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Abstract

In the absence of sense-annotated data, word
sense induction (WSI) is a compelling alterna-
tive to word sense disambiguation, particularly
in low-resource or domain-specific settings. In
this paper, we emphasize methodological prob-
lems in current WSI evaluation. We propose
an evaluation on a SemCor-derived dataset, re-
specting the original corpus polysemy and fre-
quency distributions. We assess pre-trained em-
beddings and clustering algorithms across parts
of speech, and propose and evaluate an LLM-
based WSI method for English. We evaluate
data augmentation sources (LLM-generated,
corpus and lexicon), and semi-supervised sce-
narios using Wiktionary for data augmentation,
must-link constraints, number of clusters per
lemma.

We find that no unsupervised method (whether
ours or previous) surpasses the strong "one clus-
ter per lemma" heuristic (1cpl). We also show
that (i) results and best systems may vary across
POS, (ii) LLMs have troubles performing this
task, (iii) data augmentation is beneficial and
(iv) capitalizing on Wiktionary does help. It
surpasses previous SOTA system on our test set
by 3.3%. WSI is not solved, and calls for a bet-
ter articulation of lexicons and LLMs’ lexical
semantics capabilities.

1 Introduction

Disambiguating the senses of potentially ambigu-
ous words in a text (i.e. word sense disambiguation,
WSD) is a historic NLP task, essential for obtain-
ing a formal representation of a text’s meaning.
However, this task has the drawbacks of (i) relying
on predefined sense inventories of arbitrary gran-
ularity and ill-suited for specialized domains, and
(ii) requiring labor intensive sense-annotated data,
unavailable for most languages of the world. This
requirement still holds in the Large Language Mod-
els (LLM) era: Sainz et al. (2023) and Anonymous

(2025) show that open LLMs outperform BERT-
based supervised systems only when fine-tuned on
sense-labeled data.

The word sense induction task (WSI) does away
with the need for a predefined sense inventory and
sense-labeled data (except for evaluation), albeit at
the expense of quality. In addition, one of the stan-
dard techniques in WSI is to cluster vector repre-
sentations of a lemma’s occurrences. When applied
to all content words in a corpus, it provides corpus-
dependent pseudo-sense labeling (Eyal et al., 2022).
Although in the LLMs era the utility of induced
senses is less clear for downstream applications,
it remains central in computationally less inten-
sive environments, corpus studies such as lexical
change detection (Schlechtweg et al., 2020), or spe-
cific contexts such as scientific literature mining
and sense-aware retrieval (Eyal et al., 2022).

Our work focuses on a “full-corpus WSI sce-
nario”, taking a corpus as input, inducing senses
for all content-word lemmas occurring more than
once (typically by clustering occurrences), yield-
ing as a by-product pseudo-sense annotations. We
note that popular WSI datasets created for SemEval
shared tasks (Manandhar et al., 2010; Jurgens and
Klapaftis, 2013) (i) exhibit artificial polysemy lev-
els (because unambiguous lemmas are trivial to
process, these datasets over-represent polysemous
ones, thus not addressing the task of discovering
which lemma is polysemous), (ii) and some exhibit
artificial selection of lemmas and number of occur-
rences per lemma. State-of-the-art WSI systems
for English are thus biased towards these unrealis-
tic distributions, and it remains to prove that they
work as well when faced with more natural data.

This paper makes the following contributions:

• We question the current evaluation in WSI:
issues with standard datasets and metrics lead
to methodological problems that hinder com-
parability and reproducibility (§ 3).
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• Building upon SemCor, we propose a more
natural evaluation framework that respects the
original polysemy and frequency distribution,
and benchmark systems across datasets (§ 4).

• In this new framework, we assess clustering of
pre-trained contextualized embeddings across
parts of speech, and propose and evaluate di-
rect LLM prompting for WSI for English (§ 5).

• We evaluate data augmentation sources (LLM-
generated, corpus and lexicon), and semi-
supervised scenarios using the English Wik-
tionary for data augmentation, must-link con-
straints, number of clusters per lemma (§ 6).

2 Related work

We focus here on previous work on WSI compati-
ble with the full-corpus scenario (hence we ignore
WSI approaches based on a lexical network such
as Panchenko et al. (2017)). Such corpus-based
approaches can be categorized into six groups:

(i) Clustering contextualized embeddings di-
rectly: the basic technique is to cluster contextu-
alized embeddings produced by masked pre-trained
language models (Devlin et al., 2019) (hereafter
PLM). Liétard et al. (2024) perform two-step clus-
tering1 using BERT contextualized embeddings of
target in-context words. The “local” step is a hard
clustering of occurrences of a given lemma (the
strict WSI task), while the “global” step agglom-
erates the centroids of the local clusters, hence ob-
taining clusters for “concepts” (equivalent to Word-
Net’s synsets). Results on SemCor nouns (with
more than 10 instances) show that the global step
helps for the strict WSI task. The authors report
a high non-weighted average F-B3 (80%), but we
point out that the average F-B3 is usually weighted
by each lemma’s number of instances, which is all
the more crucial in the full-corpus scenario.

(ii) Clustering contextualized embeddings en-
hanced for lexical semantics tasks: Abdine et al.
(2022) train a small neural network to maximize
the mutual information of pairs of original and per-
turbed instances. Then agglomerative clustering
(AG) is used on vectors from the hidden layer of the
network. AG is performed with either a fixed num-
ber of clusters or dynamically recomputed using a

1We note the similarity of this method with the semantic
frame induction work of Yamada et al. (2021).

word polysemy quantification score (Xypolopoulos
et al., 2021). The proposal of Yavas et al. (2024)
also falls into this category. It consists in adver-
sarial training of BERT to neutralize morphologi-
cal and syntactic features, hypothesizing that they
introduce noise for lexical semantics tasks. The
authors perform K-means clustering of these mod-
ified contextualized embeddings, for all SemCor
nouns and verbs, excluding those having a unique
sense, and senses with less than 10 occurrences.

There are other works enhancing contextualized
embeddings for lexical tasks, but not evaluating
them for WSI. The main evaluation task for these
is the Word-In-Context task (WiC, (Pilehvar and
Camacho-Collados, 2019)), a binary classification
task to decide whether two instances of the same
lemma correspond to the same sense or not. In this
vein, we can cite MirrorWiC (Liu et al., 2021)
and the model of Mosolova et al. (2024) (which we
will dub as BERT-Wikt). Both models were fine-
tuned using contrastive learning, which teaches
the model to bring semantically similar examples
closer, while pushing dissimilar ones apart. Mirror-
WiC leverages self-supervised contrastive learning
by using similar examples created by automati-
cally alternating the original phrase. BERT-Wikt
employs semi-supervised contrastive learning by
using exemplars of the same sense from Wiktionary
as similar ones.

(iii) Clustering vectors of BERT substitutes: In
the Language-model Substitution with Dynamic
Patterns model (LSDP), Amrami and Goldberg
(2019) build vectors of BERT substitutes for each
target instance, then cluster these vectors using
agglomerative clustering. Hearst-like symmetric
patterns are used to improve the quality of substi-
tutes. Eyal et al. (2022) focus on scaling up this
substitute-based technique, so that it can be used
in the full-corpus scenario. The authors induce the
senses of the 16k single-token words of the BERT-
large (whole-word masking) vocabulary, and obtain
a sense-labeled version of the English Wikipedia.

(iv) Learning sense embeddings using a masked
language modeling objective: Ansell et al.
(2021) propose the PolyLM model, which learns
contextualized sense embeddings using a language
modeling objective. For each lemma in the vocabu-
lary, the model learns a fixed number of sense rep-
resentations, and assigns in-context probabilities
for each sense. The model builds on the assump-
tions that the probability of a word in context is the
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sum of the probabilities of all its senses and that for
a given word occurrence, one of its senses should
be more plausible than all the other ones. As a
by-product, the model produces a probability distri-
bution over senses for each word in context, which
can be used to perform WSI. The authors report the
SOTA results on SemEval 2010 and SemEval 2013
datasets.

(v) Latent-variable models: Amplayo et al.
(2019) employ a latent variable model that models
senses as distributions over multiple topics and uses
target-neighbor pairs to induce more fine-grained
senses and filter out the irrelevant ones.

(vi) WSI using LLMs: Larger decoder-only
models have also been evaluated on lexical seman-
tics tasks. Some have been shown to perform well
for the WiC task (Hayashi, 2025). Ortega-Martín
et al. (2023) report good ability of “ChatGPT” to
identify ambiguity for specific words. Sumanathi-
laka et al. (2024) investigate LLMs’ capabilities for
WSD, using the English Wiktionary-derived FEWS
dataset (Blevins et al., 2021). Results on a subset of
the FEWS test set seem high but are unfortunately
not compared to previous works. Sainz et al. (2023)
and Anonymous (2025) show that open LLMs do
outperform BERT-based supervised systems, but
only when fine-tuned on sense-labeled data. Com-
ing back to the WSI task, we can cite only one
work involving LLMs: Periti et al. (2024) fine-tune
LLMs on lexicographic definitions and exemplar
sentences, for these LLMs to generate a definition
given a word in context. The authors then perform
WSI by clustering the embeddings of generated
definitions, evaluated on a lexical semantic change
dataset.

Importantly, these LLM approaches to WSD and
WSI are computationally intensive, prompting the
LLM once for each instance to disambiguate.

In the following, (i) to the best of our knowledge,
we report the first results of directly asking the
LLM to cluster sets of instances of a given lemma, a
much more lightweight technique; (ii) we compare
WSI performance across datasets, target lemma
POS, and evaluation metrics for models falling into
category (iii) (LSDP) and (iv) (PolyLM). The ap-
proaches (i) and (ii) are the focus of §5.

3 Issues in WSI evaluation

The evaluation of WSI models relies on datasets
containing manual sense assignments for instances

of a set of lemmas, and on metrics assessing how
well the automatic assignment matches the manual
one. Datasets have issues related to lemma and
instance selection and dev/test data splits. They
are often associated to heterogeneous and incom-
plete metrics, resulting in a complex landscape in
which it is extremely difficult to compare, repro-
duce and/or replicate results.

3.1 Datasets

Two popular datasets for the evaluation of English
WSI are those of SemEval 2010 Task 14 (Man-
andhar et al., 2010) and SemEval 2013 Task 13
(Jurgens and Klapaftis, 2013), used e.g. by Am-
rami and Goldberg (2019); Abdine et al. (2022);
Eyal et al. (2022) (referred as SE10 and SE13 here-
after). See Appendix A for details on these and
other datasets.

Pre-defined sense inventory evaluation bias
Most WSI works evaluate systems using gold data
labeled with senses from a pre-defined inventory.
This introduces a bias since the granularity of
sense distinction may vary across lexical resources
and target objective tasks. Herman and Jakubíček
(2024) proposed an evaluation dataset for Czech
and English, later extended to 6 languages for
the upcoming CoNLL 2025 shared task on robust
WSI2, designed to address this specific bias.

Senses distribution Both SE10 and SE13
datasets, as well as CoNLL 2025 robust WSI
dataset, tend to over-represent polysemous and fre-
quent lemmas. The first source of bias lies in the
selection of lemmas, whose criteria are made ex-
plicit in neither of the datasets. Once lemmas are
selected, the instances included in the test set come
from OntoNotes v1.0 (SE10) and from the Open
American National Corpus (SE13), but again the
selection of these instances is not motivated. In
SE13, all lemmas have at least 22 instances, with
the majority having exactly 100. The CoNLL-25
WSI dataset focuses on 25 polysemous lemmas
per language. As a result, WSI evaluation tends to
ignore monosemous lemmas, albeit their high cor-
pus frequency. Although polysemy detection mod-
els do exist, they are never applied in the context
of WSI (Springorum et al., 2013; Lossio-Ventura
et al., 2016; Habibi et al., 2021). In short, there is
a mismatch between the sense distribution in these
popular datasets and the more realistic full-corpus

2
https://projects.sketchengine.eu/conll2025
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WSI scenario.

Data splits While SE10 does not provide devel-
opment set at all,3 SE13 provides a trial dataset
whose senses distribution is extremely different
from the test set (different annotators, data sources,
number of instances and polysemy levels). Partic-
ipants who optimized their systems on this trial
dataset obtained lower scores in the campaign (Jur-
gens and Klapaftis, 2013). More recent WSI work
ignores the trial data, leading to a problematic use
of the test set for hyperparameter tuning and com-
parison of configurations (Amrami and Goldberg,
2019; Abdine et al., 2022).

3.2 Metrics

Clustering is notoriously difficult to evaluate, with
different metrics capturing different properties. In
addition, most metrics are sensitive to sense distri-
bution, questioning cross-dataset replicability.

Metrics heterogeneity Different evaluation met-
rics were used in SE10 (V-measure and Paired F-
score) and SE13 (Fuzzy NMI and Fuzzy F-B34).
The upcoming CoNLL 2025 shared task on robust
WSI uses yet another metric based on rand index to
take into account multiple gold annotations (Her-
man and Jakubíček, 2024). While previous work
reporting results on SE datasets use the correspond-
ing shared task metrics, works evaluated on other
datasets use different metrics, making comparison
all the more difficult. For instance, Yavas (2024)
use adjusted rand index, Liétard et al. (2024) use
F-B3, Periti et al. (2024) use rand index, adjusted
rand index, and purity, and Komninos and Man-
andhar (2016), following Li et al. (2014), adapt
V-measure to use the best-upper-bound entropy es-
timator instead of maximum likelihood to alleviate
some of its problems.

Metric properties Amigó et al. (2008) test the
sensibility of metrics to four desirable properties:
H: cluster homogeneity (clusters should not mix
items belonging to different classes), C: complete-
ness (items belonging to the same class should be
grouped in the same cluster), RB: rag bag (adding
an example of another class into clean cluster is
worse than adding it into a mixed one) and SQ:
clusters size vs. quantity (a small error in a big

3SE10’s “training” data contains no annotation.
4The “fuzzy” versions are needed as SE13 asks soft cluster-

ing. Nonetheless, the SE10 metrics could have been adapted
for soft clustering.

cluster should be preferable to a large number of
small errors in small clusters). As shown in Table 1,
F-B3 is the only one sensitive to all four properties.

Metric H C RB SQ
Rand index

√ √ × ×
Paired F-score

√ √ × ×
NMI

√ × × √

V-measure
√ √ × √

B3 Precision
√ × √ ×

B3 Recall × √ × √

F-B3 √ √ √ √

Table 1: Sensibility of clustering metrics to the proper-
ties defined by Amigó et al. (2008). Table 9 in Appendix
B illustrates these properties on use cases.

Metric combination and comparison Works us-
ing the SE13 data report the geometric mean of
fuzzy F-B3 and fuzzy NMI (Amrami and Goldberg,
2019; Ansell et al., 2021). However, the latter is
insensitive to completeness, artificially increasing
when a class is divided into homogeneous clusters.
Moreover, statistical significance is never reported,
which weakens systems’ comparison. Powerful
significance tests for F-B3 are computationally in-
tensive because they require re-building the clusters
for each bootstrapped resample. In our work, we
test statistical significance for part of our experi-
ments only (in §5).

For full-corpus WSI, it is crucial to use a metric
counting instances (like F-B3), compared to pair-
based metrics, which overuse large gold classes,
or compared to cluster-based metrics like NMI,
which use proportions of gold classes in clusters,
independently of their sizes. For these reasons, we
adopt weighted average F-B3 in our experiments
(except in § 4, on cross-dataset variability).

4 Variation of systems’ performance
across datasets, metrics and POS

In this section, we investigate the impact of
datasets’ characteristics (polysemy level, target
lemmas POS) and of evaluation metrics on per-
formance in WSI.

We first describe our WSI evaluation dataset ex-
tracted from SemCor (Miller et al., 1993), respect-
ing the original distributions of corpus occurrences
and senses.

We then compare WSI performance across (i) re-
cent state-of-the art systems (LSDP and PolyLM)5,

5We focused on the WSI previous works for which the code
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and (ii) direct LLM prompting for WSI.

4.1 SemCor-WSI: extraction from SemCor

To overcome the flaws of the usual WSI datasets,
we propose to tune and evaluate WSI systems on
a dev and test sets extracted from SemCor 3.0
(Miller et al., 1993), a WordNet sense-annotated
corpus6. We extract three sub-datasets of sense-
annotated instances of verbs, nouns and adjectives:
for each POS, we first consider the full lexicon
of SemCor lemmas having this POS (including
both single- and multiword lemmas) and occur-
ring at least twice. Then for each POS, we (i)
randomly select lemmas until we obtain approxi-
mately 10,000 corpus instances, and (ii) randomly
split each POS’s dev and test sets, keeping disjoint
sets of lemmas, targeting the same number of in-
stances, lemmas, and polysemy levels in both parts.
We kept the first sense for instances annotated with
multiple senses. So overall, the dataset contains
both monosemous and polysemous lemmas, with
instance counts per lemma varying from 2 to sev-
eral hundreds, with a similar polysemy level in
dev, test and full SemCor, as shown in Table 11
(Appendix E)7.

Note that while this scenario addresses the un-
naturalness of the SE10 and 2013 dataset pointed
in §3, it does not address the pre-defined sense
inventory evaluation bias (addressed by Herman
and Jakubíček (2024) and in the upcoming CoNLL
2025 shared task on robust WSI). We leave it for
future work to combine a scenario evaluating both
on a natural sense distribution and circumventing
the pre-defined senses’ bias.

4.2 Experimental protocol

We evaluate five models, starting with the state-
of-the-art PolyLM model (Ansell et al., 2021).We
compare PolyLM base (54M parameters) and
PolyLM large (90M parameters). Another model
is LSDP by Amrami and Goldberg (2019)8. We
report the average and standard deviation of 10
runs as per the authors’ methodology. To adapt
LSDP for the SemCor-WSI dataset, we modified
the process of determining strong and weak senses

is available and functional, or for which there are reported
results on Semeval 2010 and/or 2013 WSI datasets.

6We used the brown1 and brown2 parts, which are the only
ones having sense annotations for all open class words.

7The code and the dataset are available at: https://github.

com/anya-bel/fullcorpus_wsi
8
https://github.com/asafamr/BERTwsi

(see Appendix D for details). We reuse the default
hyperparameters set by the authors.

We also test 3 large language models: the propri-
etary GPT 4-o (OpenAI et al., 2024) and two open-
source models: Llama 3.1 8B Instruct (Grattafiori
et al., 2024) and Llama 3.3 70B Instruct (4 bit).
For each model, we use identical prompts adapted
to the specific task (full prompts, prompt tuning
details and exact LLMs versions are given in Ap-
pendix J). We report both the average and standard
deviation of five runs for each LLM.

For each dataset, we provide two simple base-
lines: one cluster per lemma (1cpl) and one cluster
per example (1cpex).

4.3 Results and discussion

Table 2 shows the performance of each model (re-
sults per POS provided in Appendix M). For SE10,
we provide also the non-fuzzy versions of the SE13
metrics, and for comparison, we use these for
SemCor-WSI (F-B3 and NMI). Globally, PolyLM-
large is the best-performing model having the high-
est results for 4 metrics across three datasets (but
this does not hold for all individual POS). None of
the models surpasses the high 1cpl baseline in
F-B3 on SemCor-WSI, a result likely to hold for
full-corpus scenario on other corpora.

The evaluation metrics do not always follow the
same patterns. On SE10, the best model differs
for each of the four reported metrics. For SE13
and SemCor-WSI, F-B3 and NMI (and their fuzzy
versions) correlate better.

Moreover, on F-B3, the 1cpl baseline performs
best for SE10 and SemCor-WSI. For SE10, it sug-
gests that optimizing the systems for the original
metrics is detrimental when changing metrics.

Performance of LLMs is globally much lower
(except on verbs, see Table 17 in Appendix), with
sometimes huge variance. Llama models struggle
with processing lemmas with large numbers of ex-
amples (present in SE10, and in the full-corpus
scenario). They tend to forget the task after 300 ex-
amples and either halt generation, repeat the same
answer, or produce irrelevant sentences9. While
the GPT-4o model does not suffer from this limita-
tion, all LLMs occasionally produce unnecessary
explanations, ask for a sense inventory, or simply
"refuse" to perform the task. Moreover, parsing
answers revealed difficult, in particular for sense

9Processing sets of instances of a given lemma in batches
should be investigated, but requires to merge the sense inven-
tory induced for each batch.
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Model SemEval 2013 SemEval 2010 SemCor-WSI
Fuzzy-NMI Fuzzy-F-B3 V-M Paired F-S NMI F-B3 F-B3 NMI

PolyLM large 23.7 66.7 43.6 67.5 6.2 49.2 73.0 33.6
PolyLM base 23.0 65.4 41.8 66.4 6.2 49.1 71.3 31.5

LSDP 21.1[±0.6] 64.1[±0.5] 38.9[±1.0] 70.7[±0.4] 4.6[±0.1] 52.8[±0.2] 71.0[±0.4] 32.1[±0.7]
Llama 3.1 8B 2.3[±0.4] 57.1[±0.5] 16.5[±0.9] 49.3[±1.2] 7.3[±0.5] 49.6[±0.9] 59.7[±1.0] 19.4[±0.8]
Llama 3.3 70B 8.9[±0.4] 44.2[±1.8] 29.4[±0.9] 49.7[±4.8] 8.1[±0.6] 49.6[±1.6] 64.2[±0.9] 27.8[±1.1]

GPT-4o 16.9[±0.5] 58.6[±1.6] 36.3[±2.0] 63.9[±2.0] 7.1[±0.3] 47.7[±1.9] 66.9[±0.7] 29.2[±1.2]
1cpl 0.0 61.23 0.0 63.5 0.0 64.1 73.6 28.1

1cpex 6.9 NA 31.7 0 19.5 8.0 24.1 20.7

Table 2: WSI results on 3 datasets. PolyLM large/base: for SE10/SE13, results reproduced using models of
https://github.com/AlanAnsell/PolyLM, for SemCor-WSI, results obtained using their code. LSPD: substitutes obtained
with BERT-large. For SE10/SE13, results reproduced with the code of Amrami and Goldberg (2019), for SemCor-
WSI, results obtained using the adapted code (see text).

applicability degrees in SE13.Note though that de-
spite these flaws, LLMs sometimes produced inter-
pretable cluster names, which is not straightforward
with traditional approaches.

5 Investigating full-corpus WSI

We reported earlier that the top-performing sys-
tems do not surpass the 1cpl baseline when switch-
ing to a more naturally distributed dataset. This
suggests that over-representation of polysemy in
earlier datasets may have influenced the systems’
design. In this section, we investigate the perfor-
mance achievable on SemCor-WSI using the basic
technique of clustering the contextualized embed-
dings of a given lemma instances and we hypothe-
size that performance may vary depending on pol-
ysemy injecting lexical information either using
unlabeled . We perform a grid search using (i) two
clustering algorithms which automatically deter-
mine the number of clusters (X-Means and AGsilh),
(ii) two BERT PLMs, plus PLMs fine-tuned to bet-
ter perform on WiC task. This allows us to assess
which model and algorithm combination performs
best on a more naturally distributed dataset.

5.1 Experimental protocol

Contextualized embeddings We test the base-
uncased and large-uncased versions of BERT (De-
vlin et al., 2019)10 (BERT-b-u and BERT-l-u here-
after). We also test two models fine-tuned for the
WiC task, likely to benefit for WSI: MirrorWiC-
base (Liu et al., 2021) and BERT-Wikt (Mosolova
et al., 2024). 11. For the latter, we ran the fine-

10For all experiments with PLMs, we use Transformers
library (Wolf et al., 2020). Subword embeddings are averaged
per word or MWE.

11For all our experiments, we use the dbnary dump of
06/12/2024, https://kaiko.getalp.org/about-dbnary/. As in

tuning procedure on all POS with default hyperpa-
rameters on BERT-l-u to obtain BERT-l-Wikt model.
For each PLM, we tested all layers and report using
the best-performing layer (see Appendix G).

Clustering algorithms We test AG clustering
with silhouette score (AGsilh) to determine the op-
timal number of clusters, and X-means, which dy-
namically determines the number of clusters. Be-
ing based on K-means with K++ initialization, X-
means is not deterministic, we thus report the aver-
age and standard deviation of 5 runs. Hyperparam-
eters are provided in Appendix L, including default
number of clusters when silhouette is not defined.

Handling of POS variation Sense distribution
varies across parts of speech (cf. Table 11). To
study the impact of these differences, we provide
results per POS and for all POS (All POS). More-
over, the number of lemmas for each POS is almost
balanced in our subsets, but not in the full SemCor.
So we also show results averaged over the 3 POS
weighted by their proportions in the full SemCor
(wAvg) to reflect their natural distribution in corpus
(the proportions are provided in Appendix F).

Metrics and Statistical significance We use F-
B3, as motivated in §3. Due to computational costs,
we chose to perform the bootstrapping statistical
significance test for all PLM pairs combined with
AGsilh only and not X-means (5 reruns are needed
for the latter, see details in Appendix H).

5.2 Results and discussion

Results are shown in Table 312.

(Mosolova et al., 2024), 20% is not used, to keep the pos-
sibility to evaluate on unused Wiktionary data.

12Statistical significance tests (using AGsilh) show that
differences between all pairs of PLMs are significant at p
< 0.05, except: i) All POS: BERT-l-u versus MirrorWiC , ii)
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Model Algo Verb Adj Noun All POS wAvg
Unsupervised

BERT-b-u
AGsilh 64.8 75.6 72.3 70.6 70.8
X-Means 62.9[±0.1] 76.5[±2.2] 73.7[±0.3] 70.6[±0.8] 71.1

BERT-l-u
AGsilh 65.8 75.7 72.3 71.1 71.1
X-Means 63.2[±0.6] 75.5[±1.2] 74.8[±0.1] 70.2[±0.1] 71.5

Self-supervised

MirrorWiC-base
AGsilh 65.1 74.7 70.9 70.2 70.0
X-Means 63.0[±0.2] 77.0[±1.5] 74.4[±0.2] 71.2[±0.4] 71.6

Semi-supervised

BERT-l-Wikt
AGsilh 67.8 75.5 72.4 71.8 71.7
X-Means 63.9[±1.3] 74.9[±1.7] 74.5[±0.5] 69.7[±0.3] 71.5

Baselines 1cpl 65.7 80.0 75.2 73.6 73.4
1cpex 25.5 22.6 24.1 24.1 24.2

Table 3: F-B3 performance across PLMs and clustering algorithms for each POS, for all POS (All POS), and
the average over POS weighted by POS proportion in SemCor (wAvg). In bold, the best value for each model
supervision type (un-, self-, semi-supervised). In blue, the best value for each column, excluding baselines. In red,
cases where a baseline is best over the column. Best previous system: PolyLM-large: 73.0 (Table 2).

Baselines are high: The first striking observation
is that the 1 cluster per lemma "baseline" is actually
the best technique for adjectives and nouns, and
when considering all POS (All POS: 73.6, wAvg:
73.4). The other systems only surpass 1cpl for
verbs, namely for the most polysemous POS.

Models: Among unsupervised embeddings mod-
els, BERT-l-u outperforms its base counterparts,
overall, except for adjectives.The self-supervised
finetuning of MirrorWiC surpasses the unsuper-
vised BERTs for adjectives, but not for nouns and
verbs, giving a marginal improvement overall.

The semi-supervised models (fine-tuned for WiC
on Wiktionary) provide the best performance (ex-
cluding baselines), both for verbs and for all POS.

Variation across POS: The results show that the
tendencies across POS vary greatly. Using contex-
tualized embeddings fine-tuned on Wiktionary does
help in general, but not for adjectives, for which the
1cpl and then unsupervised models perform best.
The tendency is opposite for verbs.

Clustering algorithms: AGsilh performs always
better for verbs, while X-means performs always
better for nouns, and most of the time for adjectives.
This could be explained by X-means’ tendency to
define less clusters, which is beneficial for POS
with lower polysemy rate. For the results over

Nouns: BERT-b-u versus MirrorWiC and iii) Verbs: BERT-l-
Wikt versus MirrorWiC. See also Fig. 1 in Appendix.

the 3 POS (All POS and wAvg) X-means tends to
outperform AGsilh, except for the semi-supervised
models. Across model/algorithms, the best pair is
semi-supervised model plus AGsilh.

Taking these observations into account, and con-
sidering that X-means is not deterministic and
needs to be run several times, we will use AGsilh

in the following experiments, the best-performing
unsupervised model (BERT-l-u) and the semi-
supervised BERT-l-Wikt model.

So for now, on a dataset more natural in terms
of polysemy and sense distribution, these contex-
tualized embeddings clustering techniques do not
surpass the best previous system (PolyLM: 73.0),
and none surpasses the 1cpl technique (73.6).

6 Investigating data augmentation

In this section, we investigate the simple technique
of adding unlabeled examples to the set of instances
to cluster. Augmenting the set of instances makes
it denser, potentially creating new similarity links,
in particular for lemmas with originally few in-
stances. Moreover in such cases, considering more
instances helps to avoid undefined silhouette cases,
defaulting to one cluster (cf. Appendix L).

We investigate 1) unsupervised augmentation,
adding either attested examples from external cor-
pora or synthetic examples generated by LLMs;
2) semi-supervised augmentation, where we lever-
age Wiktionary examples for either direct dataset
augmentation (based on the Wiktionary senses),
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and/or fine-tuning the embedding model (BERT-l-
Wikt model (Mosolova et al., 2024) already used
in previous sections).

6.1 Dataset augmentation

For each lemma, we augment the set of instances
with either (i) Wikibooks13 instances, (ii) LLM-
generated sentences, and (iii) Wiktionary exemplar
sentences (independently of their senses).

For Wikibooks (WB), we extract all occurrences
of all SemCor-WSI nouns, verbs and adjectives.
For each lemma, we randomly select at most N
examples (N=10, 50, 100, 150). For Multiword
lemmas (MWEs) examples are retrieved based on
the first word of the MWE. We handle MWEs in
the same way to retrieve the Wiktionary instances.

We also test LLM-generated data.For each in-
stance in our dataset, we provide it to the model
which we prompt to generate 3 examples with same
sense (the exact prompt is provided in Appendix
K). We use a small open-source Llama 3.1 8B 4bit
and a proprietary GPT-4o14. Appendix I provides
the total number of added examples in each setting.

6.2 Constrained clustering

We extend the AG clustering algorithm by incorpo-
rating must-link constraints. For each lemma, we
add all Wiktionary examples and impose must-link
constraints between examples assigned to the same
Wiktionary sense (assigning distance 0 for all such
pairs). For each lemma’s number of clusters, we ei-
ther use Wiktionnary’s number of senses (AGwikt),
or the silhouette score (AGsilh).

6.3 Results and discussion

We conducted experiments with BERT-l-u and
BERT-l-Wikt embedding models (Tables 4 and 5).

We observe the regular trend that whatever
embedding model and data augmentation source,
adding examples systematically improves results.

A new SOTA technique: The previous SOTA
system (PolyLM) requires training a masked lan-
guage model from scratch. Yet, Table 4 shows that
it can be outperformed simply by adding sufficient
unlabeled data during the clustering of contextu-
alized embeddings: all the settings using at least
50 WikiBooks instances do surpass the PolyLM’s

13
https://huggingface.co/datasets/bigscience-data/roots_en_

wikibooks
14model name: gpt-4o-2024-08-06, generation seed: 42

performance (73.0 in Table 2)15.

Additional examples: Comparing sources of ex-
amples, adding 10 or more WB examples per
lemma results in better performance than adding
Wiktionary examples, although corresponding to a
similar number of examples (the exact numbers pro-
vided in Appendix I). On the contrary, adding more
than 45k LLM-generated examples is comparable
to the WB 10 examples per lemma setting. More-
over, adding more and more WB examples helps,
up to the limit of 150 examples per lemma. So over-
all, adding attested corpus examples helps more
than the litterary style examples from Wiktionary,
and more than the LLM-generated examples. To
conclude, adding around 100/150 examples from
raw corpora per lemma is both the cheapest and the
best option.

Must-link constraints: Concerning must-link
constraints, we can observe that AGsilh with must-
link is very slightly better than without (columns 1
and 3 of Tables 4 and 5), except for the Wiktionary
data augmentation: in the former case, we add Wik-
tionary examples to the other augmentation source.
It seems that the improvement of must-link per se
only stems from the addition of more examples.

Number of clusters: Comparing columns 2 and
3 of Tables 4 and 5, shows that using the Wiktionary
number of clusters is systematically better than
silhouette (even if Wiktionary’s sense inventory
differs from WordNet’s).

BERT-large vs BERT-l-Wikt: Using the fine-
tuned BERT model (Table 5) is always better than
the corresponding BERT-large model (Table 4).

Comparison to the 1cpl baseline: Finally, sev-
eral settings do outperform the 1cpl baseline (73.6,
surpassing results are shown in blue and red in
Tables 4 and 5), but only for settings using Wik-
tionary in some way. The best result (75.7) uses it
in three ways (in the embedding model, the must-
link constraints which also adds the Wiktionary
examples, and to define the number of clusters).
While this method does use a lot of manually an-
notated data (a full Wiktionary), we would like to
emphasize that it is usable for the many languages
for which a large Wiktionary exists16.

15Note that PolyLM cannot benefit from data augmentation,
unless by retraining a full sense embeddings model.

1619 languages have Wiktionary with more than 100k en-
tries.
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Augmentation Base Must-link
source AGsilh AGwikt AGsilh

None 71.1⋄ NA NA
Wiktionary 72.1 71.9 72.2
Llama 3.1 8B 4bit 71.9⋄ 73.6 72.7
GPT-4o 72.4⋄ 73.6 72.9
WB (10 per l.) 72.6⋄ 73.5 73.0
WB (50 per l.) 73.5⋄ 74.1 73.4
WB (100 per l.) 73.5⋄ 74.2 73.2
WB (150 per l.) 73.6⋄ 74.4 73.3

Table 4: F-B3 results for All POS: AG clustering using
BERT-l-u embeddings for various augmentation sources,
with or without must-link constraints, using the nb of
clusters from silhouette (AGsilh) or from Wiktionary
(AGwikt). ⋄ indicates unsupervised results, all the other
ones using Wiktionary in some way. Results above 1cpl
(73.6, cf. Table 3) are in blue.

Augmentation Base Must-link
source AGsilh AGwikt AGsilh

None 71.8 NA NA
Wiktionary 72.7 74.1 72.4
Llama 3.1 8B 4bit 72.3 74.7 73.7
GPT-4o 72.9 75.1 73.8
WB (10 per l.) 73.6 75.2 73.7
WB (50 per l.) 73.9 75.3 73.8
WB (100 per l.) 74.5 75.7 73.8
WB (150 per l.) 74.3 75.7 73.8

Table 5: Same as Table 4 but using BERT-l-Wikt. Re-
sults above 1cpl (73.6, cf. Table 3) are in blue.

Model F-B3

PolyLM-large 72.7
BERT-l-uncased+AGs+150WB 74.0

BERT-l-Wikt+AGwikt+ML+100WB 76.0
1cpl 74.4

Table 6: F-B3 results on SemCor-WSI test set for all
POS of the best previous system (cf. Table 2) and the
best unsupervised and supervised models from Tables
4 and 5 (for these models we reuse the best layer tuned
on the development set).

Results on test set We check if the observed
trends are confirmed on the test set, compar-
ing performance for 1cpl, the best previous
system (PolyLM-large), our best unsupervised
system (BERT-l-u-AGs+150WB) and our best
Wiktionary-using system (BERT-l-Wikt-MustLink-
AGwikt+100WB). Results in Table 6 show that the
Wiktionary-enhanced system (76.0) is best, fol-
lowed by 1cpl (74.4), our unsupervised system

(74.0) and previous SOTA system PolyLM (72.7).

7 Conclusions

In this paper, we advocated for evaluating WSI on
data respecting more natural distributions of oc-
currences and number of senses per lemma. We
proposed experiments on English, evaluated on
an extract of SemCor, both reusing state-of-the-
art previous methods, and investigating an LLM
prompting technique, data augmentation, and a
semi-supervised setting where the English Wik-
tionary is used in three ways (as a source for fine-
tuning a BERT model on the Word-In-Context task
(Mosolova et al., 2024), for data augmentation and
for must-link clustering constraints).

The LLM prompting technique we proposed lays
far behind, calling for better leveraging the lexical
semantics knowledge of LLMs.

Our striking conclusion is that, when considering
a dataset following a more natural sense distribu-
tion and polysemy level, none of the fully unsuper-
vised systems we tested surpass the simple baseline
of clustering all instances of the same lemma into
a single cluster (considering a dataset with an aver-
age polysemy close to 2, cf. Table 11).

Simple data augmentation allows to surpass
the much more complex previous SOTA model
(PolyLM). BERT embeddings fine-tuned using
contrastive learning on Wiktionary examples
(Mosolova et al., 2024) are always better compared
to the original BERT embeddings. More gener-
ally, we showed several ways to leverage Wik-
tionary allowing to surpass 1cpl on the dev and
test sets (must-link constraints, data augmentation,
definition of the number of clusters, fine-tuning of
PLMs). Note this can be applied for the languages
having a large Wiktionary or another electronic
lexicon.

8 Future Work

We report mediocre performance, when directly
prompting LLM for the WSI task. However, sev-
eral techniques could be explored to improve LLM
performance: (i) usage of chain-of-thought prompt-
ing to first ask for a list of senses, and then to assign
the instances to each of the LLM-induced senses;
(ii) processing sets of instances of a given lemma
in batches, followed by a merging procedure for
the sense inventories induced for each batch.

17169



Limitations

This paper provides an overview of the existing
datasets for Word Sense Induction, introduces a
new evaluation framework for this task, and uses
it to establish baselines and test data augmenta-
tion techniques to improve baseline results. How-
ever, our study evaluates only three large language
models and four pre-trained language models in
combination with two clustering algorithms. Addi-
tionally, this research is conducted in the English
language and uses only a small part of SemCor.

Despite reporting the mean and standard devi-
ation of 5 runs for non-deterministic models, we
provide the statistical significance for result differ-
ences only for some deterministic models. Since
powerful statistical significance tests for F-B3 in-
volve using bootstrapped resampling, running 1000
iterations for all configurations discussed in this
paper would require prohibitively expensive com-
putational resources.

This study was also limited by available GPU
resources which included a single Nvidia A100
80GB GPU. Thus, we could not report results on
the full Llama 3.3 70B model (which requires at
least 135GB of GPU memory), and instead used its
quantized version.

We should have included results on adverbs as
well and plan to do so for a more complete evalua-
tion.
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A WSI datasets

A.1 SemEval 2010 Task 14

Manandhar et al. (2010) propose a WSI task, the
goal of which is to train a system on an unannotated
corpus and then use it to annotate test instances of
the lemmas present in the training corpus. The
dataset contains instances of 100 lemmas. The un-
supervised training set is composed of contexts for
each lemma obtained through automated queries
using WordNet-related word lemmas. The test set
contains unseen instances of each lemma originat-
ing from OntoNotes (Hovy et al., 2006) annotated
with OntoNotes senses. We note that, at the time,
OntoNotes had an annotation only of the most fre-
quent polysemous lemmas within a subset of Prop-
Bank. Statistics on the dataset size are given in
Table 7.

.

Training set Testing set Senses (AVG)
All 879807 8915 3.79

Nouns 716945 5285 4.46
Verbs 162862 3630 3.12

Table 7: Training & testing set details from SemEval
2010 paper (Manandhar et al., 2010).

A.2 SemEval 2013 Task 13

Jurgens and Klapaftis (2013) introduced a new task
which consists in annotating instances of lemmas
with one or more senses and weighting each by
their applicability (Graded Word Sense Induction).
The dataset is divided into two parts: a trial set
and a testing set. The trial set includes 8 lemmas,
each with 50 contexts (data gathered by Erk and
McCarthy (2009)). The test set contains 50 lem-
mas, with each lemma having between 22 and 100
contexts, annotated using WordNet senses. An im-
portant consideration for this dataset is the nature
and the annotation difference for the trial and test-
ing sets. The trial set is composed of a mix of 25
SemCor (Miller et al., 1993) and 25 SENSEVAL-3
(Mihalcea et al., 2004) random examples, while
the test set was gathered from the Open American
National Corpus (Ide and Suderman, 2004). The
annotation process of the trial set was performed by
three untrained lexicographers who evaluated the
applicability of each WordNet sense on a 5 point
scale (Erk et al., 2009), while the testing set was
annotated by the authors of the paper (Jurgens and

Klapaftis, 2013) on a 4 point scale. The dataset
statistics are presented in Table 8.

Testing set Trial set
Instances 4664 400

AVG senses/inst. 1.12 4.97

Table 8: Testing set details from SemEval 2013 paper
(Jurgens and Klapaftis, 2013), trial set details computed
on the provided dataset. AVG senses/inst.: mean num-
ber of applicable senses per instance.

A.3 Other WSI Datasets

Other datasets for WSI evaluation include SemEval
2007 Task 2 (Agirre and Soroa, 2007), which is
replaced by SemEval 2010 (and has similar is-
sues), SemEval 2013 Task 11 (Navigli and Van-
nella, 2013) on clustering web query results, and
corresponding to WSI when queries contain single
words, and the aforementioned CoNLL-2025 Ro-
bust WSI Task, whose final evaluation data was not
yet released.

Beyond shared tasks, some authors of WSI mod-
els proposed their own datasets and metrics be-
cause of the issues discussed in Section 3. Eyal
et al. (2022) create their own dataset by annotat-
ing 20 ambiguous lemmas each represented by 100
random contexts from English Wikipedia to eval-
uate their large scale system across sense-induced
Wikipedia. This dataset is not available online,
therefore we did not report results on it. Panchenko
et al. (2017) used SemEval 2013 Task 13 and the
dataset proposed by Biemann (2012) to evaluate dif-
ferent configurations of their system. This dataset
later was not used by other authors, it is also out of
scope for our paper.

B Evaluation metrics properties

Table 9 presents our replication of the analysis by
Amigó et al. (2008), including WSI simple base-
lines: one cluster per lemma and one clsuer per
instance.

C GPU usage

For all experiments described in this paper, we
used a single Nvidia A100 80GB GPU card. In
Table C, we detail the GPU memory requirements
and processing times for each model when using
the SemCor-WSI dataset. The total GPU compu-
tational time for all experiments reported in this
paper is 67.5 hours, excluding the time spent on
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Metric Homogeneity Completeness Rag Bag Size vs Quality 1cpl 1cpex

Rand index 0.68 0.7
√

0.68 0.7
√

0.72 0.72 × 0.95 0.95 × 0.27 0.73
Paired F-score 0.47 0.49

√
0.47 0.53

√
0.55 0.55 × 0.83 0.83 × 0.43 ND

NMI 0.45 0.56
√

0.55 0.55 × 0.43 0.43 × 0.78 0.89
√

0.0 0.49
V-measure 0.5 0.58

√
0.57 0.6

√
0.61 0.61 × 0.88 0.94

√
0.0 0.66

B3 Precision 0.6 0.69
√

0.69 0.69 × 0.49 0.56
√

1.0 1.0 × 0.33 1.0
B3 Recall 0.7 0.7 × 0.71 0.76

√
1.0 1.0 × 0.69 0.88

√
1.0 0.36

F-B3 0.64 0.69
√

0.7 0.72
√

0.66 0.71
√

0.82 0.93
√

0.49 0.53

Table 9: Verification of clustering metrics properties proposed by Amigó et al. (2008) on their use cases (see figure
11 in their paper) for the metrics discussed in the §3. We also test the metrics on the 1 cluster per lemma and 1
cluster per instance solutions.

statistical significance tests. The experiments de-
scribed in §4 required 2 hours for both PolyLM
and LSDP models, 34 hours for direct prompting
of Llama models, and 7.5 hours for GPT-4o. The
experiments in §5 took 4 hours, while those in §6
required 20 hours.

Model Size on GPU τ

Llama 3.1 8B 16GB 40m
Llama 3.3 70B 135GB -

Llama 3.3 70B 4bit 38GB 3h40m
BERT-large17 + AGs 3GB 5m45s

GPT-4o UNK 45 min

Table 10: GPU usage of each model, where τ repre-
sents the SemCor-WSI processing time. Size on GPU
indicates the model’s size, which may double during
inference. All values are approximate and may vary
slightly.

D Modification of the Amrami and
Goldberg (2019) algorithm

We modified the process of determining strong and
weak senses of the LSDP algorithm. Specifically,
strong senses are defined as senses that dominate at
least 2 instances (with 2 a hyperparameter tuned by
the authors). When a lemma has less instances than
the default number of senses, a scenario not occur-
ring for the data tested by the authors, it is possible
that each sense would be dominant exactly once
(or less). We tested two strategies to manage this
scenario: 1) consider all senses as weak, clustering

17Number of parameters of BERT-large-uncased: 334M

all instances together, and 2) consider all senses
as strong, placing them in separate clusters. The
former strategy yielded better results, and thus, we
report only them in the table 3.

E SemCor-WSI dataset statistics

In Table 11, the statistics of the SemCor-WSI
dataset are provided in comparison with the origi-
nal SemCor corpus.

POS Dev set Test set SemCor
Inst. Lem. Polysemy Inst. Lem. Polysemy Polysemy

Adj 4909 433 1.69[±1.3] 4772 427 1.69[±1.2] 1.64[±1.2]

Noun 5394 479 1.75[±1.4] 5694 493 1.73[±1.4] 1.71[±1.4]

Verb 5005 359 2.39[±2.2] 4979 367 2.36[±2.4] 2.34[±2.5]

All 15308 1271 1.94[±1.7] 15445 1287 1.91[±1.7] 2.1[±2.2]

Table 11: SemCor-WSI dataset statistics (no hapaxes).

F Proportion of each POS in SemCor 3.0

In table 12, we report the percentage of each part
of speech in SemCor 3.0 dataset. These values
were used to compute the wAVG metric reported
in Table 3.

POS %
Noun 0.49

Adjective 0.22
Verb 0.30

Table 12: Percentage of each POS in SemCor Brown1
and Brown2 from which SemCor-WSI was composed.
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G Best layer for each model in Tables 3, 4
and 5

In Tables 13, 14 and 15, we provide the results of
tuning the layer hyperparameter for each model
tested.

Model ALL Verb Adj Noun
AGsilh

BERT-l-Wikt 23 23 24 23
BERT-b-u 11 10 11 11

MirrorWiC-base 9 9 9 9
BERT-l-u 20 17 19 22

X-Means
BERT-l-Wikt 21 21 23 23

BERT-b-u 12 12 12 12
MirrorWiC-base 12 11 12 11

BERT-l-u 21 24 3 24

Table 13: for Table 3, best layer for each PLM on
AGsilhand X-means.

Aug Base Must-link
AGs AGwikt AGs

No 20 NA NA
Wiktionary 20 17 20
Llama 3.1 8B 4bit 24 22 17
GPT-4o 24 19 24
WB (10 per l.) 16 24 22
WB (50 per l.) 16 23 16
WB (100 per l.) 19 20 19
WB (150 per l.) 20 20 18

Table 14: For Table 4, best layer for each data augmen-
tation type on BERT-l-u + AG.

Aug Base Must-link
AGs AGwikt AGs

No 23 NA NA
Wiktionary 23 23 23
Llama 3.1 8B 4bit 24 23 22
GPT-4o 24 23 23
WB (10 per l.) 23 22 20
WB (50 per l.) 24 22 20
WB (100 per l.) 22 22 22
WB (150 per l.) 20 22 20

Table 15: For Table 5, best layer for each data augmen-
tation type on BERT-l-Wikt + AG.

H Statistical significance: bootstrapping

To evaluate the statistical significance of F-B3 re-
sults differences, we apply the bootstrapping test
(Dror et al., 2020). Being computationally inten-
sive, we only computed statistical significance for
all pairs of systems of Table 3 in combination with
AGsilh as X-means would require rerunning each
run 5 times due to its non-deterministic nature.
For each pair of models, we verify the null hy-
pothesis that the results difference between two
models is due to chance. We sample with replace-
ment the development set of SemCor-WSI 1000
times and perform clustering on each sample using
both models. Then, for each sample, we compute
the difference between two models’ performance
(∆sample) and check if it is higher than twice the
original difference between the 2 models (∆obs).
The p-value is the proportion of samples for which
∆sample ≤ 2×∆obs. We reject the null hypothesis
when p-value is less than 0.05. In Figure 1, we
present the histograms of bootstrap results for each
PLM in combination with AGsilh.

I Statistics of added examples from each
source

The total number of examples generated or gath-
ered from WikiBooks is presented in Table 16. For
WikiBooks, we note that the number of examples
is not equal to the number of lemmas × the number
of additional examples, as some lemmas are miss-
ing from the corpus and some had less examples
than required. For LLMs, the number is not equal
to the number of instances of SemCor-WSI × the
number of generated examples, as both models oc-
casionally generated more or less than 3 examples,
or refused to perform the task at all.

Source Selection Verb Noun Adj Total
Wikt all per L 2705 4016 1805 8526

Llama 3 per Inst. 15171 16439 14852 46462
GPT-4o 3 per Inst. 14970 16154 14700 45824

WB 10 per L 3511 4184 3539 11234
WB 50 per L 16910 19341 15246 51497
WB 100 per L 32457 36421 27606 96484
WB 150 per L 46671 51994 38756 137421

Table 16: Total number of examples added for each
POS using different sources. per l = N examples added
for each lemma, per inst = N examples added for each
instance.
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Figure 1: Bootstrapping distribution for 1000 runs using AGsilh in combination with all PLMs.

J LLMs details and prompts for direct
WSI prompting

We tested 3 large language models: the propri-
etary GPT 4-o (gpt-4o-2024-08-06) (OpenAI et al.,
2024) and two open-source models: Llama 3.1 8B
Instruct18(Grattafiori et al., 2024) and Llama 3.3
70B Instruct (4 bit)19.

For the direct WSI prompting, we tested three
prompt strategies, where the LLM was asked either
to: 1) provide a Python list with cluster numbers for
each instance, 2) arrange instance identifiers into
Python lists considered as clusters, 3) or assign a
sense identifier for each sentence with its index.
The last approach yielded the best results, thus, we
provide the corresponding prompts below and the
results for this approach only.

For SE13, we tuned the prompt using its trial
set. For SE10 and SemCor-WSI, the prompt was
tuned using the SemCor-WSI development set, as
the task for both datasets is to predict a single sense
per instance. We set the maximum sequence length
to 40,000 (to handle lemmas with 500+ instances),
the maximum number of new tokens to 4,000, and
the default values for the remaining hyperparam-

18Version released on July 23, 2024, https://huggingface.co/
unsloth/Meta-Llama-3.1-8B-Instruct

19Version released on Dec 6, 2024, https://huggingface.co/
unsloth/Llama-3.3-70B-Instruct. For all Llama models, we use
unsloth (Daniel Han and team, 2023) for faster computation.

eters. Model responses were parsed using regular
expressions, and missing values were assigned a
uniform dummy sense identifier.

J.1 SemEval 2010 Task 14 and SemCor
prompt:

Given the following examples of sentences
using the lemma ’[LEMMA]’, identify the
sense of the target lemma for each
sentence.
Examples:
—–
[[INDEX]. [SENTENCE]]
—–
For each sentence, your response should

be in the format: ’[sentence_index].
[sense_identifer]’.
Please respond with one sense for each

sentence. Please provide answers for all
examples. Do not write any explanations.
Do not write the sentence in your answer.
Only give the sentence index and sense
identifier.

J.2 SemEval 2013 Task 11 prompt:
Given the following examples of sentences
using the lemma ’[LEMMA]’, identify the
possible senses of the lemma and
their level of applicability for each
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sentence. For each sentence, list the
possible senses of the lemma with their
corresponding level of applicability
(from 0 to 1).

Examples:

—–

[[INDEX]. [SENTENCE]]

—–

For each sentence, your response should
be in the format: ’[sentence_index].
[sense_1/applicability_1]
[sense_2/applicability_2’]’. For
example, the answer might look like
"100. sense_1/2", "100. sense_1/0.8
sense_2/0.4" or "100. sense_1/1
sense_2/0.4 sense_3/4".

Please respond with the possible senses
of the lemma and their level of
applicability for each sentence. Do not
write any explanations. Do not write
the sentence in your answer. Only give
the sentence index, sense identifiers and
their level of applicability.

K Prompt for generating unlabeled new
examples

Create 3 examples with the target lemma
’[LEMMA]’ where this lemma is used in
the same sense as in the sentence
’[SENTENCE]’. Separate each example by \n
and do not give any explanations.

L Hyperparameters for clustering
experiments of §5.2

We used the scikit-learn implementation of Ag-
glomerative Clustering and silhouette score (Pe-
dregosa et al., 2011), with following hyperparame-
ters: average linkage with euclidean distance, min-
imum number of clusters for silhouette score is
2, maximum is 15. More precisely, for a lemma
having n instances, silhouette is only defined for
numbers of clusters c such as 2 ≤ c ≤ n − 1.
So if n ≥ 3, we select the number of clusters
c∗ = min(15, argmax2≤c≤n−1silh(c). If n = 2,
we return a single cluster.

For X-means, we used the pyclustering imple-
mentation (Novikov, 2019), with following hyper-
parameters: minimum number of clusters is 1, max-
imum is 15, tolerance is 0.003.

M Table 2: results for each POS

In Table 17, we detail the performance of each
model from Table 2 for each part of speech. We
note that the results for adjectives from SE10 are
absent, as they were not included in the test set.

N Datasets and LLMs Licenses

In our experiments, we use WikiBooks part
of the BigScience corpus distributed un-
der the BigScience RAIL License available
at: https://huggingface.co/spaces/
bigscience/license. Additionally, we use
the Wiktionary DBnary dataset, released under
the Creative Commons Attribution-ShareAlike
3.0 license. We introduce a new evaluation
framework (SemCor-WSI) based on SemCor
3.0, which is the property of Princeton Uni-
versity. The corresponding license is included
within the SemCor package, accessible at
http://web.eecs.umich.edu/~mihalcea/
downloads/semcor/semcor3.0.tar.gz.

Considering Llama models, we use Llama
3.1 (license available at https://www.llama.
com/llama3_1/license/) and Llama 3.3 mod-
els (license available at https://www.llama.com/
llama3_3/license/).
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Model SemEval 2013 SemEval 2010 SemCor-WSI
Fuzzy-NMI Fuzzy-F-B3 V-M Paired F-S NMI F-B3 F-B3 NMI

Verb
PolyLM large 25.6 67.8 45.2 75.6 4.5 58.7 68.5 28.9
PolyLM base 25.2 66.5 45.3 71.9 4.3 54.2 65.8 27

LSDP 18.5[±0.6] 59.1[±0.8] 43.2[±1.1] 66.0[±0.8] 4.2[±0.2] 60.2[±0.3] 65.2[±0.3] 23.6[±0.7]
Llama 8B 2.3[±0.5] 57.7[±0.5] 13.2[±0.7] 53.1[±1.9] 6.0[±0.3] 54.5[±1.3] 57.8[±1.8] 19.1[±1.0]
Llama 70B 7.1[±0.6] 41.2[±2.3] 23.3[±0.7] 59.5[±3.1] 5.6[±0.3] 57.2[±2.6] 68.7[±0.3] 34.2[±0.6]

GPT-4o 15.0[±1.1] 57.3[±2.3] 33.8[±2.7] 67.6[±4.9] 5.0[±0.4] 51.0[±4.8] 63.1[±1.7] 26.1[±0.7]
1cpl 0 61.5 0 72.7 0 73.4 65.7 14

1cpex 7.1 0 25.6 0.1 15.7 8.2 25.5 26.9
Noun

Model SemEval 2013 SemEval 2010 SemCor-WSI
Fuzzy-NMI Fuzzy-F-B3 V-M Paired F-S NMI F-B3 F-B3 NMI

PolyLM large 23.4 64.5 42.5 62 7.3 42.7 74.3 41.9
PolyLM base 20.5 62.5 39.3 62.7 7.5 45.6 72.9 38.2

LSDP 22.2[±0.6] 64.3[±0.5] 47.1[±1.1] 67.4[±0.6] 4.8[±0.2] 47.8[±0.4] 72.3[±0.7] 36.5[±1.1]
Llama 8B 2.2[±0.5] 58.1[±1.5] 18.7[±1.3] 46.6[±1.7] 8.1[±0.7] 46.3[±2.0] 60.0[±1.0] 22.7[±0.9]
Llama 70B 10.8[±0.4] 46.2[±2.1] 33.6[±1.2] 42.9[±6.2] 9.8[±0.8] 44.3[±1.1] 65.5[±2.4] 23.8[±3.9]

GPT-4o 18.3[±1.2] 59.9[±1.3] 38.1[±2.0] 61.3[±1.5] 8.5[±0.4] 45.4[±0.7] 71.4[±0.6] 37.3[±1.1]
1cpl 0 61.8 0 57 0 57.6 75.2 30.4

1cpex 7.1 0 35.8 0.1 22.1 7.9 24.1 19.1
Adjective

Model SemEval 2013 SemEval 2010 SemCor-WSI
Fuzzy-NMI Fuzzy-F-B3 V-M Paired F-S NMI F-B3 F-B3 NMI

PolyLM large 20.7 68 NA NA NA NA 76 29.1
PolyLM base 23.8 68.7 NA NA NA NA 74.9 27.1

LSDP 24.4[±1.3] 62.4[±0.7] NA NA NA NA 75.5[±0.4] 35.8[±1.1]
Llama 8B 2.6[±0.6] 53.6[±1.7] NA NA NA NA 61.4[±1.8] 15.9[±1.7]
Llama 70B 8.6[±0.7] 45.5[±2.8] NA NA NA NA 58.0[±2.2] 24.9[±0.5]

GPT-4o 18.0[±1.8] 58.1[±4.2] NA NA NA NA 65.7[±0.9] 23.5[±5.3]
1cpl 0 59.4 NA NA NA NA 80 39.8

1cpex 6.6 0 NA NA NA NA 22.6 16.2

Table 17: Extension of Table 2 for each part of speech subset.
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