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Abstract
Electrocardiogram (ECG) is the primary non-
invasive diagnostic tool for monitoring cardiac
conditions and is crucial in assisting clinicians.
Recent studies have concentrated on classify-
ing cardiac conditions using ECG data but have
overlooked ECG report generation, which is
time-consuming and requires clinical expertise.
To automate ECG report generation and ensure
its versatility, we propose the Multimodal ECG
Instruction Tuning (MEIT) framework, the
first attempt to tackle ECG report generation
with LLMs and multimodal instructions. To
facilitate future research, we establish a bench-
mark to evaluate MEIT with various LLMs
backbones across two large-scale ECG datasets.
Our approach uniquely aligns the representa-
tions of the ECG signal and the report, and
we conduct extensive experiments to bench-
mark MEIT with nine open-source LLMs us-
ing more than 800,000 ECG reports. MEIT’s
results underscore the superior performance
of instruction-tuned LLMs, showcasing their
proficiency in quality report generation, zero-
shot capabilities, resilience to signal perturba-
tion, and alignment with human expert evalu-
ation. These findings emphasize the efficacy
of MEIT and its potential for real-world clini-
cal application. Our code is released at https:
//github.com/AIoT-MLSys-Lab/MEIT.

1 Introduction

Electrocardiogram (ECG) is the primary tool for
heart disease diagnosis. In standard practice, cardi-
ologists examine these ECG recordings and manu-
ally generate detailed diagnostic reports, which is
a complex and time-consuming process. Recently,
AI models have been developed to streamline ECG
data analysis for the classification task (Hu et al.,
2023; Liu et al., 2023a, 2024), yet the automatic
generation of reports from ECG recordings remains
relatively underexplored.

Unlike image-based medical report generation
tasks (e.g., radiology reports), ECG report gener-

ation faces unique challenges due to the concise,
keyword-centric content of ECG reports, which
contrasts with the more extensive anatomical de-
scriptions in radiology. Directly transferring meth-
ods from radiology is hindered by the distinct na-
ture of ECG signals and the limited semantic over-
lap with imaging data. Furthermore, there is still a
lack of comprehensive benchmarks for evaluating
the performance of ECG report generation.

In this work, we introduce MEIT, a Multimodal
ECG Instruction Tuning framework that extends
the capability of large language models (LLMs)
for the task of ECG report generation. Drawing
on the versatility of LLMs and multimodal LLMs
(MLLMs) (Achiam et al., 2023; Touvron et al.,
2023b; Wan et al., 2023; Wang et al., 2024a; Zhu
et al., 2024b; Wang et al., 2024b; Zhang et al., 2025;
Zhu et al., 2025) in various language tasks, we de-
velop a specialized instruction tuning strategy for
ECG report generation. By aligning ECG record-
ings with human instructions, MEIT produces clin-
ically relevant reports and demonstrates zero-shot
performance when transferring across different con-
tinents and data collection devices. Concretely, we
construct a multimodal instruction dataset from
publicly available ECG recordings and propose an
efficient attention-based fusion method that incor-
porates ECG signals into the latent space of LLMs
without adding new parameters.

We also introduce a comprehensive benchmark
to evaluate ECG report generation across two large-
scale datasets (with 20K and 800K ECG-report
pairs), covering four tasks: (1) report generation
quality, (2) zero-shot transfer across datasets, (3)
robustness under signal perturbations, and (4) align-
ment with expert evaluation. We assess MEIT us-
ing ten open-source LLMs, demonstrating: (1) the
superior performance of MEIT in ECG report gen-
eration and effective ECG representation learning;
and (2) the strong transferability of instruction-
tuned LLMs across diverse clinical domains.
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In summary, our primary contribution is the
MEIT framework, a novel method for automated
ECG report generation and evaluation based on
LLMs. It features a lightweight, attention-based
fusion module for integrating ECG signals and text,
along with a newly designed four-task benchmark
for ECG report evaluation. Empirical results high-
light MEIT’s ability to generate high-quality re-
ports, perform robustly under data perturbations,
and align closely with expert assessments, thereby
paving the way for improved ECG interpretation
and broader innovations in embedding biomedical
signals into LLMs.

2 Related Work

Medical Report Generation. Our work is closely
related to medical report generation, which has
been extensively studied in the context of medi-
cal images. Existing methods can be grouped into
three main categories: (1) template-based methods,
such as HRGR (Li et al., 2018) and CMAS (Jing
et al., 2017); (2) data integration and coherence
methods, such as PPKED (Liu et al., 2021) and
CA (Ma et al., 2021); and (3) cross-modal align-
ment methods, exemplified by Chen et al. (2022)
and Qin and Song (2022). However, these meth-
ods are designed for medical images and struggle
with ECG signals due to their distinct temporal and
waveform characteristics.

Instruction Tuning. Our work is also related
to instruction tuning, which improves zero-shot
learning in LLMs through task-specific instruc-
tions (Zhang et al., 2023; Wang et al., 2023). Mod-
els like InstructGPT (Ouyang et al., 2022), FLAN-
PaLM (Chung et al., 2022), and Alpaca (Taori
et al., 2023) leverage instruction data, including
human feedback. Multimodal variants, such as
LLaVA (Liu et al., 2023c), MiniGPT-4 (Zhu et al.,
2023), and AnyMAL (Moon et al., 2023), extend
this to visual tasks. However, these methods focus
on natural images and are not directly applicable
to ECG signals. To bridge this gap, we introduce a
specialized instruction-tuning framework for ECG
report generation.

LLMs for ECG. Few studies have explored the use
of LLM for the analysis of ECG signals (Liu et al.,
2023b; Qiu et al., 2023; Yu et al., 2023). Some
of them (Liu et al., 2023b; Yu et al., 2023) con-
vert ECG signals into text features before import-
ing them into LLMs, bypassing crucial modality-
specific characteristics. In addition, these works

focus on the task of disease classification rather
than report generation. In contrast, our method di-
rectly processes ECG signals and focuses on the
task of report generation.

3 MEIT

3.1 Preliminaries

Electrocardiogram (ECG) measures the electrical
activity of an individual’s heart over time. An 12-
lead ECG recording is a multivariate time series.
It offers a multi-dimensional view, encompassing
both spatial and temporal aspects of cardiac func-
tion. The 12 ECG leads include six limb leads (i.e.,
I, II, III, aVR, aVL, and aVF) that monitor arms
and legs, providing frontal plane views, and six
precordial leads (i.e., V1, V2, V3, V4, V5, and V6)
that monitor chest, showing horizontal plane views.

Formally, let Xe ∈ RM×T denote an ECG
recording, where M represents the number of leads,
and T represents the signal length. Each ECG
recording is associated with an ECG report Xt

that describes and interprets the ECG recording.
Thus, we denote each ECG recording-report pair
as {Xe,Xt}.

3.2 Overview of MEIT

Figure 1 (a) illustrates the proposed MEIT frame-
work. First, in the data curation stage, we construct
the ECG instruction tuning data, which includes
instruction prompts, ECG recordings and the corre-
sponding ground truth ECG reports. Next, during
ECG instruction tuning, the instruction tuning data
is fed into the Report Generator, as shown in Fig-
ure 1 (b), for training using an autoregressive ap-
proach. During inference, the instruction prompts
and the ECG recordings are inputs to the Report
Generator to generate the ECG reports. In the fol-
lowing, we describe each component in detail.

3.3 Data Curation

Given an ECG recording Xe, our goal during in-
ference is to generate an ECG report using an in-
struction prompt such as “Given the ECG record-
ing, please help me generate a report for this ECG
recording:". To achieve this goal, we aim to create
a set of instruction tuning data to generate a re-
sponse X̂t that semantically aligns with the ground
truth Xt. Since we cannot predict the exact instruc-
tion prompt that users will use, we need to ensure
that our report generation process is robust enough
to handle different prompts. To do so, we man-
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Figure 1: (a) Overview of MEIT; (b) Illustration of the architecture of Report Generator.

ually design a small set of prompt samples, and
then utilize GPT-4 (Achiam et al., 2023) to gen-
erate a larger prompt set by rephrasing, as shown
in Figure 1 (a). For each ECG recording-report
pair as {Xe,Xt}, we randomly select one instruc-
tion prompt Xp from the larger prompt set and
create an instruction tuning template: <|user|>:
{Xp, Xe} <|assistant|>: {Xt} </s>, where
<|user|> and <|assistant|> are added special
tokens for tokenizer, and </s> is a stop sign for
each response. This approach ensures that the gen-
erated response conveys the same meaning as the
ground truth and remains adaptable to different
instruction prompts. Following this strategy, we
construct the ECG instruction tuning data using
the MIMIC-IV-ECG (Gow et al.) dataset and the
PTB-XL (Wagner et al., 2020) dataset. Some ex-
amples of ECG instruction tuning data are included
in Appendix A.8.

3.4 Report Generation
Figure 1 (b) illustrates the architecture of the Re-
port Generator. As shown, the Report Generator
utilizes an ECG encoder to encode Xe into ECG
embeddings and integrate them with the language
embeddings with modality alignment, and then au-
toregressively generates the ECG report. In the
remainder of this section, we describe the key com-
ponents of the Report Generator in detail.

ECG Encoder. Since the ECG recording is high
resolution in the temporal domain, it is vital to ef-

ficiently extract temporal features per lead before
interaction with semantic embeddings inside the
LLM backbone. Our default ECG encoder Fe(·)
consists of temporal convolution blocks to encode
the ECG recordings into embeddings. Specifically,
each temporal convolution block comprises sev-
eral 1-D convolution layers, batch normalization
layers, and ReLU activation layers, followed by av-
erage pooling. This design allows us to effectively
capture temporal dependencies and reduce the com-
plexity of the signal representations, ensuring that
the model can quickly learn important temporal
features efficiently. To further align the output
dimension with the head dimension of the LLM
backbone Fl(·), we employ a non-linear projection
layer Pe(·) to generate the ECG embeddings:

He = Pe (Fe (Xe)) , (1)

where He ∈ RDh , Dh has the same dimension
as the multi-head attention layers of LLMs. Note
that our default ECG encoder is lightweight and
is able to learn temporal patterns of ECG record-
ings without a long training period. More details
about our proposed ECG encoder are included in
Appendix A.3.

ECG Modality Alignment. We introduce an ECG
modality alignment strategy to guide the LLM in
aligning the ECG signal with the corresponding
textual outputs. As shown in Figure 1 (b), given the
ECG embeddings He, the modality alignment strat-
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egy incorporates He with the current hidden state
Hi

t generated from the previous (i− 1)th layer of
the LLM backbone Fl (·) for next-token prediction
task. Here Hi

t is defined as:

Hi
t = F i−1

l ([Xp,Xt]) , (2)

where i is the current layer index. Traditional gated-
attention fusion methods like Flamingo (Alayrac
et al., 2022), Memorizing Transformer (Wu et al.,
2022), G-MAP (Wan et al., 2022), and Q-former in
BLIP-2 (Li et al., 2023) require additional trainable
parameters and are designed for complex multi-
stage alignment of rich semantic information (e.g.,
images). Different from them, our method pro-
vides a lightweight concatenation-based alignment
strategy tailored to the embeddings of ECG signals,
enabling efficient learning of ECG semantic fea-
tures via directly injecting the ECG embeddings
with language context in the self-attention, while
preventing potential catastrophic forgetting of gen-
eral knowledge in LLMs. In our approach, each
attention layer combines He, generated from the
ECG encoder and projector as a prefix condition,
with Hi

t, derived from the preceding layer. The
fusion process is as follows:

Self-Attn
(
He,H

i
t

)
= [head1, . . . ,headk]Wo,

(3)
where k represents the number of attention heads,
and Wo, a matrix in RkDh×Dm , serves as the pro-
jection matrix with Dm denoting the hidden size
of the LLM backbone. We replicate He for each
head k times, merging the ECG and language fea-
tures in the sequence dimension. This is achieved
through a shared projection of keys and values for
each pattern. The fusion is then articulated as:

Km,j = [Ke,j ,Kt,j ]
⊤,Vm,j = [Ve,j ,Vt,j ], (4)

headj = Softmax

(
Qt,jKm,j√

Dh

)
Vm,j , (5)

where Qt,j = Hi
t,jWq,j , Ke,j = HeWk,j , and

Kt,j = Hi
t,jWk,j , with a similar notation for

Ve,j = HeWv,j and Vt,j = Hi
tWv,j . Con-

catenation is denoted by [·], and Km,j and Vm,j

symbolize the amalgamated features of query and
key. Wq,j , Wk,j , and Wv,j in RDh×Dh repre-
sent the projection matrices for query, key, and
value for each head j, respectively. Our model’s
design allows for the efficient fusion of two modal-
ities through causal attention, facilitating condi-
tional generation without the need for additional

parameter updates to align the ECG modality. Ab-
lation studies comparing with other fusion methods
demonstrate the effectiveness and efficiency of our
proposed lightweight alignment strategy. More
comparisons about ECG modality alignment and
other fusion approaches are included in Table 5.

3.5 Instruction Tuning
As described in Section 3.3, we have converted
ECG-text pairs into a chat-bot style instruction
format: <|user|>: {Xp, Xe}<|assistant|>:
{Xt}</s>. During instruction tuning, we compute
autoregressive loss only on tokens after response
tokens <assistant>, and use label loss masking
to finetune the model, where we mask all tokens
belonging to Xp and Xe. To save computational
resources and accelerate the convergence of in-
struction tuning, we use LoRA (Hu et al., 2021)
adapters for all linear layers of the LLM backbone
Fl and freeze its backbone. Subsequently, given a
sequence of ECG instruction data, we compute the
probability of the target response Xt as an autore-
gressive function:

p (Xt | Xp,Xe) =
L∏

i=j

pθ (xt,i | Xp,Xe,Xt,<i) ,

(6)
where j is the start index after <assistant>, θ is
the trainable parameters of LoRA and ECG encoder
Fe, Xt,<i is the response tokens before the current
generation xt,i.

4 ECG Report Generation Benchmark

4.1 Datasets
PTB-XL. The PTB-XL dataset (Wagner et al.,
2020) contains 21, 837 clinical 12-lead ECG
recordings, each sampled at 500Hz and lasting
10 seconds, collected from 18, 885 patients. Each
ECG recording has a corresponding report. We
divided this dataset into training, validation, and
test subsets at a 70%:10%:20% ratio, respectively.
The human experts double-check all samples in the
test subset to ensure data quality. As mentioned
in Section 3.3, we reformulate the dataset into the
instruction data format.
MIMIC-IV-ECG. We also use the MIMIC-IV-
ECG dataset (Gow et al.), which is the largest
publicly available 12-lead ECG dataset, compris-
ing 800,035 paired samples from 161,352 subjects.
Each sample includes a raw ECG signal and its
report, recorded at 500Hz for 10 seconds, similar
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to PTB-XL. The dataset is split into training, vali-
dation, and test sets at a 80%:10%:10% ratio. We
further restructure it into an ECG instruction data
template.

4.2 Models
We use nine LLMs based on the peft1 library,
which directly supports LoRA (Hu et al., 2021)
to construct the multimodal ECG report genera-
tion model described in Section 3.4. These mod-
els include GPT-Neo (Black et al., 2021), GPT-
NeoX (Black et al., 2022), GPT-J (Wang and
Komatsuzaki, 2021), BLOOM (Workshop et al.,
2022), OPT (Zhang et al., 2022), LLaMA-1 (Tou-
vron et al., 2023a), LLaMA-2-Instruct (Touvron
et al., 2023b), LLaMA-3-Instruct (Touvron et al.,
2023b), Mistral (Jiang et al., 2023), and Mistral-
Instruct2, along with two relatively small pre-
trained language models (GPT2-Medium and GPT-
Large (Radford et al., 2019)) as fundamental base-
lines.

4.3 Evaluation Metrics
We evaluate models using nine metrics: BLEU
1-4 (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE 1-2 and L (Lin,
2004), CIDEr-D (Vedantam et al., 2015), and
BERTScore (Zhang et al., 2019). BLEU and ME-
TEOR assess machine translation quality, focusing
on accuracy and fluency. ROUGE-L measures sen-
tence fluency and structure, while ROUGE-1 and
ROUGE-2 examine uni-gram and bi-gram overlaps.
CIDEr-D evaluates the relevance and uniqueness
of generated ECG reports against a candidate set,
and BERTScore assesses semantic similarity to the
ground truth, ensuring content accuracy.

4.4 Tasks
Quality of Generated Reports. This task aims
to assess report quality after ECG instruction tun-
ing using 10% of MIMIC-IV-ECG and PTB-XL
datasets as the test set. The evaluation examines
how closely generated reports match the original’s
structure and meaning, considering various instruc-
tions and ECG inputs. We analyze metrics like
BLEU-1 to 4, METEOR, ROUGE 1, 2, L, CIDEr-
D, and BERTScore.
Zero-shot Generalizability. To explore the gen-
eralizability of LLMs in domain transfer scenar-

1https://github.com/huggingface/peft
2https://huggingface.co/mistralai/Mistral-7B-Instruct-

v0.1

ios following ECG instruction tuning, we trained
the models on 70% of the instruction data from
MIMIC-IV-ECG. Following this, we evaluated the
models’ zero-shot capabilities on the PTB-XL test
set. It’s important to note that the PTB-XL and
MIMIC-IV-ECG datasets originate from different
continents—Europe and the United States, respec-
tively—utilizing varied devices and from distinct
hospitals, across different time periods. Therefore,
we consider these datasets to represent two sepa-
rate domains. This distinction allows us to use the
PTB-XL dataset to gauge our model’s performance
in zero-shot domain transfer effectively. We used
the metrics BLEU-4, METEOR, ROUGE-L, and
CIDEr-D because of limited space and calculated
their average for model evaluation.

Signal Perturbation Robustness. In real-world
clinical settings, ECG signals often contain some
degree of noise. To evaluate the robustness of
MEIT against such noisy interference, we selected
10% of the ECG samples from the MIMIC-IV-ECG
test dataset. We then added Gaussian noise to these
samples during the models’ instruction-based infer-
ence process. For this evaluation, we used BLEU-4,
METEOR, ROUGE-L, and CIDEr-D as metrics.

Evaluation of Alignment with Human Expert
Annotations. To evaluate the differences between
the reports generated by ECG-instructed LLMs and
human expert annotations, we established specific
evaluation criteria and utilized closed-source LLMs
to conduct a professional assessment of both the
generated reports and expert annotations.

5 Experiments and Analysis

5.1 Experimental Setup

In this section, we evaluate and benchmark ten
open-source decoder-only LLMs using the con-
structed ECG report generation benchmark. Ad-
ditionally, we offer a comprehensive analysis of
scalability and instruction tuning and present case
studies showcasing the generated reports. We also
show further analysis of MEIT in Appendix A.1.
Implementation Details. We utilized PyTorch
2.1, transformers (Wolf et al., 2020), and accel-
erated on A100 GPUs with LLMs from Hugging
Face (Wolf et al., 2019) ranging from 2.7 to 70
billion parameters. For larger models, we used
DeepSpeed3. The training covered 5 epochs on
MIMIC-IV-ECG and PTB-XL with a 2e-5 learning

3https://github.com/microsoft/DeepSpeed
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Table 1: Natural language generation metric on MIMIC-IV-ECG. For model size, ’M’ denotes the million level, and ’B’ denotes
the billion level. All checkpoints are downloaded from Hugging Face website. And all models have been fine-tuned using ECG
instructions. The light teal color indicates the second highest results, and heavy teal color indicates the highest results.

MODELS SIZE BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L ROUGE-1 ROUGE-2 CIDEr-D

GPT2-Medium 345M 0.576 0.527 0.456 0.425 0.551 0.523 0.544 0.512 3.70
GPT2-Large 774M 0.614 0.563 0.490 0.476 0.595 0.571 0.585 0.538 4.21

GPT-Neo 2.7B 0.631 0.579 0.534 0.489 0.727 0.689 0.715 0.592 4.81
GPT-NeoX 20B 0.645 0.588 0.539 0.523 0.719 0.701 0.712 0.622 4.92

GPT-J 6B 0.676 0.628 0.584 0.542 0.756 0.721 0.744 0.632 5.23
BLOOM 7B 0.669 0.624 0.591 0.550 0.758 0.725 0.745 0.639 5.19

OPT 6.7B 0.673 0.616 0.598 0.532 0.755 0.732 0.743 0.631 5.32
LLaMA-1 7B 0.685 0.648 0.615 0.543 0.761 0.724 0.742 0.642 5.26

Mistral 7B 0.697 0.659 0.611 0.571 0.763 0.740 0.765 0.658 5.48

LLaMA-2-Instruct 7B 0.706 0.662 0.622 0.581 0.775 0.745 0.768 0.664 5.55
Mistral-Instruct 7B 0.714 0.665 0.619 0.576 0.768 0.751 0.762 0.667 5.62

LLaMA-3-Instruct 8B 0.733 0.686 0.648 0.610 0.799 0.773 0.795 0.686 5.78

Table 2: Natural language generation metric on PTB-XL. The light teal color indicates the second highest results, and

heavy teal color indicates the highest results.

MODELS SIZE BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L ROUGE-1 ROUGE-2 CIDEr-D

GPT2-Medium 345M 0.329 0.278 0.254 0.232 0.441 0.391 0.561 0.433 2.12
GPT2-Large 774M 0.437 0.395 0.355 0.320 0.575 0.481 0.652 0.527 3.25

GPT-Neo 2.7B 0.474 0.449 0.398 0.373 0.602 0.486 0.674 0.595 3.70
GPT-NeoX 20B 0.469 0.453 0.417 0.399 0.620 0.553 0.688 0.622 3.58

GPT-J 6B 0.485 0.452 0.428 0.405 0.656 0.550 0.662 0.613 3.72
BLOOM 7B 0.491 0.462 0.427 0.415 0.665 0.580 0.678 0.605 3.80

OPT 6.7B 0.502 0.477 0.431 0.418 0.662 0.568 0.669 0.624 3.94
LLaMA-1 7B 0.514 0.485 0.465 0.430 0.678 0.588 0.682 0.613 3.97

Mistral 7B 0.486 0.475 0.446 0.421 0.673 0.591 0.697 0.634 3.98

LLaMA-2-Instruct 7B 0.515 0.484 0.469 0.439 0.675 0.594 0.698 0.624 4.05
Mistral-Instruct 7B 0.501 0.481 0.457 0.425 0.664 0.592 0.700 0.641 4.01

LLaMA-3-Instruct 8B 0.539 0.513 0.494 0.467 0.698 0.615 0.725 0.646 4.45

Table 3: Semantic similarity between the generated ECG
reports and ground truths is measured using BERTScore, de-
noted as P for Precision, R for Recall, and F-1 for the F-1
Score.

MIMIC-IV-ECG PTB-XL

MODELS P R F-1 P R F-1

GPT2-Medium 0.562 0.453 0.502 0.534 0.465 0.497
GPT2-Large 0.657 0.574 0.613 0.625 0.553 0.586

GPT-Neo 0.723 0.633 0.675 0.675 0.588 0.628
GPT-NeoX 0.719 0.638 0.676 0.654 0.579 0.614

GPT-J 0.725 0.655 0.688 0.689 0.622 0.654
BLOOM 0.734 0.684 0.708 0.701 0.645 0.672

OPT 0.713 0.667 0.689 0.712 0.648 0.678
LLaMA-1 0.752 0.697 0.723 0.725 0.657 0.689

Mistral 0.761 0.732 0.746 0.711 0.664 0.687

LLaMA-2-Instruct 0.764 0.725 0.744 0.721 0.668 0.693
Mistral-Instruct 0.773 0.722 0.747 0.730 0.661 0.694

LLaMA-3-Instruct 0.798 0.745 0.771 0.745 0.682 0.712

rate and 64 batch size, employing a linear optimizer
with a 0.03 warm-up ratio. For text preprocessing,
we initially remove all instances of the ‘nan’ string
and sentences that consist solely of numerical val-
ues. Subsequently, we discard any samples whose
reports contain fewer than 5 tokens. For, ECG en-

coder, we adopt random initialization. Additionally,
the default number of generated prompts from GPT-
4 is 256, more training, visualization details about
ECG instruction tuning are illustrated in Appendix
A.2, Section A.1, and Appendix A.4.

5.2 Quality Evaluation

Performance on MIMIC-I V-ECG. Table 3 and
1 present the results of various types of language
encoders Fl(·) on MIMIC-IV-ECG. The results
show that all LLMs perform better than smaller
language models (SLMs), such as GPT2-Medium
and GPT2-Large, across all evaluation metrics. No-
tably, from GPT-Neo to Mistral-Instruct, LLM-
based backbones achieve a significant margin over
SLMs in all metrics. For instance, compared to
GPT2-Large, the METEOR score increases in the
range of 0.132 to 0.18 from GPT-Neo to LLaMA-2,
and Mistral-Instruct outperforms GPT2-Large with
an improvement of 0.18 in the ROUGE-L score
and 0.134 in the F-1 of BERTScore. The observed
performance underscores the adeptness of LLMs
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Figure 2: Zero-shot performance on PTB-XL dataset. “IT”
denotes instruction tuning.

in generalizing from signal data, showcasing en-
hanced proficiency in aligning ECG signal repre-
sentations with corresponding textual information.
This highlights the significant potential of LLMs
in medical signal-to-text generation. Particularly,
LLaMA-2-Instruct, Mistral-Instruct, and LLaMA-
3-Instruct surpass their counterparts in most eval-
uative metrics, suggesting that models pre-tuned
with general instructions are more adept at learning
ECG-text alignment.

Performance on PTB-XL. As shown in Table 2,
the models exhibit reduced performance on PTB-
XL compared to MIMIC-IV-ECG, which is at-
tributable to the smaller scale of the instruc-
tion data in PTB-XL. This underscores the im-
portance of data scale in enhancing instruction-
based ECG report generation. Moreover, simi-
lar to the MIMIC-IV-ECG results, all LLM-based
models show significant improvement over SLMs.
Specifically, LLaMA-2 surpasses GPT2-Large by
0.134 in the BLEU-3 metric, while LLaMA-1
achieves a 0.103 improvement in the METEOR
score. The overall experimental results also re-
veal that Mistral-Instruct, LLaMA-2-Instruct, and
LLaMA-3-Instruct are consistently the top two per-
formers across most metrics because of their strong
general instruction-following capabilities.

5.3 Zero-shot Evaluation in Domain Transfer

Although both PTB-XL and MIMIC-IV-ECG
datasets are time-series data, they differ signifi-
cantly in several aspects, including population (Eu-
ropean vs. American), diverse collection devices,
continents (Europe vs. US), protocols, and hospi-
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Figure 3: Signal perturbation robustness analysis on various
LLMs.

tals. These differences introduce substantial medi-
cal domain gaps (Bilheimer and Klein, 2010; Ross
et al., 2020). In Figure 2, we present the evalua-
tion of the zero-shot learning capabilities of var-
ious LLMs, which is trained on the MIMIC-IV-
ECG dataset and then tested on PTB-XL (unseen
dataset). The assessed models include BLOOM,
OPT, LLaMA-1, and Mistral. Firstly, all selected
LLMs undergo instruction tuning on the MIMIC-
IV-ECG train set, followed by zero-shot testing on
the PTB-XL test set verified by human experts, de-
noted as ZERO-SHOT IT. We also measure the per-
formance of each model in report generation with-
out prior ECG-specific instruction tuning, denoted
as ZERO-SHOT W/O IT. PTB-XL IT represents
training on the PTB-XL train set and then evaluated
on the PTB-XL test set. Notably, although ZERO-
SHOT IT shows a slight degradation compared to
PTB-XL IT, the results still indicate a variance
in the model’s ability to generalize to an unseen
dataset with instruction tuning (IT), compared to
ZERO-SHOT W/O IT. The involvement of ECG
instruction tuning on MIMIC-IV-ECG enables the
models to achieve superior zero-shot performance
on the unseen PTB-XL dataset, indicating the ne-
cessity of instruction tuning in enhancing the mod-
els’ zero-shot ability on unseen datasets in ECG
report generation.

5.4 Robust Analysis with Perturbed ECG
Recordings

In a noise stress evaluation (Wang et al., 2019), we
added Gaussian noise to ECG signals at signal-to-
noise ratios (SNRs) of 0.05, 0.1, 0.15, and 0.2 dur-
ing testing to assess model robustness. Our experi-
ments utilized four LLM architectures: BLOOM,
OPT, LLaMA-1, and Mistral, each trained on clean
ECG signals from the MIMIC-IV-ECG training set
and tested on corresponding noise-added signals
from its test set. The results, illustrated in Figure 3,
show a performance decline in all LLMs as SNR
decreased, highlighting the significant interference
of ECG noise. Furthermore, as shown in Table 1,
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Table 4: Evaluation results of LLaMA-2-Instruct and LLaMA-3-Instruct against human expert-annotated ground-truth reports.
Each dimension is scored on a scale of 1 to 5.

Model Medical Terminology Accuracy Logical Consistency Completeness Diagnostic Accuracy

LLaMA-2-Instruct 4.25 4.11 3.72 3.60

LLaMA-3-Instruct 4.52 4.38 4.01 3.98

Mistral also excelled in tests on noise-free datasets,
suggesting a synergistic effect between clean and
noisy test sets. The results demonstrate Mistral’s
strong resistance to perturbations. Even with more
severe noise, it maintained robustness regarding
ROUGE-L and METEOR metrics. Developing an
even more robust framework is a goal for future
research.

5.5 Evaluation of Alignment with Human
Expert Annotations

We conducted an evaluation of model-generated
ECG reports from ECG instruction-tuned versions
of LLaMA-2 and LLaMA-3 against 500 ground-
truth reports, meticulously annotated by human
medical experts. These test annotated data were
randomly sampled from the PTB-XL dataset, with
all selected reports carefully reviewed and vali-
dated by human experts. Each model-generated re-
port was compared with these expert-annotated re-
ports using gpt-4o4, which assessed quality across
four dimensions: Medical Terminology Accuracy,
Logical Consistency, Completeness, and Diag-
nostic Accuracy, on a scale of 1 to 5. To evaluate
these reports, we employed the following prompt
template, which guided GPT-4o’s scoring process
across the defined dimensions, as shown in Table 6
in Appendix. This prompt template ensures that
GPT-4o evaluates the reports in a structured and
consistent manner, highlighting both strengths and
weaknesses of the model-generated reports in com-
parison to human expert annotations. The results
indicate that the LLaMA-3 model, with an aver-
age Diagnostic Accuracy score of 3.85, closely
matches the quality of the human expert annota-
tions, whereas the LLaMA-2 model scored 3.60.
This evaluation underscores the effectiveness of
using human expert annotations from the PTB-
XL (Wagner et al., 2020) dataset as a rigorous
benchmark for assessing the models’ ability to gen-
erate clinically reliable ECG reports.

4https://platform.openai.com/docs/models/gpt-4o

6 Conclusion

In this paper, we introduced MEIT, a new frame-
work for generating instruction-following data
to train a multimodal LLM that can produce
ECG reports based on human instructions. We
also proposed an effective method for aligning
ECG and report representations across various
open-source LLMs, demonstrating strong perfor-
mance on both the MIMIC-IV-ECG and PTB-XL
datasets across multiple tasks. Additionally, we
established a comprehensive benchmark for ECG
instruction-following in report generation, provid-
ing a standardized evaluation for future research.
Although this work primarily focuses on ECG sig-
nals, it serves as a foundational step in applying
instruction-tuning to biomedical signals. For fu-
ture research, we aim to extend our framework and
benchmark to other medical domains, such as EEG,
with the hope of driving further progress in devel-
oping more capable medical-signal LLMs.

7 Limitations

Our MEIT framework first attempts to address au-
tomatic ECG report generation through ECG in-
struction tuning, establishing the first comprehen-
sive benchmark for this process with mainstream
LLMs. In this work, we mainly focus on generat-
ing reports from multimodal ECG instructions us-
ing LLMs. However, the generated results are not
fully explainable or controllable, even though the
generation procedure is transparent and trackable.
This is because the underlying theory of LLMs
remains largely unexplored, necessitating further
investigation to ensure the quality and safety of the
generated content. In the future, we aim to enable
LLMs to utilize external, expert-verified knowl-
edge databases, such as clinical protocols and med-
ical textbooks, to enhance the explainability of the
generated ECG reports.
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A Appendix.

A.1 Further Analysis of MEIT

Instruction Tuning Visualization. Figure 4 com-
pares the convergence curves of the instruction tun-
ing loss and the METEOR score between GPT-Neo
(2.7B), BLOOM (7B), OPT (6.7B), and LLaMA-2
(7B) on the MIMIC-IV-ECG train and validation
datasets. We observe that larger models with more
parameters can converge to a more minor loss and
achieve higher performance on the METEOR score.
Notably, an increase in model size correlates with
higher performance and lower loss, suggesting that
larger models have the potential for better perfor-
mance.
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Figure 4: Visualizations of instruction tuning loss and ME-
TEOR score.

Analysis of ECG Modality Alignment. To study
the effectiveness of our proposed concatenated-
fusion method for ECG modality alignment, we
compare it with other fusion approaches such
as direct input in LLaVA (Liu et al., 2023c)
and additional trainable cross-attention layer in
Flamingo (Alayrac et al., 2022). For straightfor-
ward input, we follow the design of LLaVA by di-
rectly concatenating the ECG encoder’s output em-
beddings with the sentence’s embeddings before in-
putting them into the LLM backbones. For the sec-
ond comparison method, we follow Flamingo by
adding a trainable cross-attention layer within the
attention block. From Table 5, we observe that the
Concatenated-fusion method outperforms the train-
able cross-attention method of Flamingo in most
metrics and is consistently superior to the Straight-
forward input method of LLaVA. Consequently,
the concatenated fusion is more effective for the
LLM backbone’s alignment with fine-grained ECG
patterns without necessitating additional trainable
parameters.
Scalability Analysis. To investigate whether ECG
instruction tuning on larger-scale models yields
better results, we validated LLaMA-2 models of
7B, 13B, and 70B parameter sizes on both MIMIC-
IV-ECG and PTB-XL datasets. As depicted in
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Figure 5: Model scaling performance on MIMIC-IV-ECG
and PTB-XL.

Figure 5, an upward trend in all evaluation metrics
is observed with a gradual increase in model size.

However, it is noteworthy that the gains in per-
formance associated with increasing model size are
not particularly significant. For example, the F-1
score for the 70B model on the PTB-XL dataset
exhibits a marginal increase of 0.02 over the 13B
model. Similarly, on the MIMIC-IV-ECG dataset,
the 70B model’s F-1 score is only 0.01 higher than
that of the 13B model. Therefore, we conjecture
that enhancing both data scale and model size con-
currently is necessary to achieve superior perfor-
mance (Wei et al., 2022).

Ablation Study on ECG Instruction Tuning. We
conducted an ablation study to evaluate instruc-
tion tuning’s impact on aligning ECG signals with
report representations. Utilizing LLMs such as
BLOOM, OPT, LLaMA-1, and Mistral without in-
struction tuning, we allowed direct learning from
ECG signals. The findings, illustrated in Figure 6,
indicate a significant performance drop across all
metrics without instruction tuning, particularly in
Mistral. This underscores instruction tuning’s supe-
riority in enhancing LLMs’ generalization to new
tasks/data over direct fine-tuning (Ouyang et al.,
2022).

Qualitative Results. In Figure 7, we randomly
select two samples generated by MEIT using
LLaMA-2 and Mistral-Instruct as the LLM back-
bones. The consistent key information, highlighted
in blue, indicates that both models have success-
fully learned important patterns from the ECG sig-
nals. Overall, the models’ results align with the
ground truth, accurately identifying cardiac abnor-
malities from the ECG signals. Furthermore, both
models provide detailed explanations of abnormal
ECG signal details, such as ‘ischemia’ from sample
1 and ‘right bundle branch block’ from sample 2.
These generated reports demonstrate the efficacy
of our method.
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Table 5: Performance comparison of the proposed concatenated-fusion method and other mainstream fusion variants. We
evaluate these methods on the MIMIC-IV-ECG dataset, using BLEU-4, METEOR, ROUGE-L, and CIDEr-D metrics. We take
LLaMA-1 7B as the LLM backbone here. heavy teal color indicates the highest results.

FRAMEWORK METHOD BLEU-4 METEOR ROUGE-L CIDEr-D

LLaVA Straightforward input 0.529 0.737 0.712 4.99
Flamingo Trainable cross-attention 0.527 0.768 0.715 5.11

MEIT Concatenated-fusion 0.543 0.761 0.724 5.26
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Figure 6: Ablation Study of ECG Instruction Tuning on MIMIC-IV-ECG Dataset.

Generated Report: sinus rhythm with 1st degree a-v block. left axis 
deviation. left ventricular hypertrophy. inferior/lateral st-t changes may be 
due to hypertrophy and/or ischemia. abnormal ecg.

Ground Truth:sinus rhythm with 1st degree a-v block. left axis deviation. 
probable normal variant. inferior/lateral st-t changes may be due to 
myocardial ischemia. abnormal ecg.

LLaMA-2
[ECG signal sample 1]

Generated Report:sinus rhythm. right bundle branch block. abnormal ecg.

Ground Truth:sinus rhythm. indeterminate axis. right bundle branch 
block. abnormal ecg.

Mistral-Instruct
[ECG signal sample 2]

Pretraining Set

Pretrained LLM

Word Embedding Layer

<s>

</s>

Auto-regressive

Figure 7: Examples of ECG reports generated by LLaMA-2
and Mistral-Instruct. We highlight the consistent information
between the generated reports and the ground truths with blue
color.

A.2 Hyper-parameters of ECG Instruction
Tuning

In this study, we implement the Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021) technique for efficient
fine-tuning, specifically applied to ECG instruction
tuning. As detailed in Table 7 provided, we uti-
lize mixed precision at bf16 for enhanced computa-
tional efficiency. Our models undergo instruction
tuning over 5 epochs, with LoRA parameters set
at an alpha of 64 and a rank of 128, accompanied
by a dropout rate of 0.1. The total batch size is
64, with a gradient accumulation factor of 2. The
maximum sequence length is constrained to 256
tokens. Additionally, we adopt a learning rate with
2e-5 for GPT-NeoX and 1e-4 for the other models,
optimized using the AdamW algorithm. The learn-
ing rate follows a linear schedule with a warm-up
ratio of 0.03. We set the weight decay to 0.0.

Moreover, as shown in Table 8, we detail the
ECG embedding dimensions for various language
models, highlighting their approach to ECG data
encoding. GPT2-Medium and GPT2-Large feature
ECG dimensions 64, while GPT-Neo, BLOOM,
OPT, LLaMA-1, Mistral, LLaMA-2, and Mistral-
Instruct use a dimension of 128. GPT-NeoX em-
ploys a dimension of 96, and GPT-J notably uses
the largest dimension of 256. These dimensions,
reflecting each model’s head dimension design, il-
lustrate diverse strategies in ECG data processing
across different models.

A.3 More Details of ECG Encoder
Projection Layer For the design of the projection
layer within the ECG encoder, we adopt a non-
linear approach similar to CLIP (Radford et al.,
2021) and Med-UniC (Wan et al., 2024). Specifi-
cally, in our experiments, we employ two consecu-
tive linear layers, each followed by BatchNorm1d5.
Besides, ReLU serves as the activation function
between the two linear layers. The default settings
for input and hidden layers dimensions are set to
2048 in our experiment.
Parameter Size Analysis To demonstrate the ECG
encoder’s lightweight design, we analyzed its train-
able parameters during instruction tuning and total
parameters during inference, using the LLaMA-1
7B model for illustration (Table 10). The analysis
reveals the ECG encoder’s trainable parameters are
substantially fewer than those of the LoRA adapter
in the LLM backbone during instruction tuning,
and its parameter share of the overall framework is

5https://pytorch.org/docs/torch.nn.BatchNorm1d.html
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Table 6: Prompt template used for GPT-4o evaluation. This prompt guided the model’s evaluation of generated ECG reports.

Prompt Template for GPT-4o Evaluation

You are an expert in Electrocardiogram (ECG) text evaluation. Your task is to assess the quality of
a generated ECG report by comparing it to a real, expert-annotated ECG report.
Generated ECG Report: {Generated_Report}
Real ECG Report: {Real_Report}
Please evaluate the generated report based on the following criteria:

1. Medical Terminology Accuracy: Does the generated report use correct and appropriate ECG
signal terms?
2. Logical Consistency: Is the information presented in a logical and medically sound order?
3. Completeness: Does the report include all necessary details that would be present in a real ECG
report, such as heart rhythm, rate, and any abnormalities?
4. Diagnostic Accuracy: Are the diagnoses and interpretations in the generated report accurate
and consistent with the expert-annotated report?
Please provide a detailed analysis and score each criterion on a scale of 1 to 5 (1 = Poor, 5 =
Expert-Level).

Table 7: Hyper-parameters of ECG instruction tuning for
all LLM backbones.

Hyperparameters

Mixed precision bf16
Instruction tuning epochs 5
LoRA alpha 64
LoRA rank 128
LoRA dropout 0.1
Total batch size 64
Gradient accumulation 2
Maximum sequence length 256
Learning rate 2e-5, 1e-4
Learning rate Optimizer AdamW
Schedule linear
Warm-up ratio 0.03
Weight decay 0.0

Table 8: ECG dimension of different language models.

MODELS ECG Dimension

GPT2-Medium 64
GPT2-Large 64
GPT-Neo 128
GPT-NeoX 96
GPT-J 256
BLOOM 128
OPT 128
LLaMA-1 128
Mistral 128
LLaMA-2 128
Mistral-Instruct 128

minimal for inference, underscoring its efficiency.

Ablation Study of ECG Encoder we conducted
additional experiments comparing our default 1-D
Temporal Convolution ECG encoder with alterna-
tive architectures, including: 1. S4-based Model:
Vim-B (Vision Mamba, 98M parameters) (Zhu
et al., 2024a). 2. Transformer-based Model: ViT-
B/16 (Vision Transformer, 86M parameters) (Doso-
vitskiy et al., 2020), adapted for 1-D token patching
to align with the temporal nature of ECG signals. 3.
SSL-Transformer Model: ViT-B/75 initialized with
self-supervised learning (SSL) weights specific to
ECG signals (Na et al., 2024). We evaluated these
models on two tasks: Quality of Generated Reports
using the MIMIC-IV-ECG dataset, and Evaluation
of Alignment with Human Expert Annotations us-
ing the PTB-XL dataset. For fair comparison, we
used Meta-Llama-3-8B-Instruct as the LLM back-

bone due to its consistent strong performance.

The results, summarized in the table below, show
that our 1-D Temporal Convolution ECG encoder,
despite having significantly fewer parameters, per-
forms comparably or better across most metrics
compared to ViT and ViT-SSL, and comprehen-
sively outperforms the S4-based Vim. Notably, the
ViT-SSL encoder demonstrates the benefit of self-
supervised pretraining for initial ECG representa-
tion learning. However, our default ECG encoder
effectively captures the 12-channel ECG tempo-
ral patterns while remaining lightweight, making
it well-suited for our efficient instruction tuning
framework. These findings validate the effective-
ness of our 1-D Temporal Conv encoder and also
provide valuable insights for future work, including
designing more complex ViT-based architectures
optimized for ECG time-series data.
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Table 9: Comparisons of results with and without supervised manner. We take LLaMA-2-Instruct as the LLM
backbone here. heavy teal color indicates the highest results.

METHODS SIZE MIMC-IV-ECG PTB-XL

BLEU-4 METEOR ROUGE-L CIDEr-D MTA MTA LC DA

Vision Mamba 86M 0.548 0.737 0.715 5.58 3.78 3.88 3.61 3.50
Vision Transformer 98M 0.592 0.815 0.772 5.67 4.33 4.15 4.12 3.78

Vision Transformer (SSL) 98M 0.581 0.822 0.766 5.75 4.42 4.28 3.85 3.85
1-D Temporal Conv (Ours) 20.4M 0.610 0.799 0.773 5.78 4.52 4.38 4.01 3.98

Table 10: Parameter Comparison of ECG encoder and LLM backbone. We use LLaMA-1 7B as an example.

MODULE Trainable Params Inference Params

LLM backbone 159M 6.90B
ECG encoder 20.4M 20.4M

A.4 Further Analysis of Generated Prompts

Prompts Number Analysis In the ECG instruc-
tion data curation, we manually created 32 prompt
examples, as illustrated in Section 3.3. To increase
the diversity of our samples, we employed GPT-4
to rephrase these manually designed prompts, gen-
erating a larger pool of prompt examples. These
generated examples were randomly sampled and
paired with ECG-text pairs to compile the ECG
instruction dataset. In this section, We compare
the experiment’s effects using 128, 256, and 512-
generated samples, respectively. Table 11 shows
the corresponding results with different dimensions.
When the number is 256, it can achieve better re-
sults in most experimental settings. Hence, we take
256 generated samples as our default setting during
the instruction tuning and inference.
Ablation Study on GPT-4 Prompt Rephrasing
We also conducted an ablation study to compare
the performance with and without GPT-4 rephras-
ing prompts, using a fixed prompt for the latter.
The results in the following Table 12 indicate that
using diverse prompts rephrased by GPT-4 leads to
better performance, highlighting the superiority of
instruction tuning in enhancing LLMs’ generaliza-
tion to new tasks and data over direct fine-tuning.

A.5 Comparison with Encoder-Decoder
Models

In this section, we conducted additional compar-
ative experiments using two open-source tradi-
tional encoder-decoder architectures: BART-Large
(406M parameters) (Lewis, 2019) and T5-Large
(780M parameters) (Raffel et al., 2020), as shown

in Table 13. In adapting our framework for ECG in-
struction tuning, we employ the language encoder
to process the input instruction, an ECG encoder
to handle the input ECG signals, and the language
decoder to generate the ECG report based on the
output from both language end ECG encoder.

Our findings indicate that the performance of
encoder-decoder models is comparable to the small
pre-trained language models (GPT2-Medium and
GPT-Large) presented in Table 1 and Table 2 of
our paper. Moreover, LLM-based backbones (such
as LLaMA1-2) consistently achieve a significant
margin of improvement over the encoder-decoder
architectures across all metrics.

A.6 Analysis of Combining MEIT with a
Supervised Manner

In this section, we conduct a new experiment where
we trained a CNN (ECG encoder) in a supervised
manner on the PTB-XL training set, utilizing all
available annotations (approximately 70 patterns),
as shown in Table 14. We then transferred the
CNN for ECG instruction fine-tuning on both the
MIMIC-IV-ECG and PTB-XL datasets. Our find-
ings indicate that performance increased on the
PTB-XL dataset in most metrics, likely due to the
model’s prior learning of specific annotated pat-
terns. However, performance fluctuated on the
MIMIC-IV-ECG dataset, which contains more data
and exhibits greater diversity. This suggests that
the supervised approach may enhance performance
on in-domain data, but it limits generalizability to
data from unseen domains.

A.7 Computational Cost Analysis of MEIT
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Table 11: Performance comparison of different numbers of generated prompt samples. We evaluate them on the
MIMIC-IV-ECG dataset, using BLEU-4, METEOR, ROUGE-L, and CIDEr-D metrics. We take LLaMA-1 7B as
the LLM backbone here. heavy teal color indicates the highest results.

PROMPT NUMS BLEU-4 METEOR ROUGE-L CIDEr-D

128 0.541 0.756 0.718 5.15
256 0.543 0.761 0.724 5.26
512 0.538 0.754 0.732 5.03

Table 12: Performance comparison of with and without GPT-4 prompt rephrasing. We take Mistral-Instruct as the
LLM backbone here. heavy teal color indicates the highest results.

PROMPT NUMS BLEU-4 METEOR ROUGE-L CIDEr-D

w.o. Rephrasing 0.564 0.745 0.738 5.50
w. Rephrasing (Ours) 0.576 0.768 0.751 5.62

The time cost experiment, detailed in the Table 15,
was conducted on the MIMIC-IV-ECG dataset. We
found that larger models have longer training and
inference times. Thus, we are considering tech-
niques like quantization and other compression
methods to improve model efficiency in future
work.

A.8 Examples of ECG Instruction Tuning
Data and the Corresponding Generated
ECG Reports

As illustrated in Figures 8, 9, and 10 we have visu-
alized the report samples generated by LLaMA-1,
LLaMA-2, and Mistral-Instruct. The samples are
presented in blue font to highlight the key informa-
tion that aligns with the ground truth. The visual-
ization demonstrates that all three selected models
can capture the essential patterns of ECG signals
and generate accurate reports. This underscores
the efficacy of our proposed MEIT framework,
which is adaptable to most open-source LLMs. It
effectively learns the correct clinical semantics of
ECG signals, thereby enabling the generation of
corresponding reports.
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Table 13: Comparison with encoder-decoder-based models on MIMIC-IV-ECG. For model size, ’M’ denotes the
million level, and ’B’ denotes the billion level. The light teal color indicates the second highest results, and

heavy teal color indicates the highest results.

MODELS SIZE BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L ROUGE-1 ROUGE-2 CIDEr-D

BART-Large 406M 0.525 0.498 0.466 0.388 0.455 0.472 0.5124 0.451 3.15
T5-Large 780M 0.595 0.542 0.465 0.422 0.498 0.456 0.522 0.438 4.08

LLaMA-1 7B 0.685 0.648 0.615 0.543 0.761 0.724 0.742 0.642 5.26

LLaMA-2-Instruct 7B 0.706 0.662 0.622 0.581 0.775 0.745 0.768 0.664 5.55

Table 14: Comparisons of results with and without supervised manner. We take LLaMA-2-Instruct as the LLM
backbone here. heavy teal color indicates the highest results.

METHODS PTB-XL

BLEU-4 METEOR ROUGE-L CIDEr-D

MEIT 0.439 0.675 0.594 4.05
MEIT + Supervised manner 0.445 0.664 0.612 4.12

MIMIC-IV-ECG

BLEU-4 METEOR ROUGE-L CIDEr-D

MEIT 0.581 0.775 0.745 5.55
MEIT + Supervised manner 0.578 0.778 0.739 5.47

Table 15: Computational time Analysis of MEIT with various parameters and backbones.

MODEL SIZE Training time Testing time

4 A100 and 3 Epochs 1 A100 and 128 Generated Samples

GPT-2 Large 774M 3.25h 3.125min
LLaMA-2-Instruct 7B 13.5h 9 min

LLaMA-2-Instruct (+) 13B 27h 14.125 min

Generated Report: <|assistant|>: atrial fibrillation. extensive st-t changes 
may be due to myocardial ischemia. abnormal ecg.</s>

Ground Truth: <|assistant|>: atrial fibrillation. possible inferior infarct - 
age undetermined. possible anteroseptal infarct - age undetermined. lateral 
st-t changes may be due to myocardial ischemia. abnormal ecg.</s>

Instruction: <|user|>: Please provide me with a detailed interpretation of 
the ECG signal, based on the provided data.  

LLaMA-1

Figure 8: Reports generated by LLaMA-1 following ECG instruction Tuning.
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LLaMA-2

Generated Report: <|assistant|>: sinus rhythm with 1st degree a-v block. 
left axis deviation. left ventricular hypertrophy. inferior/lateral st-t 
changes may be due to hypertrophy and/or ischemia. abnormal ecg. </s>

Ground Truth: <|assistant|>: sinus rhythm with 1st degree a-v block. left 
axis deviation. probable normal variant. inferior/lateral st-t changes may 
be due to myocardial ischemia. abnormal ecg. </s>

Instruction: <|user|>: Given the ECG signal embeddings, please help me 
generate an accurate description for this ECG signal embeddings:   

Figure 9: Reports generated by LLaMA-2 following ECG instruction Tuning.

Generated Report: <|assistant|>: sinus rhythm. right bundle branch block. 
abnormal ecg.</s>

Ground Truth: <|assistant|>: sinus rhythm. indeterminate axis. right 
bundle branch block. abnormal ecg. </s>

Instruction: <|user|>: Please assist me in creating a precise description 
for the ECG signal:

Mistral-Instruct

Figure 10: Reports generated by Mistral-Instruct following ECG instruction Tuning.
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