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Abstract

Memorization is a fundamental ability of
transformer-based Large Language Models,
achieved through learning. In this posi-
tion/theory paper, we propose a paradigm shift
by designing an architecture to memorize text
directly, bearing in mind the principle that
memorization precedes learning. We introduce
MeMo, a novel architecture for language mod-
eling that explicitly memorizes sequences of
tokens in layered associative memories. By
design, MeMo offers transparency and the pos-
sibility of model editing, including forgetting
texts. We experimented with the MeMo archi-
tecture, showing the memorization power of the
one-layer and the multi-layer configurations.

1 Introduction

Transformer-based Large Language Models
achieve unrivaled performance in language model-
ing by learning to capture and represent complex
sequential dependencies from statistical patterns
through extensive training phases that iteratively
refine their weights to best approximate natural
language. This has triggered significant interest
in gaining a better understanding of the inner
workings of these models, focusing on how these
models generalize and capture structure between
similar samples in terms of syntactic dependencies
(Vig and Belinkov, 2019), compositional relations
(Hupkes et al., 2020; Zanzotto et al., 2015)
concerning the quantity (Reizinger et al., 2024)
and quality (Yang et al., 2024) of training data.

Besides generalization, a key component of
Transformers’ success is the ability to memorize
data while learning (Ranaldi et al., 2023b,a). In-
deed, earlier work investigated this other side of
learning. While Carlini et al. (2023); Mahdavi et al.
(2024) demonstrated evidence of memorization,
Kharitonov et al. (2021); Mahdavi et al. (2024)
studied how the internal components lead to mem-
orization, and Kim et al. (2023) estimated the

boundary between generalization and memoriza-
tion, providing an estimation on their storage ca-
pacity. Memorization is not inherently a drawback
in language models because it plays a crucial role
in handling factual knowledge, which is important
for question answering, summarization, or informa-
tion retrieval. This factual recall relies on a delicate
balance. While generalization helps capture pat-
terns and unseen relationships in data, memoriza-
tion ensures that models retain critical and exact
information when required.

Recent research has highlighted that memoriza-
tion capability can be effectively harnessed using
concepts rooted in associative memories (Kohonen,
1972; Anderson, 1972) - a system designed to link
inputs to specific outputs and offers a structured and
transparent way to store and retrieve information.
By leveraging associative memory mechanisms,
researchers have proposed strategies to post-edit
LLMs (Meng et al., 2022, 2023a), enabling con-
trol over what is memorized, how it is stored, and
how it is accessed, enhancing their reliability in
fact-based tasks.

In this position/theory paper, we propose a
paradigm shift by designing Language Models
based on a different principle: memorization pro-
ceeds learning. By using associative memories,
we build MeMo, a novel architecture for language
modeling that explicitly memorizes sequences of
tokens in layered associative memories. MeMo
leverages correlation matrix memories (Kohonen,
1972; Anderson, 1972), the concept that tokens
and sequences of tokens can be represented as ran-
dom vectors (Plate, 1995; Sahlgren, 2005), and the
Johnson-Lindestrauss Transform to embed larger
vectors in smaller spaces by preserving their dis-
tances (Johnson and Lindenstrauss, 1984). By de-
sign, MeMo offers transparency and the possibility
of model editing, including forgetting texts. We
experimented MeMo, showing the memorization
power of single and multi-layer architecture.
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2 Preliminaries and Background

Representing words or tokens in small random
vectors is the first important step in building lan-
guage models with neural network architectures.
Using random vectors is a standard technique. In-
deed, random vectors are used in random indexing
(Sahlgren, 2005) in information retrieval to reduce
the document vector space and in distributed repre-
sentations for neural networks as a convenient way
to determine a set of vectors to represent sets of dif-
ferent tokens (Plate, 1995) or structures (Zanzotto
and Dell’Arciprete, 2012; Zanzotto and Ferrone,
2017; Zanzotto et al., 2020). Moreover, random
vectors are used to initialize weight matrices in
any language-oriented application in neural net-
works, including the initialization of transformers
(Vaswani et al., 2017) to build large language mod-
els from scratch.

Multivariate Gaussian random vectors have the
important property of being able to generate sets E
of nearly orthogonal unitary vectors that can form
an approximate base of the space Rn in a smaller
space Rd (Johnson and Lindenstrauss, 1984). Each
token t is then represented with a distinct vector in
t ∈ E, and the two following properties hold with
a probability larger than 1− δ:

∥aTb∥ < ϵ if a ̸= b
1− ϵ < aTb < 1 + ϵ if a = b

where a and b are tokens and a and b are vectors
representing those tokens in the reduced space Rd.
By using the Johnson-Lindestrauss Lemma (John-
son and Lindenstrauss, 1984), it is possible to find
a lower bound of how large d should be in order to
host n vectors given the approximation ϵ and the
probability factor δ (see Appendix A). In less pre-
cise equations, the two properties can be rewritten
as:

aTb ≈
{

0 if a ̸= b
1 if a = b

Using these vectors with their properties, it is
possible to represent a bag-of-tokens B in a sin-
gle vector tB offering the operation that approxi-
mately counts the number of times a token is in B.
The vector tB is obtained by summing up vectors
representing tokens in B and, then, the counting
operation is:

aT tB ≈ k

where k is the number of times a belongs to the
bag B.

Correlation matrix memories (CMMs) (Koho-
nen, 1972; Anderson, 1972) are a powerful tool to
store key-value (ki, vi) pairs in distributed mem-
ories as the sum of outer products of the vectors
representing the keys ki and vectors representing
the values vi:

C =
n∑

i=1

kiv
T
i (1)

These CMMs have been generally defined on one-
hot representations (Hobson, 2011) and, eventually,
reduced afterwards (Kohonen, 1972). Then, to re-
trieve the value associated with a key, the matrix
C should be multiplied with kT

j . As vectors ki are
one-hot vectors, the following property holds:

kT
j C = vj

To optimize the construction of these CMM
matrices, we use the correlated form:

C = KV T =




| | |
k1 k2 . . . kn

| | |







− vT
1 −

− vT
2 −
...

− vT
n −




To make CMMs practical, in MeMo, we use
these memories along with the multivariate Gaus-
sian vectors to represent keys and values. Hence,
the generic property of this associative matrices is

kT
j C ≈ eTj V = vj

where ej is the onehot vector of the position j
and kj and vj are multivariate Gaussian vectors to
represent the key kj and the value vj .

The idea behind correlation matrix memories
has often been used to explain that feed-forward
matrices are where Transformer architectures store
most information (Meng et al., 2023b). In MeMo,
CMMs become the cornerstone for defining a novel
approach to building Language Models.

Johnson-Lindestrauss Transform (Dasgupta
and Gupta, 1999), derived by using the Johnson-
Lindestrauss Lemma (JLL) (Johnson and Linden-
strauss, 1984), guarantees that it exists a linear
transformation Td×n that transforms a substantial
subset V of vectors in a bigger space Rn in vec-
tors in a smaller space Rd by preserving their dis-
tance with an approximation ϵ with high probabil-
ity. Then, given two vectors a and b in V , the
following property is guaranteed:

∥a−b∥2(1−ϵ) < ∥Ta−Tb∥2 < ∥a−b∥2(1+ϵ)

15170



𝐶𝑀𝑀 =

𝑊𝑉 𝑖𝑛

𝑊𝑉 𝑡ℎ𝑒

𝑊𝑉𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠

𝑊𝑉 𝑎𝑛𝑑
𝑝ℎ𝑦𝑠𝑖𝑐𝑠𝑇

𝑊𝑉 ℎ𝑒

𝑊𝑉 𝑒𝑛𝑟𝑜𝑙𝑙𝑒𝑑

𝑊𝑉 𝑖𝑛

𝑊𝑉 𝑡ℎ𝑒

𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠𝑇

𝑑 × 6

6 × 𝑑

𝑊𝑉 𝑒𝑛𝑟𝑜𝑙𝑙𝑒𝑑

𝑊𝑉 𝑖𝑛

𝑊𝑉 𝑡ℎ𝑒

𝑊𝑉𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠

𝑎𝑛𝑑𝑇

𝑊𝑉 𝑎𝑛𝑑

𝑊𝑉 𝑝ℎ𝑦𝑠𝑖𝑐𝑠

𝑊𝑉 𝑡𝑒𝑎𝑐ℎ𝑖𝑛𝑔

𝑊𝑉 𝑑𝑖𝑝𝑙𝑜𝑚𝑎

𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑇

a)

… 

…
 

𝑖𝑛𝑇𝑊𝑉
𝑇 𝑡ℎ𝑒𝑇𝑊𝑉

𝑇 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠𝑇𝑊𝑉
𝑇 𝑎𝑛𝑑𝑇𝑊𝑉

𝑇

𝑑 × 6

… 

𝐶𝑀𝑀

≅

𝑝ℎ𝑦𝑠𝑖𝑐𝑠𝑇

𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠𝑇

𝑎𝑛𝑑𝑇

𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑇

…
 

𝑝ℎ𝑦𝑠𝑖𝑐𝑠𝑇

𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠𝑇

𝑎𝑛𝑑𝑇

𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑇

…
 

[0 0 1.00 …0] = 𝑝ℎ𝑦𝑠𝑖𝑐𝑠𝑇

b)

𝑖𝑛𝑇𝑊𝑉
𝑇 𝑡ℎ𝑒𝑇𝑊𝑉

𝑇 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠𝑇𝑊𝑉
𝑇 𝑜𝑟𝑇𝑊𝑉

𝑇
[0 0 0.75 …0]

𝑝ℎ𝑦𝑠𝑖𝑐𝑠𝑇

Figure 1: A sample Language Model (LM) with a single Correlation Matrix Memory (CMM) coding a single
sentence. a) Memorization phase: the CMM is a d×d matrix coding the pairs (sequence, next_token) for a sentence;
b) Retrieving phase: a sample use of the CMM in (a) where the CMM emits the vector of the word physics given
the encoding of the sequence in the mathematics and.

The JLL with the demonstration in (Dasgupta and
Gupta, 1999) shows that it is possible to build this
matrix T with high probability by using multivari-
ate Gaussian vectors as transformation rows.

JLT matrices are the last ingredient of our new
model, as we need to transpose sequences of tokens
in their representations in the target Rd space.

3 MeMo: Language Models with
Multi-layer Correlation Matrix
Memories

Building on Correlation Matrix Memories, on
multi-variate Gaussian vectors to represent tokens
and token sequences, and on Johnson-Lindestrauss
Transforms, we present here MeMo1, a way to
build language models that memorize texts in a
clear, transparent way. We first present how to
build a language model with a single CMM (Sec.
3.1). This single-layer CMM language model pre-
dicts the next tokens of sequences with a fixed
length h. Then, we generalize MeMo to a multi-
layer approach in order to increase the length of the
sequences that can be memorized, retrieved, and
forgotten (Sec. 3.2).

3.1 Language Models with single Correlation
Matrix Memories

Correlation matrix memories (CMMs) and multi-
variate Gaussian vectors with their properties offer

1MeMo is on GitHub - HumanCentricART - MeMo.
MeMo is distributed under the license CC BY-NC-SA 4.0

an interesting opportunity to build simple language
models.

Language models can be seen as predictors of
the next tokens given input sequences. From a
symbolic perspective, a language model stores the
associations between sequences and the next to-
kens along with the observed frequency in order
to estimate the probability. Then, from a symbolic
perspective, the base for a language model is a
multi-set LM containing:

LM = {([x1, x2, ..., xh], y)} = {(s, y)}

where s = [x1, x2, ..., xh] are the fixed length se-
quences of tokens and y are the next tokens implied
by sequences s. Tokens are contained in a fixed
vocabulary V of n tokens. These multisets are the
sample sets where probabilities are estimated by
counting.

The translation of these multi-sets LM in a
CMM is straightforward: input sequences s are
keys, and output next tokens y are values. We
then use multivariate Gaussian vectors stored in
the matrix En×d to encode the n tokens in V and
a Johnson-Lindestrauss Transform WV to ensure
that both input sequences and output vectors are in
the same space Rd. Then, the CMM encoding an
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LM has the following equation:

C =
∑

(s,y)∈LM
syT =

∑

(s,y)∈LM




WV x1

WV x2
...

WV xh


yT

(2)
where s ∈ Rd is the vector representing the se-
quence s composed as described using vectors
xi ∈ Rd encoding tokens xi and the JLT matrix
WV of dimensions d/h×d. The vector y ∈ Rd rep-
resents the symbol y. Vectors xi and y are columns
of the embedding matrix E. The properties of the
embedding vectors and the JLT, along with how the
JLT is built, can guarantee that:

(WV xj)
TWV xi ≈

{
1/h if xi = xj
0 if xi ̸= xj

Once the LM is transferred to the CMM, the
matrix C can be used to predict the next token of
a given sequence ŝ = [x̂1, x̂2, ..., x̂h]. The next
token can be derived as follows. The first step is
the product:

ŷ = ŝTC =
∑

(sj ,yj)∈LM
(̂sT sj)yj (3)

where sT = [x̂T
1 W

T
V , x̂T

2 W
T
V , ..., x̂T

hW
T
V ] is the

representation in a space Rd of the sequence s.
The above properties (see eq. 2) guarantee that:

ssTi ≈ k/h

where k is the number of common tokens between
the sequences s and sj . Indeed, the CMM transfor-
mation of the LM also offers an initial property of
generalization. The models can also give an estima-
tion of the count for sequences that are not stored
completely. Therefore, the following product es-
timates the counts of an output token ti given the
sequence ŝ:

t = Eŷ

Hence, focusing on the i-th component of the vec-
tor t, it will be the approximate count of full and
partial sequences generating the i-th token, that is:

(t)i ≈
∑

{(sj ,yj)∈LM |yj=ti}
sT sj

The token ti to emit for a sequence ŝ is then cho-
sen by selecting the index i of the component of

the vector EŝTC with the highest value as in this
equation:

i = argmaxi(EŝTC)i (4)

To better describe how a simple correlation ma-
trix memory (CMM) can be used as a language
model (LM), we show how to build an LM with a
window of 4 tokens using the following sentence
as a running example:

He enrolled in the mathematics and physics
teaching diploma program

Then, the CMM should contain the set LM of
pairs:
LM = {([He enrolled in the],mathematics),
([enrolled in the mathematics], and), ([in the
mathematics and], physics), ..., ([and physics
teaching diploma],program)}

Hence, given a d-dimensional word embedding
space where vectors w for each word w are drawn
from a Gaussian multinomial pseudo-random gen-
erator and WV is a Johson-Lindestrauss Trans-
form d× d/4 matrix embedding word vectors in
a smaller space Rd/4, the CMM d× d matrix will
contain the sum of the matrices representing the
pairs in P (see Fig. 1.a) built as the sum of outer
products of key columns representing sequences
and row value vectors representing next tokens. For
example, the first green column represents the se-
quence He enrolled in the and it is linked with the
first row representing mathematics (see Fig. 1.a).

In the retrieving phase, to obtain the next token
given a sequence of 4 tokens, the transposed vec-
tor representing the sequence is multiplied by the
CMM. The result is the vector representing the
next token. For example, given the sequence in the
mathematics and, the green transposed vector rep-
resenting the sequence is multiplied by the CMM
representing encoded associations (see Fig. 1.b).
The multiplication of this vector with the first block
implied by the CMM produces a vector that approx-
imates [ 0 0 1.00 0 0 0 ]. This vector then
extracts the third vector of the second block, that
is, the one associated with physics. This model
can also be generalized in the sense that it may
take into consideration subsequences of a given
sequence. Indeed, the sequence in the mathematics
or will emit the vector for physics with a weight of
0.75 given the value of the dot product of its vector
with the vector of the sequence in the mathematics
and. This is the first possible generalization of the
one-layer language model built with a CMM.

15172



Hence, a single CMM can build language models
able to generalize but these language models will
operate with fixed small windows depending on
the ratio d/h, dimension of the space with respect
to the number of heads or tokens in the window.
If d/h is small, vectors in this smaller space will
be not enough different to discriminate different
tokens.

3.2 Multi-layer Correlation Matrix Memories

To increase the maximum length of the input win-
dow of language models, in line with what is done
in transformers (Vaswani et al., 2017), we stack
layers containing correlation matrix memories (see
Fig. 2 for an example).

The driving idea is that CMMs of a generic
MeMo layer store the encoding of sequences whose
length is determined by the level of the layer.
Hence, the generic MeMo layer contains key-value
pairs where the key is the representation of the
sequence elements, and the value is a vector repre-
senting the sequence as a whole. The representa-
tion of the sequence elements is done similarly to
what is done for an LM based on a single CMM (as
in Sec. 3.1). The last MeMo layer instead stores
the relation between sequences of increasing length
and the next token, and, thus, it is the layer devoted
to the next token prediction.

To define MeMo, we need first to fix the notation:
h is the number of heads or, also, the maximum
number of input elements that are treated by the
MeMo layer, l is the number of layers, d is the
dimension of the encoding vectors, and X(i) is the
input for the i-th layer containing vectors represent-
ing sequences in row vectors x

(i)T
j . Given these

parameters, MeMo can encode sequences of a max-
imum length of m = hl.

Memorization Each MeMo layer MM (i) mem-
orizes sequences up to the length hi and produces
the next token emission matrices for sequences up
to hi length to be stored in the last layer. The equa-
tions for the memorization phase are the following:

MM (i)
m





X(i+1) = Flath(X
(i))Prj(i)

I(i) = Flath(X
(i)W

(i)T
V )

C ′(i) = C(i) + I(i)TΦ(i)X(i+1)

C ′(last) = C(last) + I(i)TSelh(X
(1))

where Flath(X
(i)) is a function that takes a k × d

matrix and reshapes it in a k/h × d · h matrix,
Selh(X

(0)) is a function that selects every h vector

from the input matrix X(0), Prj(i) is a h · d ×
d projection matrix that encodes sequences of h
vectors in the internal d dimensional space, and
W

(i)
h is an embedding matrix reducing vectors in

Rd to vectors in Rd/h.
We proceed by reading the equations from the

top to the bottom.
Each h vectors in the input X(i) are juxtaposed

to create sequences of input that are treated by each
block of the i-th layer and, thus, these sequences of
inputs are encoded as in vectors X(i+1) of dimen-
sion d that are unique for each encoded sequence.

Sequences are also represented by vectors I(i)

by first embedding vectors X(i) in sequences
X(i)W

(i)T
V of row vectors in d/h and, then,

packing these vectors in single row vectors
Flath(X

(i)W
(i)T
V ) representing sequences. These

I(i) are the keys of sequences, and X(i+1) are the
values in which these keys are translated in the
retrieving phase.

Then, I(i) are intended to represent sequences
as sequences of elements x

(i)T
j W

(i)T
V . Instead,

X(i+1) represents the same sequences as a whole.
This difference is small but important as I(i) are
intended to be also partially matched.

The pairs (sequences of elements, coding of se-
quence), respectively in I(i) and X(i+1), are then
stored in the CMM C(i) of the current level i
adding I(i)TΦ(i)X(i+1) to the current matrix. The
diagonal matrix Φ(i) contains penalizing factors to
force only one memorization of the pair (sequences
of elements, coding of sequence) in the correspond-
ing matrix C(i). The pair (sequences of elements,
coding of sequence) should be stored if it is not
stored in the current matrix C(i), and if it appears
f times in the current updated, it should be stored
only once. Therefore, the penalizing matrix Φ(i) is
the product of two diagonal matrices:

Φ(i) = D(i)F (i)

where: (1) the distiller D(i) is a filter of patterns
and has 0 in the diagonal if the corresponding pat-
tern is already stored in C(i) and 1 if it is not stored
in C(i); (2) the inverse frequency matrix F (i) is the
diagonal of F (i) where elements in the diagonal
contains the inverse frequency of the correspond-
ing pattern in the current update X(i+1). The two
matrices D(i) and F (i) are obtained with linear and
nonlinear operations over the current matrices of
the current layer. Given x(i+1) as the sum of all
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Figure 2: A sample Language Model (LM) with a Multi-layer Correlation Matrix Memory (CMM) coding a
sequence of numbers with number of heads h=2 and number of layers l=3.

the row vectors in X(i+1), the distill matrix is com-
puted as follows:

D(i) = diag(1− round(I(i)C(i)x(i+1)))

where I(i)C(i) produces all sequence vectors al-
ready stored in C(i) and, then, the multiplication
with the vector x(i+1)) detects which of these vec-
tors is in the new vectors to store. The frequency
matrix is computed similarly:

F (i) = diag(1/round(X(i+1)x(i+1)))

by multiplying the same vector x(i+1) with all the
vectors to be stored.

Finally, in each layer i, the CMM C ′(last) of the
last layer is updated with the pairs connecting the
sequences of elements I(i)T with the correlated
next tokens SelhX

(1). The last layer is the real
layer that emits the next token of a given sequence.

We show how the memorization of the simple
sequence 1 2 3 4 5 6 7 8 9 representing the sentence
of the running example is done in a MeMo with
h = 2 and l = 3 (see Fig. 2.a). This configuration
of MeMo allows the storage sequences of up to 8
tokens, emitting the ninth token. In this example,

the CMM C(1) of layer 1 is storing the coding of se-
quences of two input elements. Embedding vectors
of dimension d are represented in orange and em-
bedding vectors of dimension d/2 are represented
in light blue. Sequences I(i) of elements are the
light blue vector pairs 1 2, 3 4, 5 6, and 7 8. These
are multiplied with the coding of the sequences
represented by the orange vectors 12, 34, 56, and
78. These outer products are stored in CMM C(1).
Instead, the outer product of vectors 1 2, 3 4, 5 6,
and 7 8 with the vectors 3, 5, 7, and 9 is stored in
the matrix CMM C(3). By using embeddings X(2)

of layer 1, layer 2 emits the embeddings of length
four and stores them in the matrix C(3). Then it
store the pairs ([1 2, 3 4], 5) and ([5 6, 7 8], 9) ih
C(3). Layer 3 stores the pair ([1 2 3 4, 5 6 7 8],
9) in C(3) that represents the longest sequence that
can be stored given h and l.

Retrieving In this phase, MeMo is used to re-
trieve what has been stored by giving as input a
sequence and expecting the next token as output.
All intermediate layers are used to retrieve the en-
coding of sequences with growing length. These
are used on the final layer to retrieve the next token
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to emit. The retrieving equations for each layer of
MeMo are the following:

MM (i)
r





I(i) = Flath(X̂
(i)W

(i)T
V )

X̂(i+1) = I(i)TC(i)

O′(last) = O(last) + I(i)TC(last)

where X̂(i+1) are the retrieved encoding of the se-
quences extracted from the CMM C(i) of the cur-
rent layer by using the encoding of the sequences
of elements I(i). Clearly, X̂(1) = X(1), that is, the
first layer encodes the sequence as it is, and it is not
retrieved from a CMM. Finally, O(last) is storing
the output vectors for the next token given the input
sequence.

In the running example, the retrieving is done as
follows (see Fig. 2.b). The sequence 1 2 3 4 5 6 7
8 is used to generate the first sequence of vectors
X(1). Each pair is used to generate the encoding of
sequences of elements (light blue boxes) by using
the matrix W

(1)
v . Then, these are used to retrieve

the encoding of sequences from C(1); the encoding
is the light orange boxes. The encoding E1 of
the sequence of elements of the last part of the
sequence 7 8 is summed up to then retrieve the
next token from C(3). The following level works
in the same way, emitting the encodings E2 and
E3 of the sequences of elements 56 78 for layer 2
and 1234 5678 for layer 3, respectively. The sum
E1 + E2 + E3 of three emitted encodings is then
used to retrieve the next token by multiplying the
resultant vector with the matrix C(3). Then, the
result will be the embedding vector of 9 with a
weight of 3 since it is encoded three times in the
matrix with three different sequences of elements.

Forgetting MeMo, as it is, offers then the impor-
tant capability of forgetting, that is, erasing stored
sequences. The operation is straightforward: sub-
tracting the sequence from the last layer instead of
summing. The equation follows:

MM
(i)
f





X(i+1) = Flath(X
(i))Prj(i)

I(i) = Flath(X
(i)W

(i)T
V )

C ′(last) = C(last) − I(i)TSelh(X
(1))

4 Experimental Investigation

In this section, we experiment with the memoriza-
tion capacity of MeMo with a single layer and with
multiple layers.

4.1 Exploring Memorization Capabilities of
Single-layer MeMo

Experimental set-up In the first experiment, we
investigate the capacity of a single-layer MeMo
to memorize the association between sequences of
symbols and one output symbol. Hence, we cre-
ated a generator of random sequences of h symbols
[x1, x2, ..., xh] that are mapped to a random sym-
bol y. To maximize the diversity, symbols are taken
with a uniform random distribution from a vocabu-
lary of 100,000 symbols. This guarantees that the
mapping between sequences and symbols is unique.
Therefore, we are testing the real capacity of mem-
orization of the CMM. In the experiments, we used
random vectors xi representing symbols xi with
d dimensions with dh ∈ {16, 32, 64, 128, 256}
and we experimented with sequences of increasing
length with h ∈ {2, 4, 8, 16, 32}. The output vec-
tors y representing symbols y are instead random
vectors with d in {512, 1024, 2048, 4096, 8192}.
Therefore, experimental CMMs are matrices with
(h × dh, d) dimensions. Thus, the number of pa-
rameters of each CMM is NoP = h · dh · d.

In this experiment, batches Bi of 1,000 pairs
{([x1, x2, ..., xh], y)} are stored into the CMM ma-
trix C for each step i and, then, the storing ca-
pacity is evaluated by computing the accuracy of
reproducing the tokens of the batch Bi and the
first batch B0. The accuracy Acc(Bi, C) of the
CMM C on the batch Bi is computed as the per-
centage of correct emitted tokens y given sequences
[x1, x2, ..., xh] with equation 4. The storing capac-
ity of a CMM matrix C is computed as the num-
ber of pairs that can be stored that guarantee an
(Acc(B0, C) +Acc(Bi, C))/2 > 0.9 where B0 is
the first batch and Bi is the current batch.

Results Memo, based on a single correlation ma-
trix memory, has the capacity to store sequences
according to the total number of parameters of the
CMM. Indeed, the memorization capacity of a sin-
gle CMM does not depend on the number of heads
of the input sequence but only on the total number
of parameters of the CMM. The plot in Figure 4
reports the results of the first set of experiments
and shows that there is a linear relation between
the number of parameters and the number of stored
sequences. This is in line with the empirical find-
ings on LLMs that originated the linear scaling law
linking the number of tokens of the training corpus
with respect to the total number of parameters of
the Transformer (Kaplan et al., 2020).
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Figure 3: Memorization capacity of MeMo: storing ability with respect to the number of stored sequences.
Experiments with increasing complexity of the datasets (number of decoys) and increasing number of layers

Figure 4: Memorization capacity of a single CMM:
parameters NoP = h ·dh ·d with respect to the number
of sequences that can be stored. Points in the plot are
CMMs with different configurations of h, dh, and d.

4.2 Exploring Memorization Capabilities of
Multi-layer MeMo

Experimental set-up In the second experiment,
we investigate the capacity of MeMo to memorize
complete texts. As we aim to investigate only the
memorization capacity, we used randomly gener-
ated texts of a given chunk length. To really test
the capacity of splitting the ability to store long se-
quences with a layered model, we produced a text
generator that simulates the existence of repeated
words long h tokens in the text. These repeated
words decoy a memorizer with only h heads be-
cause the same decoy of h tokens should produce
different next tokens according to the tokens pre-
ceding the decoy, which may be captured only if

MeMo with more layers is memorizing sequences
longer than h. We experimented with h = 4, with
up to 3 layers, with d ∈ {1024, 2048, 4096, 8192},
and with three setting of decoys: 0, 20, and 40.

Results The memorization capability of MeMo
increases with the inner dimension d that is corre-
lated with the total number of parameters. In the
three cases with the three different levels of decoys,
the memorization capability of texts increases with
the inner dimension for MeMo with 3 layers (top
line of plots in Fig. 3). As the dimension of the rep-
resentation of elements of the sequence of tokens
is d/4, the capability of storing sequences strongly
depends on d. Hence, to obtain a reasonable de-
gree of memorization, an internal representation
of at least d = 4096 is needed. Indeed, only with
d = 4096, the performance of the MeMo with
three layers on the memorization of completely dif-
ferent sequences (decoys=0) stays constantly over
0.97. When the complexity of sentences increases,
a larger d is needed. A sufficient level of memo-
rization is guaranteed with d = 8192 when decoys
are 40. Overall, increasing the inner dimension d
enables better memorization.

As expected, augmenting the number of layers
increases the ability to memorize. For the three
levels of decoys, increasing the number of layers
has a positive effect on the memorization perfor-
mance (see bottom of Fig. 4). Indeed, as the com-
plexity increases, that is, as the number of decoys
increases, the importance of having more layers be-
comes clearer. With 20 decoys, at least two layers
are needed. With two or three layers, the storing ca-
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pacity is above 0.96 for at least 250,000 sequences.
Whereas, with 40 decoys, at least three layers are
required to have a storing capacity of more than
0.88 for 250,000 sequences.

Results show that MeMo with multiple layers
can expand the memorization capacity of MeMo
with single layer and, thus, open the possibility to
create transparent language models.

5 Conclusion and Future Work

Memorization is a key component of transformer-
based Large Language Models. Hence, in this pa-
per, we proposed to shift the paradigm by designing
language models based on memorization. We then
presented MeMo as a novel way to build language
models using correlation matrix memories stacked
in layers. Experimental evaluation has shown that
MeMo-like architecture can memorize sequences
of tokens.

By using memorization, MeMo-like architec-
tures are transparent and editable by design and
opens back the possibility to include explicit knowl-
edge modeling in neural network language models.
Indeed, MeMo can help leverage traditional lin-
guistic studies in this era, where transformer-based
large language models are obtaining unprecedented
performance. With MeMo, we could control how
linguistic knowledge is used to generalize exam-
ples, we could embed transformation rules, and
we could represent knowledge graphs and linguis-
tic ontologies. In other words, MeMo gives back
control to knowledge experts, linguists, and NLP
practitioners with the aim of reducing data hungri-
ness of Large Language Models.

Limitations

The approach proposed in this paper is a paradigm
shift, and then, the software implementing the
model has some compatibility issues with the exist-
ing software ecosystem of transformers in Hugging
Face. Hence, it has not been possible to experi-
ment with the model using the current evaluation
suites. Although this is a limit with respect to the
comparability of MeMo with current transformer-
based LLMs, it does not represent a major limit
concerning the memorization capability of MeMo.

Ethical Statement

Making memorization more evident and being ed-
itable by design, MeMo may allow an easier control

of the stored texts by mitigating leaks of sensible
data and social biases.
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Appendix A: Analyzing Storing Capacity of Random Vectors

This section explores theoretically how many nearly orthogonal unit vectors can be stored in a set
NOV (ε, θ) in the space Rd, where ε is the approximation required and 1− θ is the probability that this
approximation is guaranteed. For two vectors a and b in NOV (ε, θ), the following should hold:

P (eaeb
⊤ − ε ≤ ab⊤ ≤ eaeb

⊤ + ε) ≥ 1− θ (5)

In other terms, if a and b are the same generalized sequence, ab⊤ ≈ 1, whereas, if if a and b are two
different generalized sequences, ab⊤ ≈ 0. There is a long-lasting conjecture that postulates a relation
between d and m for any given θ and ε (Hecht-Nielsen, 1994) but, to the best of our knowledge, a
definitive demonstration does not still exist. By using the Johnson&Lindestrauss Lemma (Johnson and
Lindenstrauss, 1984), we derived an upper-bound for d. Sets NOV (ε, θ) can potentially host2 m vectors
with θ = 2/m2 − 1/m4 according to this relation:

m ≤ e8(ε
2−4/3ε3)d

Thus, there is an exponential relation between d and m. This is a positive result as spaces Rd can host
large sets of NOV (ε, θ). Thus, definitely many substructures in S in real datasets can be represented with
vectors in NOV (ε, θ).

Existing results Our corollary stems from two results (Johnson and Lindenstrauss, 1984; Dasgupta and
Gupta, 1999):

Theorem .1 (Johnson-Lindenstrauss Lemma). For any 0 < ϵ < 1 and any integer m. Let d be a positive
integer such that

d ≥ 4(ϵ2/2− ϵ3/3)−1 lnm

Then for any set V of m points in Rk, there is a map f : Rk → Rd such that for all u,v ∈ V ,

(1− ϵ)∥u− v∥22 ≤ ∥f(u)− f(v)∥22 ≤ (1 + ϵ)∥u− v∥22.

The theorem can be derived using the following lemma:

Lemma .2. For any ϵ > 0, τ < 1/2 and positive integer d, there exists a distribution D over Rd×k for
d = O(ϵ−2 log 1/τ) such that, for any x ∈ Rk with ||x||2 = 1,

P (|∥Ax∥22 − 1| > ϵ) < τ

by choosing τ = 1/m2 and by applying the union bound on the vectors (u − v)/∥u − v∥2 for all
vectors u and v in V . It is possible to demonstrate that there is a probability strictly greater than 0 that a
function f exists.

Our Corollary Now we can demonstrate that the following lemma holds:

Corollary .3. For any 0 < ϵ < 1 and any integer m. Let d be a positive integer such that

d ≥ 4(ϵ2/2− ϵ3/3)−1 lnm

Then given the standard basis E of Rm, there is a map f : Rm → Rd such that for all ei, ej ∈ E,

P (1− ϵ < ∥f(ei)∥22 < 1 + ϵ) > 1− τ = 1− 1/m2 (6)

and
P (|f(ei)f(ej)| < 2ϵ) > (1− τ)2 = (1− 1/m2)2 (7)

2The expression The set NOV (ε, θ) can potentially host ... stands for the more formal There is a probability strictly greater
than 0 that NOV (ε, θ) contains ...
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Proof. Equation (6) derives from lemma .2 as ei ∈ E are unitary, that is, ∥ei∥2 = 1 as τ = 1/m2.
To prove Equation (7), first, we can observe that ||ei−ej ||2 = ||ei||2+||ej ||2−2eiej = 2 as ei and ej are

unitary and orthogonal. Then, we can see that ||f(ei)− f(ej)||2 = ||f(ei)||2 + ||f(ej)||2 − 2f(ei)f(ej).
With Theorem .1, the following holds:

2(1− ϵ) ≤ ||f(ei)||2 + ||f(ej)||2 − 2f(ei)f(ej) ≤ 2(1 + ϵ)

Hence:

||f(ei)||2 + ||f(ej)||2 − 2− 2ϵ ≤ 2f(ei)f(ej) ≤ ||f(ei)||2 + ||f(ej)||2 − 2 + 2ϵ

Thus, using Equation (6) on the two independent events f(ei) and f(ej):

P (2− 2ϵ− 2− 2ϵ ≤ 2f(ei)f(ej) ≤ 2 + 2ϵ− 2 + 2ϵ) = P (|f(ei)f(ej | < 2ϵ) > (1− τ)2

Putting together Equation (6) and Equation (7), it is possible to derive a set NOV (ε, θ) of m nearly-
orthogonal unit vectors such that for each a,b ∈ NOV (ε, θ):

P (δ(a,b)− ε ≤ ⟨a,b⟩ ≤ δ(a,b) + ε) > 1− θ

by choosing ε = 2ϵ, a space Rd with d = O(ε−2 logm) and θ = 2/m2 − 1/m4.
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