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Abstract

Language changes over time, including in the
hate speech domain, which evolves quickly
following social dynamics and cultural shifts.
While NLP research has investigated the im-
pact of language evolution on model training
and has proposed several solutions for it, its
impact on model benchmarking remains under-
explored. Yet, hate speech benchmarks play a
crucial role to ensure model safety. In this pa-
per, we empirically evaluate the robustness of
20 language models across two evolving hate
speech experiments, and we show the temporal
misalignment between static and time-sensitive
evaluations. Our findings call for time-sensitive
linguistic benchmarks in order to correctly and
reliably evaluate language models in the hate
speech domain.

1 Introduction

Language continuously evolves adapting to social
and cultural dynamics (Altmann et al., 2009; Eisen-
stein et al., 2014; Labov, 2011), e.g., words gain
new meanings or lose their existing ones, words
shift polarity, and new words emerge. This lan-
guage evolution challenges NLP models across dif-
ferent domains (Alkhalifa et al., 2023; Luu et al.,
2022), with hate speech being one of the most chal-
lenging due to the semantic broadening of harm-
related concepts in the past 50 years (Vylomova
and Haslam, 2021), frequent changes in words’
polarity (McGillivray et al., 2022), and reclaimed
language (Zsisku et al., 2024). Indeed, Di Bonaven-
tura et al. (2025) recently show that language mod-
els’ distributional knowledge can be enhanced with
temporal linguistic knowledge to effectively de-
tect and explain hateful content. While NLP re-
search has extensively investigated the impact of
hate speech evolution in model training paradigms,
showing that temporal misalignment between train-
ing and test sets leads to decreasing performance
over time (i.e., temporal bias) across models and
languages (Florio et al. 2020; Jin et al. 2023, inter

alia), the implications of evolving hate speech in
model benchmarking have not been explored.

Yet, hate speech benchmarks play a crucial role
as they are widely embedded in the safety evalua-
tion of language models (e.g., Gehman et al. 2020;
Liang et al. 2023; Ying et al. 2024), which are
increasingly used in real-world applications and
decision making (Bavaresco et al., 2024; Zheng
et al., 2023). Although these benchmarks provide
a comprehensive comparison of language models
that would not be possible with held-out test sets,
they face the same issue: they are static. In other
words, they are grounded to the specific times-
tamp in which they were developed, and conse-
quently they cannot account for language change.
We argue that evolving hate speech plays a role in
the reliability of static model benchmarking over
time, potentially leading to an overestimation of
language models’ safety in light of well-known is-
sues like temporal bias and benchmark saturation
(Sainz et al., 2023a,b). Therefore, we seek to an-
swer “how does static hate speech benchmarking
correlate with evolving language?”.

By providing empirical evidence of this tempo-
ral challenge in model benchmarking, we hope our
study will raise awareness in the risks associated
with static evaluations of language models, and will
fuel research towards time-sensitive evaluations of
NLP models in a similar way in which studies that
investigated the impact of language evolution on
model training led to the development of alterna-
tive solutions, e.g., temporal attention (Rosin and
Radinsky, 2022) or the injection of time-sensitive
lexical information (McGillivray et al., 2022).

2 Evolving Hate Speech

To answer our research question, we first design
two experiments for evolving hate speech detection
accounting for different aspects of language evo-
lution, and we propose two time-sensitive metrics
to evaluate language models. Then, we evaluate
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the same models on static hate speech benchmarks,
and we measure the correlation in models’ ranking
across time-sensitive and static evaluations.1

Experiment 1: Time-Sensitive Shifts. We in-
vestigate contextual evolution of hate speech, fo-
cusing on time-sensitive shifts, such as semantic,
topical, and polarity changes. For instance, the
word ‘gammon’ has undergone multiple transfor-
mations simultaneously (McGillivray et al., 2022):
a semantic change from referring to food (ham)
to a political insult; a topic shift towards political
discourse; and a polarity shift towards negativity.
In contrast, certain terms targeting Asian commu-
nities predominantly experienced a polarity shift,
becoming more offensive during the Coronavirus
pandemic (Huang et al., 2023). Moreover, time-
sensitive shifts might manifest as changes in the
cultural perception of what is considered offensive,
e.g., reclaimed slurs. These time-sensitive shifts
are notoriously difficult to disentangle (Luu et al.,
2022), and we do not attempt to do so in this work.
Instead, we aim to quantify how their complex in-
terplay affects model performance over time, and in
turn how this time-sensitive performance correlates
with performance on static benchmarks. To study
this, we use the English version of the Singapore
Online Attack dataset (Haber et al., 2023) as it has
the biggest and most recent coverage of annotated
texts with timestamp information for hate speech
research (i.e., 2011-2022 Reddit posts). We evalu-
ate models with time-sensitive macro F1 defined
as 1

T

∑T
t=1 F1t, where F1t is the macro-averaged

F1 specific to year t. This allows to measure how
well language models adapt to evolving contexts
of hate speech due to yearly time-sensitive shifts.
Ideally, we want language models to exhibit high
and stable time-sensitive F1 scores over time. We
limit the analysis to 2017-2022 as there were not
enough data before 2017.

Experiment 2: Vocabulary Expansion. We ex-
amine language expansion, focusing on the emer-
gence of neologisms, i.e., newly coined terms
that have entered our vocabulary. To measure
model robustness to this type of language evo-
lution, we extend the NeoBench dataset (Zheng
et al., 2024) to the task of hate speech detec-
tion. Specifically, NeoBench contains pairs of
sentences (s1, s2) where s2 differs from s1 by
the replacement of a target word with a neolo-

1The data and code are available at https://github.
com/ChiaraDiBonaventura/hatevolution/tree/
main.

gism while ensuring same part of speech and same
meaning of s1. Neologisms are collected between
2020-2023 and account for three types of vocab-
ulary expansion, namely lexical, morphological,
and semantic. Lexical neologisms include new
words, phrases, and acronyms representing new
concepts—e.g., ‘long covid’. Morphological neol-
ogisms instead are words that derive from existing
words either through blending or splintering—e.g.,
‘doomscrolling’. Semantic neologisms refer to ex-
isting words with new meanings—e.g., ‘ice’ to in-
dicate petrol- or diesel-powered vehicles. We man-
ually annotate the Reddit sample of NeoBench as
either hateful or non-hateful, reaching a substan-
tial average inter-annotators’ agreement (Cohen’s
Kappa = 0.67 (Cohen, 1960)) across three anno-
tators. We take the majority vote as groundtruth.
As a result, we have 341 annotated sentences s1
paired with their 341 counterfactuals s2 contain-
ing the neologisms in place of the target words.
We evaluate models using counterfactual invari-
ance, i.e., a formalization of the requirement that
changing irrelevant parts of the input (i.e., replacing
target words with neologisms) should not change
model predictions (Veitch et al., 2021). We de-
compose the counterfactual invariance into label
flipping (i.e., rate of how often the model flipped
the label when seeing the counterfactual s2 wrt
s1) and hallucination (i.e., rate of how often the
model does not follow the instruction when given
the counterfactual s2 but does follow the instruction
when given s1). Mathematically, we define label
flip = 1

N

∑N
i=1 1(ŷi(s1) ̸= ŷi(s2)) and hallucina-

tion = 1
N

∑N
i=1 1(v(s2,i) = 1∧v(s1,i) = 0) where

v(·) is 1 if model hallucinates, 0 otherwise. Ideally,
we want language models to be robust against coun-
terfactuals showing low label flip and hallucination
rates, paired with high macro F1 score, which high-
light their robustness to vocabulary changes and
their ability to generalize to new words.

Models. We zero-shot prompt 20 language mod-
els widely used in established hate speech and state-
of-the-art research (Table 1). We use the verbalisa-
tion of Plaza-del arco et al. (2023), which is shown
to lead to the best performance in hate speech de-
tection. As baseline, we take the averaged scores
of the latest versions of the TimeLMs collection
fine-tuned for hate speech detection (Loureiro et al.,
2022; Antypas et al., 2023). Cf. App. A.

Static Benchmarks. We select established hate
speech benchmarks: HateXplain (Mathew et al.,
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Model Commercial Toxicity
finetuned

Data
cutoff

FLAN-Alpaca ✗ ✓ -
FLAN-T5 ✗ ✓ 2022/11
mT0 ✗ ✗ 2022/11
RoBERTa-dyna-r1 ✗ ✓ 2022/06
RoBERTa-dyna-r2 ✗ ✓ 2022/06
RoBERTa-dyna-r3 ✗ ✓ 2022/06
RoBERTa-dyna-r4 ✗ ✓ 2023/03
GPT-3.5-turbo ✓ - 2021/09
GPT-4o ✓ - 2023/10
Moderation API ✓ ✓ -
Perspective API ✓ ✓ -
DeepSeek LLM ✗ - -

Table 1: Model overview. ‘-’ if no available info.

2021), Implicit Hate Corpus (ElSherief et al., 2021),
HateCheck (Röttger et al., 2021), and Dynabench
(Kiela et al., 2021). Their selection is motivated by
the fact that each static benchmark captures a dis-
tinct dimension of hate speech, thereby contribut-
ing to a more comprehensive assessment. Specifi-
cally, we select the HateXplain and Implicit Hate
Corpus datasets to account for the dimensions of,
respectively, offensiveness and expressiveness of
hate speech, as described in Di Bonaventura et al.
(2025). We include HateCheck because its con-
struction aligns with the goals of Experiment 2,
where models are tested on sentence pairs dif-
fering only in the target term. Similarly, Hate-
Check features sentences that differ only by the
targeted group. Finally, we select Dynabench as it
is the only dynamic hate speech benchmark, built
from adversarial examples collected across mul-
tiple rounds over time. Note that the RoBERTa-
dyna-r1/2/3/4 models (Vidgen et al., 2021) in Table
1 have been fine-tuned on four consecutive Dyn-
abench rounds (i.e., dynamic adversarial training),
which however increases the risk of creating un-
realistic data distributions. Table 2 summarizes
the datasets used in our time-sensitive and static
evaluations.

Dataset Size Timestamp info Timestamp period
Singapore Online Attacks 3000 ✓ 2017-2022
NeoBench 682 ✓ 2020-2023
HateXplain 1924 ✗ -
Implicit Hate Corpus 2149 ✗ -
HateCheck 3729 ✗ -
Dynabench 4120 ✗ -

Table 2: Dataset overview. ‘-’ if not applicable.

3 Findings

Language models exhibit short- and long-term
volatility in hate speech detection across years.
Table 3 presents time-sensitive macro F1 by label,
and their average in the last column. Although
all models have data cutoffs equal to or later than
2021, they fail to generalise well to time-sensitive
shifts occurring between 2017 and 2022 as shown

by the significant changes in the macro F1 scores
year by year for both labels. In addition to this
volatile pattern year-by-year, we observe a long-
term pattern: most language models exhibit a de-
creasing performance in detecting hateful instances
and an increasing performance in detecting non-
hateful content between 2017 and 2022. For exam-
ple, mT0-large has macro F1 equal to .5045 and
.5455 for hateful and non-hateful labels, respec-
tively, in 2017. By 2022, it has instead .3811 and
.6290. As hate speech classifiers suffer from lexi-
cal overfit (e.g., Attanasio et al. (2022)), we argue
they tend to over-rely on older lexical associations
for which there is more evidence in the data (e.g.,
‘gammon’ as ham), and thus fail to recognise new-
er/emerging associations (e.g., ‘gammon’ as insult).
Clearly, this short-term and long-term volatility of
language models in evolving hate speech detection
poses real concerns regarding the safety robustness
of these models. Interestingly, dynamic adversar-
ial training does not make models more robust to
time-sensitive shifts: RoBERTa-dyna-r2/3/4 mod-
els which have been fine-tuned on more adversar-
ial examples than RoBERTa-dyna-r1 have lower
time-sensitive macro F1 than the latter. This cor-
roborates previous research showing that training
on adversarially-collected data for QA tasks was
detrimental to performance on non-adversarially
collected data (Bartolo et al., 2020). For the other
non-adversarially trained models instead, model
size improves the overall time-sensitive macro F1
score. The time-sensitive baseline is more robust
across years and labels but overall performs simi-
larly to small LLMs and DeepSeek LLM. GPT-4o
reaches the highest time-sensitive performance.

Language models are sensitive to counterfactu-
als containing neologisms. Table 4 shows how
often models flip the predicted label and gener-
ate hallucinations when they see the counterfac-
tual with respect to the reference sentence, and the
macro F1 performance in detecting hate speech
in those sentences. The label flip rates are sur-
prisingly high, considering that models’ cutoffs
have some overlap with the timeframe from which
the neologisms were sampled: 6 out of 20 mod-
els flip the label more than 10% of the time.2 In-
terestingly, counterfactuals have a greater impact
on making the model change its predicted label
than on generating a non-response, as evidenced

2We also controlled for time to measure the potential im-
pact of data contamination, and found no evidence (cf. Table
A2 and Table A3 in App. C).
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Model 2017 2018 2019 2020 2021 2022 2017 2018 2019 2020 2021 2022 Mean
FLAN-Alpaca-base .1111 .1026 .1985 .1789 .1533 .1148 .7143 .7853 .8346 .8347 .8397 .8364 .5176
FLAN-Alpaca-large .6667 .6023 .5733 .5383 .5901 .5265 .7132 .7222 .7486 .7491 .7678 .7694 .6640
FLAN-Alpaca-xl .7258 .6327 .6268 .5950 .5896 .5428 .7069 .6897 .7254 .7351 .7274 .7177 .6679
FLAN-T5-small .0 .0 .0 .0 .0 .0 .6708 .7625 .8013 .8118 .8203 .8278 .3912
FLAN-T5-base .6557 .5775 .5698 .5501 .5513 .4991 .6441 .6722 .6917 .7175 .7069 .6899 .6272
FLAN-T5-large .7176 .6332 .5946 .5472 .5665 .5000 .6606 .6540 .6591 .6569 .6548 .6538 .6249
FLAN-T5-xl .7478 .5969 .6463 .5961 .5909 .5571 .7603 .6723 .7661 .7530 .7472 .7631 .6831
mT0-small .0435 .0 .0180 .0147 .0098 .0 .6716 .7679 .7798 .8209 .8123 .8222 .3967
mT0-base .0 .0465 .0559 .0697 .0289 .0359 .6588 .7545 .7994 .8139 .8123 .8195 .4079
mT0-large .5045 .3669 .4537 .3769 .3746 .3811 .5455 .5737 .6600 .6094 .6392 .6290 .5095
mT0-xl .2000 .2718 .3243 .2581 .2833 .2657 .6706 .7692 .8056 .8115 .8168 .8177 .5246
RoBERTa-dyna-r1 .4211 .3519 .4255 .3864 .4108 .3322 .7317 .7813 .8313 .8313 .8402 .8277 .5976
RoBERTa-dyna-r2 .3659 .3692 .3423 .3236 .3645 .3824 .6709 .7248 .7591 .7716 .7846 .7726 .5526
RoBERTa-dyna-r3 .3421 .3571 .3316 .3569 .3342 .3364 .6951 .7722 .7969 .8188 .8150 .8093 .5638
RoBERTa-dyna-r4 .5057 .3859 .3902 .3724 .3762 .3652 .7190 .7771 .7994 .8051 .8105 .7996 .5922
GPT-3.5-turbo .6846 .6129 .5799 .5488 .5590 .5250 .4598 .4667 .5233 .4973 .5389 .4861 .5402
GPT-4o .7619 .7129 .6742 .6395 .6311 .6032 .7368 .7434 .7542 .7585 .7424 .7417 .7083
Moderation API .0645 .0238 .04120 .1275 .0507 .0631 .6742 .7616 .8000 .8255 .8203 .8289 .4235
Perspective API .4941 .3486 .4700 .4966 .5098 .4431 .7226 .7774 .8312 .8080 .8492 .8374 .6348
DeepSeek LLM-7b .7097 .5000 .5349 .4356 .4531 .4957 .1818 .2667 .2308 .1739 .2708 .2532 .3740

TimeLMs .3620 .3995 .3505 .3621 .3080 .3941 .3547 .3879 .4104 .4172 .4128 .4142 .3722

Table 3: Time-sensitive Macro F1 for the hateful label (first block), non-hateful label (second block), and their
macro-average (last column). Greener cells indicate higher scores; best score in bold. Std deviations in App. B.

by the lower hallucination rates compared to label
flips. Moreover, model size lowers the tendency
to hallucinate but does not necessarily improve the
label flip rate. For instance, FLAN-Alpaca-xl has
0% hallucination vs. 10.88% of FLAN-Alpaca-
large but flips the label more frequently (14.14%
vs. 3.98%). Similarly, GPT-4o has a worse label
flip rate than smaller and/or earlier models like
RoBERTa-dyna-r2/3/4. One reason for this be-
haviour may be excessive memorization, which is
more likely to occur with larger model sizes (Kiy-
omaru et al., 2024; Tirumala et al., 2022; Carlini
et al.). Consistently with the findings of Experi-
ment 1, RoBERTa-dyna-r2/3/4 are less robust to
counterfactuals than RoBERTa-dyna-r1, which has
lower label flip rate and higher macro F1 score. Ad-
ditionally, the TimeLMs baseline is more robust to
language evolution, even though most LLMs out-
perform it in classification performance. With the
exception of DeepSeek LLM (which, however, has
high hallucination rates; cf. Table A6), a label flip
rate of 0 occurs when a model outputs the same la-
bel for all texts; so if we exclude these models, the
best one is Perspective API with a minimal label
flip rate and the highest macro F1. Moreover, we
investigate label flip and hallucination rates by type
of vocabulary expansion in Table A4 and Table A5,
respectively. We found that on average models flip
the label more often if the counterfactual sentence
contains a morphological neologism whereas they
tend to hallucinate more often in case of lexical
neologism.

High scores in static evaluations do not necessar-
ily translate to time-sensitive evaluations. Ta-
ble 5 shows the Spearman’s rank correlation co-
efficient of models’ ranking between static and

Model Label Flip (%) Hallucination (%) Macro F1
FLAN-Alpaca-base 0.65 3.82 .5189
FLAN-Alpaca-large 3.98 10.88 .5626
FLAN-Alpaca-xl 14.14 0.00 .5344
FLAN-T5-small 0.00 2.06 .4851
FLAN-T5-base 11.24 0.00 .4774
FLAN-T5-large 15.96 0.88 .4742
FLAN-T5-xl 13.99 0.88 .6002
mT0-small 0.00 4.41 .4881
mT0-base 0.59 0.00 .4824
mT0-large 14.12 0.00 .3383
mT0-xl 3.53 0.00 .5261
RoBERTa-dyna-r1 3.53 - .6451
RoBERTa-dyna-r2 5.88 - .5931
RoBERTa-dyna-r3 5.00 - .5437
RoBERTa-dyna-r4 6.47 - .5737
GPT-3.5-turbo 14.93 0.88 .4885
GPT-4o 9.44 0.00 .6636
Moderation API 0.00 - .4841
Perspective API 2.94 - .7067
DeepSeek LLM-7b 0.00 1.17 .2500

TimeLMs 0.30 - .2929

Table 4: Label Flip and Hallucination rates, and Macro
F1. Best score in bold. ‘-’ if not applicable.

time-sensitive evaluations, paired with their confi-
dence intervals. These coefficients are computed
by comparing the rankings of the best performing
models between each possible pair of static and
time-sensitive evaluations. We use the rankings
on the four benchmarks in Table A7-A10 in App.
D for the static evaluations whereas we use those
in Table 3 and Table 4 for the time-sensitive eval-
uations. The confidence intervals are computed
setting α = 0.10, which means that there is a 90%
confidence that the intervals contain the true pop-
ulation correlation coefficients between static and
time-sensitive evaluations. There is a clear mis-
alignment between the two types of evaluations.
Overall, there is a negative correlation between
static evaluations and Experiment 1, indicating that
models that perform the best in static benchmarks
are not the most robust to time-sensitive shifts. Sim-
ilarly, high scores in static evaluations do not nec-
essarily imply high scores in Experiment 2, as cor-
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relation is on average negative or close to zero.
On the other hand, static hate speech benchmarks
show a positive, non-negligible correlation among
each other, with an average correlation coefficient
equal to 0.36 (cf. Table A11 and App. D). In other
words, while performance on a static hate speech
benchmark is aligned to the performance on an-
other static benchmark, the same does not hold for
time-sensitive evaluations. Evolving hate speech
introduces variability that static benchmarks fail to
capture, making them an unreliable predictor over
time.

St
at

ic

Time-sensitive
Experiment 1 Experiment 2

HateCheck -0.2662
(-0.586, 0.126)

-0.0707
(-0.438, 0.317)

Dynabench -0.1549
(-0.504, 0.238)

-0.3053
(-0.613, 0.083)

HateXplain -0.2541
(-0.578, 0.138)

-0.1865
(-0.528, 0.207)

Implicit Hate -0.2812
(-0.597, 0.110)

0.1909
(-0.203, 0.532)

Table 5: Spearman coefficients between static and time-
sensitive evaluations. 90% confidence intervals shown
below each value. Cf. App. E.

4 Related Work

Language evolution and model training. The
evolving nature of language has attracted a great
interest in the NLP community to address the so-
called temporal bias, i.e., decreasing performance
over time (Alkhalifa et al., 2023), by training mod-
els to adapt to newer data (Dhingra et al., 2022;
Lazaridou et al., 2021; Röttger and Pierrehumbert,
2021; Jang et al., 2021), historical data (Qiu and
Xu, 2022; Martinc et al., 2020), or to be constrained
to a specific time period (Drinkall et al., 2024). In
the hate speech domain, this has led to the pro-
posal of several approaches to train time-sensitive
hate speech classifiers like lifelong learning (Qian
et al., 2021), time-sensitive knowledge-injection
(McGillivray et al., 2022), random vs. chronologi-
cal data splits (Florio et al., 2020), temporal adapta-
tion (Jin et al., 2023). These studies focus either on
BERT-based models or non-neural ones. Instead,
we investigate the temporal bias of 20 state-of-the-
art LLMs in hate speech detection in two scenarios
of language evolution.

Language evolution and model benchmarking.
While the implications of evolving hate speech in
model training have been widely investigated, its
implications in model benchmarking have been
overlooked. This gap is especially important given
the rise of LLMs, where hate speech benchmarks

are often embedded in safety evaluations (Ying
et al., 2024). Remarkably, we provide empirical
evidence of the unreliability of static hate speech
benchmarks over time due to evolving hate speech,
thus calling for time-sensitive linguistic bench-
marks in this domain. This type of linguistic bench-
marks is scarce as most studies focus on encyclope-
dic and commonsense knowledge to evaluate mod-
els’ ability to understand factual changes regarding
entities and events (e.g., Fatemi et al. (2024); Wang
and Zhao (2024); Tan et al. (2023)) rather than
language changes. A loosely related study is Poz-
zobon et al. (2023) showing that Perspective API
yields unreliable toxicity predictions over time due
to model updates. Instead, we measure the implica-
tions due to evolving language.

5 Conclusions

This study is the first to investigate the impact of
evolving language on hate speech benchmarking.
We design two time-sensitive experiments and met-
rics to evaluate 20 language models widely adopted
in state-of-the-art research. We found that language
models are not robust to evolving hate speech as
they exhibit short- and long-term volatility to time-
sensitive shifts in Experiment 1 and sensitivity to
counterfactuals containing neologisms in Experi-
ment 2. Interestingly, dynamic adversarial training
does not help models generalise in evolving sce-
narios. Finally, we provide empirical evidence of
the misalignment between static and time-sensitive
evaluations, as we found negative or close to zero
correlations between the two, which opens up im-
portant concerns about the reliability of current
hate speech benchmarks in the future.

In light of our findings, we advocate for time-
sensitive linguistic benchmarks to reliably evaluate
models’ safety in the hate speech domain. Ex-
amples might include our proposed time-sensitive
metrics or more structured approaches similar to
those recently developed for evolving encyclope-
dic knowledge (e.g., Test-of-Time (Fatemi et al.,
2024)). Future techniques could explore continual
learning to enable LLMs to adapt to evolving hate
speech, and context-aware detection to capture sub-
tle shifts in meaning driven by cultural or political
events.

6 Limitations

We are aware of the following limitations. (1) We
recognize hate speech as a multilingual problem.
However, in this paper we prioritized English be-
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cause resources for English hate speech are easily
available and well-developed, providing a strong
foundation for our study. Extending to multilingual-
ism is an interesting direction for future work. (2)
Although we chose established, well-documented
and public datasets for our analyses, hate speech
datasets inherently contain bias and noise due to
the subjective nature of annotations and the social
context in which the data were collected. (3) We
consider two aspects of language evolution, namely
time-sensitive shifts and vocabulary expansion. We
did not disentangle the individual contributions of
sub-categories of time-sensitive shifts, such as po-
larity or topical, since they are notoriously hard to
isolate and out of scope for this paper. However, it
is an interesting direction for future work. (4) Con-
tinuous data collection of social media content is a
challenge in current research based on social media
platforms. This difficulty challenges performing
Experiment 1 over time in the future, but it does
not impact the ability of carrying out Experiment
2, which instead can be done using established lin-
guistic resources like Oxford English Dictionary,
Wiktionary, Urban Dictionary.
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A Ethical NLP Research

Data. We use publicly available datasets for our
experiments, which ensure anonymized content.
The use of these datasets is consistent with their
terms for use and intended use. They only cover En-
glish. For Experiment 1 and 2, the size of the data
used were 3000 and 682, respectively. The size
of the static hate speech datasets are: 3729 (Hat-
eCheck), 1924 (HateXplain), 4120 (Dynabench),
and 2149 (Implicit Hate). We use the test sets.

Models. For our experiments, we choose widely
used language models for hate speech research,
considering a variety of characteristics like open-
source vs. commercial models, encoder-decoder
vs. decoder-only models, previously toxicity fine-
tuned vs. not previously toxicity fine-tuned, and
with different training data cutoff dates. Next, we
briefly describe each model we analysed:

• FLAN-Alpaca (Bhardwaj and Poria, 2023):
an instruction-tuned derivative of FLAN-T5,

further instruction fine-tuned on Alpaca (Taori
et al., 2023) dataset. It was previously fine-
tuned for toxicity detection.

• FLAN-T5 (Wei et al., 2021): an instruction
fine-tuned derivative of T5 (Xue et al., 2021)
using the dataset FLAN (Wei et al., 2021). It
was previously toxicity finetuned.

• mT0 (Muennighoff et al., 2023): an instruc-
tion fine-tuned derivative of mT5 (Xue et al.,
2021) finetuned on xP3 dataset (Muennighoff
et al., 2023).

• RoBERTa-dyna-r1/2/3/4 (Vidgen et al., 2021):
iterative versions of RoBERTa (Liu, 2019)
fine-tuned dynamically on increasingly re-
fined training data from Dynabench (Kiela
et al., 2021).

• GPT-3.5-turbo3: cost-efficient, highly opti-
mized version of OpenAI’s GPT-3.5.

• GPT-4o4: specialized variant of OpenAI’s
GPT-4 designed for optimized performance.

• Moderation API5: the OpenAI tool to iden-
tify potentially harmful content in text and
images. We use the text-moderation-latest as
underlying model.

• Perspective API6: a machine learning-based
API by Google that scores text for perceived
toxicity.

• DeepSeek LLM7: 7B language model with
multi-head attention trained on 2 trillion to-
kens from scratch in English and Chinese, de-
veloped by DeepSeek.

• TimeLMs (Loureiro et al., 2022; Antypas
et al., 2023): a time-sensitive language model,
based on the RoBERTa architecture, for NLP
research in the social media domain. It is
continuously trained on social media over reg-
ular intervals for researching language model
degradation, as well as cultural shifts affecting
language usage on social media. We use the

3https://platform.openai.com/docs/models/
gp#gpt-3-5-turbo

4https://platform.openai.com/docs/models#
gpt-4o

5https://platform.openai.com/docs/guides/
moderation/overview

6https://perspectiveapi.com/
7https://huggingface.co/deepseek-ai/

deepseek-llm-7b-base
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versions finetuned for hate speech detection
as baseline.

Experimental Setup. In all our analyses, we use
zero-shot prompting. For each model, we use the
default set of parameters; we refer the reader to the
original papers for more details. The prompts are
designed following the instructions used in Plaza-
del arco et al. (2023), which are shown to be the
most suitable for hate speech detection. Specifi-
cally, the instruction passed to the models is “Clas-
sify the input text as ‘respectful’ or ‘toxic’.”. Then,
for the computations of the macro F1 we disregard
outputs that were not as expected, i.e., that did not
follow the instruction of answering with one word
either ‘toxic’ or ‘respectful’. The xl sizes of the
models were loaded using 8bit quantization. We
will release the code upon acceptance of the paper.

Manual Annotation. Three authors of this pa-
per were involved in the manual annotation of the
Reddit sample of NeoBench. Annotators are AI re-
searchers, familiar with the domain of hate speech,
and with English language. They were presented
sentences and asked to annotate whether the sen-
tence was hateful or non-hateful. We take the ma-
jority vote as groundtruth.

B Experiment 1

Following, we report additional results for Exper-
iment 1. Specifically, Table A1 shows the stan-
dard deviation of macro F1 for the hateful and non-
hateful label over time.

Model Std dev ‘hateful’ Std dev ‘non-hateful’
FLAN-Alpaca-base 0.0363 0.0457
FLAN-Alpaca-large 0.0460 0.0211
FLAN-Alpaca-xl 0.0561 0.0150
FLAN-T5-small 0.00 0.0541
FLAN-T5-base 0.0468 0.0239
FLAN-T5-large 0.0690 0.0026
FLAN-T5-xl 0.0618 0.0325
mT0-small 0.0147 0.0522
mT0-base 0.0220 0.0568
mT0-large 0.0514 0.0392
mT0-xl 0.0368 0.0524
RoBERTa-dyna-r1 0.0352 0.0388
RoBERTa-dyna-r2 0.0194 0.0389
RoBERTa-dyna-r3 0.0104 0.0429
RoBERTa-dyna-r4 0.0483 0.0314
GPT-3.5-turbo 0.0522 0.0285
GPT-4o 0.0536 0.0076
Moderation API 0.0323 0.0546
Perspective API 0.0544 0.0451
DeepSeek LLM-7b 0.0902 0.0388

TimeLMs 0.0302 0.0222

Table A1: Standard deviation of macro F1 for hateful
and non-hateful label over time.

C Experiment 2

Following, we report additional results for Experi-
ment 2.

In Table A2 and Table A3, we measure the same
metrics of Table 4 while controlling for time. Since
the NeoBench dataset provides timestamps for each
pair (s1, s2) marking the emergence of the neolo-
gism, we verified that label flip and hallucination
rates remain comparable across years. This helps
address concerns about potential data contamina-
tion, which would likely have resulted in a peak
of these metrics in later years due to the partial
overlap between the neologisms’ timeframe and
the models’ training cutoff dates. Our analysis
found no evidence of such contamination, as the
metrics remain overall stable across different years.
Nevertheless, data contamination remains a general
challenge in NLP research, and it is difficult to rule
out entirely due to the lack of transparency regard-
ing most models’ training data. Results are shown
in Table A2 and Table A3 for label flip and halluci-
nation rates, respectively. For this computation, we
ruled out pairs whose timestamp information was
missing in NeoBench.

Model 2020 2021 2022 2023
FLAN-Alpaca-base 0.00 0.00 2.50 0.00
FLAN-Alpaca-large 6.58 0.00 4.92 0.00
FLAN-Alpaca-xl 13.21 15.56 16.67 0.00
FLAN-T5-small 0.00 0.00 0.00 0.00
FLAN-T5-base 12.27 8.89 14.45 0.00
FLAN-T5-large 11.43 19.32 20.96 0.00
FLAN-T5-xl 13.33 16.09 13.33 12.50
mT0-small 0.00 0.00 0.00 0.00
mT0-base 1.89 0.00 0.00 0.00
mT0-large 18.89 11.11 13.33 12.50
mT0-xl 6.60 2.22 3.33 0.00
RoBERTa-dyna-r1 2.83 3.33 2.22 12.50
RoBERTa-dyna-r2 7.55 7.78 4.44 0.00
RoBERTa-dyna-r3 6.60 5.56 2.22 0.00
RoBERTa-dyna-r4 9.43 5.56 3.33 0.00
GPT-3.5-turbo 12.38 21.84 12.36 12.50
GPT-4o 10.38 7.78 8.99 0.00
Moderation API 0.00 0.00 0.00 0.00
Perspective API 1.89 3.33 3.33 12.50
DeepSeek LLM-7b - 0.00 - 0.00

Table A2: Label Flip Rates (in %) by year. ‘-’ if not
applicable as the model did not generate any outputs as
expected.

Model 2020 2021 2022 2023
FLAN-Alpaca-base 4.72 2.22 4.44 0.00
FLAN-Alpaca-large 7.55 14.44 10.00 25.00
FLAN-Alpaca-xl 0.00 0.00 0.00 0.00
FLAN-T5-small 0.94 5.56 1.11 0.00
FLAN-T5-base 0.00 0.00 0.00 0.00
FLAN-T5-large 0.00 0.00 2.22 0.00
FLAN-T5-xl 0.94 2.22 0.00 0.00
mT0-small 9.43 1.11 1.11 0.00
mT0-base 0.00 0.00 0.00 0.00
mT0-large 0.00 0.00 0.00 0.00
mT0-xl 0.00 0.00 0.00 0.00
RoBERTa-dyna-r1 - - - -
RoBERTa-dyna-r2 - - - -
RoBERTa-dyna-r3 - - - -
RoBERTa-dyna-r4 - - - -
GPT-3.5-turbo 0.00 2.22 1.11 0.00
GPT-4o 0.00 0.00 0.00 0.00
Moderation API - - - -
Perspective API - - - -
DeepSeek LLM-7b 0.94 0.00 2.22 0.00

Table A3: Hallucination Rates (in %) by year. ‘-’ if not
applicable as models are non-generative.
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Moreover, we compute label flip and hallucina-
tion rates in Experiment 2 by type of vocabulary
expansion. Specifically, Table A4 contains label
flip rates whereas Table A5 contains hallucination
rates. From one hand, models on average flip the
label more often if the counterfactual sentence con-
tains a morphological vocabulary expansion (av-
erage label flip rate equal to 6.54%) rather than
lexical (6.40%) or semantic ones (5.34%). On the
other hand, models tend to hallucinate more often
in cases of lexical vocabulary expansion (average
hallucination rate equal to 2.12%) rather than mor-
phological (1.58%) and semantic ones (1.82%).

Model Lexical Morphological Semantic
FLAN-Alpaca-base 2.06 0.00 0.00
FLAN-Alpaca-large 0.00 6.20 4.17
FLAN-Alpaca-xl 14.81 15.68 8.51
FLAN-T5-small 0.00 0.00 0.00
FLAN-T5-base 10.38 10.81 14.89
FLAN-T5-large 15.24 18.68 6.67
FLAN-T5-xl 22.22 11.00 6.52
mT0-small 0.00 0.00 0.00
mT0-base 0.00 0.54 2.13
mT0-large 13.89 14.59 12.77
mT0-xl 3.70 3.24 4.26
RoBERTa-dyna-r1 5.56 2.70 2.13
RoBERTa-dyna-r2 7.41 4.86 6.38
RoBERTa-dyna-r3 5.56 4.86 4.26
RoBERTa-dyna-r4 6.48 5.95 8.51
GPT-3.5-turbo 12.38 16.94 12.77
GPT-4o 6.48 11.41 8.51
Moderation API 0.00 0.00 0.00
Perspective API 1.85 3.24 4.26
DeepSeek LLM-7b 0.00 0.00 0.00

Table A4: Label Flip Rates (in %) by type of vocabulary
expansion. ‘-’ if not applicable as the model did not
generate any outputs as expected.

Model Lexical Morphological Semantic
FLAN-Alpaca-base 4.63 2.70 6.38
FLAN-Alpaca-large 10.19 11.89 8.51
FLAN-Alpaca-xl 0.00 0.00 0.00
FLAN-T5-small 2.78 1.08 4.26
FLAN-T5-base 0.00 0.00 0.00
FLAN-T5-large 1.85 0.00 2.13
FLAN-T5-xl 0.00 1.08 2.13
mT0-small 5.56 4.32 2.13
mT0-base 0.00 0.00 0.00
mT0-large 0.00 0.00 0.00
mT0-xl 0.00 0.00 0.00
RoBERTa-dyna-r1 - - -
RoBERTa-dyna-r2 - - -
RoBERTa-dyna-r3 - - -
RoBERTa-dyna-r4 - - -
GPT-3.5-turbo 1.85 0.54 0.00
GPT-4o 0.00 0.00 0.00
Moderation API - - -
Perspective API - - -
DeepSeek LLM-7b 2.78 0.54 0.00

Table A5: Hallucination Rates (in %) by type of vocab-
ulary expansion. ‘-’ if not applicable as the model are
non-generative.

In addition to the hallucination rates shown in Ta-
ble 4, we compute hallucination rates considering
reference and counterfactual sentences, and only
counterfactual sentences. Mathematically, we de-
fine the former as hals1,s2 = 1

N

∑N
i=1 1(v(s2,i) =

1 ∨ v(s1,i) = 1) and the latter as hals2 =
1
N

∑N
i=1 1(v(s2,i) = 1). We consider hallucina-

tion any answer given by the model which does not
follow the instruction given in the prompt—e.g.,
when the model repeats the instruction without pro-
viding any answer regarding the classification. Re-
sults are shown in Table A6. Overall, hallucination
rates are surprisingly high: 5 out of 14 models8

hallucinate more than 10% of the time on either ref-
erence or counterfactual sentences as shown in the
first column. This hallucination is mostly driven by
the presence of counterfactual sentences, as shown
in the last column. In particular, DeepSeek LLM
shows incredibly high hallucination rates compared
to the other language models.

Model Hals1,s2 (%) Hals2 (%)
FLAN-Alpaca-base 10.00 8.24
FLAN-Alpaca-large 33.53 25.29
FLAN-Alpaca-xl 0.00 0.00
FLAN-T5-small 10.59 6.47
FLAN-T5-base 0.59 0.00
FLAN-T5-large 2.35 0.88
FLAN-T5-xl 1.18 0.88
mT0-small 34.71 28.24
mT0-base 0.29 0.29
mT0-large 0.00 0.00
mT0-xl 0.00 0.00
RoBERTa-dyna-r1 - -
RoBERTa-dyna-r2 - -
RoBERTa-dyna-r3 - -
RoBERTa-dyna-r4 - -
GPT-3.5-turbo 1.47 0.88
GPT-4o 0.29 0.00
Moderation API - -
Perspective API - -
DeepSeek LLM-7b 98.82 97.65

Table A6: Hallucination rates.‘-’ if not applicable as
models are non-generative.

D Benchmarks Results

We prompt language models on four established
hate speech benchmarks for binary hate speech de-
tection using the same instructions as in Plaza-del
arco et al. (2023). In Table A7, Table A8, Table
A9, and Table A10, we report macro F1 scores
and the percentage of outputs that followed the
instruction as expected for each benchmark. Inter-
estingly, DeepSeek LLM shows incredibly low per-
centages of expected outputs. Moreover, we report
the Spearman’s rank correlation coefficients across
static hate speech benchmarks in Table A11. Over-
all, the rankings of the models exhibit a positive,
non-negligible correlation even though each static
benchmark focuses on a specific characteristic of
hate speech, namely offensiveness for HateXplain,
expressiveness for Implicit Hate, target-based func-
tionality tests for HateCheck, and adversarial ex-
amples for Dynabench. The highest correlation of
models’ ranking is between Dynabench and Hat-
eXplain benchmarks with an average coefficient

8Non-generative models are disregarded in this computa-
tion.
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equal to 0.8647. The lowest correlation instead is
between HateXplain and Implicit Hate, which how-
ever is expected as they measure two very different
aspects of hate speech, namely offensiveness and
expressiveness (Di Bonaventura et al., 2025). The
average correlation coefficient among all pairs of
static evaluations is 0.36 (i.e., 1

6(0.3865+0.2361+
0.3203 + 0.8647 + 0.2421 + 0.0917)).

Model Macro F1 Expected Output (%)
FLAN-Alpaca-base .3739 95.95
FLAN-Alpaca-large .7094 100.00
FLAN-Alpaca-xl .7348 100.00
FLAN-T5-small .2322 91.34
FLAN-T5-base .6023 99.97
FLAN-T5-large .6909 99.30
FLAN-T5-xl .7383 99.79
mT0-small .2747 25.78
mT0-base .2472 99.92
mT0-large .6103 99.22
mT0-xl .4779 100.00
RoBERTa-dyna-r1 .6235 100.00
RoBERTa-dyna-r2 .8299 100.00
RoBERTa-dyna-r3 .9207 100.00
RoBERTa-dyna-r4 .9485 100.00
GPT-3.5-turbo .7135 99.65
GPT-4o .7394 100.00
Moderation API .5142 100.00
Perspective API .7489 100.00
DeepSeek LLM-7b .3750 0.54

Table A7: Macro F1 and Expected Output rate on Hate-
Check benchmark.

Model Macro F1 Expected Output (%)
FLAN-Alpaca-base .3389 87.01
FLAN-Alpaca-large .5319 99.98
FLAN-Alpaca-xl .5744 100.00
FLAN-T5-small .3067 88.90
FLAN-T5-base .4971 99.57
FLAN-T5-large .5220 98.58
FLAN-T5-xl .5855 99.73
mT0-small .3215 68.65
mT0-base .3309 99.03
mT0-large .5252 99.18
mT0-xl .4381 100.00
RoBERTa-dyna-r1 .5829 100.00
RoBERTa-dyna-r2 .7022 100.00
RoBERTa-dyna-r3 .8120 100.00
RoBERTa-dyna-r4 .8104 100.00
GPT-3.5-turbo .5045 99.48
GPT-4o .5728 99.47
Moderation API .4219 99.96
Perspective API .5255 100.00
DeepSeek LLM-7b .4203 7.86

Table A8: Macro F1 and Expected Output rate on Dyn-
abench benchmark.

E Correlation Analysis

We use the Spearman’s rank correlation to measure
the strength and direction of association between
static and time-sensitive evaluations. The Spear-
man’s rank correlation coefficient can take a value
from +1 to -1 where a value of +1 means a perfect
positive correlation, a value of 0 means no corre-
lation, and a value of -1 means a perfect negative
association of rank. In addition to the correlation
coefficients shown in Table 5 of the main paper,
we report their confidence intervals in Table A12
below. These confidence intervals (clower, cupper)

Model Macro F1 Expected Output (%)
FLAN-Alpaca-base .4333 93.34
FLAN-Alpaca-large .6015 100.00
FLAN-Alpaca-xl .6827 100.00
FLAN-T5-small .2895 98.34
FLAN-T5-base .5704 99.69
FLAN-T5-large .5479 99.01
FLAN-T5-xl .7201 100.00
mT0-small .2844 65.23
mT0-base .3419 98.23
mT0-large .4928 99.48
mT0-xl .4829 100.00
RoBERTa-dyna-r1 .6989 100.00
RoBERTa-dyna-r2 .6989 100.00
RoBERTa-dyna-r3 .7096 100.00
RoBERTa-dyna-r4 .7077 100.00
GPT-3.5-turbo .4539 99.58
GPT-4o .5732 99.38
Moderation API .5055 100.00
Perspective API .6621 100.00
DeepSeek LLM-7b .4266 10.01

Table A9: Macro F1 and Expected Output rate on Hat-
eXplain benchmark.

Model Macro F1 Expected Output (%)
FLAN-Alpaca-base .4091 93.53
FLAN-Alpaca-large .5625 100.00
FLAN-Alpaca-xl .6167 100.00
FLAN-T5-small .3870 97.49
FLAN-T5-base .5334 99.30
FLAN-T5-large .4995 99.12
FLAN-T5-xl .6215 100.00
mT0-small .3896 47.25
mT0-base .4022 94.09
mT0-large .4673 96.65
mT0-xl .4073 100.00
RoBERTa-dyna-r1 .6146 100.00
RoBERTa-dyna-r2 .6377 100.00
RoBERTa-dyna-r3 .6184 100.00
RoBERTa-dyna-r4 .6491 100.00
GPT-3.5-turbo .3718 99.39
GPT-4o .4815 99.58
Moderation API .4009 99.95
Perspective API .6017 100.00
DeepSeek LLM-7b .4590 2.75

Table A10: Macro F1 and Expected Output rate on
Implicit Hate benchmark.

HateCheck Dynabench HateXplain Implicit Hate
HateCheck 1. 0.3865 0.2361 0.3203
Dynabench - 1. 0.8647 0.2421
HateXplain - - 1. 0.0917
Implicit Hate - - - 1.

Table A11: Spearman’s rank correlation coefficient
across static hate speech benchmarks.

are computed as follows.

clower =
e2L − 1

e2L + 1

cupper =
e2U − 1

e2U + 1

where

L = Z −
Z1−α/2√
n− 3

U = Z +
Z1−α/2√
n− 3

Z =
1

2
ln(

1 + ρ

1− ρ
)
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with significance level α = 0.10, sample size
n = 20, and Spearman’s rank correlation coeffi-
cient ρ being the ones in Table 5. The results can
be interpreted as there is a 90% chance that the
confidence intervals shown below contain the true
population correlation coefficient between static
and time-sensitive evaluations of language models.
Overall, these intervals suggest a negative or negli-
gible correlation between static and time-sensitive
rankings, with a skewed tendency toward negative
correlations. Note that sample size affects this esti-
mate and that a larger sample could provide a more
precise assessment.

Moreover, we report the confidence intervals
of the correlation coefficients of models’ ranking
among static evaluations in Table A13.

↓ Static / Time-sensitive → Experiment 1 Experiment 2
HateCheck (-0.586, 0.126) (-0.438, 0.317)
Dynabench (-0.504, 0.238) (-0.613, 0.083)
HateXplain (-0.578, 0.138) (-0.528, 0.207)
Implicit Hate (-0.597, 0.110) (-0.203, 0.532)

Table A12: Confidence intervals of Spearman’s rank
correlation coefficient between static and time-sensitive
evaluations.

↓ Static / Static → Dynabench HateXplain Implicit Hate
HateCheck (0.009, 0.668) (-0.157, 0.565) (-0.067, 0.624)
Dynabench - (0.722, 0.937) (-0.151, 0.569)
HateXplain - - (-0.298, 0.455)
Implicit Hate - - -

Table A13: Confidence intervals of Spearman’s rank
correlation coefficient between static evaluations.
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