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Abstract

Natural language has been extensively used
for modeling text-attributed graphs with LLMs.
Natural language is used to describe the graph
for LLMs to understand or serve as compo-
nent of the graph, e.g., textual attributes for
embedding generation. However, natural lan-
guage is inherently redundant and unstructured,
making it unsuitable for modeling high-order
neighbors with LLMs. Specifically, (i) graph
descriptions become verbose, overwhelming
LLMs, and (ii) only relying on attribute em-
beddings limits LLM’s ability to capture the
adequate graph structural information. These
limitations make it difficult to model graphs
both concisely and adequately using sole natu-
ral language with LLMs.

Inspired by the observation that LLMs pre-
trained on one language can achieve excep-
tional performance on another with mini-
mal additional training, we propose Graph-
Defined Language for Large Language Model
(GDL4LLM). This novel framework enables
LLMs to transfer their powerful language un-
derstanding capabilities to graph-structured
data. GDL4LLM translates the graph into a
graph language corpus instead of graph descrip-
tions and pre-trains LLMs on this corpus to
adequately understand the graph. This corpus
represents the subgraph centered around target
nodes concisely with only a few tokens during
fine-tuning on downstream tasks. By treating
the graph as a new language, GDL4LLM en-
ables LLMs to model text-attributed graph ade-
quately and concisely. Extensive experiments
on three real-world datasets demonstrate that
GDL4LLM outperforms description-based and
embedding-based baselines by efficiently mod-
eling different orders of neighbors.

*Xiao Huang is the corresponding author.
†Huanchi Zhou and Jiahe Du are co-first authors. Both

authors contributed equally to this research.

1 Introduction

Text-attributed graphs have become essential data
representations in various domains, such as social
networks and citation networks (Huang et al., 2019;
Guo et al., 2024). One of the key components of
these graphs is natural language text, which serves
as an attribute and a label associated with nodes.
For example, in a citation network, nodes represent
papers, and their text attributes could include ab-
stracts, while labels correspond to paper categories.
To accurately predict a node’s label, pioneering
studies have shown that a node’s class is dependent
on its attributes and those of neighboring nodes in
the graph (Cook and Holder, 2006).

To capture this dependency on graph, recent
approaches have aimed to leverage LLMs in
modeling text-attributed graphs. LLMs, such as
GPTs (Achiam et al., 2023), have demonstrated
exceptional text manipulation capabilities. (Hong
et al., 2024; Zhang et al., 2025). To adapt these
capabilities to graph-structured data, natural lan-
guage plays a key role, and associated approaches
could be categorized into two main classes: (i) de-
scribing the graph in natural language to enable
LLMs to comprehend, by enumerating nodes and
their connections (Guan et al., 2024; Chen et al.,
2024a); and (ii) using LLMs to embed components
of the graph, i.e., attributes, and aggregating at-
tribute embeddings to encode graph-level informa-
tion (Huang et al., 2022; Zhao et al., 2022).

However, natural language is inherently redun-
dant and unstructured, making it unsuitable for
modeling high-order neighbors of target nodes with
LLMs: (i) Graph descriptions become exces-
sively verbose and overwhelm LLMs. Graph
structures are inherently complex, and intricate
connections among nodes often become convo-
luted when translated into natural language de-
scriptions (Fatemi et al., 2024). These convoluted
descriptions make it difficult for LLMs to reason
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effectively and prioritize the high-order neighbors
relevant to the target nodes. (ii) Only relying on at-
tribute embeddings limits the ability of LLM to
capture adequate structural information. Graph
structure is not deeply involved in the LLM em-
bedding generation. To capture structure informa-
tion, GNN aggregation mixes embeddings with
those of neighbors but risks oversmoothing, espe-
cially when attempting to reach high-order neigh-
bors (Chen et al., 2024b). And due to excessive
computational overhead, LLMs’ optimization is de-
coupled from the aggregation. This decoupling lim-
its LLMs’ ability to effectively model high-order
neighbors and assist in integrating rich structural
information into embeddings (Huang et al., 2024).

It is challenging to model high-order neigh-
bors adequately and concisely with LLMs: (i)
LLM Constraints in Modeling Graphs: Unlike
GNNs, which leverage built-in mechanisms like
message passing to adequately model graph struc-
tures, LLMs lack such capabilities. To leverage
language processing capabilities that LLMs excel
at, LLMs rely on preprocessing to linearize graph
structures, reducing them from two dimensions to
one dimension. This preprocessing, however, sig-
nificantly increases the prompt length and compu-
tational demands (Li et al., 2023; Tan et al., 2024).
(ii) Inter-order Dependency: The dependency be-
tween high-order neighbors and target nodes are
complex. As the order of the neighbor increases,
the number of neighboring nodes grows geometri-
cally. Capturing these dependencies while main-
taining a concise representation for LLMs remains
a challenge.

To bridge this gap, we draw inspiration from
an intriguing observation: LLMs pre-trained on
one language (e.g., English) can achieve excep-
tional performance on another language (e.g., Chi-
nese) with only a small portion of corpora in the
target language (Zhao et al., 2023). Building on
this insight, we propose Graph- Defined Language
for Large Language Model (GDL4LLM), a sim-
ple yet effective graph learning with LLMs frame-
work. GDL4LLM enables LLMs to model the
text-attributed graph concisely and adequately in
a manner analogous to learning a new language.
Specifically, we create this new graph language
by translating graphs into a graph language corpus
and pre-training LLMs to familiarize them with
the graph language. Notably, we prove that the
pre-training objective enables LLMs to learn graph
structural information. We then sample from this

corpus to represent the subgraph graph centered
around target nodes for fine-tuning on downstream
tasks. The corpus captures different orders of struc-
tural information using only a few tokens. In all,
our contributions can be summarized as follows:

• We convert the problem of modeling graph struc-
tures for LLMs into a graph language learning
problem. We justify this approach by proving
that the graph language learning objective en-
ables LLMs to learn graph structural information.

• We introduce GDL4LLM, a simple yet effective
framework. It generates a graph language corpus
from the given graph and pre-trains LLMs on this
corpus to understand the graph. The framework
then samples from the graph language corpus to
represent subgraphs centered around target nodes
for fine-tuning on downstream tasks.

• Through extensive experiments on three real-
world datasets, we demonstrate that GDL4LLM
outperforms competitive baselines. It surpasses
both description-based and textual attribute
embedding-based approaches by efficiently mod-
eling different orders of neighbors with LLMs.

2 Preliminary

Notation. The text-attributed graph could be repre-
sented by a triple G = (V, E ,X ), where V denotes
the set of nodes {v1, v2, . . . , v|V|} with the size
|V|; E ⊆ V × V represents the set of edges be-
tween nodes with the size |E|. And the edge set E
is encoded in the adjacency matrix A ∈ R|V|×|V|,
where Aij = 1 if there is an edge between nodes vi
and vj , Aij = 0 otherwise; X = {x1,x2, ...,x|V|}
represents the text attributes associated with each
node, where xi ∈ X is the node attribute associ-
ated with node vi ∈ V . The node attribute xi could
be a paper abstract, an item description, or other
textual documents.

Node Classification Task. Given the graph G,
we aim to learn an embedding vector ti for each
node that captures both the structural information
and the semantic information from the node at-
tribute xi to predict the node class label.

For each class, a linear weight vector projects
the embedding ti to a class score and the score is
passed through a softmax function to obtain the
predicted probability ŷci for class c:

ŷci =
exp(Ŵ⊤

h,cti + bc)
∑

ĉ exp(Ŵ
⊤
h,ĉti + bĉ)

, (1)
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where Ŵh,c and bc are the weight vector and
bias for class c and Ŵh is the unified weight matrix
of all vectors. Then we calculate the classification
loss LCE associated with each node based on the
predicted probabilities ŷci .

We adopt the cross-entropy loss and calculate
the loss as follows:

LCE = −
|V|∑

i=1

C∑

c=1

yci log(ŷ
c
i ) (2)

where C is the number of classes; yci is the true
class label (1 if node i belongs to class c, otherwise
0); and ŷci is the predicted probability of class c.

Low Rank Adaption. To fine-tune LLMs
efficiently, we leverage Low-Rank Adaptation
(LoRA) (Hu et al., 2021). Specifically, given the
weight matrix of one layer of LLM W0 ∈ Rd×d′ ,
LoRA introduces W0+∆W = W0+BA, where
B ∈ Rd×r, A ∈ Rr×d′ , and the rank r ≪ {d, d′},
for LLM optimization. A is initialized with Gaus-
sian distribution and B is initialized with zero,
therefore, ∆W = BA is zero at the beginning of
the fine-tuning. During the optimization, the intro-
duced ∆W is trained to adapt to the new training
data while the original weight W0 remains frozen.

3 Methodology

In this section, we introduce GDL4LLM, a frame-
work for modeling text-attributed graphs through
graph language for downstream tasks. As illus-
trated in Figure 1, GDL4LLM operates in two pri-
mary stages. In the pre-training stage, we construct
a graph language corpus and pre-train LLMs to
learn the underlying language patterns. The fine-
tuning stage leverages this learned graph language
to represent the subgraph centered around the target
nodes, adapting the pre-trained LLMs for specific
downstream tasks.

3.1 Graph Language Pre-training
We begin by defining the fundamental concepts in
graph language, such as graph tokens and graph
sentences. We then demonstrate how to derive
graph sentences from a given graph to create a
graph language corpus and pre-train LLMs on this
corpus. And we prove that the pre-training objec-
tive encodes graph structural information.

3.1.1 Graph Token and Graph Sentence
Graph Node as Graph Token. We define the
graph token set as equivalent to the node set V .

To facilitate the recognition of graph tokens, we
extend the LLM tokenizer vocabulary by assigning
each node a unique token identifier. For instance,
node 1 in the graph is represented as "<node_1>".
Graph Path as Graph Sentence. We define a
graph sentence as a sequence of edges connect-
ing a series of graph tokens. For example, in Fig-
ure 1, the first graph sentence in the pre-training
stage is <node_8><node_3><node_10><node_12>
<node_9>. We traverse the graph and translate
the graph into a collection of sampled graph sen-
tences formed as a graph language corpus C, i.e.,
C = {si}, i = {1, 2, . . .}.

3.1.2 Graph Corpus Sampling

The key idea in sampling graph sentences is to
capture local graph structural information centered
around each node. Any graph token can serve as
the start token for a graph sentence. To traverse
the graph and extend the graph sentence from the
start token, we employ random walks to control the
traversal process. Given a node vi, the probability
of node vj becoming the next graph token is:

P (vj | vi) =
{ Aij∑

j∈N (vi)
Aij

, if vj ∈ N (vi),

0, if eij /∈ E .
(3)

where N (vi) represents the set of nodes directly
connected to vi. By initiating k random walks of
length l beginning with each graph token, we can
explore both local and high-order graph structural
information for each node. Given |V| nodes, this
process samples a corpus of graph language sen-
tences with k × |V| size for the entire graph.

3.1.3 Pre-training LLMs on the Corpus

We project out-of-vocabulary graph tokens into
LLM-comprehensible embeddings by using LLM
to summarize textual attributes xi. A learnable lin-
ear projector Wp ∈ Rd×d then aligns these initial
embeddings with graph structural information.

For pre-training, we initialize LoRA weight
∆W1 and projector Wp. During pre-training, Wp

maps contextually similar graph tokens to similar
embeddings, while ∆W1 learns token transition
patterns. We maximize the likelihood of predicting
the next token in graph sentences and we use one
graph sentence si as an example:
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(a) (b) Subgraph centered around <node_8> 
One-hop neighbors are: <node_3>, 
<node_4>, <node_6>, <node_7>, 
<node_11>, <node_16>;
Two-hop neighbors are: <node_1>, 
<node_2>, <node_4>, <node_6>, 
<node_9>, <node_10>, <node_13>, 
<node_15>, <node_17>;
Three-hop neighbors are: <node_5> 
<node_12>, <node_14> <node_15>
What is the label of <node_8> ?
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<node_8><node_3><node_10><node_12><node_9> [MASK]
<node_8><node_6><node_4><node_8><node_7> [MASK]
<node_8><node_11><node_15><node_14><node_7> [MASK]

Pretrain with graph sentences

Finetune with node attributes and graph sentences
<attr_8><attr_3><attr_10>…<node_8><node_3><node_10>…
<attr_8><attr_6><attr_4>…<node_8><node_6><node_4> …
<attr_8><attr_11><attr_15>…<node_8><node_11><node_15>…

<node_16>
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<node_13>
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Embedding
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To answer user 
queries efficiently, 
we select the 
Kalman Filter...  
Label: DATABASE
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Figure 1: The figure demonstrates a comparison between mainstream methods and GDL4LLM for node-classification
task. Figure (a) utilizes LLMs to embed node attributes and leverages GNN to aggregate the embeddings. Figure
(b) presents the descriptions of graph structure centered around target nodes. Figure (c) illustrates how LLMs
are pre-trained to capture graph structures through graph language learning, and how textual attributes are further
integrated to enhance LLMs fine-tuning.

Lpre = −
l∑

q=1

logP (si,q|si,1:q−1;Wp,∆W1,Wh),

(4)
where Wh ∈ Rd×|V| is the trainable LLM head.

The next token si,q is selected based on the highest
score from the inner product between Wh and the
LLM-generated hidden representation tq.

3.1.4 Connection between Pre-training and
Graph Learning

During pre-training, LLMs learn node connections
through iterative prediction of graph tokens in the
corpus. This learning process is manifested in the
inner products between the next token’s hidden rep-
resentation tq and its corresponding weight vector
Wh,q in Wh. The reason is that the pre-training
objective maximizes inner products between cor-
rect tokens in graph sentences and weight vectors,
causing frequently occurring graph sentences to
become well-optimized, with their next token rep-
resentations converging closer to the corresponding
weight vectors.

The sampling frequency of graph sentences nat-
urally correlates with node degrees. Specifically,
densely connected regions generate lower sampling
probabilities for any specific sequence, as they of-
fer more potential graph sentences compared to
sparsely connected regions. This relationship be-
tween node degree and sampling probability helps
encode structural information during pre-training.

Theorem 1. For a language model with sufficient
capacity to construct the inner product between all
Wh,q and tq pairs, given node si,q with degree dq,

then Wh,q · tq ∝ log

(
I(si,q−1,si,q)∈E ·

∑
A

dq

)
.

Theorem 1 demonstrates how node degrees influ-
ence the pre-training objective and proof is in the
Appendix 7. Higher node degrees result in lower
optimal inner product values, while lower degrees
lead to higher values, reflecting the certainty of
sampled graph sentences. Through process, LLMs
effectively learn graph structural information, in-
cluding node degrees and their connections.

3.2 Graph Structure-aware Fine-tuning

We first present the fine-tuning approach for node
classification using graph language, followed by a
discussion on integrating node textual attributes to
enhance both pre-training and fine-tuning stages.

3.2.1 Absorbing Graph Structure Knowledge

To preserve pre-trained graph structure knowledge
while adapting to new tasks, we merge the pre-
trained LoRA weights carefully. Since the pre-
trained LoRA parameters contain essential graph
structure knowledge, we initialize a new set of
LoRA weights ∆W2 for fine-tuning rather than
modifying existing weights. The LLM parameters
are composed as:

W = W0 +∆W1 +∆W2. (5)
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We keep W0 and ∆W1 fixed while learning
∆W2 during fine-tuning. The head layer weights
are reinitialized as Ŵh ∈ Rd×C for class label
adaptation, and we apply LoRA to the fixed pro-
jector weights to obtain Ŵp for subsequent node
classification optimization.

3.2.2 Fine-tuning with Graph Language
For classifying node vi, we sample multiple graph
sentences {s1, s2, . . . , sk} of length l starting from
vi’s graph token, following sub-subsection 3.1.2.
These sentences form a small corpus that captures
multi-order structural information around vi. The
classification loss for node vi is:

LCE = − logP (yi|s1:k;Ŵp,∆W2,Ŵh). (6)

This small corpus effectively balances local and
global structural information through a periodic
restart mechanism. While frequent returns to the
starting node capture detailed local neighborhood
information, appropriate sentence length l enables
exploration of higher-order structures.

This two-stage approach offers key advantages:
(i) LLMs learn the graph structures sufficiently
through language-like pre-training, eliminating the
need for verbose descriptions, and (ii) concise rep-
resentation of different orders of graph structures
through sampled graph language corpus during
fine-tuning, leading to efficient node classification.

3.2.3 Fine-tuning with Textual Node
Attributes

To leverage both structural and semantic informa-
tion, we combine graph language corpus with tex-
tual node attributes. While graph language captures
structural patterns, incorporating textual attributes
enriches the prompt with semantic information.
We create a composite document for each node
by traversing the graph language corpus and ap-
pending each visited node’s textual attributes. This
document accompanies the graph language in both
pre-training and fine-tuning stages, enabling LLMs
to comprehend node connections and generate ac-
curate classifications through their natural language
understanding capabilities.

4 Experiments

We conduct experiments across three datasets to
evaluate GDL4LLM’s performance and analyze
its behavior. We aim to address following four
research questions: RQ1: How does GDL4LLM

Table 1: Statistics of datasets in our experiment.

Datasets #nodes #edges #classes

ACM 48,579 193,034 9
Wiki 36,501 1,190,369 10

Amazon 50,000 632,802 7

compare to state-of-the-art text-attributed frame-
works in node classification tasks? RQ2: How
do the pre-training stage and textual attributes in
the prompt contribute to the overall model perfor-
mance? RQ3: How do key hyperparameters, in-
cluding graph sentence length and choice of LLM
backbone, affect model performance? RQ4: How
efficiently do GDL4LLM capture different orders
of graph structures?

4.1 Dataset

We evaluate the performance of GDL4LLM us-
ing three datasets: ACM, Wikipedia, and Amazon.
These datasets have been manually created from
the raw corpus along with their respective descrip-
tions. The statistics for these three datasets are
presented in Table 1. Wiki. The raw data con-
sists of text in all languages from Wikipedia arti-
cles. ACM (Tang et al., 2008). The ACM dataset
contains papers published in flagship conferences,
such as KDD and SIGMOD. Amazon. The Ama-
zon dataset comprises product metadata from the
famous e-commerce website (Ni et al., 2019).

4.2 Baselines

We incorporate the following state-of-the-art base-
lines in our main comparison: GCN (Kipf and
Welling, 2016), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2017), MPAD (Niko-
lentzos et al., 2020), GLEM (Zhao et al., 2022),
GraphFormers (Yang et al., 2021), LLAGA (Chen
et al., 2024a), InstructGLM (Ye et al., 2024), and
GraphAdapter (Huang et al., 2024) frameworks.
Besides these baselines, we also incorporate sev-
eral variants of GDL4LLM for ablation study: (i)
GDL4LLM w/o pre-train: removes the pre-training
stage of GDL4LLM and preserves the fine-tuning
stage; (ii) GDL4LLM w/ attr: incorporates the tex-
tual attributes within the prompt of GDL4LLM;
(iii) GDL4LLM w/ attr w/o pre-train: removes the
pre-training stage of GDL4LLM w/ attr.
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Table 2: Node classification performance comparison among baselines w.r.t. micro classification accuracy across
three datasets.

NLP Models GNNs ACM Wiki Amazon

Val. Test Val. Test Val. Test

Fine-tuned LMs + GNNs

Bert

- 74.4 73.2 69.5 68.8 86.2 87.0
GCN 77.6 77.1 69.4 68.4 92.3 92.8
GAT 77.9 78.0 70.5 69.8 92.5 92.4
GraphSAGE 77.3 76.8 73.1 72.7 92.0 92.3

Roberta

- 78.1 76.6 67.8 68.1 84.9 85.9
GCN 80.1 79.4 68.5 68.0 92.3 92.5
GAT 79.7 78.9 70.1 71.0 92.5 92.4
GraphSAGE 78.5 78.3 72.7 72.1 92.2 92.1
GraphSAGE 80.9 79.5 73.2 70.4 94.3 94.1

Specialized Frameworks for Text-Attributed Graphs

MPAD 80.1 78.9 68.8 68.0 93.1 92.8
GLEM 81.4 79.8 72.6 71.2 92.5 93.3

GraphFormers 75.3 75.1 66.8 67.5 85.6 86.4
LLAGA 77.2 77.5 71.7 72.0 90.1 90.8

InstructGLM 75.4 74.5 72.2 70.6 94.3 94.2

GDL4LLM 81.9 81.4 74.3 73.2 94.6 94.6

Fine-tuned Large Language Models +/- GNNs

GraphAdapter - 80.8 80.4 71.9 71.7 94.1 93.4
Llama3-8b - 80.7 80.6 71.9 71.2 92.0 91.6
Llama3-8b GraphSAGE 82.0 81.3 72.8 73.0 93.1 92.8

GDL4LLM w/ attr 83.9 82.8 74.0 73.4 95.8 95.5

4.3 Experimental Setup

For node classification tasks, we evaluate perfor-
mance using micro classification accuracy. In the
main comparison, we use Llama2-7B (Touvron
et al., 2023) as the backbone and run all models
ten times to report the average results. We conduct
experiments on a server with eight 80 GB NVIDIA
A100 GPUs. For all baselines, we use publicly
released codes to ensure fairness. We implement
our framework with Pytorch and transformers pack-
ages. To select the hyperparameters, we use grid
search strategy. Specifically, the length of the
graph sentences l, and the numbers of graph sen-
tences k, are searched using grids {2, 3, 4, 5} and
{2, 4, 6, 8, 10}, respectively, based on the model
performance on the validation set. The LoRA
dropout rate, rank, and α are set to 0.2, 8, and
16, respectively. Weight decay is set to 1e-2 to pre-
vent the overfitting. We implement the proposed
framework in PyTorch, with a learning rate of 1e-
4 and a batch size of 32. Our approach uses the
Adam optimizer and includes early stopping based
on validation set micro accuracy. In the main com-
parison, we use Llama2-7B (Touvron et al., 2023)
as the backbone and employ Llama3-8B for the

different backbone experiments.

4.4 Main Comparison (RQ1)
Table 2 presents the micro classification accuracy
comparing GDL4LLM with baseline methods for
node classification tasks. We evaluate against three
categories of baselines and have the following ob-
servations:

(i) LM-GNN category: These methods com-
bine fine-tuned language models with GNNs for
classification. While achieving satisfactory results,
their performance primarily stems from a combi-
nation of GNNs’ structural modeling capabilities
rather than the sole limited-capacity language mod-
els. Their effectiveness is constrained by both LM
capacity and insufficient structural information in
textual attributes to get better embeddings.

2) Description-based category: These ap-
proaches attempt to model graph structure through
textual descriptions. However, due to lengthy
prompts, they typically only model first-order or
second-order structural information. In contrast,
GDL4LLM efficiently represents complex graph
structures using concise graph tokens, enabling ex-
ploration of higher-order structural patterns and
outperforming baselines in this category.
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3) LLM-GNN category: These methods lever-
age LLMs to generate high-quality textual at-
tribute embeddings compared to the first group
and improve performance. However, they lack
deep integration between LLMs and GNN aggre-
gation, which limits LLMs’ capability in modeling
high-order neighbor relationships. GDL4LLM ad-
dresses this limitation by enabling LLMs to com-
prehend graph structure as a language while utiliz-
ing their natural language understanding for textual
attributes, resulting in superior performance.

4.5 Ablation Study (RQ2)
We conduct ablation study to examine how differ-
ent components affect GDL4LLM’s performance,
focusing on the pre-training stage and the incorpo-
ration of textual attributes. Results are presented in
Figure 2.

Our analysis reveals that pre-training contributes
notably to model performance, especially for
GDL4LLM w/ attr. This gain mirrors the ben-
efits of pre-training, as LLMs develop linguistic
competence through initial pre-training. The in-
clusion of textual attributes in prompts alongside
graph language corpus further enhances model
performance. This improvement demonstrates
how GDL4LLM effectively leverages LLMs’ natu-
ral language understanding capabilities to process
node attributes. The combination of pre-training
and textual attribute integration creates a syner-
gistic effect, where structural understanding from
pre-training complements semantic comprehension
from textual attributes.

These findings suggest that both components
play distinct yet complementary roles: pre-training
establishes foundational graph structure under-
standing, while textual attribute integration enables
richer node representations through natural lan-
guage processing capabilities.

4.6 Backbones & Hyperparameters (RQ3)
Backbones. We evaluate GDL4LLM’s perfor-
mance across different LLM backbones, comparing
Llama-2 with Llama-3, as shown in Figure 3. Re-
sults indicate that Llama-3 achieves better perfor-
mance, likely due to its improved architecture and
enhanced training data quality. Ablation studies on
Llama-3 confirm the benefits of our pre-training
objective across different LLM architectures.
Hyperparameters. We examine two critical hyper-
parameters: the length of sampled graph sentences
l and the number of sampled sentences k. Figure 4
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Figure 2: Accuracy comparison of different GDL4LLM
variants on the test set across three datasets.
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across three datasets.

shows optimal performance at l = 5 and k = 10,
and the performance gain is marginal when ap-
proaching this value. These results demonstrate
our framework’s effectiveness in modeling high-
order structural information, such as inter-order
dependencies. For instance, a length of 5 captures
fourth-order structural information, whereas GNNs,
often converging in about two layers, typically cap-
ture only second-order information (Chen et al.,
2024c; Song et al., 2024).

These findings align with our hypothesis that
GDL4LLM can achieve strong performance in
modeling inter-order dependency and can achieve
generalization in different backbones.

4.7 Efficiency Analysis (RQ4)

We analyze GDL4LLM’s efficiency in modeling
high-order structural information by comparing to-
ken usage and running time against description-
based frameworks. Table 3 demonstrates that
GDL4LLM achieves significant token reduction
compared to InstructGLM and LLAGA-HO. While
LLAGA-HO employs GNNs for neighbor summa-
rization, its reliance on natural language task de-
scriptions leads to verbose prompts. In contrast,
GDL4LLM’s succinct graph language prompts
eliminate this verbosity while enabling exploration
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Table 3: Comparison w.r.t. the number of used tokens and the order of graph structure modeled (Token/(order)).

LLMs - ACM Wiki Amazon

Val. Test Val. Test Val. Test

InstructGLM 146(1) 149(1) 1024(2) 319(1) 532(2) 538(2)
LLAGA-HO 155(4) 155(4) 130(4) 130(4) 140(4) 140(4)
GDL4LLM 54(4) 54(4) 72(4) 72(4) 72(4) 72(4)

Reduction (%) 63.01 63.01 44.62 44.62 48.57 48.57

Table 4: Training and test time comparison across LLMs for three datasets. Times are presented in ‘hh:mm:ss‘
format.

LLMs - ACM Wiki Amazon

Train Test Train Test Train Test

InstructGLM 5:59:04 0:06:41 4:30:16 0:05:01 6:07:02 0:07:08
LLAGA-HO 0:47:26 0:04:41 0:35:18 0:01:57 0:49:29 0:04:04
GDL4LLM 1:05:23 0:02:06 0:34:03 0:01:17 0:32:15 0:01:45
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Figure 4: Visualizations of the impact of graph sentence
length l and graph sentence length k on performance.

of higher-order graph information.
The computational advantages of GDL4LLM

are evident in Table 4, showing faster training
and inference across most datasets. On the ACM
dataset, GDL4LLM reduces inference time to 2:06,
compared to InstructGLM (6:41) and LLAGA-HO
(4:41). These results demonstrate GDL4LLM’s
ability to significantly reduce token usage and run-
ning time with effective structure modeling.

5 Related Work

5.1 GNNs for Text-attributed Graph

In traditional pipelines for text-attributed graph
analysis, natural language processing techniques
are first employed to extract features from tex-
tual data, which are then utilized in graph neural
networks (GNNs) for graph propagation. Com-
mon NLP methods include Bag of Words (Zhang
et al., 2010), fixed embeddings like Word2Vec and
GloVe(Pennington et al., 2014), as well as the use

of pre-trained models such as BERT and fine-tuned
variations (Liu, 2019; Gao et al., 2021). These ap-
proaches establish the foundational representation
of textual information within the graph structure.
However, more recent advancements have led to
the development of tailored graph learning methods
specifically designed for text-attributed graphs. No-
table examples include Graphformers (Yang et al.,
2021) and MPAD (Nikolentzos et al., 2020), which
represent word-adjacent relationships as graphs, of-
fering an alternative perspective to text-attributed
graph representations. GLEM (Zhao et al., 2022)
integrates graph structure and language learning us-
ing a variational Expectation-Maximization frame-
work. Other tailored approaches (Chien et al., 2021;
Duan et al., 2023) aim to improve the flexibility
and efficacy of graph-based analyses from complex
and structured data.

5.2 LLMs for Text-attributed Graph

Deep learning on graphs has also achieved great
success, ranging from recommendation system
(Zhou et al., 2023, 2024b), representation learn-
ing (Zhang et al., 2024) and text-attributed net-
works (Sun et al., 2022). Recent advancements in
LLMs (Li et al., 2024; Jin et al., 2023) have intro-
duced novel opportunities for tasks involving text-
attributed graphs. By properly designing prompts,
researchers can instruct LLMs to generate contextu-
ally enriched node and edge representations (Zhou
et al., 2024a), facilitating various downstream tasks
such as node classification (He et al., 2024; Seo
et al., 2024; Zhu et al., 2024). Efficiently train-
ing such LLMs has become a priority. Recent
techniques such as LoRA (Low-Rank Adaptation)
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(Hu et al., 2021; Dettmers et al., 2024) enable fine-
tuning of pre-trained models by injecting trainable
adapters, significantly reducing memory usage and
computational costs. Besides, prefix-tuning (Li and
Liang, 2021; Lester et al., 2021) optimizes model
performance by learning a fixed set of prefixes that
condition the model’s responses without modify-
ing the entire architecture. Fine-tuning LLMs for
graphs often requires costly labeled data. To ad-
dress this, SFGL (Lu et al.) leverages the scale-free
property of real-world graphs and a graph-based
pseudo-labeler to enhance LLM fine-tuning with-
out heavy supervision. LLM-GNN (Chen et al.)
uses LLMs to generate confidence-aware pseudo-
labels and selects informative nodes, enabling ef-
fective training without human annotations. Mean-
while, Latent Graph Inference with Limited Super-
vision (Lu et al., 2023) improves generalization
by restoring lost connections in sparse graphs and
rebalancing learning signals. Together, these meth-
ods reduce the need for labeled data by combining
structural priors, pseudo-labeling, and efficient su-
pervision. We incorporate these ideas into model
design and achieve a higher accuracy without sac-
rificing efficiency.

6 Conclusion

In this paper, we identify two key limitations of us-
ing natural language alone to model text-attributed
graphs with LLMs: (i) Graph descriptions become
excessively verbose, particularly when modeling
high-order neighbors, and (ii) textual attributes of-
ten lack sufficient structural information, limiting
LLMs’ ability to capture high-order graph struc-
tures. We address two main challenges: (i) the
absence of a built-in mechanism in LLMs, akin to
message passing in GNNs, and (ii) the inter-order
dependencies between high-order neighbors and
target nodes. To overcome these challenges, we
propose the GDL4LLM framework, which enables
LLMs to model text-attributed graphs as if learn-
ing a new language. GDL4LLM consists of two
main stages: (i) collecting a graph language corpus
and pre-training LLMs on this corpus to adequately
understand the graph, and (ii) fine-tuning LLMs
with this corpus to concisely represent subgraph
centered around target nodes. This approach allows
LLMs to effectively capture graph structure of vari-
ous orders. Extensive experiments demonstrate the
efficiency and effectiveness of GDL4LLM in mod-
eling text-attributed graphs for downstream tasks.

Our future work will explore more efficient graph
learning methods with graph language.

7 Proof of Theorem 1

Assume that all possible token weight vectors Wh,q
form a weight vector set W , and all hidden repre-
sentations of the next possible graph token tq form
a context set T . We use #(·, ·) to represent the
number of co-occurrences of two quantities. If the
language model has sufficient capacity to construct
the inner product between any pair Wh,q and tq,
the optimization of each pair’s inner product does
not affect the others. Then we replace the cross
entropy loss in the pre-training process with the
binary cross entropy loss. The overall pre-training
loss is calculated as:

L =
∑

w∈W

∑

t∈T
#(w, t)

(
log

(
exp(w · t)

1 + exp(w · t)

))

+
∑

w∈W

∑

t∈T
#(w, t) · |W| · Et∼Pt

[
log

(
1

1 + exp(w · t)

)]
. (7)

The pre-training loss with respect to a specific
pair is calculated as:

L(w,t) =#(w, t) log

(
exp(w · t)

1 + exp(w · t)

)

+ |W| ·#(w) · k log
(

1

1 + exp(w · t)

)
,

(8)

where k is a constant factor. We calculate the gra-
dient of the above term and set it to zero, obtaining
the following terms:

e2x −
(

#(w, t)

|W| ·#(w) · dq
− 1

)
ex =

#(w, t)

|W| ·#(w) · k .

(9)

The inner product w · t, i.e., x, satisfies the
following equation:

w · t ∝ log

(I(si,q−1,si,q)∈E ·∑A

dqdq−1

)
. (10)
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Limitations

While our approach of treating graph learning
as language learning for LLMs demonstrates sig-
nificant improvements in efficiency compared to
description-based methods, certain limitations re-
main. The primary constraint is the memory con-
sumption inherent to LLMs, which may restrict
deployment in resource-constrained environments.
To address this limitation, we use LoRA to reduce
memory consumption and load standard quantized
LLMs instead of full precision models for both our
models and all baselines. And future work will
explore the possibility of further memory consump-
tion through LLM layer reduction while maintain-
ing model performance.

Ethics Statement

Our study utilizes three datasets: the widely-used
Amazon dataset, and two custom datasets (Wiki
and ACM) built from public sources. For the cus-
tom datasets, we protect user privacy through thor-
ough anonymization of consumer information. All
baseline implementations are publicly available
through open-source repositories. In the prepa-
ration of this work, AI-based tools are utilized ex-
clusively for polishing purposes, such as refining
the clarity and grammar of the text. These tools are
not employed for generating ideas, or conducting
research, ensuring that all scientific contributions
and implementations are entirely original. Our re-
search strictly adheres to the ACM Code of Ethics1,
particularly regarding data privacy, transparency,
and responsible computing practices.
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