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Abstract

Detecting AI-generated text is a difficult prob-
lem to begin with; detecting AI-generated text
on social media is made even more difficult due
to the short text length and informal, idiosyn-
cratic language of the internet. It is nonethe-
less important to tackle this problem, as so-
cial media represents a significant attack vector
in online influence campaigns, which may be
bolstered through the use of mass-produced AI-
generated posts supporting (or opposing) partic-
ular policies, decisions, or events. We approach
this problem with the mindset and resources
of a reasonably sophisticated threat actor, and
create a dataset of 505,159 AI-generated so-
cial media posts from a combination of open-
source, closed-source, and fine-tuned LLMs,
covering 11 different controversial topics. We
show that while the posts can be detected under
typical “research” assumptions about knowl-
edge of and access to the generating models,
under the more realistic assumption that an at-
tacker will not release their fine-tuned model
to the public, detectability drops dramatically.
This result is confirmed with a human study.
Ablation experiments highlight the vulnerabil-
ity of various detection algorithms to fine-tuned
LLMs. This result has implications across all
detection domains, since fine-tuning is a gener-
ally applicable and realistic LLM use case.

1 Introduction

Large language models (LLMs) are able to produce
increasingly complex and fluent output, creating
an information environment where humans can no
longer reliably distinguish between text that was
written by other humans, and that which was gen-
erated by LLMs. This increases our vulnerability
to various tactics of opinion manipulation, particu-
larly in online spaces such as social media. These
tactics include disinformation and misinformation
campaigns, as well as astroturfing and “flooding the
zone” attacks. While growing research effort has

focused generally on the development of methods
for detecting AI-generated text (AIGT), very little
work has focused on the pressing question of AIGT
detection in the social media domain. Furthermore,
much of the research has relied on assumptions that
are highly unlikely to hold in real-world contexts,
such as the assumption that the defender has knowl-
edge of (or even access to) the LLM that was used
to generate the text they are trying to detect.

In the current work, we are particularly moti-
vated by the concept of astroturfing, or the artifi-
cial creation of an impression of widespread sup-
port for (or opposition to) a product, policy, or
concept (Chan, 2024). By flooding the informa-
tion space with posts advocating a particular stance
on some issue, AI can be used to influence and
change people’s beliefs by exploiting their natural
tendency toward “crowd mentality” and desire for
social acceptance. Crucially, astroturfing is distinct
from disinformation, in that the sentiment being
expressed is not necessarily false. This means that
traditional methods of disinformation detection are
not effective against such an attack. Rather, the de-
ception involved in astroturfing is the inauthenticity
of the apparent crowd (Chan, 2024). Therefore, the
ability to detect whether a social media post on
some topic originates from a real human or from
AI becomes an important signal for authenticity
determination.

Our work attempts to make realistic assumptions
about the motivations and resources available to
both attackers (those spreading the AIGT) and de-
fenders (those detecting the AIGT) in this scenario.
In contrast to previous work, which sampled so-
cial media posts on a broad variety of everyday
topics (Macko et al., 2024), we assume that both
attackers and defenders will be more motivated to
participate in/monitor online discussions on con-
troversial or political topics. We assume that the
attacker will have a particular stance they want to
communicate on a given topic, rather than simply
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summarizing or paraphrasing existing posts. We
also assume they will take reasonable, low-cost
steps to produce realistic text (such as fine-tuning
the model to mimic the intended social media style),
and that they will not release any fine-tuned models
for the defender to access. While it is reasonable
to assume that an actor will attempt to mimic the
intended distribution through fine-tuning, we do
not make any further assumptions that the attacker
is actively trying to evade detection, which may
require more sophisticated knowledge of modern
detection schemes.

Therefore, we examine four related research
questions:

• RQ1: Can today’s LLMs produce realistic
social media style text? We explore prompt-
ing base models as well as models fine-tuned
on human-written texts, and conduct linguis-
tic analysis to compare the generated text with
human text. We find that the output from fine-
tuned models is more similar to human text than
from the base models (Section 4.1).

• RQ2: Assuming a more realistic attack sce-
nario, do different generation strategies re-
sult in AIGT that is intrinsically harder to de-
tect? We generate text using different prompt-
ing conditions, with four base models and four
fine-tuned models, and compare the classifi-
cation accuracies of eight detection methods
using idealized in-domain train-test classifica-
tion methodology. We find that a supervised
RoBERTa-based classifier can detect AIGT
from the base models with up to 99% accuracy,
but this figure drops significantly for AIGT
from the fine-tuned models (Section 4.2.1).

• RQ3: Assuming a more realistic defense sce-
nario, are detection methods still robust if
they cannot access the generating model?
Many research studies assume at least black-
box access to the generating model. Relax-
ing this assumption, we find that the fine-tuned
models are particularly hard to detect using off-
the-shelf methods (Section 4.2.2). Ablation
studies reveal that access to closely related fine-
tuned models is not a viable strategy using the
tested detectors (Sections 4.2.3, 4.2.4).

• RQ4: Can human readers detect AI-
generated texts? In particular, we address the
potential concern that fine-tuned models might
generate text that automated methods cannot
easily detect, but that human annotators can.

We run a human study with 250 participants
and find that texts from fine-tuned models are
essentially undetectable to human readers (54%
detection accuracy) (Section 4.3).

In addition to these research contributions, we
also make our dataset of 505,159 English-language
AI-generated texts available to other researchers.

2 Background

Here, we briefly summarize the state-of-the-art
NLP approaches to detecting AIGT, along with
their strengths and weaknesses; more in-depth
background is available in recent survey papers
(Crothers et al., 2023; Ghosal et al., 2023; Uchendu
et al., 2023; Yang et al., 2023; Fraser et al., 2025;
Tang et al., 2024; Wu et al., 2025).

One category of detection methods is metric-
based approaches that rely on detecting the statis-
tical regularities of AIGT resulting from the gen-
eration process. These include measures of the
log-likelihood or rank of each token, with respect
to the model’s probability distribution over tokens
at each step, or measures of the overall entropy or
perplexity of the text (Gehrmann et al., 2019; Su
et al., 2023). The DetectGPT algorithm (Mitchell
et al., 2023) extends these ideas to estimate the
local curvature of the model’s log probability func-
tion, laying the groundwork for Fast-DetectGPT
(Bao et al., 2024). These are all so-called “zero-
shot” methods that do not require training data (al-
though in practice, some in-domain data is needed
to calibrate the decision threshold). They also rely
on information about the probability distribution
of the generating model, which ideally is obtained
through white-box access to that model.

Other methods use probability values from open-
source LLMs as proxies for the unknown true prob-
ability distribution of the generating model (Li
et al., 2023; Wang et al., 2023; Verma et al., 2024).
The Binoculars method (Hans et al., 2024) com-
bines the benefits of black-box detection and “zero-
shot” classification by measuring cross-entropy be-
tween two open-source models as a single feature
to distinguish AIGT from human-written text.

In contrast to the feature-engineering meth-
ods described above, another broad set of AIGT-
detectors involves fine-tuning pretrained language
models (PLMs), such as RoBERTa, for the clas-
sification task. Such methods are limited by the
fact that they require larger quantities of labeled
training data, and classifiers trained on older LLMs
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do not generalize to text from newer LLMs (Ghosal
et al., 2023). However, Li et al. (2024) found that,
compared to metric-based methods, a fine-tuned
PLM detector performed better when tested on un-
seen domains and unseen generating models.

Very little work has focused specifically on so-
cial media text (Fagni et al., 2021; Kumarage et al.,
2023a; Shao et al., 2024). One recent exception
is the MultiSocial dataset, comprising 472,097
texts from seven multilingual LLMs, and cover-
ing five different social media platforms (Macko
et al., 2024). This dataset represents a valuable
contribution to an understudied field. However, the
data generation strategy involved broadly sampling
social media posts and then generating AIGT para-
phrases of the posts, which does not accurately
represent known threat models of AI-generated
content on social media (Crothers et al., 2023; De-
vereaux et al., 2025). Here, we choose specific
topics more likely to be targeted by influence cam-
paigns, compare different methods of prompting
to generate the AIGT, and explore the use of fine-
tuned generating models.

3 Methods

3.1 Human-Written Data Collection

We restrict our data collection to X/Twitter posts,
due to the wide availability of academic datasets
collected through the Researcher API prior to the
introduction of the paywall. All human-written
data is sourced from existing datasets, as outlined in
Appendix Table 5, and restricted to posts written be-
fore March 2022, to minimize the chances of AIGT
contaminating the sample. Eleven “controversial”
topics are chosen that contain emotional language,
divisive opinions, and misinformation, namely: cli-
mate change, abortion, feminism, refugees and mi-
grants, data privacy, COVID-19, Women’s March,
MAGA, #MeToo, Brexit, and the war in Ukraine.
We sample 1000 tweets per topic, for a total of
11,000 human-written tweets. Where possible, mul-
tiple sources are used for each topic to promote vari-
ety and mitigate bias in the human data distribution.
Further information about the human-written data
is available in Appendix A.

3.2 Generative AI Models

We consider two broad model families in this work:
OpenAI’s GPT models (closed-source), and Meta’s
Llama family of models (open-source). Within
these broad categories, we consider both larger and

smaller models, to assess the effect of model size
on generation quality. Specifically, we experiment
with GPT-4o (version: 2024-08-06), GPT-4o-mini
(version: 2024-07-18), Llama-3-8B-Instruct, and
Llama-3.2-1B-Instruct.

3.3 AIGT Generation Strategies
Here we provide an overview of the data genera-
tion methods. Additional details, including exact
prompts, parameter settings, and costs can be found
in Appendix B.

3.3.1 Paraphrase
To enable comparison with existing datasets, we
first generate AIGT paraphrases of the human-
written content. Specifically, we follow the genera-
tion procedure outlined by Macko et al. (2024) of
paraphrasing the original content iteratively three
times, with the intention that each iteration of para-
phrasing perturbs the text further from the original.

3.3.2 Generate From Example
The iterative paraphrasing approach is unlikely to
be used in an astroturfing campaign, since it re-
quires three API calls to generate a single tweet.
An alternative generation strategy for producing
content at scale is to use the human-written tweet
as an exemplar, and ask AI to create multiple dif-
ferent tweets that convey the same meaning. We
prompt the LLMs to generate 10 variations given a
single human-written tweet.

3.3.3 Generate From Topic
Both of the previous methods assume the availabil-
ity of an existing human-written tweet to use as
an input. We believe that most research in AIGT
detection generates such “pairs” of human-AIGT
samples not based on any evidence that this is how
LLMs are actually used in practice, but rather due
to the need to control for topic bias in the detection
experiments. Since we agree with this methodolog-
ical concern, but also aim to generate AIGT under
a more realistic scenario, we propose a new method
for deriving human-AIGT topic-matched pairs that
does not rely on paraphrasing.

First, the main topic and stance are extracted for
each human-written tweet by asking GPT-4o “What
is the main topic of this tweet, and what stance
does the author take?” The resulting description
(denoted as Topic) summarizes the content of the
human-written tweet succinctly (see Appendix B.3
for an example). Second, each LLM is instructed to
express the Topic: “Write a tweet in casual, social
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media style based on the following description:
<Topic>”.

We claim that this prompt, which asks for open-
ended generation on a particular topic and express-
ing a particular stance, is a much closer approxima-
tion to how AIGT would be generated by attackers
engaged in an online influence campaign.

3.3.4 Fine-tuning
To our knowledge, none of the previous research
on AIGT detection includes data generated from
fine-tuned models. However, even moderately-
sophisticated actors would be able to develop a
fine-tuned model using readily available informa-
tion online, and cheap access to hardware through
subscription services like Google Colab. Here, we
adapt the LLMs to the language of social media by
fine-tuning on a set of random-topic tweets (col-
lected in 2019 and completely separate from the
human-written tweets in the current dataset). We
compare two conditions: fine-tuning on a ‘small’
subset (800 training samples) and a ‘large’ subset
(2000 training samples),

Base models GPT-4o and GPT-4o-mini were
fine-tuned using OpenAI’s online fine-tuning in-
terface, which makes it very easy for non-technical
users to create fine-tuned models, although ex-
act methodological details are unknown to the
user. Base models Llama-3-8B-Instruct and Llama-
3.2-1B-Instruct were fine-tuned using QLoRA
(Dettmers et al., 2024; Hu et al., 2021) (4-bit quan-
tization, with an adapter rank of 64) via super-
vised fine-tuning (SFT) in a Google Colab envi-
ronment. In all cases, fine-tuning proceeded for
5 epochs. The estimated costs and times for fine-
tuning each model are given in Table 9, but range
between 3 cents to $26 (USD) and 10 minutes to 3
hours, demonstrating how affordable and practical
this process is. More details about the fine-tuning
procedure, including the training sample template,
are provided in Appendix B.4. Examples of AI-
generated text using each prompting strategy are
provided in Table 8.

3.4 Linguistic Analysis
To investigate linguistic differences in texts pro-
duced by different LLMs and by human users, we
follow Reinhart et al. (2024) and Sardinha (2024)
and consider the set of linguistic features proposed
by Douglas Biber, as implemented in the BiberPy
Python package.1 Noting that many of those fea-

1https://github.com/ssharoff/biberpy

tures may be more likely to occur in longer, more
formal texts, we also examine a set of features that
we expect to be more relevant in the context of so-
cial media: the number of ‘@’ mentions, links, and
emojis; the ratio of uppercase-to-lowercase charac-
ters; and the presence of offensive language2 and
typos/nonstandard spellings3.

3.5 AIGT Detection Methods
For the classification experiments, we include sev-
eral existing metric-based detection methods: Log-
Likelihood, Entropy, Rank, Log-Rank, the Log-
Likelihood-Log-Rank Ratio (Su et al., 2023), and
Fast-DetectGPT (Bao et al., 2024). These meth-
ods all use probability information and therefore
require either white-box access to the generating
model itself, or to some proxy measurement model.
We also consider Binoculars (Hans et al., 2024),
which does not assume white-box access to the gen-
erating model. All of these metric-based models
have decision thresholds which are ideally cali-
brated on in-distribution data, when available. We
also evaluate a PLM detector (OpenAI’s RoBERTa-
based detector4), which can be used off-the-shelf or
further fine-tuned on in-domain data. Finally, we
include two other off-the-shelf methods: ChatGPT-
Detector5 (Guo et al., 2023) and GPTZero, a com-
mercial offering.6 Classification experiments were
built upon an existing detection suite MGTBench
(He et al., 2024).

We apply these detection methods in several sce-
narios, including the idealized case of having full
access to the generating model and the training
data, an off-the-shelf case with no knowledge of
the generating model or access to training data, and
various intermediate scenarios. Note that we dis-
tinguish between the generating model (the LLM
that generated the AIGT) and the measurement
model (the LLM that provides the word probability
estimates, where needed). The word ‘model’ could
also refer to a detection model; for clarity, we refer
to such a model as a detector.

3.6 Human Study
Studies have indicated that human annotators can
no longer reliably distinguish between AIGT and

2https://www.cs.cmu.edu/~biglou/resources/
3https://pypi.org/project/pyspellchecker
4https://huggingface.co/openai-community/

roberta-base-openai-detector
5https://huggingface.co/Hello-SimpleAI/

chatgpt-detector-roberta
6https://gptzero.me/
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human-written text (Liu et al., 2024; Sarvazyan
et al., 2023). However, our data differs from the
data used in those studies in two important respects:
(1) it is social media-style text, rather than aca-
demic writing, news, or reviews, and (2) we con-
sider text from fine-tuned LLMs, and there is a
chance that the fine-tuning process might introduce
some artifacts that make the resulting text more
identifiable to human readers, regardless of the
performance of the detection algorithms. There-
fore, to confirm our hypothesis that text generated
from fine-tuned models is harder to detect for both
humans and machines, we run an online human
annotation study. Full methodological details are
available in the Appendix E, but in summary: we
recruited 250 human participants on Amazon Me-
chanical Turk to categorize tweets as either AI-
generated or human-written. In two separate stud-
ies, AI-generated tweets were obtained from ei-
ther the base GPT4o model (3,640 human anno-
tations) or the fine-tuned (large sample) GPT4o
model (3,360 human annotations), and detection
accuracy is compared across the two conditions.
Ethics approval for this study was obtained from
the Research Ethics Board of the National Research
Council of Canada.

4 Results

4.1 Linguistic Analysis

The purpose of our linguistic analysis is to deter-
mine whether the texts that are generated by LLMs
are significantly different from those written by
humans. To determine statistical significance, we
use a nonparametric Mann-Whitney U-test due to
the violation of the assumption of normality. How-
ever, due to the large number of samples (11,000
for each class), even very small differences are
found to be highly significant.7 Thus, rather than
focusing on p-values, we report the effect size, as
measured by the Rank-Biserial correlation.8 Ta-
ble 1 reports the effect size of the difference for
the linguistic features of the base GPT-4o model
and the corresponding fine-tuned model, each com-
pared to human-written tweets. The effect sizes can
be interpreted as the difference in the proportion
of samples in each group that rank higher in each

7All of the features reported in Table 1 show statistically
significant differences (p << 0.05) between human and
AIGT texts, with the exception of ‘Possibility modals’ in
the Human vs Fine-Tuned case.

8https://search.r-project.org/CRAN/refmans/
effectsize/html/rank_biserial.html

feature, ranging from −1 to +1. For example, if
all text samples generated by GPT-4o contain more
emojis than all human-written text samples, the
effect size would be +1 for the “Emojis” feature.
Features for which there is a negligible difference
(|R| < 0.1) between the human-written and AI-
written texts are indicated in green. Other colors
indicate a more meaningful effect size. The full
results for all four LLMs are in Appendix C, along
with additional analyses. In general, we observe
the following trends:

• Base models tend to be verbose, generating
tweets that are longer than human tweets (see
also Appendix Fig. 1, top row).

• The base models tend to have a lower type-
token ratio (TTR) than human-generated text,
indicating more repetitions and lower lexical
diversity (see Fig. 1, middle row).

• Base models do not spontaneously generate cer-
tain characteristics of social media text, such as
@mentions and links, but tend to over-generate
hashtags (see Fig. 1, bottom row) and emojis.

• Certain linguistic features are significant across
all four models, including the presence of more
adverbs, first-person pronouns, private verbs
(verbs expressing internal state), and contrac-
tions compared to human-written text.

• The fine-tuned models show smaller effect size
differences than the base models on almost all
linguistic features.

On the basis of this analysis, we conclude that
text output by the fine-tuned models is more
similar to real human-written text on social me-
dia (RQ1), and we therefore expect it to be more
difficult to detect than text from the base LLMs.

4.2 AIGT Detection
4.2.1 Detectability (Idealized Case)
Firstly, we examine how intrinsically detectable
the AIGT is by measuring the classification ac-
curacy under ideal conditions. In this setup, all
measurement-model dependent methods use the
generating model as the measurement model (i.e.,
white-box access to a known generator is assumed)
where available. Additionally, all metric-based de-
tectors have decision thresholds calibrated using
in-distribution data, and the pre-trained RoBERTa
detector is further fine-tuned on in-distribution data.
Although these conditions do not represent a real-
world scenario, they reveal which LLMs and gener-
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Feature Human vs Base Human vs FT

@mentions -0.47 0.11
Links -0.38 -0.07
Hashtags 0.26 -0.29
Emojis 0.92 0.05
Length (chars) 0.60 0.08
Offensive -0.11 0.02
Upper:lower ratio -0.15 -0.18
Past verbs -0.10 0.02
Present verbs 0.24 0.05
First pers. pron. 0.21 -0.03
Impersonal pron. 0.24 0.02
Indefinite pron. 0.14 0.03
Wh- questions 0.14 0.02
Nominalizations 0.11 0.05
Attributive adj. 0.15 0.03
Adverbs 0.26 0.05
Private verbs 0.25 0.06
Possibility modals 0.13 0.00
Contractions 0.39 -0.02
That deletion 0.18 0.03

Table 1: Effect size (Rank-Biserial Correlation) of differ-
ences between human-written texts and texts generated
by GPT-4o (base model and fine-tuned (FT)). Positive
values indicate that the feature value is higher in AIGT
than in human-written text. Effect size can be inter-
preted as: |R| < 0.1 - no effect (features with no effect
in either group are omitted from the current table; see
Appendix C for full table), |R| > 0.1 - small effect ,
|R| > 0.3 - medium effect , |R| > 0.5 - large effect .

ation methods most successfully mimic the human-
written data distribution.

The classification accuracies for a subset of the
detectors are shown on the left side of Table 2.
Full results for all detectors are provided in the Ap-
pendix, Table 15. Each dataset is balanced between
the human-written and AI-generated classes; a full
description of the evaluation datasets, including
post-generation processing details, are provided in
Appendix B.5. Results showing true positive rate at
a specific false positive rate, another useful metric
in AIGT detection (Tufts et al., 2024), can also be
found in Appendix D. As expected, the fine-tuned
PLM is the strongest detector under this complete-
knowledge scenario due to its ability to pick up
on any differences in the human and AI-generated
data distributions, which are not fully captured by
the predefined metric-based classifiers.

Focusing on the PLM results then, we observe
that iterative paraphrasing in fact increases de-
tectability (higher accuracy for Para-3 than Para-1),
and that the “generate from example” prompt yields
slightly more evasive text than paraphrasing (lower
accuracy for Gen-10 than Para-3). Both paraphras-
ing and generating from example are more eva-

sive than asking for a tweet on a given topic with-
out giving a human reference (base model with
“Topic” prompt). This suggests that the inclusion
of a human-written example in the prompt may
be an important consideration for generating more
human-like text.

However, we observe that the fine-tuned gener-
ators are the most successful at producing human-
like text, in terms of detectability, even without the
resource of a human reference at generation time.
Using larger models and larger amounts of fine-
tuning data increases the evasiveness. In particular,
a fine-tuned GTP4o model leads to the lowest detec-
tion accuracy at 71.6%, down from nearly complete
detectability (99.9%) using the base model with the
same prompting strategy. Therefore, while prompt
strategy does play a role in how detectable the
output text is, the biggest drop in detectability
occurs with fine-tuning (RQ2).

4.2.2 Off-the-Shelf Performance
In contrast to detectability under the most ideal-
ized detection conditions, we now turn our atten-
tion to the practical performance of off-the-shelf
detectors. That is, we work under the assump-
tion that no additional resources (either specific
measurement models or calibration/training data)
are available to power the detection methods. Off-
the-shelf detectors include pre-trained classifiers,
measurement model-agnostic metric-based classi-
fiers with threshold values supplied by the devel-
oper, and commercially available detectors. Here,
we consider four off-the-shelf detectors. Binoc-
ulars is implemented with the author-suggested
decision threshold,9 rather than calibrating on in-
distribution data as in the previous section. We
consider two PLM detectors: OpenAI’s detector
and the ChatGPT detector; both use RoBERTa fine-
tuned for AIGT classification using external GPT-
family datasets. GPTZero is a commercial product,
accessed through the API.

Detection accuracies are reported on the right
side of Table 2. In general, existing off-the-shelf
detectors are insufficient solutions for classifying
short, social-media style texts. GPTZero performs
well on base model generations, especially when
prompts do not include a human reference (“Topic
prompt” rows in the bottom half of Table 2). How-
ever, fine-tuning the base models consistently de-
creases GPTZero’s detection accuracy to random-
baseline levels. In the fine-tuned case, other de-

9https://github.com/ahans30/Binoculars
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Complete Knowledge (Idealized) Scenario Off-the-Shelf Scenario

LLM Prompt LL F-DGPT Bino. PLM Bino. PLM ChatGPT GPTZero
(calibr.) (fine-tuned) Detector

Llama-3.2-1B Para-1 0.792 0.711 0.653 0.931 0.604 0.591 0.580 0.747
Llama-3.2-1B Para-2 0.815 0.698 0.666 0.971 0.604 0.552 0.585 0.805
Llama-3.2-1B Para-3 0.809 0.672 0.669 0.988 0.599 0.536 0.585 0.829
Llama-3.2-1B Gen-10 0.605 0.695 0.608 0.920 0.596 0.668 0.546 0.661
Llama-3-8B Para-1 0.653 0.632 0.629 0.941 0.589 0.536 0.557 0.749
Llama-3-8B Para-2 0.621 0.606 0.618 0.972 0.569 0.536 0.561 0.799
Llama-3-8B Para-3 0.677 0.534 0.570 0.972 0.542 0.517 0.573 0.846
Llama-3-8B Gen-10 0.691 0.635 0.686 0.911 0.655 0.533 0.572 0.751
GPT-4o-mini Para-1 - - 0.538 0.903 0.513 0.502 0.543 0.662
GPT-4o-mini Para-2 - - 0.539 0.891 0.508 0.509 0.550 0.690
GPT-4o-mini Para-3 - - 0.546 0.945 0.507 0.515 0.554 0.747
GPT-4o-mini Gen-10 - - 0.553 0.873 0.526 0.515 0.565 0.659
GPT-4o Para-1 - - 0.520 0.900 0.498 0.505 0.548 0.687
GPT-4o Para-2 - - 0.519 0.916 0.508 0.520 0.561 0.716
GPT-4o Para-3 - - 0.523 0.940 0.506 0.507 0.574 0.775
GPT-4o Gen-10 - - 0.528 0.867 0.526 0.509 0.560 0.623

Llama-3.2-1B Topic 0.905 0.800 0.728 0.990 0.645 0.512 0.547 0.822
FT_Llama-1B-small Topic 0.687 0.767 0.567 0.857 0.533 0.582 0.547 0.496
FT_Llama-1B-large Topic 0.708 0.711 0.559 0.838 0.517 0.601 0.519 0.498

Llama-3-8B Topic 0.928 0.692 0.788 0.992 0.737 0.403 0.539 0.912
FT_Llama-8B-small Topic 0.694 0.732 0.641 0.837 0.610 0.534 0.571 0.517
FT_Llama-8B-large Topic 0.653 0.720 0.608 0.803 0.565 0.523 0.517 0.499

GPT4o-mini Topic - - 0.758 0.997 0.682 0.404 0.583 0.971
FT_GPT4o-mini-small Topic - - 0.585 0.782 0.581 0.535 0.546 0.512
FT_GPT4o-mini-large Topic - - 0.545 0.741 0.513 0.518 0.513 0.499

GPT4o Topic - - 0.650 0.999 0.569 0.380 0.551 0.945
FT_GPT4o-small Topic - - 0.509 0.723 0.515 0.533 0.509 0.501
FT_GPT4o-large Topic - - 0.491 0.716 0.499 0.516 0.510 0.494

Table 2: On the left, the detectability of the AIGT using idealized detectors (reported by accuracy). ‘FT’ stands
for a fine-tuned generator. Log-Likelihood (LL) and Fast-DetectGPT (F-DGPT) use the generating model as
the measurement model, and these methods plus Binoculars (Bino.) have decision thresholds calibrated using
in-distribution data. The pre-trained classifier (PLM) is further fine-tuned on the data distribution to detect. On the
right, accuracy of the detectors in the off-the-shelf scenario. Here, Binoculars uses the default decision threshold
and the PLM is not further fine-tuned. The best detection accuracy for each generator, in each scenario, is in bold.

tectors perform marginally better than GPTZero,
but still with a maximum accuracy of 61% (Bino.).
This indicates that off-the-shelf methods, which
do not require knowledge of the generating
LLM, are not reliable detectors of social media
texts generated by fine-tuned models (RQ3).

4.2.3 Viability of Metric-based Detectors

The previous two sections establish opposite ends
of the classification results spectrum: the complete-
knowledge scenario, and the no-knowledge sce-
nario. Between these two extremes, existing meth-
ods can be augmented with some additional re-
sources, but assumptions of complete knowledge
should be relaxed to assess more realistic scenarios.
For both metric-based and PLM-based detectors,
we assess the viability of the methods by first min-
imally reducing the resources from the idealized

scenario and observing their performance.

For metric-based detectors, required resources
include access to a measurement model to calcu-
late the metric, and calibration data to set a deci-
sion threshold. Here we relax the assumption that
we can access the generating model for use as the
measurement model. Note that this is especially
relevant to the case of fine-tuned generators be-
cause the fine-tuning procedure and the fine-tuned
model are most likely kept private. Though we
may not have access to the exact generating model,
we might assume access to the base model or a
similarly fine-tuned model.

Under ideal conditions, Fast-DetectGPT is the
best-performing metric-based detector on the fine-
tuned generators (Table 15). Its performance ma-
trix of generating model × measurement model is
shown in Table 3. We report classification perfor-
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mance using threshold-free evaluation (AUROC) to
remove dependence on any calibration data. GPT-2
is included as a baseline measurement model, and
Binoculars is included as a measurement-model-
agnostic comparison.

Surprisingly, very closely related fine-tuned
models are just as weak, if not weaker, than base
models in the measurement model role. For Llama-
3.2-1B and Llama-3-8B, it is better to use the base
Llama models as the measurement model than
any of the ‘sister’ fine-tuned models (built from
the same base model using the same procedure,
just with more/fewer examples from the same fine-
tuning dataset). The same observation holds for
the other measurement model-dependent detectors
(see Appendix D for Log-Likelihood (20), Entropy
(21), Rank (22), Log-Rank (23), and LLR (24)),
implying that the measurement-model dependent
detectors are not robust to minor changes in the
fine-tuned measurement models. For the closed-
source fine-tuned models, detection is not feasible
using any of the tested measurement models, de-
spite being fine-tuned on the same data.

4.2.4 Viability of PLM-based Detectors
Similarly, we assess the viability of PLM-based
detectors by relaxing the resource assumptions. For
this type of classifier, the ideal resource is access to
labeled training data from the generating model. As
a first step toward realistic resource assumptions,
we assess training data generated by similar models,
using the same prompts and human-written data.

Here we use OpenAI’s RoBERTa-based detector
as the PLM, and further fine-tune the classifier on
our various AIGT datasets. The performance ma-
trix (evaluation dataset × training dataset) is shown
in Table 4. Similarly to the metric-based detectors,
we find that working with imperfect knowledge
of a fine-tuned generator is detrimental to PLM-
based detector performance. We first note that the
base models do not generate high-quality training
data for detecting any fine-tuned model (accuracy
between 50-56%). However, even closely related
fine-tuned models do not generate training data that
is a good substitute for in-distribution training data.
For example, the best detection accuracy for fine-
tuned Llama-3.2-1B-small is 86.4%, trained on in-
distribution data. Using training data generated by
fine-tuned Llama-3.2-1B-large causes the detection
accuracy to drop to 78.2%. Using other fine-tuned
models results in comparable drops in detection
accuracy. This observation contrasts with the de-

tection accuracy of the base generators, where gen-
eralization across models is possible in some cases.

We stress that all fine-tuned generators were
fine-tuned with the same dataset (of varying sizes),
using similar procedures. Furthermore, the PLM
training sets were generated using the same prompt-
ing strategy and human data distribution. In other
words, the resource relaxation here represents a
very minimal step towards a truly realistic detec-
tion scenario, and even so, detection accuracy is
significantly affected. Together with the previous
section, we find that both branches of detection
methods are quite brittle to extremely small pertur-
bations in the fine-tuned model as a resource. Thus,
detection is not feasible using these methods un-
der the assumption that the exact fine-tuned
generating model is private, even if one assumes
access to closely related fine-tuned generators
as a resource (RQ3).

4.3 Human Annotation Study
After filtering out likely unreliable annotations (see
Appendix E for details), the average accuracy (± 1
standard deviation) of human participants in deter-
mining the source of the tweets (AI-generated vs.
human-written) is 61.2% (± 1.68%) for the base
model and 53.9% (± 0.82%) for the fine-tuned
model. The observed difference in the means is sig-
nificant with a p-value of 0.0007. This confirms
that the texts generated by the fine-tuned model
are harder for an average human to detect than
the texts generated by the base LLM (RQ4).

5 Conclusion

A realistically motivated attacker is likely to fine-
tune a model for their specific style and use case, as
it is cheap and easy to do so. With minimal effort,
time, and money, we produced fine-tuned genera-
tors that are capable of much more realistic social-
media tweets, based on both linguistic features and
detection accuracy, and verified through human an-
notations. Although motivated by the spread of AI
content on social media, and the associated risks of
astroturfing and influence campaigns, we stress that
the main findings extend across all text domains. In-
deed, fine-tuning models for style-specific content
generation is a generally applicable method, and
one that is likely already in use by many generative
AI users – calling into question whether existing
methods of detecting AIGT are as effective in the
real world as in the research lab.
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Fast-DetectGPT by measurement model Bino.
Generating LLM GPT-2 Llama-1B FT-1B-sm FT-1B-lg Llama-8B FT-8B-sm FT-8B-lg

Llama-3.2-1B 0.851 0.879 0.671 0.661 0.531 0.615 0.507 0.803
FT_Llama-1B-small 0.586 0.720 0.815 0.690 0.605 0.568 0.553 0.592
FT_Llama-1B-large 0.555 0.702 0.640 0.772 0.584 0.501 0.549 0.577

Llama-3-8B 0.855 0.717 0.584 0.592 0.750 0.554 0.659 0.857
FT_Llama-8B-small 0.666 0.702 0.713 0.683 0.722 0.810 0.738 0.691
FT_Llama-8B-large 0.592 0.650 0.626 0.661 0.689 0.672 0.796 0.637

GPT4o-mini 0.649 0.716 0.556 0.535 0.657 0.639 0.501 0.822
FT_GPT4o-mini-small 0.610 0.630 0.652 0.647 0.624 0.640 0.644 0.623
FT_GPT4o-mini-large 0.532 0.560 0.509 0.525 0.551 0.514 0.547 0.556

GPT4o 0.631 0.711 0.491 0.528 0.670 0.658 0.560 0.699
FT_GPT4o-small 0.501 0.534 0.560 0.550 0.528 0.543 0.548 0.513
FT_GPT4o-large 0.507 0.534 0.527 0.509 0.514 0.524 0.491 0.495

Table 3: Viability of metric-based detectors: Classification potential (AUROC) of Fast-DetectGPT and Binoculars.
The Fast-DetectGPT matrix shows measurement models (columns) against generating models (rows). Measurement
models may be equal to the generating model (green), share a common base model (yellow), share a common model
family (orange), or share a common fine-tuning dataset (purple). For each generating LLM, the best-performing
detector is in bold and the second-best is underlined.

PLM-based detector by training dataset
Generating LLM Llama-1B FT-1B-sm FT-1B-lg Llama-8B FT-8B-sm FT-8B-lg

Llama-3.2-1B 0.981 0.748 0.773 0.959 0.723 0.745
FT_Llama-1B-small 0.561 0.864 0.782 0.509 0.767 0.765
FT_Llama-1B-large 0.559 0.749 0.824 0.514 0.707 0.771

Llama-3-8B 0.981 0.653 0.682 0.996 0.730 0.699
FT_Llama-8B-small 0.557 0.758 0.716 0.510 0.841 0.769
FT_Llama-8B-large 0.540 0.680 0.729 0.505 0.712 0.801

GPT4o-mini 0.946 0.831 0.802 0.990 0.872 0.818
FT_GPT4o-mini-small 0.533 0.704 0.666 0.502 0.730 0.717
FT_GPT4o-mini-large 0.532 0.604 0.657 0.509 0.604 0.689

GPT4o 0.953 0.757 0.727 0.978 0.815 0.757
FT_GPT4o-small 0.517 0.639 0.649 0.507 0.659 0.676
FT_GPT4o-large 0.514 0.605 0.653 0.502 0.596 0.670

GPT4o-mini FT-mini-sm FT-mini-lg GPT4o FT-GPT4o-sm FT-GPT4o-lg

Llama-3.2-1B 0.713 0.768 0.774 0.869 0.700 0.644
FT_Llama-1B-small 0.516 0.778 0.737 0.521 0.774 0.734
FT_Llama-1B-large 0.508 0.729 0.760 0.512 0.738 0.738

Llama-3-8B 0.803 0.731 0.751 0.944 0.691 0.579
FT_Llama-8B-small 0.510 0.777 0.703 0.518 0.754 0.677
FT_Llama-8B-large 0.503 0.718 0.720 0.504 0.711 0.682

GPT4o-mini 0.998 0.831 0.864 0.995 0.812 0.742
FT_GPT4o-mini-small 0.510 0.786 0.707 0.515 0.752 0.681
FT_GPT4o-mini-large 0.506 0.674 0.745 0.508 0.681 0.654

GPT4o 0.996 0.801 0.821 0.996 0.782 0.679
FT_GPT4o-small 0.507 0.706 0.679 0.512 0.751 0.667
FT_GPT4o-large 0.503 0.656 0.684 0.505 0.694 0.719

Table 4: Viability of PLM-based detectors: Classification accuracy of PLM-based detectors when trained on
data from different generating models. For each generating LLM (row), the best-performing detector (training set)
is in bold and the second-best is underlined. Green indicates that the PLM has been fine-tuned on the exact data
distribution to detect (i.e., the training set and evaluation set are generated by the same model). Yellow indicates
that the training set has been generated by a model sharing the same base model. Outside of shared base models,
orange indicates that the training set has been generated by a model within the same model family (Llama or GPT).
Outside model families, purple indicates that the training set has been generated by a model that was fine-tuned on
the same data as the generator.
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6 Limitations

Our study focused exclusively on English. Future
work should examine other languages, as well as
the use of LLMs to create translated output for so-
cial media. Furthermore, we examined only two
model families (OpenAI’s GPT and Meta’s Llama),
while numerous other open- and closed-source op-
tions exist and may show different trends. In ad-
dition, we have experimented with limited sets of
parameter values for model fine-tuning and prompt
variants. The goal of this work is not to find the
best way to automatically generate hard-to-detect
social media texts, but rather to demonstrate that
a relatively straightforward and cheap method of
fine-tuning an LLM can produce a generator that is
virtually undetectable in a real-world scenario.

All of our human data were sourced from X/Twit-
ter, due to the widespread existence of publicly
available datasets from which to sample. The re-
sults are most likely to generalize to other plat-
forms that are characterized by short posts, such as
Threads or Bluesky. Text length is a known factor
in AIGT detectability, and detectors may perform
better on social media platforms that encourage
longer posts, such as Reddit. All of the AIGT data
was generated by us, using a small set of prompts,
which may limit its generalizability and ecological
validity. However, collecting AIGT from real on-
line sources is highly challenging, since it entails
first differentiating AI- and human-generated con-
tent – i.e., the entire goal of the work itself (Cui
et al., 2023; Sun et al., 2024).

In this study, we examine the challenges posed
to detectors by the short, informal nature of social
media writing, the impact of different prompting
strategies, and the effect of fine-tuning to improve
the realism of the generated text. Out-of-scope
of the current analysis is the effect of adversar-
ial attacks aimed specifically at avoiding detection.
Other research has found that detection accuracy
can be significantly reduced by such attacks, in-
cluding character- and word-level perturbations (Pu
et al., 2023; Wang et al., 2024; Wu et al., 2024),
paraphrasing (as a defense, rather than a genera-
tion strategy) (Sadasivan et al., 2023; Krishna et al.,
2024; Masrour et al., 2025), and prompt-tuning
(Kumarage et al., 2023b; Shi et al., 2024). The
effect of applying such methods on social-media
text, before or after fine-tuning, is an open question
for future research.

We focus exclusively on the signals available in

the generated content itself; however, real-world
attempts to detect malign influence campaigns on
social media should combine multiple sources of
information, including characteristics of the user
account (username, photo, posting frequency, etc.)
as well as network characteristics (e.g., groups of
accounts acting in a coordinated fashion) (Forrester
et al., 2019; Cresci, 2020). Investigating the au-
thenticity of images, videos, or linked content can
also provide valuable information.

7 Ethics Statement

It is possible that the presented findings (namely,
that fine-tuned models are more difficult to detect)
could be used by malicious actors to create harder-
to-detect AIGT. However, it is more likely the case
that they are already doing so. There are many
easy-to-follow tutorials online explaining how to
fine-tune open-source models and it would be naive
to assume that they are being used only for be-
nign purposes. Rather, we suggest that as NLP
researchers, we too often set up “straw man” detec-
tion experiments that are disconnected from how
LLMs are used (and will be used) in the real world.

We would also like to emphasize that producing
text using generative AI models is not an inherently
problematic issue that requires close monitoring on
social media or other platforms. Generative AI can
provide valuable assistance to users not proficient
in the language of communication, helping them
to write clear and effective messages. Furthermore,
AIGT detectors may exhibit biases, for example,
having higher false positive rates for certain demo-
graphic groups or people with different linguistic
skills (Liang et al., 2023). Therefore, AIGT de-
tection should be approached not as a goal in and
of itself, but with a particular harmful outcome in
mind (e.g., academic fraud, spread of misinforma-
tion, astroturfing), and with the acknowledgment
that in most cases the detection of AI content is only
one piece of evidence in a broader assessment.
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A Human-Written Data Collection

The sources of human-written data are summarized
in Table 5. A handful of the sources documented
specific search terms that were used to collect
tweets through the Twitter Researcher API. The

known collection tags are summarized in Table 6.
Note that the SemEval-2016 source (Mohammad
et al., 2016) for topics Feminism, Abortion, and Cli-
mate Change purposefully uses search terms that
should encompass “both sides” of an issue (e.g.,
#ProChoice and #ProLife). Topics that do not have
specific collection tags were sourced using alterna-
tive search methods. The F3 (CoAID) dataset (Cui
and Lee, 2020; Lucas et al., 2023) for COVID-19
uses news article titles as the search query where
news articles were obtained by searching for topics
“COVID-19, coronavirus, pneumonia, flu (exclud-
ing Influenza A/B, bird flu and swine flu), lock-
down, stay home, quarantine and ventilator”. The
Brexit Polarity Tweets dataset was obtained by
collecting tweets from Pro-Brexit and Anti-Brexit
twitter accounts, as determined by the account bio.
The MiDe22 dataset (Toraman et al., 2024) was a
valuable resource for us in collecting tweets for
the COVID-19, Climate Change, Refugees and
Migrants, and Ukraine topics. This dataset con-
tains tweets related to specific potential misinfor-
mation events, as detailed in Table 7. By using
a variety of events, each with their own specific
collection tags, the bias in the human data for these
topics is reduced. The remaining datasets do not
have clear documentation about their collection
practices. Where applicable, we further filter the
datasets to contain the more opinionated tweets;
we take the “pro” and “anti” subsets of the Twitter
Climate Change Sentiment Dataset and the Brexit
Polarity Tweets Dataset, excluding the “neutral”
sentiment cases. Lastly, all datasets are filtered to
contain only tweets written before March 2022 in
English.

B Data Generation

Here we list the exact prompts used to generate
tweets, and provide further details on the genera-
tion model fine-tuning. Examples of output from
each of the LLMs in response to each prompting
strategy can be seen in Table 8.

B.1 Paraphrase

The paraphrasing prompt is taken directly from
(Macko et al., 2024) and is as follows:

prompt = "Task: Generate the text
similar to the input social media
text but using different words
and sentence composition.
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Topic Source Year License n Tweets
(if specified)

COVID-19 F3 (CoAID) May - Dec 2020 600
MiDe22 (10 events) Oct 2021 - Feb 2022 MIT 400

Data Privacy It’s Controversial 2020 CC0 1000
MAGA WomensMarch and MAGA Tweet Dataset 2017 CC0 1000
Women’s March WomensMarch and MAGA Tweet Dataset 2017 CC0 1000
#MeToo Tweets With Emojis - #MeToo Oct 16 2017 CC BY-NC 1000
Climate Change Twitter Climate Change Sentiment Dataset April 2015 - Feb 2018 500

Climate Change Tweets (2022) Jan - Feb 2022 MIT 250
MiDe22 (1 event) Sept 2020 MIT 50
SemEval-2016 Task 7 2015 - 2016 200

Abortion Progressive Issues Sentiment 2015 - 2016 CC0 300
SemEval-2016 Task 7 2015 - 2016 700

Feminism Progressive Issues Sentiment 2015 - 2016 CC0 300
SemEval-2016 Task 7 2015 - 2016 700

Refugees and Migrants MiDe22 (9 events) Dec 2020 - Jan 2022 MIT 540
Keyword Tweets Jan - Feb 2021 460

Brexit Brexit Polarity Tweets (Anti + Pro) Jan - March 2022 CC0 1000
War in Ukraine MiDe22 (10 events) Feb - March 2022 MIT 1000

Table 5: The 11,000 human-written posts in the dataset. Sources are linked to the original dataset. Some sources
require free sign-in at https://data.world/.

Topic Collection Tags

Data Privacy NSA, NSA & spying, privacy & leak, data & leak, Equifax & data breach,
Cambridge Analytica

Climate Change #ClimateChange, #GlobalWarming, #ClimateChangeScam, #GlobalWarmingHoax,
#JunkScience, #GlobalCooling, #GlobalWarmingIsNotReal

Abortion #Prochoice, #Abortion, #Prolife, #PrayToEndAbortion, #EndAbortion,
#PlannedParenthood

Feminism #Feminism, #FeministsAreUgly, #INeedFeminismBecause, #WomenAgainstFeminism,
#FeminismIsAwful

Refugees and Migrants refugees are, migrants are

Table 6: Known collection tags for the dataset of human-written posts.

Input: <human-written tweet>
Output: "

B.2 Generate From Example
In this strategy, we prompt the LLMs to generate
10 variations given a single human-written tweet,
as follows:

prompt = "Task: Given the input
social media text, generate 10
other posts that communicate
the same information, but using
different words and sentence
composition. Output the 10 posts
in a Python list format, with no
additional text.
Input: <human-written tweet>
Output: "

B.3 Generate From Topic
We propose a new method for deriving human-
AIGT topic-matched pairs that does not rely on

paraphrasing. Firstly, the main topic and stance are
extracted for each human-written tweet by prompt-
ing GPT-4o as follows:

prompt = "What is the main topic
of this tweet, and what stance
does the author take? Answer as
concisely as possible. <human-
written tweet>"

The resulting descriptions summarize the human-
written tweets succinctly, for example:

Topic = "The main topic of the
tweet is a criticism of Joe Biden
and the Democrats. The author
takes a stance supporting Trump’s
attack, suggesting that Biden and
the Democrats are hypocritical in
their approach to law enforcement
and religious freedom."

Secondly, each LLM is instructed to write a so-
cial media post expressing the Topic as follows:
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Topic Event

COVID-19 COVID-19 vaccines do not contain HIV.
No evidence of cancer spike linked to COVID-19 vaccines.
PCR tests diagnose COVID-19 aren’t used to secretly vaccinate people.
Over-vaccination causes faster mutation of the (COVID-19) virus.
Bob Saget died from the COVID-19 vaccine.
Corona PCR ‘test is implanting a microchip.
Pfizer CEO: New Pill Will Have a Microchip That Transmits Info Once You Swallow It!
WHO Director-General: The vaccines are being used to kill children.
COVID-19 vaccines are gene therapy and a recent Forbes article proves that.
COVID-19 vaccines contain luciferase.

Refugees and Hundreds of ‘illegals were dropped off at a Florida hotel.
Migrants The Biden administration has released over 7000 illegal aliens who were COVID-positive.

There are 22 million illegal aliens living in America and ... voting illegally.
Undocumented immigrants aged over 55 may be eligible for Medicaid while citizens are not.
Biden administration busing ‘thousands of illegals to red states to get permanent status.
The migrant caravan from Tapachula Mexico “is the population of Minneapolis.
Migrants on Polish border were able to enter Belarus thanks to the visa-free regime.
A sea of unknown migrants’ graves is located at the Polish border.
Turkey may introduce ISIS members in the EU for terrorist attacks at Christmas.

Climate Change West Coast wildfires are due to bad forest maintenance not climate change.
War in Ukraine Russia Embassy in Canada claim that it is not occupying Ukrainian territory.

Viral clip shows ‘Arma 3’ video game, not war between Russia and Ukraine.
Ethnic Russians face “genocide perpetrated by the Kyiv regime.
Photo shows a Russian tank Ukrainians are selling on eBay.
Zelensky In Kyiv Has Not Fled To Poland: Ukrainian Parliament Counters Russia’s Claim.
Evidence of Russias war in Ukraine is plentiful and proves it is not ‘staged.
Miss Universe-Ukraine turned in her high heels for combat boots to fight for her country.
A Time magazine cover shows Vladimir Putin with Hitlers mustache.
Ukrainian fighter-ace known as the Ghost of Kyiv’s real name is Samuyil Hyde.
Vladimir Putin has banned the Rothschild family from entering Russia.

Table 7: MiDe22 source dataset events by Topic. Events are linked to the related fact-checking article.

prompt = "{role: system, content:
You are an assistant to help write
text in a casual social media
style.},
{role: user, content: Write a
tweet in casual, social media
style based on the following
description: <Topic>.}"

B.4 Fine-tuning
We fine-tune base language models to adopt more
relaxed social-media style language by observing
training pairs of (Topic, human-written tweet).
More specifically, each fine-tuning training exam-
ple is instruction-formatted as:

train = "{role: system, content:
You are an assistant to help write
text in a casual social media
style.},
{role: user, content: Write a
tweet in casual, social media
style based on the following
description: <Topic>.},
{role: assistant, content:
<human-written tweet>.}"

where human-written tweets are sampled from an
auxiliary dataset of general tweets on a random
variety of topics, and Topic is extracted from each
tweet using GPT-4o as above.

Base models GPT-4o and GPT-4o-mini were
fine-tuned using OpenAI’s online fine-tuning in-
terface. This graphical user interface makes it very
easy for non-technical users to create fine-tuned
models. The downside is that the precise details of
how the fine-tuning is accomplished is not available
to the user. Furthermore, we observe a nonlinear
trend in the fine-tuning time with respect to the
dataset size and number of training epochs, indi-
cating that the fine-tuning time likely depends on
external (hidden) factors such as the number of
other requests in the queue and the available com-
putational resources. The other constraint in using
the OpenAI interface is the cost, which is currently
$25 USD per 1 million training tokens for the GPT-
4o model and $3 USD per 1 million training tokens
for GPT-4o-mini.

Base models Llama-3-8B-Instruct10 and Llama-

10https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct
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Source Output

Human @Noin007 though I’m not a girl so maybe I’m not qualified to comment on women’s issues, according
to #feminism

Paraphrase prompt: “Generate the text similar to the input social media text but using different words and sentence
composition. Input: <human-written tweet> Output:” (Output after third iteration)

Llama-1B Real conversations spark growth and break the glass of limitations. Join us in our quest to redefine the
notion of equality. Ask the questions that will change everything. #WomenInPower #EqualityInAction

Llama-8B @RebelHeart22 Recognizing the unique perspectives that come with non-traditional identities, I’m
thoughtful in my online engagement to ensure my views are considerate of others’ diverse experiences
#empatheticcommunication

GPT-4o @Noin007 While I might not be the best person to talk about women’s matters because I’m not a woman,
that’s exactly what #feminism is all about.

GPT-4o-mini @Noin007 Even though I’m not a woman, I guess I’m not really in a position to share my views on
matters concerning women’s rights, in line with #feminism principles.

Generate from example prompt: “Given the input social media text, generate 10 other posts that communicate the
same information, but using different words and sentence composition. Output the 10 posts in a Python list format, with
no additional text. Input: <human-written tweet> Output:” (First text in output list)

Llama-1B @Noin007 Women’s rights aren’t just for girls
Llama-8B Despite not identifying as a woman, I’m aware that I may not be the most authoritative voice on women’s

rights, as per some feminist ideologie
GPT-4o @Noin007 While I don’t identify as female, perhaps I’m not the best to speak on women’s topics

according to #feminism.
GPT-4o-mini @Noin007 Even though I’m not a woman, perhaps I shouldnt weigh in on issues that affect women,

based on #feminism

Generate from topic prompt: “Write a tweet in casual, social media style based on the following description: The main
topic is commenting on women’s issues and feminism. The author expresses skepticism or criticism towards the idea
that only women can comment on women’s issues.”

Llama-1B Women’s issues are just a buzzword. We’ve been using it to silence women’s voices for too long. Why
should we only be given space to say women’s issues? Where are the men’s voices? It’s time to listen to
and amplify each other’s perspectives. #Feminism #EqualityForAll

Llama-8B I’m calling BS on the notion that only women can comment on women’s issues I’m not trying to take
away anyone’s agency, but can’t we all have a seat at the table? Men, listen up - you’ve got a role
to play in creating a more just, equal society Don’t get left out, guys #FeminismNotJustForWomen
#AlliesWanted

GPT-4o Why is it that only women can talk about womens issues? Feminism should be about inclusivity and
open dialogue! Lets all learn from each other and make a difference together. #FeminismForAll
#OpenDialogue

GPT-4o-mini Why do some peeps think only women can comment on womens issues? Like, we all live in
this world together! Allies can have a voice too! Lets lift each other up, no matter who you are!
#Feminism #AlliesMatter

FT_Llama-1B @IveMaureen @Anastasia_Lyons You’re welcome. It really doesn’t exist that only women can comment
on womens issues. It’s open to men who have a deep understanding of what those issues are.

FT_Llama-8B @TovaCarson @tomitarell I don’t see how you can say that only women can comment on womens issues.
Can men comment on human rights issues?

FT_GPT-4o @Bowie_May Well I suppose if only women can comment on womens issues then feminists (of which I
am one) should just shut up. Historian here by the way.

FT_GPT-4o-mini Only women can comment on womens issues. Got it.

Table 8: Examples of texts produced by different models in response to the different prompting strategies.
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3.2-1B-Instruct11 were fine-tuned using QLoRA
(loaded in 4-bit quantization for faster training)
(Dettmers et al., 2024; Hu et al., 2021), with an
adapter rank of 64 and a scaling factor of 16, for 5
epochs using a single T4 GPU12 on two different
sizes of training sets as shown in Table 9. The
smallest of the Llama-3-family models requires
only 2.2 GB of GPU RAM to be fine-tuned and
can be trained on a small dataset in approximately
10 minutes. This model can represent an agile
generation scenario where an actor may want to
train dynamically on breaking news.

B.5 Dataset Processing
Firstly, we observe that the generators sometimes
refuse to generate a tweet on a given topic, par-
ticularly in the case of the base models. In such
cases, the generated refusal and the matching hu-
man tweet are removed from the dataset. Secondly,
as discussed in detail in Section A, the dataset of
collected human tweets contains strong identify-
ing signals due to the specific collection criteria.
For example, all human tweets on the topic of
Feminism contain certain hashtags (at least one
of #Feminism, #FeministsAreUgly, #INeedFemi-
nismBecause, #WomenAgainstFeminism, #Femi-
nismIsAwful). Because the AI-generated text does
not uniformly adhere to these same conditions, de-
tection appears to be trivial if the full set of AIGT
is included in the classification experiments. To
account for this bias in the human data distribution,
the same collection criteria are applied to the AIGT
on a pairwise basis. That is, whenever a human
tweet meets a certain collection condition, the cor-
responding AIGT must also meet that condition
in order for both samples from the pair to be in-
cluded. The result is a balanced dataset where the
distribution of collection artifacts should be similar
between both classes. The final size of each dataset
after filtering is summarized in Table 10. Note
that the “generate 10” (Gen-10) datasets have been
condensed to one extracted generation per human
example. We take the first extracted generation as a
representative of this category, with no significant
impact on the reported results, as discussed in Sec-
tion D. The total number of AI-generated tweets
in the full dataset, taking all 10 extractions for ev-

11https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
12Training was conducted using a Google Colab environ-

ment (an online environment enabling easy access to remote
GPUs); between Sept - Nov 2024 the average observed rate to
connect to the T4 GPU runtime was 1.51 credits/hour, and the
current cost is $9.99 USD for 100 compute credits.

ery “generate 10” prompt, is 505,159. Note that in
all classification experiments, 6000 samples from
each class were taken as the training set, except
in cases where the total dataset size does not per-
mit this (Llama-3.2-1B paraphrase and generate-10
sets), where 3000 samples from each class are used
instead. Re-running classification experiments on
the larger datasets with either 6000 or 3000 train-
ing samples showed no significant differences. We
additionally apply minimal processing to the gen-
erated tweets to remove the pre- and post-scripts
that are typical of base models (e.g., “Sure! Here is
your tweet:” or “Let me know if there is anything
else I can help you with!”).

Furthermore, all tweets in the dataset (both
human-written and AI-generated) have been post-
processed by removing all mentions (@’s) and
links. We observed that the fine-tuned generators
were not successful at producing realistic mentions
and links that matched the human-written distribu-
tion, and therefore the inclusion of these features
artificially made the AIGT more detectable. Here
we are interested in studying the linguistic abil-
ity of the generating models in producing social-
media style language (including words, hashtags,
and emojis). We assume that any reasonably so-
phisticated actor could insert the desired mentions
and relevant links as a separate step, potentially us-
ing a different purpose-built model for this subtask.
For reference, the effect of this post-processing
step on the detectability of the generated tweets is
shown in Table 18.

C Linguistic Analysis

Here we provide additional details on the linguis-
tic analysis. Table 1 summarized the non-zero
effect sizes for GPT-4o only; the full results for
all four models are available in Tables 11, 12,
13, 14. More information about Biber’s set of
linguistic features can be found in Biber (1993)
and the Appendix of Reinhart et al. (2024). Fea-
tures were extracted using the BiberPy Python li-
brary https://github.com/ssharoff/biberpy,
version downloaded on 1 December 2024, available
under a GPL-3.0 license.

We identified that features which seemed to be
associated with AIGT across all four models in-
cluded adverbs, first-person pronouns, private verbs
(verbs expressing internal state, e.g. think, believe),
and contractions. Interestingly, in many cases the
trends were the opposite to what we might have

13510

https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://github.com/ssharoff/biberpy


(a) GPT-4o (b) GPT-4o-mini (c) Llama-3-8B (d) Llama-3.2-1B

(e) GPT-4o (f) GPT-4o-mini (g) Llama-3-8B (h) Llama-3.2-1B

(i) GPT-4o (j) GPT-4o-mini (k) Llama-3-8B (l) Llama-3.2-1B

Figure 1: Length of text in characters (top), Type-Token Ratio or TTR (middle), and number of hashtags (bottom),
three features which vary significantly between the base models and the human-written data but become closer after
fine-tuning.

13511



Name Base Model Data Size (Train) Time (minutes) Cost ($)

FT_Llama-8B-small Llama-3-8B-Instruct 800 42 0.12
FT_Llama-8B-large Llama-3-8B-Instruct 2000 108 0.30
FT_Llama-1B-small Llama-3.2-1B-Instruct 800 10 0.03
FT_Llama-1B-large Llama-3.2-1B-Instruct 2000 25 0.07
FT_GPT-4o-small GPT-4o 800 184 6.13
FT_GPT-4o-large GPT-4o 2000 79 26.11
FT_GPT-4o-mini-small GPT-4o-mini 800 49 0.74
FT_GPT-4o-mini-large GPT-4o-mini 2000 38 3.13

Table 9: Fine-tuned models with training time and approximate cost (USD).

LLM Prompt Dataset Size

Llama-3.2-1B Para-1 11,776
Llama-3.2-1B Para-2 9,298
Llama-3.2-1B Para-3 8,148
Llama-3.2-1B Gen-10 10,118
Llama-3-8B Para-1 14,288
Llama-3-8B Para-2 13,098
Llama-3-8B Para-3 12,356
Llama-3-8B Gen-10 17,338
GPT-4o-mini Para-1 18,070
GPT-4o-mini Para-2 17,502
GPT-4o-mini Para-3 16,874
GPT-4o-mini Gen-10 20,574
GPT-4o Para-1 17,298
GPT-4o Para-2 16,626
GPT-4o Para-3 15,912
GPT-4o Gen-10 20,560

Llama-3.2-1B Topic 14,406
FT_Llama-1B-small Topic 12,898
FT_Llama-1B-large Topic 13,546

Llama-3-8B Topic 16,296
FT_Llama-8B-small Topic 14,212
FT_Llama-8B-large Topic 13,914

GPT4o-mini Topic 16,884
FT_GPT4o-mini-small Topic 14,400
FT_GPT4o-mini-large Topic 14,422

GPT4o Topic 16,460
FT_GPT4o-small Topic 14,702
FT_GPT4o-large Topic 14,380

Table 10: The total size of all datasets after filtering
is applied to account for generator refusal and bias in
the human data distribution. All datasets are balanced
between the human-written and AI-generated classes.

expected: LLMs produced more first-person pro-
nouns, private verbs, and contractions – in contrast
to the information-dense, formal style observed in
previous studies (Herbold et al., 2023; Reinhart
et al., 2024; Sardinha, 2024). One possibility that
we considered is that the automated linguistic fea-
ture extraction tools, which were not trained on
social media text, may be introducing errors into
this measurement, unrelated to the provenance of
the text. Further analysis suggests that this may be
the case for contractions – human users are more

likely to omit the apostrophe from a contraction
(e.g., I cant believe it!), and this is not identified as
a contraction by the POS-tagger.

However, adverbs, first-person pronouns, and
private verbs do appear to occur more frequently
in AI-generated texts – albeit, driven by a tendency
towards particular word usages. As one example,
Figure 2 shows that the trend for Llama-3-8B (base
model) to use more private verbs than humans is
driven by an exceptionally high usage of a few
particular verbs, such as believe. Examining the
texts, we observe that humans tend to use the word
believe in a variety of different contexts, while the
LLM over-uses a particular phrase:

Can’t believe @POTUS & @VP are still
asleep at the wheel on immigration! Af-
ter 2 yrs, nothing but empty promises
& rising border crisis Our country’s se-
curity & economy suffer bc of inaction
Time for IMPEACHMENT! #Impeach-
BidenHarris #ImmigrationCrisis #Do-
Something
Can’t believe the drama over the lat-
est’migrant caravan’. Meanwhile, my
aunt is living in a van down by the
river and nobody’s losing their minds.
#HypedForNoReason #FakeCrisis
Can’t believe @JoeBiden & @Kamala-
Harris are sitting back while a massive
migrant caravan makes its way to our
border! Dereliction of duty, anyone? I’m
done waiting for them to do their jobs.
Time to hold them accountable! #Fire-
Biden #HarrisMustGo
Can’t believe some folks still trying to
cross into Poland, despite Belarus say-
ing ‘come on in, stay for free’ What’s
the problem, folks? Minsk’s got couches,
not cardboard boxes! If conditions are
tough, pack up and head back to Minsk,
don’t risk it #PolandHasBorders
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We also explored features that did not occur fre-
quently enough to be included in the statistical anal-
ysis, but that nonetheless showed interesting corre-
lations with one class or the other. One example
of this is swear words (as defined by Wikipedia13).
The LLMs have been trained to (mostly) not pro-
duce profanity, and so when it occurs it almost
always indicates a human text, although the over-
all rate of swearing in the human data is also low
(around 3.5%). However, we observed that the
fine-tuned models re-learned the ability to swear
(see Figure 3), and at a rate remarkably similar to
that in our human data, even though the models
were fine-tuned on a completely different sample
of Twitter data, and specifically fine-tuned on a
sample that was benign enough to pass OpenAI’s
content moderation filters for training data.

Another example of a “rare” linguistic fea-
ture is the use of internet slang (modified from
Wikipedia14). We had originally hypothesized that
LLMs would not use as many slang words or ab-
breviations (e.g., wtf, lmao, irl) as humans. This
was true for GPT-4o and GPT-4o-mini, but not for
the Llama models, which in fact produced more
slang than humans (see Fig. 4). Furthermore, addi-
tional analysis revealed lexical differences between
the human text and Llama-3-8B text, with Llama
producing far more instances of ppl and omg, and
humans producing instances of lol and u (for you).
After fine-tuning, the lexical differences are dimin-
ished.

While the focus of this paper was not to ana-
lyze linguistic properties of AI-generated text, we
believe this kind of analysis provides additional in-
sight into the impact of fine-tuning on detectability.
We would emphasize that the language of social
media changes rapidly, as new hashtags are intro-
duced in response to current events, new words are
devised to avoid content filters, and new names and
topics of interest emerge. Therefore, an analysis of
current-day social media data might uncover even
larger differences between human-written text and
LLM generations, due to the latter’s training data
time horizons.

D AIGT Detection Results

Here we provide additional details of the AIGT
detection results. First note that in all classification

13https://en.wikipedia.org/wiki/Category:
English_profanity

14https://en.wiktionary.org/wiki/Appendix:
English_internet_slang

experiments, results are reported with a single run
(i.e., a single train-test split). In preliminary ex-
periments with three detection methods (fine-tuned
OpenAI’s PLM, Entropy, and Rank), three splits
were used, and the observed variance among exper-
imental runs was low.

Table 15 shows the full detectability results un-
der the complete knowledge scenario for all detec-
tors; this represents an expansion of the left side of
Table 2. Under the same idealized setup, we also
consider the performance metric TPR@FPR=.01
(Table 16). This table reports the true positive rate
when the false positive rate is constrained to be
0.01. Notably, even in this idealized case, the per-
formance of the metric-based classifiers is excep-
tionally poor. The PLM classifier is the only detec-
tor that performs well in this evaluation. However,
the drop in recall when detecting AIGT generated
by fine-tuned models is even more precipitous than
the observed drop in accuracy: for all four gen-
erating models, the true positive rate drops from
near-perfect to as low as 0.129 after fine-tuning.
Likewise, we observe very poor recall when a low
false positive rate is imposed on the off-the-shelf de-
tectors (Table 19). GPTZero is the best-performing
detector by an order of magnitude, but still exhibits
true positive rates as low as 0.12 on the base mod-
els. None of the off-the-shelf detectors achieve a
true positive rate above 0.05 (at a false positive rate
of 0.01) on the fine-tuned data.

Table 18 compares the classification accuracy
of the fine-tuned PLM detector on the processed
tweets (‘@’ mentions and links removed) and the
un-preprocessed tweets, under the idealized in-
distribution training setup. We observe that the
fine-tuned models did not successfully learn to gen-
erate realistic mentions and links, and therefore
detection is significantly easier when these tweet-
specific features are not removed from the gener-
ated text.

Regarding all generate from example (Gen-10)
results, recall that ten tweets are requested for each
human example, and up to ten generations are ex-
tracted from each output. For brevity, only the first
extracted tweet for each input is included in the
classification results throughout. However, the vari-
ance in detectability among tweets was observed
to be low, as shown in Table 17.

The viability of the metric-based detectors using
alternative measurement models is shown in Tables
20: Log-Likelihood, 21: Entropy, 22: Rank, 23:
Log-Rank, and 24: LLR.
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Feature Human (mean) Base LLM (mean) Fine-tuned (mean) Human-Base (R) Human-FT (R)

ats 0.043 0.00067 0.053 -0.47 0.11
links 0.026 2.2e-05 0.02 -0.38 -0.068
hashtags 0.071 0.06 0.029 0.26 -0.29
emojis 0.0074 0.071 0.011 0.92 0.048
length_chars 1.4e+02 2.1e+02 1.5e+02 0.6 0.084
offensive 0.021 0.0086 0.021 -0.11 0.017
misspelled 0.017 0.0084 0.019 -0.053 0.04
upper_lower_ratio 0.1 0.066 0.084 -0.15 -0.18
A01.pastVerbs 0.17 0.11 0.17 -0.1 0.021
A03.presVerbs 0.26 0.36 0.28 0.24 0.051
B05.timeAdverbials 0.0054 0.0041 0.0047 0.023 0.0036
C06.1persProns 0.025 0.029 0.022 0.21 -0.025
C07.2persProns 0.012 0.0073 0.015 -0.014 0.071
C08.3persProns 0.013 0.0089 0.015 -0.0097 0.054
C09.impersProns 0.0082 0.015 0.0086 0.24 0.022
C10.demonstrProns 0.012 0.012 0.015 0.085 0.069
C11.indefProns 0.003 0.0062 0.0039 0.14 0.035
C12.doAsProVerb 0.0034 0.0027 0.0042 0.016 0.031
D13.whQuestions 0.013 0.015 0.013 0.14 0.017
E14.nominalizations 0.014 0.015 0.016 0.11 0.053
E16.Nouns 0.14 0.14 0.14 0.068 0.04
G19.beAsMain 0.14 0.11 0.14 0.066 0.014
H23.WHclauses 0.0098 0.0099 0.0098 0.079 0.021
I39.preposn 0.08 0.079 0.082 0.0059 0.025
I40.attrAdj 0.058 0.065 0.06 0.15 0.029
I42.ADV 0.036 0.05 0.039 0.26 0.05
J43.TTR 0.9 0.9 0.89 -0.084 -0.062
J44.wordLength 4 4.1 4.1 0.089 0.097
K45.conjuncts 0.076 0.069 0.075 0.015 0.0034
K55.publicVerbs 0.033 0.021 0.029 -0.017 -0.008
K56.privateVerbs 0.064 0.11 0.074 0.25 0.056
L52.possibModals 0.031 0.047 0.027 0.13 -0.00024
L54.predicModals 0.032 0.0072 0.029 -0.077 0.00025
N59.contractions 0.12 0.24 0.11 0.39 -0.02
N60.thatDeletion 0.087 0.12 0.092 0.18 0.034
P67.analNegn 0.099 0.09 0.11 0.074 0.046

Table 11: Means and Effect size (R) of differences between human-written texts and texts generated by GPT-4o
(base model and fine-tuned (FT)). Positive R values indicate that the feature value is higher in AIGT than in
human-written text. Effect size can be interpreted as: |R| < 0.1 - no effect , |R| > 0.1 - small effect , |R| > 0.3 -
medium effect , |R| > 0.5 - large effect .
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Feature Human (mean) Base LLM (mean) Fine-tuned (mean) Human-Base (R) Human-FT (R)

ats 0.042 0.00081 0.049 -0.46 0.11
links 0.026 0 0.024 -0.38 -0.021
hashtags 0.071 0.054 0.03 0.22 -0.28
emojis 0.0074 0.083 0.012 0.94 0.047
length_chars 1.4e+02 2.3e+02 1.5e+02 0.68 0.057
offensive 0.021 0.0085 0.022 -0.099 0.014
misspelled 0.017 0.0063 0.016 -0.089 -0.0021
upper_lower_ratio 0.1 0.062 0.086 -0.21 -0.15
A01.pastVerbs 0.17 0.1 0.16 -0.097 0.0047
A03.presVerbs 0.26 0.37 0.29 0.28 0.069
B05.timeAdverbials 0.0054 0.003 0.0052 -0.0046 0.0091
C06.1persProns 0.025 0.032 0.023 0.27 -0.011
C07.2persProns 0.012 0.0061 0.017 -0.038 0.075
C08.3persProns 0.013 0.0095 0.014 0.02 0.021
C09.impersProns 0.0082 0.017 0.0094 0.33 0.036
C10.demonstrProns 0.012 0.013 0.015 0.13 0.073
C11.indefProns 0.003 0.0057 0.0037 0.14 0.029
D13.whQuestions 0.013 0.015 0.013 0.17 0.022
E14.nominalizations 0.014 0.016 0.016 0.17 0.032
E16.Nouns 0.14 0.13 0.15 -0.024 0.052
G19.beAsMain 0.14 0.083 0.13 0.0023 -0.0047
H23.WHclauses 0.0098 0.0094 0.011 0.087 0.041
I39.preposn 0.08 0.079 0.078 0.017 -0.016
I40.attrAdj 0.058 0.063 0.057 0.14 0.0056
I42.ADV 0.036 0.054 0.039 0.34 0.056
J43.TTR 0.9 0.89 0.88 -0.15 -0.076
J44.wordLength 4 4.1 4.1 0.056 0.045
K45.conjuncts 0.076 0.054 0.075 -0.097 -0.0018
K49.generalEmphatics 0.0019 0.0036 0.0028 0.089 0.028
K55.publicVerbs 0.033 0.018 0.025 -0.023 -0.026
K56.privateVerbs 0.064 0.11 0.075 0.29 0.059
L52.possibModals 0.031 0.06 0.037 0.23 0.033
L54.predicModals 0.032 0.0044 0.028 -0.088 -0.0015
N59.contractions 0.12 0.097 0.1 0.079 -0.046
N60.thatDeletion 0.087 0.11 0.09 0.19 0.028
P67.analNegn 0.099 0.076 0.12 0.062 0.067

Table 12: Means and Effect size (R) of differences between human-written texts and texts generated by GPT-4o-
mini (base model and fine-tuned (FT)). Positive R values indicate that the feature value is higher in AIGT than in
human-written text. Effect size can be interpreted as: |R| < 0.1 - no effect , |R| > 0.1 - small effect , |R| > 0.3 -
medium effect , |R| > 0.5 - large effect .
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Feature Human (mean) Base LLM (mean) Fine-tuned (mean) Human-Base (R) Human-FT (R)

ats 0.042 0.0043 0.066 -0.38 0.17
links 0.026 1.4e-05 0.023 -0.38 -0.027
hashtags 0.071 0.047 0.034 0.14 -0.26
length_chars 1.4e+02 2.7e+02 1.4e+02 0.79 0.02
offensive 0.021 0.011 0.02 -0.033 -0.0015
misspelled 0.017 0.0094 0.015 0.0017 -0.022
upper_lower_ratio 0.1 0.062 0.08 -0.24 -0.15
A01.pastVerbs 0.17 0.17 0.16 0.091 -0.02
A03.presVerbs 0.26 0.33 0.3 0.18 0.097
B04.placeAdverbials 0.0018 0.0022 0.0015 0.052 -0.0062
B05.timeAdverbials 0.0054 0.0037 0.0054 0.038 0.0098
C06.1persProns 0.025 0.039 0.028 0.37 0.04
C07.2persProns 0.012 0.0071 0.016 -0.00092 0.076
C08.3persProns 0.013 0.012 0.013 0.093 0.0017
C09.impersProns 0.0082 0.011 0.011 0.22 0.064
C10.demonstrProns 0.012 0.012 0.014 0.12 0.049
C11.indefProns 0.003 0.0047 0.0034 0.12 0.023
C12.doAsProVerb 0.0034 0.0023 0.0043 0.025 0.03
D13.whQuestions 0.013 0.013 0.013 0.14 0.022
E14.nominalizations 0.014 0.02 0.017 0.27 0.051
E16.Nouns 0.14 0.15 0.14 0.15 0.00013
G19.beAsMain 0.14 0.13 0.14 0.16 0.0063
H23.WHclauses 0.0098 0.011 0.01 0.15 0.023
I39.preposn 0.08 0.081 0.078 0.033 -0.024
I40.attrAdj 0.058 0.066 0.056 0.17 -0.0017
I42.ADV 0.036 0.047 0.037 0.27 0.02
J43.TTR 0.9 0.83 0.88 -0.47 -0.073
J44.wordLength 4 4.2 4 0.18 -0.0056
K45.conjuncts 0.076 0.092 0.078 0.21 0.021
K55.publicVerbs 0.033 0.029 0.025 0.04 -0.028
K56.privateVerbs 0.064 0.12 0.081 0.34 0.072
L52.possibModals 0.032 0.074 0.034 0.28 0.019
L54.predicModals 0.031 0.015 0.031 -0.027 -0.003
N59.contractions 0.12 0.4 0.11 0.65 -0.037
N60.thatDeletion 0.087 0.14 0.096 0.3 0.042
P67.analNegn 0.099 0.14 0.12 0.27 0.06

Table 13: Means and Effect size (R) of differences between human-written texts and texts generated by Llama-3-8B
(base model and fine-tuned (FT)). Positive R values indicate that the feature value is higher in AIGT than in
human-written text. Effect size can be interpreted as: |R| < 0.1 - no effect , |R| > 0.1 - small effect , |R| > 0.3 -
medium effect , |R| > 0.5 - large effect .
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Feature Human (mean) Base LLM (mean) Fine-tuned (mean) Human-Base (R) Human-FT (R)

ats 0.042 0.003 0.066 -0.42 0.15
links 0.026 4.8e-05 0.023 -0.38 -0.018
hashtags 0.071 0.035 0.035 -0.015 -0.22
length_chars 1.4e+02 2.7e+02 1.6e+02 0.78 0.16
offensive 0.021 0.011 0.019 -0.019 0.0075
misspelled 0.017 0.0085 0.014 -0.012 -0.02
upper_lower_ratio 0.1 0.054 0.08 -0.36 -0.17
A01.pastVerbs 0.17 0.16 0.16 0.039 -0.011
A03.presVerbs 0.26 0.33 0.31 0.16 0.11
B05.timeAdverbials 0.0054 0.003 0.0046 0.016 0.0018
C06.1persProns 0.025 0.042 0.026 0.39 0.031
C07.2persProns 0.012 0.0071 0.019 -0.0014 0.12
C08.3persProns 0.013 0.013 0.015 0.11 0.049
C09.impersProns 0.0082 0.013 0.012 0.26 0.11
C10.demonstrProns 0.012 0.01 0.017 0.077 0.11
C11.indefProns 0.003 0.0039 0.0038 0.095 0.043
C12.doAsProVerb 0.0034 0.0024 0.0043 0.027 0.041
D13.whQuestions 0.013 0.013 0.014 0.13 0.039
E14.nominalizations 0.014 0.021 0.017 0.28 0.069
E16.Nouns 0.14 0.16 0.13 0.18 -0.038
G19.beAsMain 0.14 0.15 0.14 0.2 0.034
H23.WHclauses 0.0098 0.011 0.01 0.17 0.039
I39.preposn 0.08 0.08 0.076 0.03 -0.037
I40.attrAdj 0.058 0.065 0.056 0.16 -0.0031
I42.ADV 0.036 0.043 0.039 0.22 0.053
J43.TTR 0.9 0.81 0.87 -0.57 -0.18
J44.wordLength 4 4.1 4 0.11 -0.025
K45.conjuncts 0.076 0.092 0.082 0.21 0.054
K50.discoursePart 0.0029 0.0022 0.0032 0.027 0.015
K55.publicVerbs 0.033 0.034 0.028 0.065 -0.0098
K56.privateVerbs 0.064 0.095 0.08 0.22 0.084
L52.possibModals 0.032 0.066 0.03 0.22 0.014
L54.predicModals 0.031 0.02 0.032 -0.0035 0.013
N59.contractions 0.12 0.49 0.11 0.69 -0.017
N60.thatDeletion 0.087 0.12 0.097 0.21 0.056
P67.analNegn 0.099 0.15 0.12 0.29 0.082

Table 14: Means and Effect size (R) of differences between human-written texts and texts generated by Llama-3.2-
1B (base model and fine-tuned (FT)). Positive R values indicate that the feature value is higher in AIGT than in
human-written text. Effect size can be interpreted as: |R| < 0.1 - no effect , |R| > 0.1 - small effect , |R| > 0.3 -
medium effect , |R| > 0.5 - large effect .
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Figure 2: Frequency of occurrence of the most frequent “private verbs” by Llama-3-8B and humans.

E Human Study

We recruited human participants through Amazon
Mechanical Turk crowd-sourcing service request-
ing workers residing in the United States, who have
completed at least 5,000 HITs in the past and who
had at least 95% approval rate. One hundred and
thirty participants (58% male, 41% female; 62% 35
years old and younger, 36% between the ages of 36
and 64, 2% 65 years and older) completed the study
that compared GPT-4o base model generations with
human-written tweets, and 120 participants (60%
male, 39% female; 60% 35 years old and younger,
39% between the ages of 36 and 64, 1% 65 years
and older) completed the study that compared the
fine-tuned GPT-4o’s generation with the same set
of human-written tweets.

In both studies, after providing an informed con-
sent to participate in the study and reading the in-
structions describing the task, each participant was
presented with five groups of six tweets each, three
human-written and three AI-generated (see Fig-
ure 5; the full task is available in the Supplemen-
tary Materials). The groups were formed by the

topic, and the five topics were COVID-19, Abor-
tion, Refugees and Migrants, Brexit, and Ukraine.
The human-written tweets were randomly sampled
from the human-written data collection described
in Sec. 3.1. The AI-generated tweets were also ran-
domly sampled from the sets of tweets generated by
the base or fine-tuned (on the ‘large’ 2,000 sample)
GPT-4o models, respectively, for the same five top-
ics using the Topic prompt. The fine-tuned model
generated a small percentage of tweets (0.64%) in
a language other than English; those tweets were
not included in the human study.

Participants were asked to select one of the two
labels, ‘human-written’ or ‘AI-generated’, as the
most likely source for each tweet. They could also
optionally indicate in a free-form textbox which
cues they relied upon when doing the task. Finally,
they answered a set of demographic questions, in-
cluding their gender, age, the frequency of social
media use, and the frequency of generative AI use.
The task took on average 11 minutes, and each
participant was paid $2.00 USD ($11.00 USD per
hour).
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Figure 3: Proportion of tweets containing at least one profanity.

Figure 4: Proportion of tweets containing at least one slang word or abbreviation.
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Figure 5: The task instructions and one group of tweets for annotation in the human study.
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Annotation quality was maintained through the
following measures:

• Two AI-generated tweets were replaced with
an obvious AI model signature, “As an AI
assistant, I don’t have personal opinions or
experiences” and “Here is the tweet you re-
quested: “Recent reports highlight a rise in

’violence and severe human rights breaches’
faced by migrants at EU frontiers.” Let me
know if there’s anything else I can help you
with”, and were used as check questions. If
a participant incorrectly labeled one or both
of these tweets as ‘human-written’, all the an-
notations provided by this participant were
discarded.

• Participants were incentivized with a cash
bonus if their annotation accuracy was in the
top 5% of all participants who completed the
task.

In total, 3,640 tweets (1,950 human-written
and 1,690 AI-generated) were annotated for the
first study (base model), and 3,360 (1,800 human-
written and 1,560 AI-generated) were annotated
for the second study (fine-tuned model). In the
first study, 51 participants incorrectly answered the
check questions, leaving 2,212 annotated tweets
(1,185 human-written and 1,027 AI-generated). In
the second study, 43 participants incorrectly an-
swered the check questions, leaving 2,156 anno-
tated tweets (1,155 human-written and 1,001 AI-
generated). For all remaining participants, we cal-
culated the average accuracy as the percentage of
times the participants guessed the tweet source (hu-
man vs. AI) correctly, excluding the two check
tweets. The average accuracy (± 1 standard devi-
ation) for the base model is 61.2% ± 1.68% and
for the fine-tuned model is 53.9% ± 0.82%. The
observed difference in the means is significant with
a p-value of 0.0007 using a two-tailed heteroscedas-
tic t-test. The free-form answers show that partici-
pants expected the AI-generated tweets to use more
formal and neutral language, have proper grammar,
overuse emojis and hashtags, and be more generic
in content. While helpful in the study on detectabil-
ity of the base model, these cues turned out to
be misleading in the case of the fine-tuned model.
These results support our hypothesis that the texts
generated by the fine-tuned model are harder for
an average human user to detect than the texts gen-
erated by the base LLM.
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LLM Prompt LL Entr. Rank L-Rank LLR F-DGPT Bino. PLM

Llama-3.2-1B Para-1 0.792 0.710 0.686 0.781 0.709 0.711 0.653 0.931
Llama-3.2-1B Para-2 0.815 0.750 0.721 0.807 0.733 0.698 0.666 0.971
Llama-3.2-1B Para-3 0.809 0.770 0.718 0.791 0.725 0.672 0.669 0.988
Llama-3.2-1B Gen-10 0.605 0.524 0.573 0.603 0.585 0.695 0.608 0.920
Llama-3-8B Para-1 0.653 0.570 0.580 0.638 0.566 0.632 0.629 0.941
Llama-3-8B Para-2 0.621 0.547 0.575 0.602 0.548 0.606 0.618 0.972
Llama-3-8B Para-3 0.677 0.562 0.507 0.632 0.520 0.534 0.570 0.972
Llama-3-8B Gen-10 0.691 0.605 0.618 0.680 0.587 0.635 0.686 0.911
GPT-4o-mini Para-1 - - - - - - 0.538 0.903
GPT-4o-mini Para-2 - - - - - - 0.539 0.891
GPT-4o-mini Para-3 - - - - - - 0.546 0.945
GPT-4o-mini Gen-10 - - - - - - 0.553 0.873
GPT-4o Para-1 - - - - - - 0.520 0.900
GPT-4o Para-2 - - - - - - 0.519 0.916
GPT-4o Para-3 - - - - - - 0.523 0.940
GPT-4o Gen-10 - - - - - - 0.528 0.867

Llama-3.2-1B (base) Topic 0.905 0.797 0.757 0.899 0.824 0.800 0.728 0.990
FT_Llama-1B-small Topic 0.687 0.516 0.628 0.678 0.614 0.767 0.567 0.857
FT_Llama-1B-large Topic 0.708 0.556 0.637 0.701 0.611 0.711 0.559 0.838

Llama-3-8B (base) Topic 0.928 0.844 0.767 0.919 0.783 0.692 0.788 0.992
FT_Llama-8B-small Topic 0.694 0.517 0.606 0.659 0.535 0.732 0.641 0.837
FT_Llama-8B-large Topic 0.653 0.513 0.566 0.624 0.525 0.720 0.608 0.803

GPT4o-mini (base) Topic - - - - - - 0.758 0.997
FT_GPT4o-mini-small Topic - - - - - - 0.585 0.782
FT_GPT4o-mini-large Topic - - - - - - 0.545 0.741

GPT4o (base) Topic - - - - - - 0.650 0.999
FT_GPT4o-small Topic - - - - - - 0.509 0.723
FT_GPT4o-large Topic - - - - - - 0.491 0.716

Table 15: Detectability of the AI-generated text using idealized detectors (reported by accuracy). Measurement-
model dependent detectors (Log-Likelihood (LL), Entropy (Entr.), Rank, Log-Rank (L-Rank), the Log-Likelihood-
Log-Rank Ratio (LLR), and Fast-DetectGPT (F-DGPT)) use the generating model as the measurement model
(i.e., white-box access to a known generator is assumed) where available. The metric-based detectors (all the
aforementioned plus Binoculars (Bino.)) have decision thresholds calibrated using in-distribution data. A pre-
trained classifier (PLM) (here, OpenAI’s Roberta-based detector) is further fine-tuned on the data distribution
to detect. The PLM detector is the strongest and illuminates how detectable each AIGT dataset is, by using
these unrealistic but ideal conditions. Base models without access to a human reference (using the topic prompt)
generate completely detectable text . Fine-tuned GPT4o with more training data (FT_GPT4o-large) generates the

most evasive text , achieving nearly a 30-point decrease in classification accuracy.
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LLM Prompt LL Entr. Rank L-Rank LLR F-DGPT Bino. PLM

Llama-3.2-1B Para-1 0.2185 0.0885 0.1357 0.1967 0.0561 0.1017 0.0342 0.8612
Llama-3.2-1B Para-2 0.2207 0.1094 0.1189 0.1977 0.0710 0.0622 0.0170 0.9454
Llama-3.2-1B Para-3 0.2207 0.1680 0.1034 0.1844 0.0847 0.0372 0.0158 0.9870
Llama-3.2-1B Gen-10 0.0908 0.0199 0.0593 0.0918 0.0651 0.1186 0.0461 0.6853
Llama-3-8B Para-1 0.0638 0.0118 0.0210 0.0402 0.0096 0.0603 0.0341 0.7360
Llama-3-8B Para-2 0.0237 0.0055 0.0291 0.0310 0.0036 0.0182 0.0455 0.9344
Llama-3-8B Para-3 0.0562 0.0112 0.0225 0.0506 0.0169 0.0225 0.0225 0.9213
Llama-3-8B Gen-10 0.0753 0.0351 0.0427 0.0753 0.0285 0.0431 0.0572 0.7104
GPT-4o-mini Para-1 - - - - - - 0.0119 0.5850
GPT-4o-mini Para-2 - - - - - - 0.0098 0.6154
GPT-4o-mini Para-3 - - - - - - 0.0090 0.8396
GPT-4o-mini Gen-10 - - - - - - 0.0149 0.5286
GPT-4o Para-1 - - - - - - 0.0117 0.6508
GPT-4o Para-2 - - - - - - 0.0139 0.7216
GPT-4o Para-3 - - - - - - 0.0072 0.8390
GPT-4o Gen-10 - - - - - - 0.0175 0.2869

Llama-3.2-1B Topic 0.4040 0.0990 0.1829 0.3716 0.0998 0.2079 0.0291 0.9884
FT_Llama-1B-small Topic 0.1269 0.0200 0.0134 0.1136 0.0223 0.0312 0.0156 0.4321
FT_Llama-1B-large Topic 0.1177 0.0078 0.0660 0.0944 0.0168 0.0453 0.0103 0.4010

Llama-3-8B Topic 0.5223 0.1500 0.1811 0.4642 0.0670 0.0163 0.0354 1.0000
FT_Llama-8B-small Topic 0.1492 0.0163 0.0425 0.1022 0.0136 0.0670 0.0398 0.4322
FT_Llama-8B-large Topic 0.0930 0.0031 0.0418 0.0878 0.0115 0.0522 0.0288 0.2685

GPT4o-mini Topic - - - - - - 0.0102 0.9996
FT_GPT4o-mini-small Topic - - - - - - 0.0367 0.1558
FT_GPT4o-mini-large Topic - - - - - - 0.0173 0.1437

GPT4o Topic - - - - - - 0.0022 1.0000
FT_GPT4o-small Topic - - - - - - 0.0126 0.1221
FT_GPT4o-large Topic - - - - - - 0.0076 0.1294

Table 16: Performance of idealized detectors (TPR@FPR=.01). Base models without access to a human example
tweet (i.e., using the Topic prompt) generate completely detectable text , even when the PLM-based detector is
restricted to a low false positive rate. Fine-tuned GPT4o with less training data (FT_GPT4o-small) achieves the
lowest TPR@FPR=.01 of any generator, as measured by the strongest detector.

Generation
LLM 1 2 3 4 5 6 7 8 9 10 mean std

Llama-3.2-1B 0.920 0.927 0.919 0.921 0.925 0.925 0.922 0.935 0.927 0.960 0.928 0.011
Llama-3-8B 0.911 0.918 0.887 0.906 0.897 0.915 0.916 0.881 0.841 0.897 0.897 0.022
GPT4o-mini 0.873 0.852 0.870 0.861 0.861 0.878 0.878 0.862 0.890 0.841 0.867 0.014
GPT4o 0.867 0.858 0.868 0.863 0.857 0.862 0.845 0.851 0.869 0.866 0.861 0.008

Table 17: Classification accuracy of the fine-tuned PLM detector on each generation resulting from the “generate
10” prompt for each base model. The first generation set is taken as the representative of this prompting strategy
throughout. Rightmost columns show the mean and standard deviation (std).
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LLM Prompt Processed Unprocessed (@’s and links) |Difference|

Llama-3.2-1B Para-1 0.931 0.945 0.014
Llama-3.2-1B Para-2 0.971 0.973 0.002
Llama-3.2-1B Para-3 0.988 0.991 0.003
Llama-3.2-1B Gen-10 0.920 0.928 0.008
Llama-3-8B Para-1 0.941 0.936 0.005
Llama-3-8B Para-2 0.972 0.963 0.009
Llama-3-8B Para-3 0.972 0.964 0.008
Llama-3-8B Gen-10 0.911 0.889 0.022
GPT-4o-mini Para-1 0.903 0.894 0.009
GPT-4o-mini Para-2 0.891 0.898 0.007
GPT-4o-mini Para-3 0.945 0.933 0.012
GPT-4o-mini Gen-10 0.873 0.898 0.025
GPT-4o Para-1 0.900 0.874 0.026
GPT-4o Para-2 0.916 0.921 0.005
GPT-4o Para-3 0.940 0.944 0.004
GPT-4o Gen-10 0.867 0.863 0.004

Llama-3.2-1B (base) Topic 0.990 0.991 0.001
FT_Llama-1B-small Topic 0.857 0.894 0.037
FT_Llama-1B-large Topic 0.838 0.888 0.050

Llama-3-8B (base) Topic 0.992 0.994 0.002
FT_Llama-8B-small Topic 0.837 0.869 0.032
FT_Llama-8B-large Topic 0.803 0.841 0.038

GPT4o-mini (base) Topic 0.997 0.999 0.002
FT_GPT4o-mini-small Topic 0.782 0.817 0.035
FT_GPT4o-mini-large Topic 0.741 0.804 0.063

GPT4o (base) Topic 0.999 0.994 0.005
FT_GPT4o-small Topic 0.723 0.803 0.080
FT_GPT4o-large Topic 0.716 0.792 0.076

Table 18: Classification accuracy of the fine-tuned PLM-based detector on each generated dataset before (Un-
processed) and after (Processed) removing the mentions (@’s) and links. For base generators, the inclusion of
tweet-specific features does not greatly affect detectability. Fine-tuned generators are more detectable when these
features are not removed in post-processing. Absolute differences greater than 0.03 and 0.05 are highlighted.
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LLM Prompt Binoculars Open-AI ChatGPT Detector GPTZero

Llama-3.2-1B Para-1 0.0342 0.0267 0.0623 0.3324
Llama-3.2-1B Para-2 0.0170 0.0164 0.0667 0.4302
Llama-3.2-1B Para-3 0.0158 0.0130 0.0624 0.3972
Llama-3.2-1B Gen-10 0.0461 0.0432 0.0452 0.2055
Llama-3-8B Para-1 0.0341 0.0061 0.0455 0.3886
Llama-3-8B Para-2 0.0455 0.0091 0.0656 0.5545
Llama-3-8B Para-3 0.0225 0.0112 0.0562 0.4838
Llama-3-8B Gen-10 0.0572 0.0142 0.0558 0.3505
GPT-4o-mini Para-1 0.0119 0.0079 0.0333 0.2242
GPT-4o-mini Para-2 0.0098 0.0033 0.0443 0.2727
GPT-4o-mini Para-3 0.0090 0.0062 0.0464 0.4234
GPT-4o-mini Gen-10 0.0149 0.0093 0.0574 0.2017
GPT-4o Para-1 0.0117 0.0060 0.0389 0.2624
GPT-4o Para-2 0.0139 0.0086 0.0432 0.3035
GPT-4o Para-3 0.0072 0.0102 0.0537 0.4124
GPT-4o Gen-10 0.0175 0.0058 0.0362 0.1220

Llama-3.2-1B Topic 0.0291 0.0324 0.0599 0.4764
FT_Llama-1B-small Topic 0.0156 0.0312 0.0356 0.0045
FT_Llama-1B-large Topic 0.0103 0.0336 0.0323 0.0091

Llama-3-8B Topic 0.0354 0.0121 0.0447 0.7707
FT_Llama-8B-small Topic 0.0398 0.0163 0.0416 0.0163
FT_Llama-8B-large Topic 0.0288 0.0178 0.0209 0.0068

GPT4o-mini Topic 0.0102 0.0029 0.0651 0.9496
FT_GPT4o-mini-small Topic 0.0367 0.0167 0.0217 0.0261
FT_GPT4o-mini-large Topic 0.0173 0.0149 0.0107 0.0059

GPT4o Topic 0.0022 0.0013 0.0578 0.8584
FT_GPT4o-small Topic 0.0126 0.0155 0.0118 0.0097
FT_GPT4o-large Topic 0.0076 0.0084 0.0160 0.0051

Table 19: Performance of off-the-shelf detectors (TPR@FPR=.01).

Generating LLM GPT-2 Llama-1B FT-1B-sm FT-1B-lg Llama-8B FT-8B-sm FT-8B-lg

Llama-3.2-1B 0.843 0.964 0.923 0.918 0.863 0.777 0.788
FT_Llama-1B-small 0.536 0.643 0.758 0.663 0.521 0.506 0.528
FT_Llama-1B-large 0.553 0.667 0.682 0.78 0.501 0.515 0.519

Llama-3-8B 0.86 0.968 0.923 0.92 0.978 0.927 0.93
FT_Llama-8B-small 0.627 0.671 0.709 0.689 0.663 0.76 0.687
FT_Llama-8B-large 0.559 0.601 0.6 0.628 0.61 0.631 0.71

GPT4o-mini 0.808 0.961 0.938 0.934 0.948 0.89 0.902
FT_GPT4o-mini-small 0.575 0.609 0.631 0.627 0.574 0.6 0.589
FT_GPT4o-mini-large 0.476 0.543 0.539 0.551 0.481 0.521 0.54

GPT4o 0.764 0.919 0.877 0.876 0.913 0.834 0.847
FT_GPT4o-small 0.49 0.534 0.546 0.545 0.513 0.527 0.525
FT_GPT4o-large 0.524 0.496 0.488 0.494 0.525 0.526 0.514

Table 20: Classification potential (AUROC) of a measurement-model dependent metric, Log-Likelihood. The
matrix shows measurement models (columns) against generating models (rows). Typically, best-case performance is
achieved when the measurement model is equal to the generating model (green). Yellow highlights the sub-matrices
where the measurement model at least shares a common base model with the generator.
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Generating LLM GPT-2 Llama-1B FT-1B-sm FT-1B-lg Llama-8B FT-8B-sm FT-8B-lg

Llama-3.2-1B 0.67 0.878 0.841 0.818 0.778 0.73 0.647
FT_Llama-1B-small 0.51 0.512 0.529 0.517 0.61 0.596 0.616
FT_Llama-1B-large 0.515 0.55 0.558 0.574 0.595 0.577 0.592

Llama-3-8B 0.705 0.937 0.891 0.873 0.915 0.872 0.821
FT_Llama-8B-small 0.556 0.587 0.569 0.552 0.533 0.525 0.496
FT_Llama-8B-large 0.513 0.527 0.52 0.515 0.513 0.527 0.515

GPT4o-mini 0.774 0.978 0.92 0.92 0.953 0.906 0.851
FT_GPT4o-mini-small 0.52 0.545 0.475 0.489 0.497 0.521 0.532
FT_GPT4o-mini-large 0.508 0.505 0.525 0.527 0.521 0.506 0.514

GPT4o 0.738 0.958 0.894 0.898 0.933 0.889 0.843
FT_GPT4o-small 0.504 0.504 0.5 0.501 0.513 0.516 0.523
FT_GPT4o-large 0.524 0.527 0.51 0.52 0.532 0.517 0.523

Table 21: Classification potential (AUROC) of a measurement-model dependent metric, Entropy. The matrix shows
measurement models (columns) against generating models (rows). Typically, best-case performance is achieved
when the measurement model is equal to the generating model (green). Yellow highlights the sub-matrices where
the measurement model at least shares a common base model with the generator.

Generating LLM GPT-2 Llama-1B FT-1B-sm FT-1B-lg Llama-8B FT-8B-sm FT-8B-lg

Llama-3.2-1B 0.781 0.86 0.827 0.825 0.817 0.76 0.764
FT_Llama-1B-small 0.548 0.663 0.725 0.682 0.577 0.579 0.565
FT_Llama-1B-large 0.537 0.676 0.667 0.722 0.585 0.546 0.557

Llama-3-8B 0.754 0.857 0.806 0.802 0.862 0.819 0.823
FT_Llama-8B-small 0.557 0.64 0.659 0.643 0.622 0.673 0.636
FT_Llama-8B-large 0.533 0.604 0.596 0.605 0.585 0.597 0.631

GPT4o-mini 0.711 0.836 0.812 0.808 0.809 0.766 0.781
FT_GPT4o-mini-small 0.538 0.592 0.608 0.601 0.564 0.58 0.574
FT_GPT4o-mini-large 0.499 0.546 0.543 0.543 0.473 0.479 0.466

GPT4o 0.678 0.794 0.759 0.757 0.789 0.733 0.742
FT_GPT4o-small 0.51 0.528 0.54 0.538 0.489 0.48 0.482
FT_GPT4o-large 0.533 0.496 0.494 0.499 0.512 0.488 0.491

Table 22: Classification potential (AUROC) of a measurement-model dependent metric, Rank. The matrix shows
measurement models (columns) against generating models (rows). Typically, best-case performance is achieved
when the measurement model is equal to the generating model (green). Yellow highlights the sub-matrices where
the measurement model at least shares a common base model with the generator.

Generating LLM GPT-2 Llama-1B FT-1B-sm FT-1B-lg Llama-8B FT-8B-sm FT-8B-lg

Llama-3.2-1B 0.84 0.959 0.918 0.916 0.859 0.782 0.783
FT_Llama-1B-small 0.553 0.649 0.747 0.663 0.521 0.499 0.53
FT_Llama-1B-large 0.571 0.672 0.68 0.77 0.499 0.516 0.513

Llama-3-8B 0.856 0.966 0.925 0.925 0.973 0.928 0.927
FT_Llama-8B-small 0.629 0.671 0.7 0.679 0.65 0.728 0.665
FT_Llama-8B-large 0.568 0.602 0.597 0.619 0.598 0.609 0.685

GPT4o-mini 0.832 0.959 0.934 0.933 0.946 0.897 0.9
FT_GPT4o-mini-small 0.581 0.601 0.616 0.609 0.558 0.577 0.568
FT_GPT4o-mini-large 0.528 0.544 0.541 0.55 0.485 0.484 0.531

GPT4o 0.767 0.917 0.879 0.882 0.914 0.852 0.855
FT_GPT4o-small 0.514 0.529 0.537 0.535 0.494 0.514 0.513
FT_GPT4o-large 0.521 0.496 0.494 0.497 0.524 0.524 0.517

Table 23: Classification potential (AUROC) of a measurement-model dependent metric, Log-Rank. The matrix
shows measurement models (columns) against generating models (rows). Typically, best-case performance is
achieved when the measurement model is equal to the generating model (green). Yellow highlights the sub-matrices
where the measurement model at least shares a common base model with the generator.
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Generating LLM GPT-2 Llama-1B FT-1B-sm FT-1B-lg Llama-8B FT-8B-sm FT-8B-lg

Llama-3.2-1B 0.788 0.895 0.822 0.818 0.769 0.702 0.662
FT_Llama-1B-small 0.586 0.632 0.645 0.606 0.504 0.512 0.522
FT_Llama-1B-large 0.602 0.645 0.618 0.654 0.52 0.5 0.501

Llama-3-8B 0.797 0.905 0.846 0.844 0.86 0.795 0.77
FT_Llama-8B-small 0.613 0.644 0.622 0.598 0.582 0.545 0.543
FT_Llama-8B-large 0.582 0.58 0.559 0.551 0.537 0.51 0.53

GPT4o-mini 0.836 0.9 0.825 0.824 0.84 0.779 0.728
FT_GPT4o-mini-small 0.576 0.555 0.533 0.518 0.503 0.526 0.528
FT_GPT4o-mini-large 0.533 0.537 0.533 0.532 0.499 0.503 0.504

GPT4o 0.73 0.846 0.793 0.796 0.822 0.777 0.748
FT_GPT4o-small 0.523 0.516 0.507 0.499 0.511 0.521 0.522
FT_GPT4o-large 0.489 0.505 0.512 0.508 0.51 0.504 0.514

Table 24: Classification potential (AUROC) of a measurement-model dependent metric, LLR. The matrix shows
measurement models (columns) against generating models (rows). Typically, best-case performance is achieved
when the measurement model is equal to the generating model (green). Yellow highlights the sub-matrices where
the measurement model at least shares a common base model with the generator.
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