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Abstract

Recently, large multimodal models (LMMs)
have achieved significant advancements. When
dealing with high-resolution images, dominant
LMMs typically divide them into multiple lo-
cal images and a global image, leading to a
large number of visual tokens. In this work,
we introduce AVG-LLaVA, an LMM that can
adaptively select the appropriate visual granu-
larity based on the input image and instruction.
Specifically, we first apply the multiple pool-
ing layers to obtain visual tokens at different
granularities. Then we propose a visual gran-
ularity router, which includes a Transformer
layer, an MLP layer, and a voter layer, used to
select the appropriate visual granularity based
on the image and instruction. Furthermore, we
put forward RGLF, a novel training paradigm
that aims at aligning the granularity predicted
by the router with the preferences of the LMM,
without the need for additional manually anno-
tated data. Extensive experiments and analy-
sis show that AVG-LLaVA achieves superior
performance across 11 benchmarks, as well as
significantly reduces the number of visual to-
kens and speeds up inference (e.g., an 85.3%
reduction in visual tokens and a 2.53× increase
in inference speed on the AI2D benchmark).
Our code and model can be found at https:
//github.com/DeepLearnXMU/AVG-LLaVA.

1 Introduction

Recently, the field of artificial intelligence (AI)
has witnessed a significant advancement in large
multimodal models (LMMs) (OpenAI, 2023b; Zhu
et al., 2023; Dai et al., 2023; Liu et al., 2023b,
2024a), marking a further step toward artificial
general intelligence (AGI). Most existing LMMs
follow the structure of LLaVA (Liu et al., 2023b,
2024a), which includes a vision encoder to embed

* Work was done when Zhibin Lan was interning at Pattern
Recognition Center, WeChat AI, Tencent Inc, China.

† Corresponding author.

Figure 1: An example of VQA from MSCOCO (Lin
et al., 2014). Notably, responding to Question 1 necessi-
tates fine-grained visual information, whereas respond-
ing to Question 2 requires only coarse-grained visual
information.

input images into visual tokens and a connector to
map them into the word embedding space. Sub-
sequently, these visual tokens are fed into a large
language model (LLM) (Touvron et al., 2023; Ope-
nAI, 2023a; Chiang et al., 2023) for multimodal
understanding and reasoning (Li et al., 2023b; Liu
et al., 2023a; Zhang et al., 2024; Lin et al., 2025),
alongside the word embeddings.

Due to the limitations imposed by the fixed
aspect ratio (e.g., 1:1) and low resolution (e.g.,
336×336) used by visual encoders (e.g., CLIP-ViT
(Radford et al., 2021)), early LMMs face chal-
lenges in processing high-resolution images with
different aspect ratios. To deal with this limita-
tion, dominant models, such as LLaVA-NeXT (Liu
et al., 2024b), dynamically divide each input high-
resolution image into multiple local images. These
local images are encoded separately, and their to-
kens are then concatenated with the tokens of the
original global image. This approach will lead to
longer visual token sequences, such as 2880 visual
tokens for a 672×672 image. However, in practice,
such fine-grained visual information is not always
necessary, and in some cases, coarse-grained visual
information can even be more beneficial for model
predictions. For instance, as shown in Figure 1,
when the model is asked to recognize the number
on the jersey, it requires relatively fine-grained vi-
sual information. In contrast, determining the color
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of the jersey only necessitates coarse-grained visual
information.

In this paper, we propose Adaptive Visual Gran-
ularity LLaVA (AVG-LLaVA), an LMM that can
adaptively select the appropriate visual granular-
ity based on the input image and instruction. The
basic intuition behind our model is that humans
only scrutinize images carefully when answering
difficult questions; otherwise, a brief glance is suf-
ficient.

As displayed in Figure 2, AVG-LLaVA extends
LLaVA-NeXT with a visual granularity scaler and
a visual granularity router. The visual granular-
ity scaler performs multiple rounds of pooling on
visual tokens, each time halving the number of
visual tokens, thus obtaining a series of visual
features with different granularities. The visual
granularity router adaptively selects the appropri-
ate visual granularity features based on the input
multi-granularity visual features and text features.
By doing so, for images and instructions that do
not require fine-grained details, the number of vi-
sual tokens can be reduced, which not only speeds
up inference but also may improves performance.
This performance enhancement likely stems from
the reduction of redundant information, as select-
ing appropriate visual granularity makes it easier
for the model to answer questions based on images
effectively.

Besides, we observe that it is challenging to train
the visual granularity router directly through visual
instruction tuning (Liu et al., 2023b). This may
be because the router cannot learn the distinctions
between different visual granularities from visual
instruction tuning, making it difficult to learn how
to select the most appropriate visual granularity
based on the image and instruction. To deal with
this issue, we propose a novel training paradigm
called Ranking Granularity based on LMM Feed-
back (RGLF). This paradigm aligns router proba-
bilities of multiple granularities with LMM prefer-
ences by a ranking loss (Hopkins and May, 2011;
Liu et al., 2022), effectively aiding the router in dis-
tinguishing between different visual granularities
and selecting the appropriate one.

We further evaluate AVG-LLaVA on 11 bench-
marks including tasks from various types (e.g., gen-
eral VQA and text-oriented VQA, etc.). Extensive
experimental results show that AVG-LLaVA can
effectively reduce the number of visual tokens and
improve inference speed (e.g., an 85.3% reduction
in visual tokens and a 2.53× increase in inference

speed on the AI2D (Kembhavi et al., 2016) bench-
mark) while achieving better performance under
the same base LLM.

2 Related Work

High-Resolution LMMs. Large language mod-
els (LLMs) such as GPT-4 (OpenAI, 2023a),
LLaMA (Touvron et al., 2023), and Gemini (Team
et al., 2023) have achieved significant success in
language understanding and generation, driving
the development of LMMs that integrate vision en-
coders with LLMs and leverage visual instruction
data for fine-tuning. However, early LMMs (Li
et al., 2023b; Zhang et al., 2023; Liu et al., 2023b)
rely on fixed-resolution (e.g., 336×336) CLIP-ViT
to process images, which limits their ability to cap-
ture high-resolution image details.

To perceive images with higher resolutions,
Qwen-VL (Bai et al., 2023) increases the input
resolution of the visual encoder to 448×448 and
introduces an additional training stage. Along this
line, both Vary (Wei et al., 2023) and Mini-Gemini
(Li et al., 2024a) include two vision encoders: one
is an additional introduced high-resolution vision
encoder, and the other is the original low-resolution
vision encoder. Unlike the methods mentioned
above, SPHINX (Lin et al., 2023) and Monkey (Li
et al., 2024b) enlarge the input image to a high
resolution, and then divide it into a fixed number
of local images, which are individually encoded us-
ing an image encoder to obtain local image tokens.
Subsequently, the original global image tokens are
concatenated with all local image tokens to feed
into the LLM. Furthermore, LLaVA-NeXT (Liu
et al., 2024b) enumerates various resolutions and
adaptively selects the one that most closely matches
the input image resolution. Although these meth-
ods can achieve better performance, they signif-
icantly increase the number of visual tokens, as
the computational complexity scales quadratically
with the number of input tokens, resulting in higher
inference costs.

Vision Token Reduction for LMMs. Recently,
several methods are proposed to reduce the visual
tokens for LMMs, including visual token compres-
sion and pruning. For example, LLaVA-UHD (Guo
et al., 2024) adopts a QFormer-like (Dai et al.,
2023) structure to compress visual tokens, while
MG-LLaVA (Zhao et al., 2024) employs a convo-
lution layer to compress high-resolution visual fea-
tures. In contrast, CrossGET (Shi et al., 2023) in-
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Figure 2: The architecture of AVG-LLaVA. AVG-LLaVA additionally introduces two modules based on LLaVA-
NeXT: (1) Visual granularity scaler. This module consists of multiple pooling layers that progressively increase
the granularity of visual features, thereby reducing the number of visual tokens; (2) Visual granularity router. This
module includes a Transformer layer, an MLP layer, and a voter layer, which are used to select the appropriate
granularity of visual features based on the input multi-granularity visual tokens and instruction tokens.

troduces a cross-modal token for leveraging cross-
modal information to make decisions on token se-
lection and merging. LLaVA-PruMerge (Shang
et al., 2024) employs the similarity between the
class token and other tokens as a key criterion for
pruning and merging vision tokens.

Furthermore, FastV (Chen et al., 2024b) finds
that most image tokens receive inefficient atten-
tion after the second decoder layer, and thus prunes
half of the image tokens. Similarly, VTW (Lin
et al., 2024b) adopts a more aggressive strategy
to prune all visual tokens at a certain layer. Un-
fortunately, despite the above methods effectively
reducing the number of visual tokens, they often
lead to a certain degree of decline in model per-
formance. More recently, LLaVA-M3 (Cai et al.,
2024) obtains multi-granularity visual features by
merging visual tokens through pooling, enabling
manual control of the tradeoff between inference
cost and performance.

Significantly different from aforementioned
methods, our model is a dynamic neural network
(Han et al., 2022) that can adaptively select the ap-
propriate visual granularity based on the input im-
age and instruction, improving model performance
while reducing the number of visual tokens.

3 Our Model

3.1 Model Architecture

As shown in Figure 2, in addition to the visual en-
coder, visual-language connector, and LLM, AVG-

LLaVA introduces two additional modules on top
of LLaVA-NeXT: the visual granularity scaler and
the visual granularity router. The key components
will be elaborated in the following.

High-Resolution Image Encoding. Given an in-
put image I ∈ RH×W×3, we follow common prac-
tice (Liu et al., 2024b) to divide it into multiple
smaller local images Ilocal ∈ RHv×Wv×3. Here,
Hv and Wv are the resolution that the vision en-
coder is originally trained for. Then, these local
images are individually encoded into a Hp ×Wp

grid of visual tokens Xlocal ∈ RHp×Wp×C by the
image encoder, where C is the dimension of the
visual encoder. To preserve the global context in-
formation of the input image, we resize the original
image to Hv ×Wv) and encode it as global visual
tokens. Finally, we map both global and local vi-
sual tokens to the word embedding space through
an MLP-based vision-language connector.

Visual Granularity Scaler. This module follows
the design of spatial pyramid pooling (He et al.,
2015; Cai et al., 2024), sequentially stacks 1×2
and 2×1 average pooling layers, thereby obtaining
visual features at multiple granularities and preserv-
ing the spatial information. In this work, we con-
sider CLIP-ViT-L-336 (Radford et al., 2021) as the
visual encoder, and thus each image is encoded into
24×24 grid of visual tokens. Then, these visual
tokens are fed into the visual granularity scaler, ob-
taining visual tokens with a grid of 24×12, 12×12,
12×6 and 6×6, respectively. In this way, we can
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obtain visual tokens of different granularities in a
fine-to-coarse manner without training.

Visual Granularity Router. Different visual
granularity features can be considered as different
experts, so the Mixture of Experts (MoE) (Shazeer
et al., 2017; Komatsuzaki et al., 2023; Lin et al.,
2024a; Zhang et al., 2025) structure is particularly
well-suited for selecting the appropriate visual gran-
ularity. Unlike the previous MoE studies that use
linear layers as routers, we propose a multi-layer
structure as illustrated in Figure 2 to select the
appropriate visual granularity based on the input
image and the instruction.

Specifically, when dealing with an image, we
first flatten and concatenate its visual tokens of
all granularities to form multi-granularity visual
tokens Xv = [X1

v;X
2
v; ...;X

N
v ], where Xi

v rep-
resents the visual tokens of the i-th granular-
ity, and N is the number of visual granulari-
ties1. Then, these visual tokens are concatenated
with the filtered instruction tokens Xinstruct to
serve as the input for the visual granularity router.
Here, Xinstruct is obtained by calculating the co-
sine similarity between the original instruction to-
kens Xinstruct and the visual tokens with original
granularity Xv, retaining the top-k most relevant
ones. Afterwards, we apply a single Transformer
(Vaswani et al., 2017) layer to facilitate the fu-
sion of visual tokens at different granularities with
instruction tokens. Subsequently, an MLP is ap-
plied to each token for predicting the appropriate
visual granularity, resulting in the logits Zout ∈
RL×N , where L is the number of both visual and
instruction tokens. To vote for the most appropri-
ate visual granularity, we use a learnable weight
matrix (Voter) W ∈ R1×L to aggregate the logits
predicted by all tokens, yielding the final logits
Zfinal ∈ R1×N . Finally, we use softmax to calcu-
late the probability distribution of visual granulari-
ties, where the visual tokens corresponding to the
granularity with the highest probability are fed into
the LLM.

3.2 Multi-stage Training

We provide a detailed description of the training
procedures for AVG-LLaVA, which consists of two
stages. The first stage endows the model with the

1To simplify the explanation, we use a single image as an
example. In practice, we include a global image and multiple
local images, and each image will go through the following
steps. The final result will be obtained by averaging the results
of all the images.

Figure 3: The overview of RGLF. Visual tokens of each
granularity are concatenated with instruction tokens and
then processed by the LMM to estimate the correspond-
ing rewards. Visual granularity router optimizes the
granularity selection based on the feedback from the
LMM.

ability to perceive and process multi-granularity
visual information, while the second stage enables
the model to select the appropriate granularity
based on the image and instructions.

Stage 1: Multi-Granularity Visual Instruction
Tuning. In this stage, we use the high-quality vi-
sual instruction data to train the visual encoder,
vision-language connector, and LLM, enabling
them to perceive and process visual features of
N different granularities. Specifically, we perform
next-token prediction using visual features of differ-
ent granularities and apply the cross-entropy loss
only to the answering part, formulated as

L1 = − 1

N

N∑

i=1

T∑

t=1

logP (xt|Xi
v,Xinstruct,Xa,<t),

(1)
where Xa are the answer tokens before the current
prediction token xt, and T is the length of answer
tokens.

Stage 2: Ranking Granularity Based on LMM
Feedback. Then, we introduce the visual gran-
ularity router into the model training, where all
other modules are frozen, and only the router is
trained. This stage allows the model to select the
appropriate visual granularity based on the input
image and instruction. Intuitively, a straightfor-
ward approach to training the router is visual in-
struction fine-tuning. However, we find that the
router trained with this method performs poorly.
This could be due to the difficulty of visual instruc-
tion fine-tuning in effectively enabling the router
to learn the differences between different visual
granularities.

To address the above issue, we propose RGLF,
as illustrated in Figure 3, where the router is trained
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with a ranking loss, utilizing the feedback from the
LMM fine-tuned with multi-granularity visual in-
structions as the ranking criterion. Concretely, for
the given image and instructions, we let the LMM
predict answers using visual tokens of different
granularity and calculate their respective log proba-
bilities. Then, based on these log probabilities, we
sort X1

v;X
2
v; ...;X

N
v in a descending order to ob-

tain X1
v̂;X

2
v̂; ...;X

N
v̂ . Given the visual tokens Xi

v̂

of the i-th granularity, we directly consider those
tokens (X1

v̂; X2
v̂; ...; Xi−1

v̂ ) ranked above it as pos-
itive examples and the remaining tokens (Xi+1

v̂ ;
Xi+2

v̂ ; ...; XN
v̂ ) as negative ones. Afterwards, we

use the router to give scores (log probability) si for
each Xi

v̂:

si = logP (gi|Xv,Xinstruct), (2)

where gi denotes the i-th granularity predicted by
the router based on multi-granularity visual tokens
Xv and filtered instruction tokens Xinstruct. Since
we expect the router to assign higher probabilities
to more appropriate visual granularities, the rank-
ing loss is defined as follows:

Lrank =
∑

i=1

∑

j>i

max(0, sj − si + λij), (3)

where λij is the log probability difference between
the answers predicted by the LLM using visual
tokens of the i-th and j-th granularities:

λij =
j − i

|T |
T∑

t=1

(logP (xt|Xi
v̂,Xinstruct,Xa,<t)

− logP (xt|Xj
v̂,Xinstruct,Xa,<t)).

(4)

When the preference of Xj
v̂ is only slightly worse

than Xi
v̂, the margin will be small. Conversely,

when Xj
v̂ is significantly worse than Xi

v̂, the margin
will correspondingly increase. In this way, we can
dynamically adjust the margin to obtain adaptively
penalty degrees between different pairs.

In addition to aligning with the LMM preference
ranking, it is also desirable for the router to select
the optimal visual granularity. Therefore, we add a
cross-entropy loss to let the router learn the predic-
tion of granularity with the highest log probability
from the LMM, defined as follows:

k = argmax
i

T∑

t=1

logP (xt|Xi
v,Xinstruct,Xa,<t),

(5)

Lce = −logP (gk|Xv,Xinstruct). (6)

Finally, the total loss is defined as the weighted

sum of two losses:

L2 = Lrank + αLce, (7)

where α is the hyperparameter used to maintain
the balance between the ranking loss Lrank and
cross-entropy loss Lce.

4 Experiments

4.1 Settings

Training Datasets. In the first training stage,
since the real user interaction data used for visual
instruction fine-tuning in LLaVA-NeXT are not
open-sourced, we opt to extract 200K samples from
the ALLaVA (Chen et al., 2024a) dataset as a sub-
stitute. Although LLaVA-NeXT replaces TextVQA
(Singh et al., 2019) with DocVQA (Mathew et al.,
2021) and SynDog-EN (Kim et al., 2022), the
TextVQA has already been included in the train-
ing data of most existing LMMs. Consequently,
we choose to retain it to ensure a fair comparison
with other models.2 In total, the visual instruction
fine-tuning data we use contains 1M image-text
pairs.

Implementation Details. Note that in this work,
we focus on investigating the effectiveness of adap-
tive visual granularity selection in reducing the
number of visual tokens and improving model per-
formance, rather than building a state-of-the-art
model. Therefore, we use LLaVA-NeXT (Liu et al.,
2024b) as the base LMM, where the visual encoder
is CLIP ViT-L/14, and the LLM is Vicuna-7B (Chi-
ang et al., 2023). We set the filtered instruction
token number k to 32 and the cross-entropy loss
weight α to 0.1.3 In the first stage, the learning
rates for the visual encoder and other modules are
set to 2×10−5 and 1×10−5, respectively, with a
batch size of 128. In the second stage, the learn-
ing rate for the visual granularity router is set to
1×10−3, with a batch size of 128. More details of
the training process are provided in Appendix A.3.

Evaluations. We evaluate our model on three
kinds of benchmarks: (1) general VQA bench-
marks: GQA (Hudson and Manning, 2019),
SciQA-Img (Lu et al., 2022), and VizWiz (Gurari
et al., 2018); (2) text-oriented VQA benchmarks:
TextVQA (Singh et al., 2019), ChartQA (Masry
et al., 2022), DocVQA (Mathew et al., 2021), and

2Our data recipe follows Open-LLaVA-NeXT (Lin and
Long, 2024).

3The impact of these two hyperparameters on model per-
formance is discussed in Appendix A.2.
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Model LLM General VQA Text-oriented VQA
GQA ScienceQA VizWiz TextVQA ChartQA DocVQA AI2D

Standard-resolution LMMs

InstructBLIP (Dai et al., 2023) Vicuna-7B 49.2 60.5 34.5 - - - -
IDEFICS-9B (Team, 2023) LLaMA-7B 38.4 - 35.5 25.9 - - -
Qwen-VL (Bai et al., 2023) Qwen-7B 59.3 67.1 35.2 63.8 65.7 65.1 62.3
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 57.5 68.2 38.9 61.6 66.3 62.6 57.7
InternVL-Chat (Chen et al., 2023) Vicuna-7B 62.9 - 52.5 57.0 - - -
mPLUG-Owl2 (Ye et al., 2023) LLaMA2-7B 56.1 68.7 54.5 58.2 - - -
MQT-LLAVA (Hu et al., 2024) Vicuna-7B 61.6 67.6 53.1 - - - -
LLaVA-1.5 (Liu et al., 2024a) Vicuna-7B 62.0 66.8 50.0 58.2 - - -

High-resolution LMMs

SPHINX-2k (Lin et al., 2023) LLaMA2-7B 63.1 70.6 44.9 61.2 - - -
TextMonkey (Liu et al., 2024c) Qwen-VL-7B - - - 65.9 58.2 64.3 -
Mini-Gemini-HD (Li et al., 2024a) Vicuna-7B - - - 68.4 - - -
MG-LLaVA (Zhao et al., 2024) Vicuna-7B 62.7 70.4 60.0 58.4 40.8 44.6 64.1
LLaVA-NeXT (Liu et al., 2024b) Vicuna-7B 64.2 70.1 57.6 64.9 54.8 74.4 66.6
LLaVA-NeXT-M3 (Cai et al., 2024) Vicuna-7B - 72.5 - 63.1 59.0 72.6 66.7

AVG-LLaVA Vicuna-7B 63.0 71.1 59.8 67.1 66.3 74.6 67.3

Table 1: Comparison with LMMs of the same size on general VQA benchmarks and text-oriented VQA benchmarks.
The best results are marked in bold, and the second best results are underlined. Since MG-LLaVA is trained on
significantly more data across two stages, we retrain it using the same data as ours for a fair comparison. We also
explore the impact of additional two-stage training on the performance of LLaVA-NeXT using the same instruction
fine-tuning data in Appendix A.4.

AI2D (Kembhavi et al., 2016); and (3) general
multimodal benchmarks: MME (Fu et al., 2023),
MMB (Liu et al., 2023c), MMBCN (Liu et al.,
2023c), POPE (Li et al., 2023c), and MMMU (Yue
et al., 2023).

4.2 Main Results

General VQA Benchmarks. The results in Ta-
ble 1 show that AVG-LLaVA outperforms all
standard-resolution LMMs on the general VQA
benchmarks and achieves comparable performance
to other high-resolution LMMs. Although it does
not achieve the best results, it is important to note
that AVG-LLaVA uses fewer visual tokens com-
pared to other high-resolution models, and this
comparison will be detailed in Section 4.3.

Text-oriented VQA Benchmarks. In this cate-
gory of benchmarks, as illustrated in Table 1, ex-
cept for TextVQA, AVG-LLaVA outperforms all
other comparison models. Back to TextVQA, AVG-
LLaVA achieves the second-best performance, only
trailing behind Mini-Gemini-HD. Notably, Mini-
Gemini-HD utilizes more than twice the amount of
data during the pretraining and approximately 1.5
times the amount of data during the visual instruc-
tion fine-tuning compared to AVG-LLaVA.

General Multimodal Benchmarks. Compared
to traditional VQA datasets, this type of bench-

marks cover a broader range of evaluation aspects,
requiring models to possess more complex percep-
tion and reasoning capabilities. As summarized in
Table 2, except for MME, AVG-LLaVA surpasses
all other models across the remaining benchmarks,
exhibiting superior overall performance and high-
lighting its adaptability and effectiveness across
various disciplines. Specifically, AVG-LLaVA
outperforms the second-best model by 6.1, 1.9,
and 1.2 on MMEC , MMB, and MMBCN , respec-
tively. Moreover, AVG-LLaVA’s performance on
the POPE and MMMU benchmarks demonstrates
its ability to reduce hallucinations and perform
complex reasoning.

4.3 Computational Efficiency

To validate the effectiveness of dynamic visual
granularity selection, we compare AVG-LLaVA
with LLaVA-NeXT in terms of visual token number
and inference speed across multiple benchmarks.
Specifically, for each type of benchmarks, we se-
lect three benchmarks for comparison, and report
the reduction in the number of visual tokens per
grid and the actual speedup during inference.

As shown in Table 3, except for text-intensive
VQA benchmarks that require very fine-grained vi-
sual information, such as TextVQA and ChartVQA,
AVG-LLaVA significantly reduces the number of
visual tokens and improves inference speed across
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Model LLM MME MMEC MMB MMBCN POPE MMMU

Standard-resolution LMMs

InstructBLIP (Dai et al., 2023) Vicuna-7B 1084.0 229.0 - - - 30.6
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 1487.6 360.7 60.6 - - -
InternVL-Chat (Chen et al., 2023) Vicuna-7B 1525.1 - - - 86.4 -
mPLUG-Owl2 (Ye et al., 2023) LLaMA2-7B 1450.2 - 64.5 - - -
MQT-LLAVA (Hu et al., 2024) Vicuna-7B 1434.5 353.6 64.3 - 84.4 34.8
LLaVA-1.5 (Liu et al., 2023b) Vicuna-7B 1510.7 - 64.3 58.3 87.3 -

High-resolution LMMs

SPHINX-2k (Lin et al., 2023) LLaMA2-7B 1470.6 326.8 65.9 - 87.2 -
OtterHD-8B (Li et al., 2023a) Fuyu-8B 1223.4 331.4 58.3 - 86.0 -
Mini-Gemini-HD (Li et al., 2024a) Vicuna-7B 1546.0 319.0 65.8 - - 36.8
MG-LLaVA (Zhao et al., 2024) Vicuna-7B 1561.1 325.4 67.4 48.4 86.9 35.3
LLaVA-NeXT (Liu et al., 2024b) Vicuna-7B 1519.0 332.0 67.4 60.6 86.5 35.8
LLaVA-NeXT-M3 (Cai et al., 2024) Vicuna-7B - - 68.0 - 87.2 34.0

AVG-LLaVA Vicuna-7B 1557.4 366.8 69.9 61.8 87.4 37.4

Table 2: Comparison with LMMs of the same size on general multimodal benchmarks.

Metric General VQA Text-oriented VQA MLLM Benchmarks
GQA ScienceQA VizWiz TextVQA ChartQA AI2D MME MMB MMMU

Token Per Grid ↓ 80.0% 26.4% 54.9% 92.3% 99.1% 14.7% 69.3% 30.0% 29.9%
Speed ↑ 1.14× 1.77× 1.41× 1.04× 0.97× 2.53× 1.19× 1.87× 1.79×

Table 3: Comparisons of AVG-LLaVA and LLaVA-NeXT in terms of the number of visual tokens and actual
inference speed, both of which are tested on 8 V100 GPUs with a batch size of 1. AVG-LLaVA can reduce the
number of visual tokens by up to 85.3% and is up to 2.53× faster than LLaVA-NeXT.

other benchmarks. Particularly, on the AI2D bench-
mark, AVG-LLaVA achieves better performance
than LLaVA-NeXT while using only 14.7% of vi-
sual tokens, and the inference speed increases by
2.53 ×.4 Notably, even with the addition of two
extra modules, there is no significant slowdown in
inference speed on the ChartVQA benchmark when
using a comparable number of visual tokens. More-
over, AVG-LLaVA only increases the number of
parameters by 1.66% compared to LLaVA-NeXT.

4.4 Routing Visualization
To further understand the differences in the gran-
ularity selection of AVG-LLaVA across different
benchmarks, we visualize the proportion of visual
tokens selected at each granularity level for all
benchmarks. Figure 4 shows the visualization re-
sults, it is evident that different tasks tend to fa-
vor different visual granularity, which is consis-
tent with our expectations. In the case of text-
intensive benchmarks like TextVQA, ChartQA, and
DocVQA, the model requires fine-grained visual
information, so the router predominantly selects
the finest visual granularity. On the other hand, for
benchmarks involving object-level questions, such

4We also present qualitative results in Appendix A.5 and
illustrate the effectiveness of adaptive visual granularity.

as AI2D and MMMU, the model may find it easier
to answer correctly by utilizing coarse-grained vi-
sual information. Although the 72 and 288-token
granularities are seldom selected, their inclusion
helps the model progressively learn and differen-
tiate between various levels of visual granularity
(see the ablation study in Section 4.5).

4.5 Ablation Study
In order to validate the effectiveness of our de-
signed modules and training paradigm, we conduct
the following ablation analysis.

Adaptive Visual Granularity vs. Fixed Visual
Granularity. We first delve into the proposed
adaptive visual granularity router and report results
in Table 4(a). It is clear that, compared to fixed vi-
sual granularity, adaptive visual granularity shows
significant improvement on ScienceQA, MME, and
MMB. It is worth noting that, in addition to per-
formance improvement, adaptive visual granularity
can also significantly reduce the number of visual
tokens and increase the model’s inference speed,
as reported in Section 4.3.

Router Granularity Selection vs. Random Gran-
ularity Selection. In Table 4(b), we replace the
granularity selected by the router with randomly-
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Figure 4: Visualization of the proportion for different granularity visual tokens.

Ablated Setting Ablated Details Original Value → Changed Value ScienceQA ChartQA MME MMB

AVG-LLaVA 71.1 66.3 1557.4 69.9

Architecture

(a) Visual Granularity Adaptive Fixed 70.0 66.4 1554.5 68.7
(b) Granularity Selection Router Random 69.7 56.8 1535.7 67.9
(c) Router Input Image + Instruction Image 70.1 53.9 1525.2 69.0
(d) Granularity Range {36, 72, 144, 288, 576} {36, 144, 576} 69.8 65.3 1547.7 66.3

Training
(e) Router Training Feedback from LMM

Visual Instruction
Fine-tuning

70.5 50.9 1514.8 68.6

(f) Ranking Loss ! % 70.1 64.8 1534.6 68.6
(g) Cross-entropy Loss ! % 70.2 66.3 1550.8 69.4

Table 4: Ablation results on multiple benchmarks.

selected granularity. The results show that visual
granularity router can indeed select a relatively ap-
propriate granularity based on the input image and
instruction, thereby significantly enhancing model
performance.

Impact of Router Input. The instruction plays
a crucial role in granularity selection. To validate
this, we remove the instruction from the router
input. As shown in Table 4(c), a clear performance
degradation rises when solely using image as input
(e.g, -12.4 on ChartQA), illustrating the importance
of choosing granularity based on input image and
instruction.

Impact of Granularity Range. In Section 4.4,
we observe that granularities with 72 and 288 vi-
sual tokens are rarely selected, therefore we re-

move the visual tokens of these two granularities.
As shown in Table 4(d), this change leads to a
decrease in model performance, proving that in-
troducing these granularities benefits the model’s
progressive learning to utilize features of different
visual granularities and distinguish among various
visual granularities.

Impact of Router Training Methods. We di-
rectly train the router using visual instructions fine-
tuning with the cross-entropy loss function. Unlike
our original approach where the router is directly
supervised by the LMM feedback, this variant com-
putes the loss on the LMM and backpropagates the
gradient to the router using the Gumbel-Softmax
technique (Jang et al., 2017). The results in Table
4(e) show that the LLM feedback allows the router
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Figure 5: Attention maps of AVG-LLaVA at different visual granularities. The instruction is “How many sheep are
there? Answer the question with a single word.”. The number of visual tokens per grid selected by the router is 32.

to better distinguish the advantages and disadvan-
tages of different granularities, thereby enabling it
to select an appropriate granularity.

Importance of Ranking Granularity. In Table
4(f) and Table 4(g), we remove the cross-entropy
loss and ranking loss during the second stage, re-
spectively. The results indicate that both types of
loss are beneficial to model training and are comple-
mentary to each other, between which the ranking
loss is more crucial. This underscores the necessity
to train the router by ranking granularity based on
LMM feedback.

4.6 Attention Map Visualization
To further understand how the appropriate granular-
ity benefits the model in generating better answers,
we visualize the attention map between the gener-
ated tokens and the visual tokens. The attention
weights are calculated by accumulating the atten-
tion scores between image tokens and generated
tokens across all layers and heads. As shown in
Figure 5, when the instruction is “How many sheep
are there? Answer the question with a single word.”
the attention weights for the visual granularity se-
lected by the router are mostly assigned to the two
sheep, while the attention weights for other visual
granularities are dispersed across the background.
This means that selecting the appropriate visual
granularity results in a more distinct attention map
characterized by reduced background noise and
enhanced focus on relevant regions, thereby im-
proving model performance.

5 Conclusion

In this work, we propose AVG-LLaVA, an LMM
that can adaptively select appropriate visual gran-
ularity based on input image and instruction. Be-
sides, we introduce RGLF, which aligns router-
predicted probabilities of multiple granularities

with LMM preferences by a ranking loss, effec-
tively helping the model learn to distinguish be-
tween different granularities. Experimental results
show that AVG-LLaVA not only exhibits superior
performance across 11 benchmarks, but also sig-
nificantly reduce the number of visual tokens and
speed up inference in tasks that do not require fine-
grained information. In future work, we aim to de-
velop different visual granularity scaling networks
to obtain richer visual granularity and integrate the
two-stage training into a single stage to improve
efficiency.

Limitations

While AVG-LLaVA has achieved good results,
there is still considerable potential to be further
explored. On text-intensive benchmarks, the model
tends to select the finest-grained visual tokens,
which may be due to the pooling directly reduc-
ing half of the tokens, resulting in significant differ-
ences in granularity size. Designing a more suitable
granularity scaling network to provide richer visual
granularities may help alleviate this issue. Besides,
the two-stage training introduces additional over-
head, which could be alleviated by interleaving
multi-granularity visual instruction fine-tuning and
router training within a single stage.
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A Appendix

A.1 Visual Granularity Selection Algorithm

In algorithm 1, we provide the detailed process of
the router’s granularity selection.

A.2 Hyperparameter Analysis

Figure 6: Influence of the filtered instruction token num-
ber k on model performance, measured on ChartQA and
MMB benchmarks.

Figure 7: Influence of the cross-entropy loss weight
α on model performance, measured on ChartQA and
MMB benchmarks.

We experimentally explore the influence of the
filtered instruction token number k and the cross-
entropy loss weight α on model performance. As
shown in Figure 6, the model performance is sig-
nificantly affected when k is too small or too large.
This may be due to the fact that too few instruction
tokens provide insufficient text information, while
too many tokens will introduce more noise. Figure
7 indicates that our approach is relatively robust
to α and setting a smaller α is able to consistently
enhance model performance, making our training
method easy to apply.

A.3 Training Details

We list the training hyperparameters for two stages
in Table 5. Our setup mainly refers to LLaVA-
NeXT (Liu et al., 2024b).

A.4 Impact of Multiple Training Epochs on
the Same Dataset

Since we conduct two additional training stages on
the LLaVA-NeXT, we also investigate the impact

Hyperparameter Stage 1 Stage 2

Data size 1M 1M
Batch size 128 128
lr 1e-5 1e-3
Vision encoder lr 2e-5 -
lr schedule cosine decay
lr warmup ratio 0.03
Weight decay 0
Epoch 1
Optimizer AdamW
DeepSpeed stage 3 3
GPU 8 × H800 8 × H800
Training cost (#Hours) 65 14

Table 5: Training hyperparameters of AVG-LLaVA.

of training LLaVA-NeXT for two extra epochs on
the same multimodal instruction-tuning data.

From Tables 6 and 7, we can observe that al-
though three additional two epoch trainings result
in improvements on 7 benchmarks (e.g., ChartQA
and DocVQA), there is a considerable performance
decline on 6 benchmarks (e.g., TextVQA and
MMBCN ). This indicates that repeated training
cannot improve the performance on all benchmarks.
Besides, AVG-LLaVA performs better than LLaVA-
NeXT-Extra on 9 benchmarks, is slightly worse on
2 benchmarks, and has a significant speed improve-
ment, indicating that the advantage of AVG-LLaVA
does not simply stem from repeated training.

A.5 Qualitative Evaluation

As shown in Figures 8 and 9, we compare the visual
granularity selected by the router and other visual
granularities. In Figure 8, given the user-provided
image and instruction, AVG-LLaVA selects the
coarsest visual granularity through the router. It
can be observed that compared to other granulari-
ties, the model’s response with the coarsest gran-
ularity does not vary significantly. However, in
Figure 9, with the given image and instruction,
AVG-LLaVA selects the finest visual granularity.
We find that coarser visual granularities could not
generate a reasonably accurate poster description.
These two examples demonstrate that AVG-LLaVA
can adaptively select the appropriate visual granu-
larity based on the image and instruction, thereby
reducing the number of visual tokens, accelerating
inference, and even improving model performance.

Figure 10 further shows several conversations
between users and AVG-LLaVA.
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Algorithm 1 Visual Granularity Selection Algorithm

Require: Multi-granularity visual tokens Xv = [X1
v;X

2
v; ...;X

N
v ], Instruction tokens Xinstruct,

Visual tokens of original granularity Xv

Ensure: Selected granularity visual tokens Xselected
v .

1: Obtain the filtered instruction tokens Xinstruct = Top-k(cosine_sim(Xinstruct,Xv))
2: Concatenate Xv and Xinstruct to form the input for the router
3: Apply a Transformer layer to facilitate token fusion Zfusion = Transformer([Xv;Xinstruct]).
4: Use an MLP to predict logits for each token Zout = MLP(Zfusion)
5: Aggregate the logits using a learnable weight matrix Zfinal = WZout.
6: Compute the probability distribution using softmax P = softmax(Zfinal).
7: Identify the granularity with the highest probability selected = argmax(P).
8: return Xselected

v

Model General VQA Text-oriented VQA
GQA ScienceQA VizWiz TextVQA ChartQA DocVQA AI2D

LLaVA-NeXT 64.2 70.1 57.6 64.9 54.8 74.4 66.6
LLaVA-NeXT-Extra 64.6 69.9 58.3 63.9 66.3 75.1 65.3
AVG-LLaVA 63.0 71.1 59.8 67.1 66.3 74.6 67.3

Table 6: Results on general VQA benchmarks and text-oriented VQA benchmarks. LLaVA-NeXT-Extra refers to
training for two extra epochs on the same multimodal instruction-tuning data.

A.6 Visualization of Router Selection for
Different Instructions

As shown in Figure 11, we input the same image
with different instructions and then visualize the
selected visual granularity on the image, i.e., the
number of patches. As can be seen, even for the
same image, the router selects different visual gran-
ularities for different instructions. When asking
about the color of the car, the model does not re-
quire such fine-grained visual information, whereas
when asking whether there is a cat, the model re-
quires finer-grained visual information.
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Model MME MMEC MMB MMBCN POPE MMMU

LLaVA-NeXT 1519.0 332.0 67.4 60.6 86.5 35.8
LLaVA-NeXT-Extra 1524.7 330.0 67.8 57.0 87.4 34.8
AVG-LLaVA 1557.4 366.8 69.9 61.8 87.4 37.4

Table 7: Results on general multimodal benchmarks.

Figure 8: Example of the finest visual granularity selected by the router compared to other visual granularities. The
number in parentheses indicates the number of visual tokens. In this example, the responses from the model using
both fine-grained and coarse-grained visual tokens show little difference, indicating that the model can adopt coarse
visual granularity to significantly reduce the number of visual tokens and accelerate inference.
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Figure 9: Example of the coarsest visual granularity selected by the router compared to other visual granularities.
The number in parentheses indicates the number of visual tokens. In this example, when coarse-grained visual
tokens are used, the model generates incorrect descriptions. This suggests that the model should select fine visual
granularity for the image and instructions in order to achieve better accuracy.
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Figure 10: More Examples of conversations between users and AVG-LLaVA.
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Figure 11: Visualization of granularity selection using different instructions.
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