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Abstract
Large language models (LLMs)-based personal
assistants may struggle to effectively utilize
long-term conversational histories. Despite ad-
vances in long-term memory systems and dense
retrieval methods, these assistants still fail to
capture entity relationships and handle multi-
ple intents effectively. To tackle above limita-
tions, we propose Associa, a graph-structured
memory framework that mimics human cog-
nitive processes. Associa comprises an event-
centric memory graph and two collaborative
components: Intuitive Association, which ex-
tracts evidence-rich subgraphs through Prize-
Collecting Steiner Tree optimization, and De-
liberating Recall, which iteratively refines
queries for comprehensive evidence collection.
Experiments show that Associa significantly
outperforms existing methods in retrieval and
QA (question and answering) tasks across long-
term dialogue benchmarks, advancing the de-
velopment of more human-like AI memory sys-
tems.

1 Introduction

Empowered by large language models (LLMs), life-
long personal assistants have demonstrated remark-
able potential across various domains, including
daily life (Wu et al., 2025; Wang et al., 2024),
healthcare (Jo et al., 2024; Zhang et al., 2024b),
and mental health counseling (Zhong et al., 2024).
These advancements show a significant opportu-
nity to enhance quality-of-life and promote individ-
ual well-being through effective human-AI interac-
tion (Li et al., 2024; Jo et al., 2024). However, the
personal assistants face a critical challenge: effec-
tively maintaining and utilizing lifelong conversa-
tional histories (Xu et al., 2022).

To tackle this challenge, researchers propose
the long-term memory systems as a promising
solution (Jo et al., 2024). These systems main-
tain the interaction history between assistants and
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lately and I'm curious about what content is 
currently trending on Instagram. 

I‘m looking to run another Facebook ad 
campaign … my previous ad campaign, which ran 
for five days, reached around 2,000 people.
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User Query

History utterances

Dense 
retriever

Ground
Truth

the total 
number of 
people reached 
is 12,000.

Sorry, I don't 
know the answer 
to the question.

…
Assistant 
Response

Session 1

Session N

Long-term dialogues

Long-term
Memory
For LLM

Figure 1: Illustration of Mismatching in Memory Re-
trieval for Long-term User Dialogues, especially the
difference between dense retrieval approaches and the
actual process of gathering evidence from users’ long-
term memory.

users across multiple chat sessions (Xu et al.,
2022), offering plug-and-play adaptability (Wu
et al., 2025). Notably, studies have demonstrated
that such memory-augmented systems can sub-
stantially outperform native long-context LLMs
by effectively combining short-context reasoning
accuracy with extended information retention ca-
pabilities (Maharana et al., 2024). Current imple-
mentations typically employ pre-trained dense re-
trieval approaches, enhanced with various forms of
information such as summaries (Lu et al., 2023),
facts (Wu et al., 2025), or observations (Maharana
et al., 2024). However, these approaches exhibit
significant deficiencies in their memory retrieval
paradigms that hinder practical effectiveness (Yue
et al., 2024; Wang et al., 2024).

As shown in Figure 1, there is a mismatch be-
tween dense retrieval approaches and the actual pro-
cess of gathering evidence from users’ long-term
memory (the memory retrieval approach). While
dense retrievers are pre-trained to identify texts
with the highest semantic similarity (Reimers and
Gurevych, 2019), the goal of long-term memory
systems is to effectively assist users in “gathering
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evidence” (Maharana et al., 2024). For instance,
when a user poses the query: “What was the total
reach of my Facebook ad campaign and Instagram
influencer collaboration?,” a pre-trained linear re-
trieval system might return historical user utter-
ances related to “influencer marketing” or “social
media.” Although dense retrieval search documents
show significant semantic similarity and may even
include matching entities, they still do not provide
the key evidence needed to answer the query. This
reflects the two gaps between dense retrieval ap-
proaches and memory retrieval approaches: (1)
The neglect of the association of entities. This
instance denotes that the dense retriever ignores the
binding relationship between “Facebook” and “ad
campaign,” as well as between “Instagram” and “in-
fluencer collaboration.” In other words, utterances
that include both of these entities will be consid-
ered stronger evidence. (2) The dense retriever
may mix and blur different evidence-gathering
intents. In this instance, the query contains two re-
trieval intents: “the reach of Facebook ad campaign”
and “the reach of Instagram influencer collabora-
tion.” This overlap can cause the model to retrieve
irrelevant information, undermining the accuracy
of the results.

Inspired by the associative and deliberative na-
ture of human long-term memory (Yue et al., 2024),
we propose Associa, a novel graph-structured long-
term memory framework, to enhance the ability
to extract “key evidences” from very long-term
dialogues, ultimately improving the effectiveness
of the personal assistant. Specifically, to address
gap (1), we first design an event-centric personal
memory graph that incorporates multi-dimensional
information. Then, we introduce an “Intuitive As-
sociation” retrieval module. This module employs
Prize-Collecting Steiner Tree (PCST) optimiza-
tion (He et al., 2025) with dynamic prize mech-
anisms, constructing a memory subgraph by maxi-
mizing the prizes of subgraph nodes and minimiz-
ing the costs of subgraph edges. Through the sub-
graph, we retrieve utterances from long-term mem-
ory that are connected to the most “high-quality”
nodes (such as events or entities). To address gap
(2), we develop a “Deliberating Recall” module,
which recursively assesses whether all evidence
relevant to the user’s intent has been fully collected.
By instruction-tuning a specialized deliberating
model, it collects missing clues and augments the
user’s query as feedback. These two modules work
collaboratively to ensure comprehensive evidence

gathering.

Our contributions are threefold:

(1) We propose Associa, the first event-centric
graph memory framework that systematically or-
ganizes long-term dialogue history by proposing
a unified graph schema. The novel PCST-based
subgraph retrieval mechanism enables associative
memory retrieval in personal assistant systems, ef-
fectively addressing the information fragmentation
challenge in extended conversations.

(2) Our innovative integration of Intuitive As-
sociation with Deliberating Recall establishes a
human-like reasoning paradigm. The collaboration
between the two modules ensures that the graph-
structured memory will be selectively modified to
gather more complete evidence.

(3) Extensive experimental results are conducted
across several long-term personalized datasets,
demonstrating that Associa achieves state-of-the-
art performance in both retrieval and QA tasks.

2 Related work

2.1 Enhancing LLMs with long-term memory
retrieval

In the context of lifelong personal assistants, user-
assistant dialogues can accumulate extensive con-
versation histories over time. Given the limited
context window of LLMs, processing the entire
conversation history becomes impractical for long-
term interactions (Jo et al., 2024). Existing research
points out that commercial chat assistants and long-
context LLMs show a 30% decline in accuracy of
the benchmark when retaining information across
ongoing interactions (Wu et al., 2025). There is
also evidence that LLMs with long texts tend to
hallucinate and recall information incorrectly (Ma-
harana et al., 2024). A substantial body of evidence
suggests that memory retrieval, compared to using
base LLMs, can improve performance (Du et al.,
2024; Kim et al., 2024). Its plug-and-play feature
also makes it easy to integrate into other existing
chat assistant systems (Wu et al., 2025). Accurate
clue collection can significantly improve the per-
formance of downstream tasks, such as question
answering. However, there is still considerable
potential for improvement in current retrieval meth-
ods (Kim et al., 2024).
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2.2 Existing technical solutions of long-term
memory retrieval

Current research mainly employs dense retrieval
methods for memory retrieval. Specifically, these
methods retrieve the top-k relevant content from
memory to enhance LLMs and design them for task
adaptability. In addition to users’ dialogue records,
MemoryBank (Zhong et al., 2024) stores event
summaries and dynamic personality understand-
ing to help LLMs better understand users. LONG-
MEMEVAL (Wu et al., 2025) uses a series of tech-
niques to improve memory retrieval, including fact
concatenation, temporal filtering, and reasoning
optimization (such as converting retrieval results
into JSON format). Fragrel (Yue et al., 2024) splits
texts into fragments, considering not only the simi-
larity between the query and the fragments but also
the similarity between the question and its context
fragments.

However, these studies neglect the semantic rela-
tionships of user-related information. Our research
proposes a graph-structured memory construction
and associative retrieval approach to capture the
relationships between memory chunks, thereby im-
proving retrieval accuracy and efficiency.

3 Preliminary

3.1 Task definition
Long-term dialogue. Long-term dialogue L refers
to the long-term interactions data between the user
and the assistant (LLMs), often spanning across
multiple sessions.

L =
n⋃

i=1

Si, Si = ⟨r(i)1 , r
(i)
2 , ..., r

(i)
ki
⟩ (1)

where Si represents the i-th session, and ki is the
number of rounds in the i-th session.

Each session Si contains an ordered sequence of
dialogue rounds. For each single round r

(i)
j :

r
(i)
j = (u

(i)
j , a

(i)
j ), u

(i)
j ∈ U , a(i)j ∈ A (2)

where U represents the user utterance space, and A
represents the assistant utterance space.

Retrieval-augmented long-term memory gen-
eration. To respond to a user’s query qt at times-
tamp t, the assistant must consider both the current
session and relevant information from history dia-
logues. This retrieval-augmented long-term mem-
ory framework typically includes three core com-

ponents (Zhang et al., 2024c): memory manage-
ment, memory retrieval, memory-enhanced re-
sponse generation. First, the memory manage-
ment (Zhang et al., 2024c) constructs an external
memory database M from a historical long-term
dialogue corpus L. This process includes mem-
ory writing, deletion, and editing, which can be
formalized as:

M = fManage(L) (3)

where fManage represents the memory management
function that transforms raw dialogue history into
a memory database.

Subsequently, the memory retrieval module
fretrieve identifies and extracts relevant memory en-
tries from M according to current qt:

mqt = fretrieve(M, qt) (4)

where mqt represents the retrieved result to query
qt.

Finally, the LLM-based personal assistant gen-
erates final response rt considering the current
session context St and the above information.

rt = fLLM(qt, St,mqt) (5)

The advantage of external retrieval-based mem-
ory lies in two aspects: (1) Higher interpretability.
Users can clearly trace how the model retrieves
information and makes decisions. This structure
makes the source of knowledge and the reasoning
process more transparent, enhancing the model’s
auditability and credibility. (2) External retrieval
memory has higher transferability, which can be
independent of specific model implementations.

4 The proposed framework: Associa

We propose Associa, a novel graph-structured long-
term memory framework that enhances evidence
extraction from extended dialogue histories and im-
proves the effectiveness of personal assistants. Our
framework introduces innovations in two crucial as-
pects: (1) an event-centric personal memory graph
for memory management, and (2) a collaborative
memory retrieval mechanism that combines asso-
ciative memory retrieval with deliberation recall.

4.1 Event-centric personal memory graph
To effectively manage the memory of users’ daily
events and interests, we design an event-centric per-
sonal memory graph that unifies graph schema and
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Figure 2: Illustration of the Event-centric Personal Memory Graph.

memory features. As shown in Figure 2, our ap-
proach is characterized by two key innovations: (1)
Event-centric memory architecture: The graph
organizes memories around event entities, leverag-
ing their inherent rich contextual information (in-
cluding temporal, spatial, and participant details)
to create sophisticated memory structures. This de-
sign naturally captures the interconnected nature of
personal experiences and facilitates complex rela-
tionship modeling through contextual anchors. (2)
Hybrid utterance-graph storage: We establish ex-
plicit edges between graph nodes and their originat-
ing utterances in memory storage M. This hybrid
approach benefits both by preserving critical raw
information that might be lost during pure struc-
tured conversion, while simultaneously enabling
efficient graph-based retrieval operations.

Specifically, we propose a unified graph schema
tailored for long-term memory in personal assistant
scenarios. Based on common interaction patterns
in personal assistance, our Associa memory graph
formally designs two key components: node types
and edge relationships. The graph formally de-
fines four core node types: utterance, user-related
event, entity, and event time. The entity nodes
represent referential objects embedded in events,
encompassing diverse categories including [Ob-
ject, Person/User/Organization, Resource, Place,
Event, Goal/Intention, Time, Interest/Skill, Senti-
ment]. This comprehensive node type design ex-
tends beyond mere factual representation—it cap-
tures users’ emotions, intentions, and preferences,
thereby enabling personalized and empathetic as-
sistance.

Egde relationships: The graph topology is en-
riched through six semantically-typed edges that
capture different aspects of user-assistant interac-
tions:

(event, "<|event occur at|>", event time): The
event time is inferred by the responding utterance
timestamp.

(event, "<|event fact|>", utterance): It connects
an event to an utterance that provides factual infor-
mation about it, grounding events in user dialogue.

(event, "<|event include|>", entity): This edge
associates an event with an entity involved in or
affected by the event.

(utterance, "<|include|>", entity): The event con-
tains entities, and the utterance is connected not
only to the event but also to the entities within the
event.

(user/speaker, "<|ask|>", utterance): The user is
considered a key node because entities in the event
are often related to "user," such as (user, browsing,
yoga information), etc.

(entity, "<|relation|>", entity): The relationships
are varied and can encompass actions, states, such
as "occur at," or expressive verbs like "feel."

Graph deduplication: To enhance the effi-
ciency and scalability of our memory graph, two
deduplication strategies are used for events, enti-
ties, and relations. Incremental deduplication:
based on FAISS, we take advantage of the ability
to dynamically and quickly merge duplicate nodes
and edges as new memories are added (merging
when the similarity exceeds the threshold). Clus-
tering deduplication: we first build a similarity
matrix and then apply Agglomerative Clustering
for clustering. Its advantage is the ability to han-
dle large-scale graphs in batches. The deduplica-
tion process helps reduce database storage space,
and the merged events and entities contribute to
associating more utterances, thereby optimizing
graph-based retrieval.
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4.2 Collaborative memory retrieval

To effectively retrieve relevant memories for user
queries, we propose a Collaborative Memory Re-
trieval framework that synergistically combines as-
sociative intuition and deliberate recall, mimicking
human memory retrieval processes. As illustrated
in Figure 3, our framework operates in two comple-
mentary phases: Intuitive Association: Initially,
we employ a subgraph retrieval mechanism that
identifies potentially relevant information from the
historical dialogue memory graph, similar to hu-
man intuitive recall. Deliberate Recall: Recogniz-
ing that initial intuitive retrieval may overlook crit-
ical clues, we introduce a deliberate recall module
that simulates human assistants’ reflection process.
This module systematically analyzes potential in-
formation gaps and augments the original query,
enabling more comprehensive memory retrieval.
Through iterative interaction between these two
phases, our framework progressively refines the
retrieved information.

4.2.1 Intuitive association
We propose an enhanced approach for associa-
tive memory retrieval based on Prize-Collecting
Steiner Tree (PCST) optimization with dynamic
prize mechanisms, inspired by He et al. (2025).
This novel method enables efficient extraction of
relevant information from the user’s historical di-
alogue memory graph. Our approach consists of
three key phases:

Contextual prize initialization Given query em-
bedding q ∈ Rd and memory graph G = (V,E).
With node feature xv ∈ Rd and edge feature
e(u,v) ∈ Rd. The cost of subgraph construction
is a hyperparameter θcost. We compute initial rele-
vance scores as prizes via:

Prizevn =
q · xv

∥q∥∥xv∥ , P rize(u,v)e =
q · e(u,v)

∥q∥∥e(u,v)∥

Top-k selection with decaying weights ():

ˆPrize =

{
k − rank(n) + 1 if n ∈ TopK
0 otherwise

(6)

Add virtual nodes To overcome PCST’s edge
selection bias, we implement virtual node injection
for high-prize edges:

∀euv ∈ E :

{
direct inclusion ˆPrize

(u,v)

e ≤ θcost

insert virtual node w ˆPrize
(u,v)

e > θcost

(7)

where virtual node w receives prize:

ˆPrize
w

n = ˆPrize
(u,v)

e − θcost (8)

Once the virtual nodes are added, node w con-
structs virtual edges with the two endpoints u and
v, and the cost of the edge C(e) is represented as
follows:

C(e) =

{
0 if e is a virtual edge

θcost − ˆPrize
(u,v)

e otherwise
(9)

Subgraph construction The objective of the
PCST is to find a connected subgraph in a given
graph such that the total prize of the selected nodes
and edges minus the total cost is maximized:

max
T

(∑

v∈T
R̂n(v) +

∑

e∈T
R̂e(e)−

∑

e∈T
C(e)

)
(10)

4.2.2 Deliberate recall
We introduce the Deliberating Recall mechanism
for the following reasons: (1) During the retrieval
process, certain pieces of information in the query
are crucial, but in a single round of retrieval, key
details may be blurred or overlooked. A careful
recall mechanism is needed to prompt the model
to focus on these critical pieces of information. (2)
Subgraph extraction allows for the retrieval of a
connected subgraph. However, the user’s intent
in the query may be multifaceted and dispersed.
Therefore, multiple rounds of recalling relevant
clues are necessary to reconstruct the full context
of the facts and accurately address the user’s query.
Instruction tuning for deliberating model

To enhance the deliberation process, we fine-
tune a specialized deliberating model that effec-
tively identifies missing contextual cues from initial
retrieval results, thereby improving the precision
and efficiency of subsequent memory access.

Specifically, we leverage CoQA (Reddy et al.,
2019), a well-established conversational question-
answering dataset, to carefully construct training
data for our Deliberating model. The data prepa-
ration process encompasses the following crucial
steps: Graph Construction, Question Restoration,
Locating the correct cues in the graph, Construct-
ing positive and negative sample inputs and out-
puts (detailed description can be seen in Appendix
A) 1 . We implement this training pipeline using

1The CoQA dataset is exclusively used for training the De-
liberating Recall capability and remains completely indepen-
dent from the datasets used for evaluating the overall system
performance, ensuring unbiased assessment.
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Figure 3: Framework of the Collaborative Memory Retrieval, consisting of two key modules: Intuitive Association
and Deliberate Recall.

the Qwen-2.5-3B-instruct model as our base ar-
chitecture. This approach significantly enhances
the model’s capability to identify and complement
missing evidence.
Recursive evidence retrieval

To collect and complement the scattered clues,
we use a recursive clue retrieval mechanism.
Specifically, we optimize the focus of the retrieval
question based on the current round of retrieval
results and feedback from the deliberating model.
This allows us to conduct a new round of subgraph
retrieval, adding the nodes that were missed in the
previous round. Through this systematic iteration,
we achieve both comprehensive evidence consoli-
dation and enhanced factual reconstruction fidelity.
The algorithm is shown in Appendix B. Finally, we
use the complete subgraph to calculate the evidence
importance ranking (see Section 4.2.3).

4.2.3 Evidence importance ranking

To better identify key clues and assess node im-
portance in our subgraph (consisting of utterances,
user-related events, and entities), we propose us-
ing personalized PageRank to calculate customized
weights for each node. Where ri is the importance
of nodes. w(i,j) is the weight from node i to node
j. pi is the personalized preference of node i. α is
the damping factor. In(i) is the set of nodes that
point to node i.

ri = α
∑

j∈In(i)

w(j,i)

∑
k w

(j,k)
rj + (1− α)pi (11)

In Associa, the pi is the ˆprize of nodes and the
w(i,j) is formulated as follows:

w(i,j) =
1

1 + log (1 + C(e(i,j)))
(12)

5 Experiment

To gain more insights into Associa, we tend to
address the following research questions (RQs) in
this section.

RQ1: How does Associa perform in retrieval for
long-term dialogue understanding?

RQ2: How does Associa perform in QA tasks
for long-term dialogue understanding?

RQ3: What functions do the various modules of
Associa serve in its performance?

5.1 Experiment setup

5.1.1 Datasets
To demonstrate the comprehensive capabilities of
Associa, we test it on the following datasets:

Longmemeval (Wu et al., 2025) is a benchmark
dataset designed to evaluate the very long-term
memory capabilities of LLM-driven chat assis-
tants. It contains 500 designed questions embedded
within scalable user-assistant chat histories.

Longmemevals with approximately 115k tokens
per question (around 200 turns of dialogue) and
Longmemevalm with 1.5 million tokens per ques-
tion (around 2000 turns of dialogue, 500 sessions).
It tests the assistant’s ability to perform five core
long-term memory tasks during sustained interac-
tions: information extraction, multi-session reason-
ing, temporal reasoning, knowledge updating, and
abstention.
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LoCoMo (Maharana et al., 2024) is a dataset
built upon personas and temporal event graphs to
generate high-quality, very long-term dialogues,
each encompassing 300 turns and 9K tokens on
average, spanning up to 35 sessions. We use this
dataset to evaluate the models’ understanding of
long-term memory and question-answering capa-
bilities.

5.1.2 Baselines

To validate the effectiveness of Associa, we com-
pared it with several representative models in the
retrieval task. The models used for comparison are
as follows: BM25, a widely used text retrieval
algorithm that evaluates document relevance to
a query based on term frequency (TF) and in-
verse document frequency (IDF); BGE-m3 (Chen
et al., 2024), a retrieval model that achieves state-
of-the-art performance in long-document retrieval;
Stella (stella_en_1.5B_v5) (Zhang et al., 2024a),
which utilizes a multi-stage distillation framework
to reduce model size and vector dimensionality
while maintaining high performance on text em-
bedding benchmarks; Contriever (Izacard et al.,
2021), which explores the potential of contrastive
learning for training unsupervised dense retrievers
and demonstrates strong performance on the BEIR
benchmark; and Longmemeval (Wu et al., 2025),
which enhances retrieval performance by combin-
ing Stella (1.5B) with user fact information and
using LLMs for temporal filtering.

In the QA task, we compared MemoRAG (Izac-
ard et al., 2021), an innovative RAG framework
built on top of a highly efficient, super-long mem-
ory model. It utilizes a long-text memory model
to provide an overview of the database, thereby
optimizing retrieval results. Longmemeval (Wu
et al., 2025) uses a retrieval-augmented approach,
optimizing generation results in the generation
phase through methods like CoN with JSON for-
mat. Memorybank (Zhong et al., 2024) integrates
the Llama-index retriever, performing vectorized
retrieval of documents and using LLMs to summa-
rize the retrieved information, thereby enhancing
the understanding of long-term memory for per-
sonal assistants. LightRAG (Guo et al., 2024) is
a lightweight Graph-based Retrieval-Augmented
Generation (GraphRAG) framework. It signifi-
cantly improves the speed and quality of informa-
tion retrieval and generation, displaying excellent
performance in both efficiency and effectiveness.

5.2 Experiment metrics
For the retrieval task, this paper uses four metrics
for evaluation: recall@5, recall@10, ndcg@5, and
ndcg@10. The recall metric is defined as the re-
trieval of all memories, meaning that the recall for
that sample is 1.

For the QA task, we use GPT-4o-mini for cor-
rectness evaluation. By inputting the task category,
question, correct answer, and the model’s generated
response, GPT-4o-mini will return either correct or
incorrect. Based on this, we evaluate the accuracy
of the QA task.

5.2.1 Implementation details
Baseline implementation: In the baseline models
for both retrieval generation and generation tasks,
the methods from the original code repositories
were adapted and implemented. Some retrieval-
augmented methods require the use of retriev-
ers. The choice of retriever was made based on
the initial setup of the baseline models. For ex-
ample, Longmemeval uses the Stella (1.5B) re-
triever, while MemoRAG uses the BGE-M3 re-
triever. Due to the long text in Longmemevalm, the
beacon_ratio in MemoRAG is set to 16, while for
Longmemevals, it is set to 4. In the QA task, we
use GPT-4o (gpt-4o-2024-11-20) as the generative
model for testing. Since the LoCoMo dataset is
based on human-to-human dialogues, individual
utterances contain limited information. Therefore,
two dialogue turns (comprising four utterances) are
used as the basic retrieval unit.

In the execution of Associa, following the task
setup of Wu et al. (2025), we only use “user-side”
information and exclude data that cannot be re-
called from the user information in a small number
of cases. Associa uses Contriever as the dense re-
triever. In practice, the retriever is not fixed; it can
be adjusted and replaced as needed. Additionally,
the following hyperparameter settings were chosen:
for deliberating recall, max_iter is set to 2; In the
intuitive association module, coste is set to 0.5, and
topk (node setting) and tope (edge setting) are set
to 15. All experiments were conducted on a single
Nvidia A800 (80GB) GPU. The prompt templates
can be seen in Appendix E.

5.3 R1: The performance of memory retrieval
In Table 1, the result shows that (1) Associa with
max_iter=2 achieves the highest overall perfor-
mance across all metrics. The increased number
of iterations in this version improves the model’s
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Longmemeval-s Longmemeval-m LoCoMo

R@5 ndcg@5 R@10 ndcg@10 R@5 ndcg@5 R@10 ndcg@10 R@5 ndcg@5 R@10 ndcg@10
BM25 0.51 0.54 0.59 0.57 0.38 0.42 0.46 0.45 0.66 0.64 0.74 0.67

Contriever 0.67 0.69 0.85 0.74 0.49 0.53 0.65 0.58 0.65 0.63 0.75 0.66
Stella 0.70 0.73 0.86 0.77 0.53 0.58 0.67 0.62 0.67 0.65 0.76 0.68
BGE 0.75 0.76 0.88 0.79 0.56 0.61 0.71 0.65 0.54 0.52 0.63 0.55

Longmemeval (w UF) 0.66 0.67 0.85 0.72 0.55 0.57 0.72 0.62 0.71 0.69 0.79 0.73
Longmemeval (w UF and TF) 0.70 0.72 0.87 0.76 0.56 0.59 0.72 0.63 — — — —

Associa max_iter=1 0.84 0.85 0.90 0.87 0.60 0.66 0.68 0.68 0.73 0.71 0.79 0.73
Associa max_iter=2 0.87 0.87 0.93 0.88 0.66 0.70 0.77 0.73 0.74 0.72 0.80 0.74

Table 1: Performance for different models on two datasets. UF (User Fact) and TF (Time Filtering) are the specific
features of baseline Longmemeval. Since LoCoMo does not provide timestamps for the questions, the Longmemeval
(with UF and TF) scenario is not considered. R@N (Recall@N) is defined as 1 if all relevant target items are
retrieved within the top N results; otherwise, it is assigned a value of 0.

ability to retrieve relevant results and rank them
more effectively, making it the best performer in
the experiment. On the other hand, Associa with
max_iter=1 still shows a significant improvement,
especially in recall@5 and ndcg@5.

(2) The Longmemeval model, when combined
with user facts and time filtering, demonstrates an
improvement over BM25 and Contriever. While
it does not reach the same level of performance
as Associa, BGE, or Stella, it still shows positive
effects, particularly at recall@10 and ndcg@10.
This suggests that incorporating user-related factors
contributes positively to model performance.

(3) The difficulty of this task is fully reflected
in longmemevalm, as the scale of the dataset is
enormous, making it akin to finding a needle in a
haystack when identifying memory clues. Most
models perform around 0.5 in the recall@5 metric.
However, Associa effectively improves the recall
of relevant evidence through its graph association
ability and recursive evidence recall. Additionally,
due to its evidence importance ranking capability,
the model achieves optimal performance in terms
of NDCG.

Further results on cost and efficiency analysis,
as well as robustness testing in graph construction,
are available in Appendix C and D.

5.4 R2: The performance of question and
answering

The result in Table 2 has shown that for understand-
ing long-term memory, Associa demonstrates supe-
rior performance, highlighting the significant im-
portance of enhanced retrieval in answering ques-
tions. Longmemeval, due to its integration of tech-
nologies such as CoN with JSON format, shows
high effectiveness and performance in generating
results. While LightRAG demonstrates competitive
performance, Associa achieves superior results on

both LoCoMo and Longmemevals datasets. Mem-
oryBank and MemoRAG perform poorly, possibly
because excessively long text can reduce the com-
prehension ability of large language models when
handling long texts.

Longmemeval-s Longmemeval-m LoCoMo

MemoRAG 0.05 0.06 0.32
Longmemeval (w UF) 0.80 0.64 0.62

Longmemeval (w UF & TF) 0.80 0.64 —
MemoryBank 0.26 0.12 0.28

LightRAG 0.64 — 0.64
Associa (iter=2) 0.81 0.66 0.69

Table 2: Performance on QA task.

5.5 R3: The ablation test for Associa

We conducted four ablation studies by removing
key components of Associa: the association mech-
anism (AM), deliberating module (DM), super-
vised fine-tuning (SFT), and evidence importance
ranking (EIR). As shown in Table 3, all variants
showed performance degradation compared to the
complete model, with the removal of the associa-
tion mechanism causing the most significant drop.
These results demonstrate that each component
contributes to Associa’s effectiveness, and their
integration is crucial for optimal memory retrieval
performance. Notably, Associa w/o EIR exhibits
better recall@10, but performs worse in recall@5,
ndcg@5, and ndcg@10, indicating the importance
of EIR in node ranking.

6 Conclusion

This work addresses the critical challenge of long-
term conversational memory utilization in LLM-
based personal assistants. We propose Associa, a
cognitively inspired framework that overcomes the
limitations of dense retrieval through two key in-
novations: (1) an event-centric graph memory pre-
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recall@5 ndcg@5 recall@10 ndcg@10

w/o AM 0.67 0.69 0.85 0.74
w/o DM 0.84 0.85 0.90 0.87
w/o SFT 0.84 0.86 0.91 0.87
w/o EIR 0.52 0.51 0.85 0.60
Associa 0.87 0.87 0.93 0.88

Table 3: Ablation test on Longmemevals. W/o AM
means w/o association mechanism, w/o DM means w/o
deliberating module, w/o SFT means w/o fine-tuning
of deliberating model, EIR means w/o evidence impor-
tance ranking.

serving entity relationships, and (2) retrieval mod-
ules combining associative memory retrieval with
deliberate recall. Experimental validation across
multiple benchmarks demonstrates Associa’s su-
perior performance. Our findings establish graph-
structured memory with human-like retrieval mech-
anisms as a promising direction for developing AI
capable of truly human-AI interaction.

Limitations

In our retrieval approach, we did not specifically
model temporal information, which could be seen
as an area for potential future enhancement. Ad-
ditionally, our evaluation was limited to English-
language datasets, and the assessment and learning
of large models and agents would benefit from val-
idation across a broader range of languages and
corpora.
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A Deliberating recall instruction tuning
dataset procession

CoQA (Reddy et al., 2019) contains 127,000
question-answer pairs from 8,000 dialogues. The
dataset was processed as follows: (1) Graph con-
struction: We extracted information from the
8,000 reading materials according to Section 4.1.
For each dialogue, we created a graph that contains
original text chunks, events, and entity-type nodes
within events. (2) Question restoration: Since the
dataset contains a lot of pronouns in the questions,
we used a large model (qwen-plus) to restore the
questions. For example, “Where is the location of
this museum?” is restored, considering the reading
material, to “Where is the location of The Vatican
Apostolic Library?” (3) Locating the correct cues
in the graph: CoQA provides cues based on the
reading material. Using semantic similarity cal-
culation methods, we locate the 2-3 graph nodes
with the highest semantic similarity to the correct
cues as T . (4) Constructing positive and nega-
tive sample inputs: We constructed two types of
sample inputs. Positive samples include the correct
cue as Posinput(q, Ṽ ), and negative samples ex-
clude the correct cue as Neginput(q, ˜V \T ) (where
V represents the sampled graph nodes, and ˜V \T
represents the result of sampling the nodes from
the graph after removing the correct cue T ). (5)
Constructing positive and negative sample out-
puts: For positive samples, we required the model
to output an empty dictionary “{}”. For negative
samples, the model was asked to output the miss-
ing entities and indicate irrelevant content in the
existing cues. We used qwen-plus to generate the
samples. (6) Model training: We fine-tuned the
qwen2.5-3B-instruct model for training.

B Deliberating process algorithm

See Figure 4.

C Cost and efficiency analysis

C.1 The cost/efficiency analysis in the graph
construction stage

We compare the token usage and time consump-
tion during graph construction between Associa
and two other methods: Longmemeval (with UF
and TF) (Wu et al., 2025) and LightRAG (Guo
et al., 2024). These methods use LLMs to gener-
ate and store “augmented information” to improve
retrieval performance. Specifically, Longmemeval

Figure 4: Deliberating process algorithm.
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(with UF and TF) extracts user-related facts, As-
socia (our method) extracts an event-centric graph,
and LightRAG extracts entities and relationships
for retrieval augmentation. Therefore, these ap-
proaches are more comparable to Associa in terms
of graph construction stage.

We display the cost and efficiency results
on the LoCoMo (Maharana et al., 2024) and
Longmemeval-s datasets in Table 4.

Token usage and time consumption:
We compare the token usage between Associa

and two baseline methods.
The result shows that our proposed Associa has

the lowest total token consumption per session.
Specifically, compared to LightRAG, Associa re-
duces token usage by 69% (on LoCoMo) and 44%
(on longmemeval-s). Compared to Longmemeval
(w UF and TF), Associa reduces token usage by
110% (on LoCoMo) and 246% (on longmemeval-s).
These results demonstrate that our method achieves
higher token utilization efficiency during graph con-
struction.

Cost analysis:
We use Qwen-Turbo as the base model for graph

construction, which offers a good balance between
performance and efficiency among the Qwen series
of commercial models.

The cost analysis across our experimental
datasets shows: For LoCoMo (272 sessions): the
total cost for graph construction is 0.499 RMB
(0.068 USD), with an average cost of 0.0018 RMB
(0.00025 USD) per session. For Longmemeval-
s (25,112 sessions): the total cost is 23.63 RMB
(3.26 USD), with an average cost of 0.00094 RMB
(0.00013 USD) per session.

[Note: calculated at an exchange rate of 7.25]
Time efficiency analysis:
Compared to the baseline methods, Associa has

higher time efficiency in the graph construction
stage. With a call rate of 1,200 QPM (Queries
Per Minute) for Qwen-Turbo API, graph construc-
tion for the LoCoMo dataset took a total of 137
seconds, averaging 0.5 seconds per session. For
Longmemeval-s, the total construction time was
5,749 seconds, averaging 0.23 seconds per session.

In summary, (1) our model achieves higher to-
ken utilization efficiency compared to other base-
line models. Additionally, (2) our approach is
highly cost-effective, and (3) time-efficient. This
efficiency gives our model a significant advantage
in practical applications. Furthermore, an event-
centric memory graph efficiently preserves long-

term user memory while supporting personalized
LLMs.

C.2 The cost/efficiency analysis of Associa in
the retrieval stage

We compared the time consumed by each method
in real-time retrieval. It is worth noting that we con-
ducted a fair comparison and experiment without
including offline time, such as memory augmen-
tation and dialogue encoding time. The results
on the LoCoMo and Longmemeval-s datasets are
displayed in Table 5.

The results show that our model, Associa (max
iter=1), exhibits superior retrieval efficiency. On
the LoCoMo dataset, the average time per query is
0.71s, which is 3.43 times faster than LightRAG.
On the Longmemeval-s dataset, the average time
per query is 0.87s, which is 3.18 times faster than
LightRAG. This demonstrates the superior perfor-
mance of our method in real-time retrieval. We
also observed some interesting phenomena:

Comparable efficiency and superior performance
compared to other baseline models: While Associa
(max iter=2) requires marginally more computation
time than Associa (max iter=1), it achieves supe-
rior retrieval performance. For instance, on the
Longmemeval-m dataset, it improves the recall@5
to 0.664, representing a 6% increase over Associa
(max iter=1).

Improved retrieval capability and relatively high
retrieval efficiency with LLM: Associa (max iter=2)
utilizes a fine-tuned, lightweight LLM (Qwen-3B)
as the deliberating model to discover missing ev-
idence and optimize retrieval, paving the way for
more computationally efficient model collabora-
tions to enhance user experience and system scala-
bility in future work.

D Graph construction dependency

We conducted experiments with different sizes of
open-source Qwen-2.5-Instruct LLMs (7B, 32B,
and 72B) to evaluate memory graph generation
quality on the Longmemeval dataset. The experi-
mental results are shown in Table 6

We observed some interesting phenomena from
the results:

1. Model Independence: Associa demon-
strates robust performance across LLMs of varying
sizes. All variants consistently outperform baseline
models, indicating that any LLM with adequate
instruction-following and entity extraction capa-
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LoCoMo Longmemeval-s

Total token/session
(input+output)

Processing
time/session

Total token/session
(input+output)

Processing
time/session

Longmemeval (w UF and TF) 8766 (8205+561) 0.73s 7978 (7493+485) 0.39s
LightRAG 7085 (5923+1162) 3.41s 3307 (2745+562) 1.95s
Associa (our method) 4181(2239+1942) 0.52s 2303 (1469+834) 0.23s

Table 4: The cost/efficiency analysis in the graph construction stage.

LoCoMo (s/q) Longmemeval-s (s/q)

MemoRAG 21.16 19.41
Longmemeval (w UF $ TF) - 3.61

MemoryBank 1.71 2.48
LightRAG 2.44 2.77

Associa (iter=1) 0.71 0.87
Associa (iter=2) 2.34 1.92

Table 5: The cost/efficiency analysis of Associa in the
retrieval stage. s/q represents seconds per query.

R@5 ndcg@5 R@10 ndcg@10

BM25 0.51 0.54 0.59 0.57
Contriever 0.67 0.69 0.85 0.74
Stella 0.70 0.73 0.86 0.77
BGE 0.75 0.76 0.88 0.79
Longmemeval (w UF) 0.66 0.68 0.85 0.72
Longmemeval (w UF and TF) 0.70 0.72 0.87 0.76
Associa w Qwen-7B (iter = 1) 0.82 0.85 0.88 0.86
Associa w Qwen-7B (iter = 2) 0.85 0.87 0.92 0.89
Associa w Qwen-32B (iter = 1) 0.83 0.86 0.88 0.87
Associa w Qwen-32B (iter = 2) 0.88 0.88 0.91 0.88
Associa w Qwen-72B (iter = 1) 0.85 0.88 0.88 0.88
Associa w Qwen-72B (iter = 2) 0.89 0.89 0.91 0.90
Associa w Qwen-turbo (iter = 1) 0.84 0.85 0.90 0.87
Associa w Qwen-turbo (iter = 2) 0.87 0.87 0.93 0.88

Table 6: Robustness test on Longmemeval-s.

bilities can achieve competitive results with our
framework.

2. Effectiveness of Lightweight LLMs:
Lightweight models demonstrate strong perfor-
mance in memory graph generation. Notably, As-
socia with Qwen-7B (max_iter=1) achieves a 6.6%
improvement in recall@5 over the best baseline
(BGE). While Qwen-Turbo and Qwen-7B vari-
ants show slightly lower performance compared
to Qwen-72B, they offer an optimal balance be-
tween computational efficiency and performance.

3. Alignment with Scaling Law: More power-
ful LLMs (e.g., Qwen-72B) further enhance Asso-
cia’s retrieval performance, which is aligned with
the scaling law. This indicates that while Asso-
cia’s superiority is model-agnostic, improved mem-
ory graph quality directly benefits the framework’s
overall effectiveness.

4. Benefits of Multiple Iterations: Multi-round it-
erations (max_iter=2) consistently improve perfor-

mance across all graph generation models, yielding
an average 3.3% improvement in recall@5. No-
tably, smaller models with additional iterations
can outperform larger models with fewer iterations
(e.g., 7B with iter=2 surpasses 32B with iter=1, and
32B with iter=2 surpasses 72B with iter=1). This
finding demonstrates the effectiveness of our delib-
erating mechanism and provides valuable insights
into the trade-off between model size and multi-
round iteration. It suggests that deliberation can be
an effective alternative to scaling up model size for
performance improvement.

In summary, our experimental results compre-
hensively demonstrate the robustness of the Asso-
cia framework across various memory graph gener-
ation models, validating both its practical feasibil-
ity and broad applicability. We sincerely appreciate
your in-depth suggestions and valuable feedback,
which have played a crucial role in refining and
improving our work.
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E Prompt template

E.1 Prompt template for deliberating model

Prompt for deliberating model (SFT and inference)

(system message) You are a helpful assistant for the retriever.

—Retrieved Result—

Events:

{events}

Triplets:

{triplets}

Chunks:

{chunks}

—Query—

{query}

Command:

Please emphasize or rewrite entities in the "Query" neglected in the "Current Retrieved Result"

to help retrieve the ground truth. Please emphasize the content in the "Current Retrieved

Result" that is unrelated to the "Query".

Please return the result in the following format:

{"add_entity": ["{entity 1}", "{entity 2}", "{entity 3}", ]

"unrelated_content": ["{content 1}", "{content 2}", "{content 3}", ]}

# early stop when inference to get the missing entities

E.2 Prompt template for memory graph construction

Prompt for memory graph construction (longmemeval)

Text: {"timestamp": "{corpus_timestamp}", "user": "corpus_item"}

—Goal—

Please extract information about the users’ events, user’ behavioral trends and personal

information from the above text.

—Requirement—

1. Please infer the time of the event’s occurrence and provide a specific, absolute time, rather

than simply expressing it as ’soon’, ’later’, or ’yesterday’.

2. Please extract entities as completely as possible, especially those related to the user.

Attention should be given not only to the facts about the user, but also to the user’s needs,

intentions, sentiments, and reactions.

3. The entities in triplets can include types such as [Object, Person/User/Organization,

Resource, Place, Event, Goal/Intention, Time, Interest/Skill, Sentiment].

4. Extract the relevant events in the following format:

[{"event": "{event}",

"event_time": "{specific event time inferred}",

"description": "{description}",

"triplets": [(subject, predicate, object),]},]

If there is no user’s information, please reply with [].

Output:
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Prompt for memory graph construction (LoCoMo)

Text: {"timestamp": "corpus_timestamp", "utterance": "corpus_item"}

—Goal—

Please extract information about the events, behavioral trends and personal information of the

speaker from the above text.

—Requirement—

1. Please infer the time of the event’s occurrence and provide a specific, absolute time, rather

than simply expressing it as ’soon’, ’later’, or ’yesterday’.

2. Please extract entities as completely as possible, especially those related to the speaker.

Attention should be given not only to the facts about the speaker, but also to the speaker’s

needs, intentions, sentiments, and reactions.

3. The entities in triplets can include types such as [Object, Person/User/Organization,

Resource, Place, Event, Goal/Intention, Time, Interest/Skill, Sentiment].

4. Extract the relevant events in the following format:

[

{"event": "{event}",

"event_time": "{specific event time inferred}",

"description": "{description}",

"triplets": [(subject, predicate, object),]},

]

If there is no user’s information, please reply with [].

Output:
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