Figure 6: The relationship between post-training loss and
downstream task success rates. Our findings indicate that
increasing the size of post-training non-trajectory datasets can
significantly enhance downstream task success rates, even
with a fixed number of fine-tuning trajectories.

learning trajectories further improve the VLA’s task
success rate? Q2) Does increasing the amount of
non-trajectory vision-language tasks used during
post-training enhance task completion success?

The results for Q1 are shown in Figure 4. Using
the same base model, we observe that increasing
the number of downstream trajectories improves
the VLA model’s task success rate. However, since
the success rate is a discrete metric, we find that
tasks only show a non-zero success rate when the
evaluation loss is below 0.30. This indicates that
the dataset size for downstream fine-tuning must
be sufficiently large enough. Furthermore, we ob-
serve that different tasks require varying amounts
of downstream data to reduce the evaluation loss
below 0.30, which correlates with the length and
difficulty of the tasks.

17885

The results for Q2 are illuminated in Figure 6.
We also explore the relationship between the eval-
uation loss during post-training on non-trajectory
vision-language tasks and task success rate in down-
stream tasks. We use base models from different
stages of post-training (with different eval loss on
post-training datasets), fine-tuning them with the
same downstream trajectory dataset. The baseline
represents post-training using imitation learning on
cross-task trajectories. We find that, for nearly all
tasks, the success rate in downstream tasks corre-
lates linearly with evaluation loss in post-training,
with the lowest loss yielding the best results. No-
tably, models post-trained with knowledge-based
tasks exhibit the best downstream performance for
a given evaluation loss. Models enhanced with
spatial grounding show the lowest evaluation loss
and the highest task success rates. These findings
demonstrate scaling up off-trajectory vision lan-
guage datasets directly enhances downstream task
performance, which has been overlooked in previ-
ous VLA works (Kim et al., 2024; Brohan et al.,
2023).

4 Related Works

4.1 Visual-Language-Action Models

Imitation learning (IL) involves learning by mim-
icking expert interactions with the environment,
with the primary challenge being the collection of
high-quality expert demonstration datasets. Numer-
ous studies have sought to enhance traditional IL
approaches (Chi et al., 2023; Team et al., 2024;
Brohan et al., 2022). A promising direction is
the use of Visual-Language-Action (VLA) mod-
els (Brohan et al., 2023; Kim et al., 2024; Zheng
et al., 2024; Zhang et al., 2024; Zhong et al., 2025),
which adopt end-to-end imitation learning by fine-
tuning VLMs. OpenVLA (Kim et al., 2024) has
demonstrated the importance of selecting a capable
VLM backbone, a conclusion further reinforced by
RoboVLM (Li et al., 2024b). Similarly, Brohan
et al. (2023) highlighted that co-training with web-
scale vision-language data significantly improves
the generalization of VLA models. While previous
works primarily focused on optimizing the selec-
tion of VLMs, several recent studies have begun
to pay attention to the comprehension capabilities
of VLA models (Zhang et al., 2025; Zhu et al.,
2025; Zhou et al., 2025; Chen et al., 2025). How-
ever, few have explicitly focused on enhancing the
VLM backbone itself through visual-language post-

training. Our work addresses this gap by proposing
targeted visual-language post-training methods to
enrich the capabilities of VLMs, thereby improving
their performance on downstream VLA tasks.

4.2 VLM-based Agents in Minecraft

Existing Minecraft agents based on VLMs typically
adopt hierarchical architectures (Wang et al., 2023;
Zhou et al., 2024; Fan et al., 2022; Deng et al.,
2025; Zhao et al., 2024; Cai et al., 2023). These
methods leverage a VLM’s world knowledge for
planning via zero-shot or few-shot in-context learn-
ing, without modifying the VLM parameters during
agent optimization (Wang et al., 2023, 2024c,a;
Li et al., 2024c). STEVE-EYE (Zheng et al.,
2023) fine-tuned Llama language models (Tou-
vron et al., 2023) using internet text data, achiev-
ing improved planning over zero-shot prompting.
MineDreamer (Zhou et al., 2024) employs the
instruction-following capability of VLMs to pre-
dict future visual observations and generate actions
based on STEVE-1 (Lifshitz et al., 2024). Omni-
JARVIS (Wang et al., 2024d) uses a behavior tok-
enizer (Cai et al., 2024c,b) to model human trajec-
tories in Minecraft with pretrained VLMs. While
these approaches optimize VLMs, they still rely on
additional policies for action grounding. In con-
trast, we propose a VLA-based agent model that
generates actions directly from textual instructions
and visual inputs, eliminating the need for extra
grounding policies.

5 Conclusions

We present ActVLP, a novel training framework
for visual-language-action models that leverages
vision-language post-training to enhance decision-
making capabilities in dynamic environments. Our
experiments demonstrate that post-training on non-
trajectory tasks significantly enhances foundation
models’ ability to understand complex environ-
ments, resulting in substantial improvements in
downstream imitation learning on trajectory data.
The effectiveness of this model is validated across
multiple VLM architectures, providing strong ev-
idence of its broad applicability and potential for
visual-language-action model training, as exempli-
fied by our state-of-the-art model, JARVIS-VLA.

Limitations

Looking ahead, there are several avenues for
improvement in future work. First, it is cru-

17886

cial to enhance the inference throughput of the
ActVLP model, which is currently constrained
by the large parameter size of the VLA based on
VLM (Budzianowski et al., 2024). We believe
that future integration with MoE (Jacobs et al.,
1991; Fedus et al., 2022) could further improve
the model’s inference efficiency, with the goal of
achieving gameplay performance levels exceeding
40Hz. Additionally, there remains potential for
further performance gains. While ActVLP outper-
forms previous Minecraft policies, it still falls short
of the performance demonstrated by top human
players, who achieve success rates above 90%.

Acknowledgement

This work was funded in part by the Na-
tional Science and Technology Major
Project(2022ZD0114902). We thank a grant
from CCF Baidu Open Fund.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2024. Introducing the next generation of
claude.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost
Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. 2022.
Video pretraining (vpt): Learning to act by watch-
ing unlabeled online videos. Advances in Neural
Information Processing Systems, 35:24639–24654.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli
Ding, Danny Driess, Avinava Dubey, Chelsea Finn,
et al. 2023. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv
preprint arXiv:2307.15818.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jas-
mine Hsu, et al. 2022. Rt-1: Robotics transformer
for real-world control at scale. arXiv preprint
arXiv:2212.06817.

Paweł Budzianowski, Wesley Maa, Matthew Freed,
Jingxiang Mo, Aaron Xie, Viraj Tipnis, and Benjamin

Bolte. 2024. Edgevla: Efficient vision-language-
action models. environments, 20:3.

Shaofei Cai, Zihao Wang, Kewei Lian, Zhancun
Mu, Xiaojian Ma, Anji Liu, and Yitao Liang.
2024a. Rocket-1: Master open-world interaction
with visual-temporal context prompting. arXiv
preprint arXiv:2410.17856.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and
Yitao Liang. 2023. Open-world multi-task con-
trol through goal-aware representation learning and
adaptive horizon prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 13734–13744.

Shaofei Cai, Bowei Zhang, Zihao Wang, Haowei Lin,
Xiaojian Ma, Anji Liu, and Yitao Liang. 2024b.
Groot-2: Weakly supervised multi-modal instruction
following agents. arXiv preprint arXiv:2412.10410.

Shaofei Cai, Bowei Zhang, Zihao Wang, Xiaojian Ma,
Anji Liu, and Yitao Liang. 2024c. Groot: Learning
to follow instructions by watching gameplay videos.
In The Twelfth International Conference on Learning
Representations.

Peng Chen, Pi Bu, Yingyao Wang, Xinyi Wang, Zim-
ing Wang, Jie Guo, Yingxiu Zhao, Qi Zhu, Jun
Song, Siran Yang, et al. 2025. Combatvla: An
efficient vision-language-action model for combat
tasks in 3d action role-playing games. arXiv preprint
arXiv:2503.09527.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xi-
angrui Meng, Sirui Hong, Wenhao Li, Zihao Wang,
Zekai Wang, Feng Yin, Junhua Zhao, et al. 2024. Ex-
ploring large language model based intelligent agents:
Definitions, methods, and prospects. arXiv preprint
arXiv:2401.03428.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. 2023. Diffusion policy: Visuomo-
tor policy learning via action diffusion. The In-
ternational Journal of Robotics Research, page
02783649241273668.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini,
et al. 2024. Molmo and pixmo: Open weights and
open data for state-of-the-art multimodal models.
arXiv preprint arXiv:2409.17146.

Jingwen Deng, Zihao Wang, Shaofei Cai, Anji Liu,
and Yitao Liang. 2025. Open-world skill discovery
from unsegmented demonstrations. arXiv preprint
arXiv:2503.10684.

Alexey Dosovitskiy. 2020. An image is worth 16x16
words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

17887

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang.
2024. Understanding emergent abilities of language
models from the loss perspective. arXiv preprint
arXiv:2403.15796.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in
Neural Information Processing Systems, 35:18343–
18362.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1–39.

William H Guss, Brandon Houghton, Nicholay Topin,
Phillip Wang, Cayden Codel, Manuela Veloso, and
Ruslan Salakhutdinov. 2019. Minerl: A large-scale
dataset of minecraft demonstrations. arXiv preprint
arXiv:1907.13440.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. 1991. Adaptive mixtures of
local experts. Neural Computation, page 79–87.

Moo Jin Kim, Chelsea Finn, and Percy Liang.
2025. Fine-tuning vision-language-action models:
Optimizing speed and success. arXiv preprint
arXiv:2502.19645.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti,
Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
Rafailov, Ethan Foster, Grace Lam, Pannag San-
keti, et al. 2024. Openvla: An open-source
vision-language-action model. arXiv preprint
arXiv:2406.09246.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang,
Bo Li, Wei Li, Zejun Ma, and Chunyuan Li. 2024a.
Llava-next-interleave: Tackling multi-image, video,
and 3d in large multimodal models. arXiv preprint
arXiv:2407.07895.

Xinghang Li, Peiyan Li, Minghuan Liu, Dong Wang,
Jirong Liu, Bingyi Kang, Xiao Ma, Tao Kong,
Hanbo Zhang, and Huaping Liu. 2024b. Towards
generalist robot policies: What matters in build-
ing vision-language-action models. arXiv preprint
arXiv:2412.14058.

Zaijing Li, Yuquan Xie, Rui Shao, Gongwei Chen,
Dongmei Jiang, and Liqiang Nie. 2024c. Optimus-
1: Hybrid multimodal memory empowered agents
excel in long-horizon tasks. arXiv preprint
arXiv:2408.03615.

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba,
and Sheila McIlraith. 2024. Steve-1: A generative
model for text-to-behavior in minecraft. Advances in
Neural Information Processing Systems, 36.

Haowei Lin, Baizhou Huang, Haotian Ye, Qinyu Chen,
Zihao Wang, Sujian Li, Jianzhu Ma, Xiaojun Wan,
James Zou, and Yitao Liang. 2024. Selecting large
language model to fine-tune via rectified scaling law.
arXiv preprint arXiv:2402.02314.

Haowei Lin, Zihao Wang, Jianzhu Ma, and Yitao Liang.
2023. Mcu: A task-centric framework for open-
ended agent evaluation in minecraft. arXiv preprint
arXiv:2310.08367.

Meta. 2024. Llama 3.2: Revolutionizing edge ai and
vision with open, customizable models.

Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhi-
ram Maddukuri, Abhishek Gupta, Abhishek Padalkar,
Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
Mandlekar, et al. 2023. Open x-embodiment:
Robotic learning datasets and rt-x models. arXiv
preprint arXiv:2310.08864.

OpenAI. 2023. Chatgpt: Optimizing language models
for dialogue.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Rong-
hang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura
Gustafson, et al. 2024. Sam 2: Segment any-
thing in images and videos. arXiv preprint
arXiv:2408.00714.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari,
Joey Hejna, Tobias Kreiman, Charles Xu, et al. 2024.
Octo: An open-source generalist robot policy. arXiv
preprint arXiv:2405.12213.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,

17888

http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/
trl.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2024a. Voyager: An open-ended
embodied agent with large language models. Trans-
actions on Machine Learning Research.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024b. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xi-
aojian Ma, Yitao Liang, and Team CraftJarvis. 2023.
Describe, explain, plan and select: interactive plan-
ning with large language models enables open-world
multi-task agents. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, pages 34153–34189.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, et al. 2024c.
Jarvis-1: Open-world multi-task agents with memory-
augmented multimodal language models. IEEE
Transactions on Pattern Analysis and Machine In-
telligence.

Zihao Wang, Shaofei Cai, Zhancun Mu, Haowei Lin,
Ceyao Zhang, Xuejie Liu, Qing Li, Anji Liu, Xi-
aojian Ma, and Yitao Liang. 2024d. Omnijarvis:
Unified vision-language-action tokenization enables
open-world instruction following agents. Advances
in Neural Information Processing Systems.

Zihao Wang, Haowei Lin, Ruilin Yan, Xiangyu Wang,
Jiaqi Li, Weiye Shi, Xiaojian Ma, Anji Liu, Yitao
Liang, et al. 2024e. Optimizing inference-time rea-
soning in llms via retrieval-augmented reflection.
arXiv preprint arXiv:2403.05313.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng
Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu, Hang
Li, and Tao Kong. 2023. Unleashing large-scale
video generative pre-training for visual robot manip-
ulation. arXiv preprint arXiv:2312.13139.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter
Abbeel, and Dale Schuurmans. 2023. Foundation

models for decision making: Problems, methods, and
opportunities. arXiv preprint arXiv:2303.04129.

Jianke Zhang, Yanjiang Guo, Xiaoyu Chen, Yen-Jen
Wang, Yucheng Hu, Chengming Shi, and Jianyu
Chen. 2024. Hirt: Enhancing robotic control with
hierarchical robot transformers. arXiv preprint
arXiv:2410.05273.

Jianke Zhang, Yanjiang Guo, Yucheng Hu, Xiaoyu
Chen, Xiang Zhu, and Jianyu Chen. 2025. Up-vla:
A unified understanding and prediction model for
embodied agent. arXiv preprint arXiv:2501.18867.

Guangyu Zhao, Kewei Lian, Haowei Lin, Haobo Fu,
Qiang Fu, Shaofei Cai, Zihao Wang, and Yitao Liang.
2024. Optimizing latent goal by learning from trajec-
tory preference. arXiv preprint arXiv:2412.02125.

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng
Yang, Xin Yan, Yilun Du, Yining Hong, and
Chuang Gan. 2024. 3d-vla: A 3d vision-language-
action generative world model. arXiv preprint
arXiv:2403.09631.

Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jian-
feng Gao, Hal Daumé III, Andrey Kolobov, Furong
Huang, and Jianwei Yang. 2024. Tracevla: Visual
trace prompting enhances spatial-temporal aware-
ness for generalist robotic policies. arXiv preprint
arXiv:2412.10345.

Sipeng Zheng, Jiazheng Liu, Yicheng Feng, and
Zongqing Lu. 2023. Steve-eye: Equipping llm-
based embodied agents with visual perception in
open worlds. arXiv preprint arXiv:2310.13255.

Yifan Zhong, Xuchuan Huang, Ruochong Li, Ceyao
Zhang, Yitao Liang, Yaodong Yang, and Yuanpei
Chen. 2025. Dexgraspvla: A vision-language-action
framework towards general dexterous grasping.

Enshen Zhou, Yiran Qin, Zhenfei Yin, Yuzhou Huang,
Ruimao Zhang, Lu Sheng, Yu Qiao, and Jing Shao.
2024. Minedreamer: Learning to follow instructions
via chain-of-imagination for simulated-world control.
arXiv preprint arXiv:2403.12037.

Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen,
Ning Liu, Zhiyuan Xu, Weibin Meng, Ran Cheng,
Yaxin Peng, Chaomin Shen, et al. 2025. Chatvla:
Unified multimodal understanding and robot control
with vision-language-action model. arXiv preprint
arXiv:2502.14420.

Minjie Zhu, Yichen Zhu, Jinming Li, Zhongyi Zhou,
Junjie Wen, Xiaoyu Liu, Chaomin Shen, Yaxin Peng,
and Feifei Feng. 2025. Objectvla: End-to-end open-
world object manipulation without demonstration.

17889

https://github.com/huggingface/trl
https://github.com/huggingface/trl

A Observation and Action Space

We rely solely on visual images for observation, without any symbolic information, similar to VPT (Baker
et al., 2022). Notably, we increase the image resolution to 644×364, providing significantly more visual
detail than VPT (128×128), which helps JARVIS-VLA better perceive the environment.

To closely mimic human behavior, our action space includes all possible player actions except for
arbitrary text input. We allocate reserved tokens outside the original VLM vocabulary to represent keypress
and click actions. For mouse movements, we follow VPT (Baker et al., 2022), using µ-law encoding
to discretize X and Y axes separately into 21 bins (42 tokens total), each mapped to a reserved token.
Although Qwen2-VL (Wang et al., 2024b) does not explicitly support reserved tokens like Llama3 (Meta,
2024), we can add special tokens by expanding the vocabulary, since its embedding table is underutilized.
Table 3 shows the action space JARVIS-VLA uses. During inference, the model predicts actions token by
token: key/button actions first, followed by camera movements (Pitch and Yaw).

Table 3: The action space we use in Minecraft.

Index Action Human Action Description

1 Forward key W Move forward.
2 Back key S Move backward.
3 Left key A Strafe left.
4 Right key D Strafe right.
5 Jump key Space Jump. When swimming, keeps the player afloat.
6 Sneak key left Shift Slowly move in the current direction of movement.
7 Sprint key left Ctrl Move quickly in the direction of current motion.
8 Attack left Button Destroy blocks (hold down); Attack entity (click once).
9 Use right Button Interact with the block.

10 hotbar:[1-9] keys 1 - 9 Selects the appropriate hotbar item.
11 Inventory key E Open/Close the inventory.
12 Yaw move Mouse X Turning; aiming; camera movement.
13 Pitch move Mouse Y Turning; aiming; camera movement.

B Training Configurations

The training configurations for both Visual-Language Post-Training and Action Post-Training are largely
consistent. All experiment were conducted on NVIDIA A800-SXM4-80GB GPUs, utilizing CUDA
version 12.1 and Hugging Face Transformers version 4.47.0. Both training stages utilized the AdamW
optimizer with β1 = 0.9, β2 = 0.95, weight decay were set to 0, and ϵ = 1×10−8. A cosine learning rate
schedule was adopted with the learning rate of 5× 10−6 and a warmup of 200 steps. The training used
bfloat16 precision, a maximum gradient norm of 1.0, and a fixed random seed of 42. To accelerate
training, DeepSpeed with ZeRO-1 (Rasley et al., 2020)optimization was employed. For Visual-Language
Post-Training, the maximum token length was set to 3584, and we set a batch size per device of 2 and a
gradient accumulation of 4 . For Action Post-Training, the maximum token length was set to 512, which
allowed a batch size per device of 8 and a gradient accumulation of 1 step per update. Ensuring that the
total batch size remained 256. Both stages were trained using 32 A800 GPUs, with the Visual-Language
Post-Training phase running for 128 GPU hours and the Action Post-Training phase running for 512 GPU
hours.

To enhance generalization, distinct data augmentation strategies were adopted for different training
phases. In the Visual-Language Post-Training phase, modifications included adjustments to hue,
saturation, brightness, contrast, as well as random translation, rotation, slight scaling variations, shearing,
and occasional flipping. These adjustments extended to bounding box and pointing annotations, with
necessary masking of instruction-following prompts. In contrast, the Action Post-Training phase focused
on adjusting hue, saturation, brightness, contrast, and translation, applied only on images.

17890

C Details of Inference

During inference, JARVIS-VLA is expected to output actions in a format consistent with the gameplay
dataset, as illustrated below:

Example of JARVIS-VLA Interaction for One Turn of Iteration

Instruction: Craft a bread so I can use it.
Arrange the materials in the crafting grid according to the following pattern:
wheat | wheat | wheat
wheat | wheat | wheat
and get 1 bread.
Observation:

Action:
<|action_begin|><|cam_w_13|><|cam_h_5|><|action_end|>
<|action_begin|><|use|><|cam_w_3|><|cam_h_2|><|action_end|>

Action Chunking Strategy
To optimize both inference speed and predictive performance, we designed an adaptive action chunking
strategy that varies the number of predicted actions per observation across different operational phases.
The strategy begins with a chunk size of one action per observation during Action Post-Training to
ensure precise policy alignment. In the subsequent fine-tuning stages, the chunk size is increased to three
to accelerate learning. Finally, during inference, the model generates two actions per prediction step,
balancing stability and efficiency.

To validate this multi-phase chunking approach, we conducted experiments on the MCU (Lin et al.,
2023) tasks using Qwen2-VL-2B (Wang et al., 2024b) as the base model. The results are presented in
Table 4. This ablation study suggests that employing longer action chunks during advanced training stages
and a moderate chunk size for inference can improve both success rates and FPS.

Table 4: Ablation study on action chunk sizes. "APT Chunks" denotes Action Post-Training chunks, and "FT Chunks" denotes
Subsequent Fine-tuning chunks.

APT Chunks FT Chunks Inference Chunks FPS Success Rate

1 1 1 8 0.47
1 3 1 8 0.53
1 3 2 15 0.67
1 3 3 21 0.20
3 3 1 8 0.03

As shown in Table 4, the chunking strategy of using one action per observation during Action Post-
Training, three during Further Fine-tuning, and two during Inference (1 → 3 → 2) achieved the highest
success rate (0.67) and a solid frame rate (15 FPS) in this specific ablation. We did not explore chunk
sizes larger than three, as the Minecraft environment changes rapidly with each discrete action. Predicting
multiple future actions in such a dynamic setting poses a significant challenge.

17891

It is also important to clarify the choice of inference chunk size in our main results. To ensure a rigorous
and fair comparison with baseline models such as Qwen2-VL (raw) and Qwen2-VL (IL)—which both
operate with a single predicted action—we configured JARVIS-VLA to use an inference chunk size of
one in our primary experiments. While this setting facilitates direct comparison, our ablation results 4
suggest that a chunk size of two at inference may further improve both efficiency and task success under
alternative evaluation criteria.

Infrastructure for Efficient Inference

To facilitate efficient inference, JARVIS-VLA was served using the vLLM (Kwon et al., 2023) in
bfloat16 precision. This setup was typically deployed on four A800 GPUs. Compared to a standard
Hugging Face Transformers implementation, vLLM increased the inference throughput of JARVIS-VLA
by up to 1.7 times, without introducing any significant degradation in task performance.

Achieved Inference Performance

The final inference speed reflects both the action chunking strategy and infrastructure optimizations. In
our main results, which use single-action inference for fair comparison, JARVIS-VLA-Qwen2-VL-7B
runs at 5.5 FPS, while JARVIS-VLA-Qwen2-VL-2B achieves 8 FPS—consistent with the results in rows
1 and 2 of Table 4. Notably, JARVIS-VLA-Qwen2-VL-2B can reach 15 FPS with a chunk size of two,
highlighting a trade-off we made in favor of direct benchmarking with baseline models.

D Datasets

In this section, we will introduce the collection methods and specific forms of the visual language post-
training datasets we used, including the world knowledge dataset, visual language alignment dataset, and
visual grounding dataset.

D.1 World Knowledge Dataset

We sourced content from Wikipedia and the DigMinecraft website, and generating 202K question
answering entries using the GPT-3.5-turbo model. The dataset have been adjusted to a uniform format. To
increase training efficiency, we randomly merged the original one-question-one-answer data to organize
multi-turn dialogue dataset with lengths of approximately 1500-2000 tokens each. Below is the specific
format of the world knowledge dataset.

17892

Example of World Knowledge Dataset

Question: "What are the different items that can be made using dark oak planks in Minecraft?"
Answer: "In Minecraft, you can use dark oak planks to craft various items and blocks. Here are some of the items and
blocks you can make with dark oak planks:
1. Dark Oak Wood Slabs: Used for flooring, roofs, and other building elements.
2. Dark Oak Wood Stairs: Ideal for creating inclined pathways or staircases.
3. Dark Oak Wood Fence: Useful for creating boundaries or enclosures around structures.
4. Dark Oak Wood Fence Gate: Allows for openings in your fences for easy access.
5. Dark Oak Wood Door: Adds entrances to your buildings.
6. Dark Oak Wood Trapdoor: Can serve as hidden entrances or functional hatches.
7. Dark Oak Wood Button: Can be placed on surfaces and used to activate various redstone mechanisms.
8. Dark Oak Wood Pressure Plate: Activates redstone contraptions when stepped on.
9. Dark Oak Wood Sign: Useful for displaying text and providing information in your world.
10. Dark Oak Wood Bed: Used to craft the frame of a bed, combined with wool blocks for a complete bed.
11. Dark Oak Wood Boat: Useful for water transportation.
12. Dark Oak Wood Chest: Can be used to craft storage chests.
13. Dark Oak Wood Bookshelf: Decorative and enhances enchantment tables.
14. Petrified Oak Slab: Made from dark oak logs submerged in water and then crafted into planks and slabs. These
items enhance functionality and aesthetics in your Minecraft builds."

Question: "How can players build and use automatic farms in Minecraft, and what are some efficient designs?"
Answer: "In Minecraft, automatic farms are structures designed to automatically harvest resources without requiring
constant player intervention. These farms can be extremely useful for gathering various resources efficiently. Here,
I’ll provide a general overview of how to build and use automatic farms, along with examples of efficient designs for
different types of farms:
1. Crop Farms: Automated crop farms are used to grow and harvest crops like wheat, carrots, potatoes, and more.
Efficient design: - Create a water-based system to hydrate the farmland. A water source in the middle with canals
leading to the farmland is a common approach. - Use a dispenser to plant seeds or crops onto the farmland. - Attach a
redstone clock to the dispenser to periodically activate it. - Collect the harvested items using hoppers and chests.
2. Mob Farms: These farms are used to automatically collect drops from hostile mobs, such as zombies, skeletons, and
creepers. Efficient design: - Build a dark room where mobs will spawn naturally. Use trapdoors, pressure plates, or a
combination to restrict mob movement. - Use water currents to funnel mobs into a kill chamber. - Create a killing
mechanism using either lava blades, suffocation, or other methods. - Use water currents again to collect drops and
funnel them into hoppers for collection.
3. Animal Farms: Automated animal farms can help you gather resources from passive mobs like cows, pigs, and
chickens. Efficient design: - Create separate pens for each type of animal. - Use a breeding mechanism to maintain a
stable population. Dispensers with food (like wheat for cows) can automatically breed animals. - Include a killing
mechanism for excess animals, providing a steady supply of drops. - Use water currents and hoppers to collect drops
into chests.
4. Tree Farms: Automated tree farms allow you to grow and harvest trees without manual effort. Efficient design: -
Plant saplings in rows using dispensers and bone meal. - Use a mechanism to cut down the trees. This can be achieved
using flying machines or TNT-based contraptions. - Use water currents to collect the dropped wood and saplings into
hoppers and chests.
5. Fishing Farms: Automated fishing farms simulate fishing to gather loot and experience points. Efficient design: -
Build a platform with water sources, a fishing rod dispenser, and a mechanism to reel in the fishing rod. - Create a
hopper system to collect items caught from the fishing process.
Remember that the efficiency of these designs can vary depending on your Minecraft version and specific game settings.
Additionally, always consider ethical and environmental factors when designing and using automated farms in your
gameplay."

D.2 Vision Language Alignment Dataset

For the construction of Vision Language Alignment Dataset, we employed a multi-step approach to gather
and process data. Initially, we sourced images from a variety of online platforms, including YouTube
gameplay videos, contractor-provided screenshots (Baker et al., 2022), and other internet resources. We
carefully selected 35,000 keyframes from these sources based on criteria such as brightness and visual
complexity to ensure the quality of the dataset. Subsequently, we utilized advanced Vision-Language
Models—such as GPT-4o (OpenAI, 2023), Claude 3.5 Sonnet (Anthropic, 2024), and Molmo (Deitke
et al., 2024)—to generate contextual image question-answer pairs, critical in creating a rich, semantically
detailed dataset that bridges visual content and linguistic annotations. To enhance the reliability of the
generated data, we implemented a robust query-validation pipeline. This pipeline employed Llama-3.1-
70B (Dubey et al., 2024) to systematically filter out ambiguous questions and validate the accuracy of the
generated answers. Additionally, it included a validation step to ensure that the question-answer pairs

17893

were relevant to the associated images. To further diversify our dataset, we specifically allocated nearly
half of the vision-question-answer pairs for caption generation, employing the advanced capabilities of
GPT-4o. Through the implementation of our comprehensive pipeline, we successfully generated a Vision
Language Alignment Dataset comprising 15,000 captions and 20,000 visual question answering dataset.

Example of Vision Language Alignment Datasets

Question: "What tool is the player holding?"

Answer: "The player is holding a pickaxe with an enchantment glow, likely a diamond pickaxe due to its color."

Question: "What type of block is being mined by the player?"

Answer: "The player is mining a stone block."

Question: "What color is the liquid at the top of the image?"

Answer: "The liquid at the top of the image is orange, indicating it is lava."

Question: "How many inventory slots does the player have in total (visible on the hotbar)?"

Answer: "The player has 9 inventory slots visible on the hotbar."

D.3 Visual Grounding dataset

For Visual Grounding Dataset, we adopted different collection methods for 3D environments and GUI
interactions within Minecraft.

In 3D environment, we sample images from the contractor data. We initially identify objects that are
interacting with the player at a specific moment in the video. Then implementing Backward Trajectory
Relabeling (Cai et al., 2024a) by sam2 (Ravi et al., 2024) to accurately trace the positions of objects up to
t frames backward, which tend to be in more random positions.

For 2D GUI interactions, we directly utilized inventory messages provided by Minecraft in rollouts to
determine the positions of items within the inventory. Given that each slot in the inventory has a fixed
position, we can directly ascertain the points of items. To enhance the randomness of the data distribution,
we performed cropping on the data to make the point distribution more uniformly distributed.

In total, we have collected 404K point data from these efforts, mapping real-time entity and object
positions during scripted tasks effectively.

17894

Example of Vision Grounding Datasets

Question: "Show the location of torch in the provided image by outlining it with a bbox."

Answer: "<|object_ref_start|>torch<|object_ref_end|><|bbox_start|>(453,333),(563,528)<|bbox_end|>"

Question: "Illustrate the precise position of the iron boots in this image, returning the location in points."

Answer: "<|object_ref_start|>iron boots<|object_ref_end|><|point_start|>(356,446),(386,494)<|point_end|>"

E Benchmarks

In this section, we will introduce our benchmark to test the capability of the Visual Language Models. We
also divide the benchmarks into three sections: world knowledge evaluation, visual recognition evaluation,
and spatial grounding evaluation. For the first two datasets, we wrote most of them ourselves, while others
were obtained from freely available examples on the Internet. We organized them into open question and
answer formats. For the spatial grounding evaluation tasks, we adopted the same method to collect data as
for the Visual Grounding Dataset D, ensuring that the test set does not overlap with the training dataset.
Below is a detailed introduction:

E.1 World Knowledge Evaluation

For World Knowledge Evaluation, we divided it into eight subcategories: craft, plant, mobs, kill, enchant,
potion, biomes, and architecture, with a total of 47 test questions. For each entry, we provided the correct
answer. A detailed description is shown in Table 5.

17895

Table 5: Summary of Minecraft knowledge questions and answers evaluation.

Category Quantity Example Question Example Answer

Craft 9 What materials are needed to craft a juke-
box in Minecraft?

8 Planks and 1 Diamond.

Plant 5 What is the maximum height sugarcane
can reach in Minecraft?

3.

Mobs 12 What happens when a creeper gets struck
by lightning in Minecraft?

A creeper becomes a charged creeper.

Kill 3 Can shield block crossbow attack in
Minecraft?

No.

Enchant 3 What happens if the player puts on an
item with the Curse of Binding enchant-
ment in Minecraft?

It cannot be removed until the item
breaks or the player dies.

Potion 4 What materials are needed to craft a po-
tion of poison in Minecraft?

Water bottle, Nether wart, blaze powder,
spider eye.

Biomes 4 Which biome is the only place you can
find blue orchids in Minecraft?

Swamp.

Architecture 7 How many chests are typically found in
a shipwreck in Minecraft?

1 to 3.

Knowledge Evaluation

Question: In Minecraft, what type of tool is best suited for digging Mycelium?
GPT-4o: A shovel is the best tool for digging Mycelium. [Explanation: In Minecraft, Mycelium is a block that can be quickly
and efficiently broken using a shovel. Like other dirt-based blocks, using a shovel will speed up the process, making it much
faster than breaking it by hand or with other tools. Additionally, enchantments like Efficiency on your shovel can further
increase the speed at which you can dig Mycelium.]
Qwen2-VL: A Pickaxe. [Explanation: Mycelium is a special type of grass block in Minecraft that can only be found in The
Nether, a dimension that can only be entered after the player has crafted the Nether Portal. To dig Mycelium, you will need to
have a Pickaxe in your inventory. The Pickaxe is a tool that is used for digging, breaking, and mining blocks. It is the most
efficient and effective tool for digging Mycelium because it has a higher efficiency for breaking blocks than other tools.]
JARVIS-VLA-Qwen2-VL:A shovel is the best tool for digging Mycelium in Minecraft.

E.2 Vision Understanding Evaluation

For Vision Understanding Evaluation, we divided it into five subcategories: scene, object, info, inventory,
and OCR, comprising a total of 43 test questions. For each entry, we provided an image along with the
correct answer. A detailed description can be found in Table 6. Specifically, the Scene category involves
the game environment, including biomes, time, and weather; the Object category relates to objects within
the player’s view; and the Info category includes aspects of the player’s experience, health, hunger, and
hotbar status.

17896

Table 6: Summary of Vision Understanding Evaluation.

Category Quantity Image Example Question Example Answer

Scene 11 What biome you
think is the player
currently in?

Mushroom Fields
biome.

Object 13 Are there any
hostile mobs in the
picture?

No, there are only 4
pigs in the picture.

Info 7 Is the player’s
hunger bar
currently full?

No.

Inventory 6 Is there any oak
wood in the
inventory?

Yes, there are oak
wood planks in the
inventory.

OCR 6 What instructions
are visible on the
screen?

Open your
inventory Press e.

Vision Understanding Evaluation Examples

Question: What time of day is it in the game?
GPT-4o: It is difficult to determine the exact time of day in the game due to the rainy weather, which can create a
darkened sky. However, based on the darkness of the surroundings, it appears to be night or close to night. Rain in
Minecraft makes it harder to see the exact position of the sun or the moon, but the overall dim lighting suggests it is
either late evening or night time.
Qwen2-VL: It is daytime in the game. The bright light and the visible sky indicate that it is daytime.
JARVIS-VLA-Qwen2-VL: The time of day in the game is night. This can be determined by the dark sky and the
presence of rain in the screenshot. In Minecraft, night begins when the sun sets and the moon rises. During nighttime,
the sky darkens, and if it’s raining, you’ll see rain particles falling from the sky. Additionally, night is a more dangerous
time in Minecraft as hostile mobs spawn more frequently.

E.3 Spatial Grounding Evaluation

For Spatial Grounding Evaluation, we used 100 GUI data entries and 236 embodied data entries, as seen
in Table 7. We required the model to output the points location of a specified object in the image. If there
were no points, the bounding box would be used as a substitute. The output results will be normalized to
the range [0, 1000).

17897

Table 7: Summary of spatial grounding evaluation results for visual grounding tasks.

Category Quantity Image Example Question Example Answer

GUI 100 Point the wheat_seeds [284,206]

Embodied 236 Point the oak_leaves. [315,174]

Model Model Size
World Knowledge Visual Understanding Visual Grounding

Acc Rank Acc Rank Acc Rank

GPT-4o (Achiam et al., 2023) - 96.6 1 76.7 1 - -
GPT-4o-mini (Achiam et al., 2023) - 75.9 2 62.8 4 - -

Llava-Next (Li et al., 2024a) 8B 19.0 8 41.9 10 - -
Molmo-d-0924 (Deitke et al., 2024) 7B 12.1 10 58.1 5 24.8 3
Llama-3.2 (Meta, 2024) 11B 20.7 7 44.2 9 - -
Qwen2-VL (Wang et al., 2024b) 7B 17.3 9 46.5 7 16.6 5

Qwen2-VL (Knowledge) 7B 65.5 5 46.5 7 16.6 5
Qwen2-VL (Vision) 7B 62.1 6 65.1 3 19.8 4
Qwen2-VL (Grounding) 7B 67.2 4 51.2 6 63.6 2
JARVIS-VLA-Qwen2-VL 7B 70.7 3 76.7 1 88.0 1

Table 8: We compared the performance of various VLMs using our benchmark, including commercial large models (GPT-4 and
GPT-4-mini (OpenAI, 2023)), open-source models (Llava-Next (Li et al., 2024a), Molmo-d-0924 (Deitke et al., 2024), Llama-
3.2 (Meta, 2024), and Qwen2-VL (Wang et al., 2024b)), as well as JARVIS-VLA. The results demonstrate that our method
significantly enhances the core capabilities of these models, although there remains a gap when compared to state-of-the-art
models.

E.4 Evaluation Metric and Result
We designed a customized evaluation method to assess the performance of models in answering the ques-
tions. For World Knowledge Questions and Visual Understanding Questions, we explore the utilization of
LLMs as judges. We selected GPT-4o (OpenAI, 2023), a state-of-the-art LLM to serve as the judge. The
judge model first reviews the responses and compares them to a set of expertly crafted reference answers.
Subsequently, the judge assigns a score of correct or incorrect. For visual grounding tasks, we directly
score the responses of the evaluated model based on a rule-based approach. Below are the performances
of some models we are interested in under our benchmark: Table 8.

F Ablation with different Pre-trained VLMs

In this section, we examine the impact of prior training on a VLMs regarding the robustness of the model’s
backbone. VLMs vary in their decision-making capabilities due to differences in training data. We
highlight this and emphasize the influence of the VLM training architecture on the VLA.

We compare two models, Llava-Next (Li et al., 2024a) and Qwen2-VL (Wang et al., 2024b), which
utilize different pretraining datasets and image processing techniques. Their raw VLM performances and
post-training results on various auxiliary tasks, along with downstream imitation learning outcomes, are
presented in Table ??.

Both Llava-Next and Qwen2-VL demonstrated more than a 30% increase in downstream task success
rates after undergoing ActVLP post-training. Indicating that improving model performance through
visual language post-training is robust across different models.

17898

Model Diamond Sword Ladder Cooked Beef Iron Ingot

Qwen2-VL(raw) 0.53 0.40 0.03 0.10
Qwen2-VL-7B (one-stage) 0.10 0.40 0.07 0.13
ActVLP-Qwen2-VL 0.83 0.63 0.77 0.70

Table 9: Success rates comparing different training paradigms on selected Minecraft tasks. ’raw’ refers to the Qwen2-VL baseline
fine-tuned directly. ’RT-2 (1-stage co-finetuning)’ corresponds to the Qwen2-VL-7B (one-stage) baseline. ’Act-VLP (3-stage
post-training)’ represents our ActVLP-Qwen2-VL approach.

17899

