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Abstract

Despite the surge of interest in autonomous
scientific discovery (ASD) of software arti-
facts (e.g., improved ML algorithms), current
ASD systems face two key limitations: (1)
they largely explore variants of existing code-
bases or similarly constrained design spaces,
and (2) they produce large volumes of research
artifacts (such as automatically generated pa-
pers and code) that are typically evaluated us-
ing conference-style paper review with lim-
ited evaluation of code. In this work we intro-
duce CodeScientist, a novel ASD system that
frames ideation and experiment construction
as a form of genetic search jointly over com-
binations of research articles and codeblocks
defining common actions in a domain (like
prompting a language model). We use this
paradigm to conduct hundreds of automated ex-
periments on machine-generated ideas broadly
in the domain of agents and virtual environ-
ments, with the system returning 19 discover-
ies, 6 of which were judged as being both at
least minimally sound and incrementally novel
after a multi-faceted evaluation beyond that typ-
ically conducted in prior work, including exter-
nal (conference-style) review, code review, and
replication attempts. Moreover, the discover-
ies span new tasks, agents, metrics, and data,
suggesting a qualitative shift from benchmark
optimization to broader discoveries.1

1 Introduction
Automated scientific discovery (ASD) systems have
already had success in targeted domains like pro-
tein folding (AlphaFold, Jumper et al., 2021), an-
tibiotic discovery (Stokes et al., 2020), and model
optimization (Lion, Chen et al., 2023), by using
custom problem-specific systems that search (large)
hand-crafted search spaces. Recently, language
models (LMs) are fueling explorations into more
problem-general discovery systems capable of the

1https://github.com/allenai/codescientist

full research pipeline of ideation, planning, (code-
based) experimentation, and experiment analysis,
with numerous impressive systems appearing re-
cently, including AI Scientist (Lu et al., 2024a),
AIGS (Liu et al., 2024), AgentLab (Schmidgall
et al., 2025), and Data-to-Paper (Ifargan et al.,
2024). Impressive as these systems are, each makes
simplifications to reduce complexity, such as re-
stricting search to variants of prewritten code, us-
ing a DSL for experiments, or working on restricted
problems.

In this work we introduce CodeScientist, an
ASD system built with novel innovations for
ideation and experiment execution – incorporating
genetic search (Hemberg et al., 2024) over combi-
nations of literature and code – that we hypothesize
will increase the diversity of the discoveries the sys-
tem makes. We run our system at scale (hundreds of
experiments) in the broad domain of agents and vir-
tual environments, and find that of the 19 discover-
ies our system suggests, 6 appear to meet minimum
thresholds for scientific soundness and incremen-
tal novelty after domain expert review. Moreover,
the discoveries our system produces qualitatively
appear diverse, and span creating new tasks, agents,
metrics, data, and challenging assumptions, which
builds-upon (while broadening) the scope of the im-
pressive accomplishments of existing systems that
focus on improving model performance on stan-
dardized ML benchmarks (e.g. Schmidgall et al.,
2025; Li et al., 2024; Huang et al., 2024).

Orthogonally, ASD research itself is faced with
significant methodological challenges that limit
progress. The first, evaluating discoveries, is com-
plex in that scientific discovery is (by definition) at
the edge of human knowledge, and as such, tasks
with gold annotated outcomes (e.g., SWE-Bench,
Jimenez et al., 2023) are generally unavailable. Al-
ternative assessments are needed, for example the
way humans evaluate research – namely, rigorous
(and expensive) manual review, or the use of proxy
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Ideation

Batch Idea #314
Name: simulation-con�dence-analysis
Hypothesis: Self-assessed LLM con�dence will correlate with accuracy in 
state prediction tasks.
Variables: Accuracy, Con�dence
Pilot: Use TextWorldExpress to generate 200 state-prediction pairs. Focus on 
boolean property predictions with conference scores.

Generate batch of candidate ideas

Human Select a subset of promising ideas

Planning
Plan for Batch Idea #314

Benchmark: Use TextWorldExpress to generate CookingWorld environments
(environment parameters: 3 ingredients, 2 distractors, no doors)
Model: Use `gpt-4o-mini` for all LLM calls.
Data Collection: Prompt the LLM for a state prediction with con�dence 
scores. Use an LLM-as-a-judge to score prediction accuracy (0-1). 
Pilot: 3 episodes, 10 steps each.  Full: 50 episodes, 25 steps each.
Codeblocks: LLM call example, TextWorldExpress example, plotting example,
robust inferrential statistics example, logger/debugger example.

Create experiment plans

Experiment Create & Run Experiments

Generated Artifact & Experiment Code
def model():
      . . .
def evaluate(environment, model):
      . . .
def run_experiment(): 
      for i in range(0, num_episodes):
            environment = TextWorldExpress(params)
            result_one_episode = evaluate(environment, model)

Codeblock
LLM Call
Example

Codeblock
TextWorldEx

Example

Codeblock
Plotting
Example

Codeblock
Statistics
Example

Results
Accuracy vs. Con�dence

Correlation:  r2 = 0.21

Log
1: Calling LLM (prompt: ...)

2: LLM response: ...

Experiment Output

Code Generation

Codeblock Library
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5 independent experiment attempts

Meta-Analysis

Run 1
Supports

Hypothesis

Run 2
Supports

Hypothesis

Run 3
Supports

Hypothesis

Run 4
Inconclusive

Results

Run 5
Supports

Hypothesis

Batch Idea #314

Overall results support the hypothesis.

Human Examines and veri�es code & results
of interesting experiments

Human Provide short example codeblocks

Human Provide papers of interest

Human Provide brief comments on each idea

Comments for Idea #314
Metric: instead of raw string matching, should use llm-as-a-judge as this will
be more robust to variations in presentation.

Run 1
Report

Run 2
Report

Run 3
Report

Run 4
Report

Run 5
Report

Written Reports for Batch Idea #314

Cross-Experiment Analysis

Reporting Summarize methods and results

Codeblock: LLM Call Example
def prompt_llm(prompt:str, model:str, temp:�oat, max_tokens:int): ...

LLM-AS-A-MUTATOR Input: papers and codeblocks, Output: Ideas

Figure 1: An overview of the core stages of the CodeScientist discovery workflow, including ideation, planning, building and
executing code-based experiments, reporting results, and performing meta-analyses across experiments.

metrics (Lu et al., 2024a) that are progressively im-
proving their agreement with human ratings (Raden-
sky et al., 2024). The second challenge, variabil-
ity, acknowledges that even when using low tem-
peratures, workflows built upon language models
rarely produce the same output – especially when
each step autoregressively depends upon the out-
put of the previous step. Across successive runs,
the specific ideas that an ASD system generates
are different, and (as we show in this work), the
code it implements for those ideas (and whether it
succeeds or fails) is also highly variable – making
comparisons across systems (or ablations of a sin-
gle system) costly, methodologically challenging,
and uncommon in the literature. At the same time,
with ASD still in its infancy, scientifically sound
and novel discoveries are relatively rare – and (like
other code-generation tasks like SWE-Bench), sys-
tems are faced with high variability and low abso-
lute success, but (unlike SWE-Bench) without the

benefit of trustworthy automatic evaluation. In spite
of these methodological challenges, we show that
CodeScientist is capable of generating a number
of candidate discoveries through manual (domain-
expert) evaluation, and that this set of discoveries
qualitatively captures a series of diverse research
ideas that expand the scope of accomplishments of
existing systems.

The contributions of this work are:

1. CodeScientist, a novel, open-source, end-
to-end system for semi-automated scientific
discovery, which ideates and executes experi-
ments based on genetic search over both liter-
ature and a library of codeblocks.

2. A demonstration in the domain of agents and
virtual environments, where we show that
CodeScientist discovers 6 incremental yet
novel research results not seen previously.
These results were validated by external re-
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Ideation Artifact Evaluation Evaluation
Discovery System Methodology Evaluated (Automatic) (Human)
AIScientist (Lu et al., 2024b) mutate existing experiment paper Likert (NeurIPS) No
AIGS (Liu et al., 2024) task + past experiments paper Natural Language Likert
AgentLab (Schmidgall et al., 2025) human + literature benchmark Likert Likert
Data-to-Paper (Ifargan et al., 2024) table analysis code Rules Code Review
MLR-Copilot (Li et al., 2024) literature benchmark Likert Likert

CodeScientist (this work) literature + codeblocks paper+code Accept/Reject Hyp. Likert (paper)+
Code Review

Table 1: A comparison of existing discovery systems with CodeScientist, in terms of their ideation methodology, which
research artifact is evaluated (paper, code, or performance on a benchmark), and which automatic or manual evaluations are
performed on the research results.

viewers (in a conference-style review), then
further vetted by replication and code review.

3. A qualitative analysis of failure modes and
research methods challenges, to help guide
future research on ASD technology. This in-
cludes an examination of the benefits of in-
corporating human input into our workflow,
versus using a completely automated system.

2 Related Work

Ideating and Executing Research: The suite of re-
cent ASD systems primarily differ in their methods
for ideation, experiment construction and execution,
as well as their problem domain (e.g. chemistry,
biology, AI) – with examples of systems in the AI
domain provided in Table 1. Ideating on literature
is a common (and naturalistic) method, but unre-
stricted, can produce broadly scoped ideas that are
challenging to implement. Ideating on existing ex-
periment code, essentially applying the LLM as
a mutation operator (Hemberg et al., 2024) to hy-
pothesize how code changes might (for example)
increase performance on a benchmark, helps narrow
ideas to those likely to be executable. Similarly, one
can restrict ideation to problem-specific templates
for specific tasks (Liu et al., 2024; Ifargan et al.,
2024). In this work, we explore a novel genetic
search ideation strategy that combines two facets:
the open-endedness of literature-based ideation,
with a focus on generating ideas that are imple-
mentable by our experiment builder by partially
conditioning the ideation on a library of codeblocks
available to the executor that implement common
research functions (like calling a language model,
or creating a plot).

Evaluating Discoveries: Automatic evaluation of
discoveries is possible in a limited subset of do-
mains and tasks – such as in materials science,

where molecular simulators can directly evaluate
the veracity of discoveries (Qi et al., 2024). Sim-
ilarly, broader science-themed games can include
instrumentation for measuring discoveries (Jansen
et al., 2024), or the scope of discoveries can be
reduced to some measurable quantity, such as in-
creasing model performance on a benchmark task
(Huang et al., 2024). Manual evaluation of research
artifacts (such as code) is costly to perform, and
previously limited in scope (e.g., statistical analysis
code in Ifargan et al., 2024). Others have worked to
develop automated proxy metrics that use an LLM-
as-a-Judge paradigm to evaluate research papers
on Likert scales (Likert, 1932) similar to conference
review (Lu et al., 2024a; Schmidgall et al., 2025; Li
et al., 2024), though due to the difficulty of this task,
these currently may have limited agreement with
human judgements (Radensky et al., 2024), may be
fooled by superficial niceities (fluency, layout, etc.),
and (as in the case of AI Scientist), may reject all
the discoveries.2 As we show in Section 4, faith-
fulness is a critical factor to automated evaluation –
what our system says it has discovered in its papers
can strongly differ from what it actually implements
in code, and we argue that conference-style Likert
assessments of papers (without code) may not fully
assess the faithfulness of science-as-code discover-
ies.

3 System Overview

An overview of the CodeScientist system is shown
in Figure 1, with the 5 major steps of the workflow
(ideation, planning, experiment building, reporting,
and meta-analysis) described below. Except where

2AI Scientist recently announced that it submitted 3
AI-generated papers from an unreleased (v2) system to a
workshop, one of which was accepted: https://sakana.
ai/ai-scientist-first-publication-jp/; Similarly in-
tology.ai recently reported two AI-generated papers accepted
for workshops (Intology AI, 2025).
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described otherwise, the steps of the workflow are
implemented as prompts to a language model, with
example prompts and additional implementation
details provided in Appendix F.

3.1 Paper Corpus and Codeblocks
CodeScientist requires two forms of pre-generated
input: (a) a human-curated list of papers to ideate
from in the users domain(s) of interest, and (b) a
set of relevant codeblocks that demonstrate how
to perform common tasks. Example codeblocks
include how to call an LLM, how to implement a
ReAct agent, and how to load specific benchmarks.
More on the specific agent-centered corpus of pa-
pers and codeblocks used in this work is provided
in Section 4.

3.2 Ideation
The purpose of the ideator is to generate a large set
of candidate research ideas (conditioned on recent
research articles) that could be explored by Code-
Scientist. Pilot studies showed that nearly all of
the ideas generated by our early ideator were either
too complex or too open-ended to be implemented
by our automated experiment building system, such
as requiring the ability to download and modify
arbitrary models and benchmarks mentioned in the
input papers. To generate ideas that are both con-
ditioned on the literature and on code components
that have a high chance of successfully executing in
the execution sandbox, the ideator prompt includes
both (a) two randomly chosen papers, from a cor-
pus of papers provided by a human scientist, and
(b) summaries of codeblocks that form a vetted li-
brary of common research-related functions. More
formally, the ideator takes a human-generated cor-
pus of papers (papers) and a library of codeblocks
(codeblocks) as input, producing a set of candidate
ideas (ideas) as output:

ideas = Ideator(papers, codeblocks) (1)

Each idea (i ∈ ideas) is structured with slots for
the hypothesis, dependent/independent variables,
evaluation metrics, baselines, pilot experiment de-
sign, and a list of major sections of code and other
resources anticipated to be required to successfully
implement the idea, with slot values populated in
natural language. To emphasize creating diverse
combinations of ideas conditioned on ideas in the
literature while using genetic-style search (Hem-
berg et al., 2024), the prompt includes sample types

of ideation to serve as genetic operators, including
cross-over (i.e. combining ideas), and mutation (i.e.
extending ideas, challenging assumptions, filling in
gaps, and so forth). After generating a large pool
of candidate ideas, as a cost-saving and efficiency
measure, a human then manually selects a subset of
these ideas, ideasf ⊂ ideas, that appear most in-
teresting to them. For each idea i ∈ ideasf , the do-
main expert can also provide a brief (2-3 sentence)
set of human comments h, such as suggesting al-
ternate metrics or benchmarks to use, that increase
the utility and tractability of the idea. An exam-
ple idea, human comment, and plan is provided in
Appendix E.3

3.3 Planning
The planning step converts the high-level idea gen-
erated by the ideator into a more detailed, practi-
cal, and operational experiment plan for the exper-
iment builder. Where the ideator generates high-
level ideas such as “examine whether a ReAct agent
augmented with a causal memory increases perfor-
mance on benchmark X”, the planning step gener-
ates a specific plan for implementing the artifact
(i.e. the augmented ReAct agent) as well as the
experiment to test its properties (such as which base
model to use, hyperparameters, and other experi-
mental details). More formally, the Planner takes
as input an idea i, expert comments on that idea
h, and the codeblock library C as input, producing
a plan p and anticipated list of codeblocks c ⊂ C
required to implement that plan as output:

p, c = Planner(i, h, C) (2)

This experiment plan and list of codeblocks serve
as input to the experiment construction system.

3.4 Experiment Construction and Execution
The experiment builder is tasked with generating
the code for the artifact and experiment through an
iterative series of generate-execute-reflect debug-
ging steps. The builder takes an experiment plan
p and list of codeblocks c as input, and produces a
set of generated code g, experimental results r, and
output logs l as output:

g, r, l = Builder(p, c) (3)
3The full set of human comments is provided in Ap-

pendix D, and an ablation in the discussion suggests removing
expert comments reduces the number of discoveries judged as
minimally sound and having at least incremental novelty by
approximately one third.
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Rating Automated Result Summary

supports Discovered action templates significantly improved agent per-
formance in CookingWorld, outperforming both baseline and
manual templates.

inconcl. Decomposition history slightly improved agent performance
(0.183 vs 0.117) but results weren’t statistically significant.

reject Knowledge graph-based mode switching showed no clear ad-
vantage over baseline strategies in ScienceWorld tasks.

Table 2: Example result summaries and corresponding ratings
for whether they support, reject, or are inconclusive towards
the respective experiment hypothesis. Each of the 3 examples
comes from a different idea.

The experiment builder includes three tightly-
coupled components:
Initial code generation: Synthesizes Python code
to implement the artifact and experiment based on
the plan and selected codeblocks.
Instrumented execution sandbox: The gener-
ated code is executed within an instrumented sand-
box. This sandbox captures the full output of the
code – including logging and standard output/error
streams, and intercepts API calls (e.g. to OpenAI,
Anthropic, or Together.ai models) via a proxy
that tracks usage statistics and enforces cost limits.
Reflection and debugging: At each debug itera-
tion, the model is asked to reflect on the code and
output (logs, streams, and API usage statistics), and
determine if the experiment has completed success-
fully and faithfully. If successful, the experiment
building step concludes and progresses to report-
ing. If unsuccessful, the reflection step modifies the
code, and the execute-reflect cycle continues until
the experiment is marked as complete, or a hard
limit (time, cost, or number of debug iterations) is
reached.

For pragmatic reasons (cost, runtime, prompt
length), the experiment builder first attempts to
build a short pilot experiment with inexpensive and
fast debug cycles.When the experiment builder de-
termines the pilot experiment has succesfully com-
pleted, it automatically scales to running (and, if
necessary, further debugging) the full experiment.

3.5 Reporting
Successfully completed experiments enter an auto-
mated reporting step that takes the experiment plan
(p), code (g), results (r), and logs (l) as input and
produces both a written LATEX report w, and a short
summary report s as output:

w, s = Reporter(p, g, r, l) (4)

Because the system can have a high throughput and
generate experimental results faster than a human

could read the detailed reports (w), the short high-
level summaries of results (s) help a user determine
if reading the full report is warranted by highlight-
ing the main results. This includes explicitly cate-
gorizing whether the hypothesis of the experiment
was confirmed or rejected by the experimental re-
sults, or if the results were inconclusive. Example
summaries and ratings are shown in Table 2.

3.6 Meta-Analysis
Pragmatically, even when provided with the same
plan, codeblocks, and a low generation tempera-
ture, the experiment builder frequently produces
different implementations across successive runs
due to the inherent variability introduced both by
the language models themselves, as well as by au-
toregressively conditioning the code they generate
on the output of the previous debug cycle. At the
same time, language models still struggle with many
complex scientific code generation tasks, and some
experiments may fail to create a successful imple-
mentation. To reduce this variability, we include a
meta-analysis step where for each idea and plan, the
experiment builder is independently run N times,
producing N different experimental results. The
meta-analysis then examines the consistency of the
results across successive experimental implementa-
tions, generating a meta-analysis report m:

mi = MetaAnalysis(s1, s2, s3, ..., sN ) (5)

where sn represents a single result summary from
running a given plan p through the experiment
builder and reporting process N times.

4 Discovery Experiments
Candidate discoveries made by CodeScientist are
described in Section 4.1, with challenges and failure
modes described in Section 5. A description of the
experiment setup is provided below.4

Paper and Code Example Corpus: We assem-
bled a corpus of 57 recent papers broadly in the
area of agent architectures and virtual environments.
Paired with this, we assembled 10 example code
snippets5 for performing basic tasks in this domain,
including calling language models (OpenAI et al.,

4Unless otherwise stated, we use Claude-Sonnet-3.5-
1022 as our base model for CodeScientist. We ask the planner
to prefer to experiment on GPT-4o-mini, due to its high speed
and low cost.

5Code snippets were assembled from a combination of
existing library examples and documentation, LLM-generation,
and/or manual authoring.
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Configuration
Number of ideas evaluated 50
Experiment Builder attempts per idea 5
Total experiment attempts 250

Enforced Limits (per experiment)
Maximum Debug Iterations 25
Total cost limit $10
LLM cost limit (per debug iteration) $1
Execution time limit (per debug iteration) 90 min.
Hard time limit (all debug iterations) 6 hours

Average Usage (per experiment; N=250)
Average debug iterations 15.8
Average cost $4.23
Average runtime 131 min.
Average generated code length (lines) 506
Average generated code length (tokens) 4521

Table 3: Summary statistics for discovery experiments.

2024), building a ReAct agent (Yao et al., 2023),
plotting (Hunter, 2007), robust inferential statistics
for comparing models (Efron, 1992), using com-
mon knowledge graphs (Speer et al., 2017; Miller,
1995), and several benchmark environments includ-
ing TextWorldExpress (Jansen and Cote, 2023),
a high-performance simulator that reimplements
common benchmarks. These code examples serve
not only as vetted code examples of common ar-
tifacts described in the paper corpus, but also as
demonstrations of the nuances required to imple-
ment code within the sandbox environment.
Idea Selection: We used CodeScientist to gener-
ate approximately 2000 candidate experiment ideas
ideated from 200 randomly selected combinations
of papers. As a cost saving measure, a stratified
sample was presented to a domain expert, until they
had manually selected 50 ideas that appeared both
viable and sufficiently different from one another.
Each idea was provided with brief comments by the
domain expert (included in Appendix D, to show
the minor corrections these entail), then plans for
each idea were generated.
Experiment Builder: For each of the 50 ideas, we
called the experiment builder 5 times (i.e. each
idea was given 5 attempts to generate functioning
experiment code and generate results), for a total
of 250 experiment runs. Cost, runtime limits, and
actual usage statistics are provided in Table 3.
Reporting and Meta-Analysis: The reporting
stage produced written reports for each experiment
(intended for the user, and provided in Appendix H),
as well as short summaries of results. Short sum-
maries of each of the 5 experiments for a given

idea were used for meta-analysis, which described
whether the results across experiments generally
support or reject the hypothesis. Additional details
of the meta-analysis procedure are provided in Ap-
pendix C.

4.1 Candidate Discoveries
CodeScientist flagged 19 of 50 ideas for human
inspection where at least one of the five experiment
runs produced “interesting” results,6 with those dis-
coveries provided in Table 4. We performed two
separate evaluations on these candidate discoveries:
external, and internal.

External (conference-style) Review: A confer-
ence style review. We recruited 3 external review-
ers that are practicing research scientists in natural
language processing and who have previously pub-
lished in the domain (agents and virtual environ-
ments). Reviewers were provided with CodeSci-
entist generated papers, and asked to rate them on
soundness and novelty, with the rubric provided in
Appendix B. Each domain expert rating was then
converted to a binary score. Ratings of unsound or
not novel experiments were considered failures, and
converted to zeros. Ratings of clearly sound, likely
sound, or minor concerns (not altering overall con-
clusions) were considered meeting the minimum
threshold for soundness, and converted to scores
of one. Similarly, ratings of incremental novelty
or above were considered meeting the minimum
threshold for novelty, and converted to one. The
average of these binarized ratings across the three
external reviewers is provided in Table 4. If the
majority of reviewers rated a discovery as meeting
minimum soundness and novelty thresholds, we
considered it as having passed external review.

Internal Review: A domain expert (one of the
authors) provided an in-depth review of the code
and experiment logs, and attempted to replicate
the results with a larger number of samples. This
reviewer essentially functioned as a “veto”, able to
reject discoveries that appeared genuine from the
paper and external review, but did not pass detailed
examination.

Candidate discoveries: Of the 19 candidate dis-
coveries flagged by CodeScientist, 13 (68%) were
rated as meeting minimum soundness and novelty
criteria by at least 2 of the 3 external reviewers.

6Results were flagged for humans using a heuristic prompt
found in Appendix F
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Human Reviewers
Min. Some

# Sound Novelty Description of Discovery
Candidate discoveries identified by external reviewers, and supported by internal review
1 1.0 1.0 State Prediction Confidence: In a state prediction task, an LLM’s self-assessed confidence in its

predictions have a low corelation with the accuracy of those predictions. (The state prediction data was
automatically crawled from one of the benchmarks) (Though the correlation varies across experiments,
the value consistently appears low.)

2 1.0 1.0 Accuracy vs Representational Expressivity: In a state prediction task, an LLM performs better at
predicting simpler representations (e.g. boolean values) versus states including text. (The state prediction
data was automatically crawled from one of the benchmarks) (Significant implementation and evaluation
differences across experiments, but generally support the idea that predicting simpler representations is
easier.)

3 1.0 1.0 Multi-Stage Environment Generation: When creating novel benchmark environments using code-
generation, generating the environments in multiple stages increases environment fidelity. (A small
change on LLM-for-environment-generation tasks, implementing specific aspects in each step, rather
than generating as a whole and reflecting. For evaluation, creates a simple proxy metric that seems
well-motivated as this type of evaluation is an open problem in the literature, and even llm-as-a-judge
paradigms have issues with this task, while being vastly more expensive).

4 1.0 1.0 Combinatorial Optimization: A language model performs poorly at a combinatorial optimization
problem (selecting values from a set that are closest to adding to a specified value X), grounded in
substituting resistor values in electronics. (Consistent result across experiments, and tested to within
different tolerances, e.g. 1%, 5%)

5 1.0 0.66 Action Prediction: An LLM’s ability to predict whether actions will be successful in a virtual environment
is generally low, marginally above a random baseline. (Appears true, with the following qualifications: (1)
the LLM was given only the current observation, and no history, to judge from, and (2) an LLM-as-a-judge
was used to help collect the gold dataset, and has imperfect labels.)

6 0.66 0.66 Graph Agent for Discovery: A ReAct agent augmented with a graph-based memory outperforms a ReAct
baseline on a highly complex environment (DiscoveryWorld). (Appears true. Graphs appear relatively
simple, forming a form of object-property memory, rather than complex nested relationships. )

Results rejected by either external reviewers, internal review, or both
7 1.0 1.0 Social Graphs: For a task in managing social relationships, an agent that uses a graph to keep track of

those relationships does not outperform perform a simpler non-graph baseline. (The experiment-generated
benchmark is overly simple, contains few samples, and the llm-as-a-judge metric is not validated)

8 1.0 1.0 Planning Agent: A custom planning agent outperforms a ReAct agent on the CookingWorld benchmark.
(Effect fails to replicate when number of samples increased).

9 1.0 1.0 Spatial Agent: A ReAct agent that maintains an explicit graph of interconnected locations outperforms a
baseline ReAct agent. (Effect fails to replicate when number of samples increased).

10 1.0 1.0 Action History: A ReAct agent that keeps a history of recent actions (as well as whether those actions
increased the task score) outperforms a ReAct baseline. (Effect fails to replicate when samples increased).

11 1.0 0.66 Template Agent: Creates an agent that applies templates of action sequences learned in the training set.
(A non-LLM agent that is partly hard-coded, and partly reinventing a Markov model).

12 0.66 1.0 Graph Verification Agent: An agent that builds and explicitly verifies its graph before using it outperforms
a baseline agent without this verification step. (On examining the code, the experiment is incorrect because
neither baseline nor experimental agents ever actually use the graph it builds, they just randomly pick
actions. An interesting secondary result – that an LLM used to extract triples from an environment
observation only verifies ≈80% of those triples as correct in a secondary verification step – does appear
to be supported.)

13 0.66 0.66 Affordance Agent: An LLM agent that predicts object affordances outperforms a random baseline on
ScienceWorld. (Baseline is too simple)

14 0.33 0.66 WordNet: A hardcoded WordNet agent outperforms a random baseline. (Baseline is too simple)
15 0.33 0.66 Metaphor Graphs: Examines generating graphs that describe the metaphorical relationships between

objects in virtual environments. (Unclear motivation and utility)
16 0.0 1.0 Goal Tracking: A ReAct agent augmented with goal tracking outperforms a random baseline. (Baseline

is too simple)
17 0.0 1.0 Container Agent: An agent built specifically to handle objects inside containers (a challenge for some

agents) outperforms a random baseline. (Baseline is too simple)
18 0.0 0.66 Template-based Environment Creation: Parametrically generating new environment benchmarks using

templates to define the environment is just as good as manually building the environments. (Both the
template and “manual” (should be human-generated?) environments were hardcoded in the experiment
code – so this was a foregone conclusion).

19 0.0 0.66 Graph Metric: A custom-developed metric for determining similarity between text and graph-based
representations of environments outperforms Jaccard similarity. (Report lacks details to evaluate.)

Table 4: Descriptions of the 19 discoveries CodeScientist automatically identifies from 250 experiments over 50 ideas. Human
Reviewers refers to average ratings from 3 external reviewers. The 6 discoveries under “candidate discoveries” were rated as
meeting minimum soundness and and incremental novelty criteria by external reviewers (examining papers), and similarly by the
internal reviewer (examining both code and papers). The 11 discoveries under “rejected“ received low ratings from the external
reviewers, or received high ratings from external reviewers but were rejected by the internal reviewer either after examining the
code and identifying issues with soundness, or failing to replicate results after rerunning experiments with a higher numbers of
samples. Comments from the internal reviewer are provided in italics.
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When examining the code, experiment logs, and per-
forming replication attempts, the internal reviewer
rejected 7 of these 13 discoveries, resulting in a to-
tal of 6 discoveries (32%) that passed both external
and internal review.

The discoveries passing these tests take a variety
of forms. While some take the form of improving
model performance on benchmarks, most involve
creating new tasks, benchmarks, metrics, methods,
or questioning assumptions. The discoveries in-
clude determining that an LLM’s self-assessed con-
fidence in its prediction accuracy has a low correla-
tion with its actual accuracy in state-prediction tasks
(#1) – a result ideated from a paper on assessing
only accuracy in state prediction for virtual environ-
ments (Wang et al., 2024), and whose benchmark
was unavailable in the sandbox, causing the experi-
ment builder to crawl one of the environments that
was accessible to it with a random agent to create
its own benchmark for the experiment. Similarly
(and also on state-prediction), a different discovery
suggested that an LLM’s performance on state pre-
diction tasks varies with the complexity of the rep-
resentation it has to predict (#2). Another discovery
found that language models are particularly poor at
assessing whether an action will be successful in an
environment given the previous environmental ob-
servation (#5). While language models’ arithmetic
performance is well studied (e.g. Yuan et al., 2023),
a discovery suggested they are poor at solving a spe-
cific combinatorial optimization problem involving
addition (#4). Reports and code for these discover-
ies are provided in Appendix H, with assessments
of (incremental) novelty in Appendix G.

Rejected discoveries: 13 of 19 discoveries were
rejected after human evaluation. These include 6
reported discoveries where the baselines or models
themselves were overly simplistic, and 3 reported
discoveries where the reported effect disappeared
after rerunning the experiment with a larger num-
ber of samples. 2 reported discoveries had major
implementation errors discovered by the domain
expert, and were rejected. One candidate discovery
was rejected by external reviewers for having limitd
details from which to evaluate its soundness.

5 Discussion

We outline challenges and common failure cases
below, to highlight where targeted efforts might
improve discovery quality.

Experiment Builder Outcomes %

Experiment completed successfully 41%
Debug iteration limit reached 32%
Hard experiment time limit reached 18%
Unrecoverable code generation issue 9%
(i.e. code too long for output)

Hard cost limit reached 0%

Number of samples (experiments) 250

Table 5: Summary statistics of the experiment builder.

Idea Diversity: While the candidate discoveries
demonstrate that the ideator can generate diverse
ideas that span designing new agents, tasks, met-
rics, methods, and benchmarks, most of the ideas
that are generated are highly similar, or mechanical
variations of one another (e.g. apply method X to
benchmark Y ). Si et al. (2024) observed that LLM-
ideators quickly saturate the number of unique ideas
they generate. We found that using their method of
uniqueness filtering (using cosine similarity over
embeddings) still generated many duplicates, and
had to use manual filtering to select a diverse, fairly
non-overlapping subset to explore.

Experiment Builder Failures: Currently, 59% of
the experiments the planner designs are not able
to be successfully implemented by the experiment
builder. The distribution of executor errors is shown
in Table 5. The majority of experiments ending in
failure face challenges in debugging that are never
resolved, hitting either the maximum number of
debug iterations (32%) or experiment time limits
(18%). Infrequently, the experiment code is too
long to fully generate (9%), requiring a model that
can generate more than 8k output tokens.

Unfaithful Experiments: The system occasionally
reports a result that (upon closer examination of the
code) is untrue. For example, the system reported
that a graph-based agent with a verification mecha-
nism outperformed a baseline agent (Result #12 in
Table 4). Human inspection of the code revealed
that while the agent built the graph, it never used it,
instead picking actions randomly. These types of
errors are difficult and laborious to detect, requiring
a great deal of human effort. Methods to automate
this will help reduce false positives/negatives.

Adherence to best research practices: Many gen-
erated experiments do not adhere to best practices
in research methods, even when prompted to do so.
Experiments may evaluate on the training set, or
make errors in calculating or interpreting statistics.
They may similarly choose weak baselines to com-

13377



pare experimental models against (e.g. comparing
modified ReAct agents to random baselines rather
than ReAct baselines, as in Table 4), erroneously
producing statistically significant results.7

Reducing Human Effort: Our system currently
uses human involvement at 5 steps – a pragmatic
requirement given that when run in fully-automated
mode, an early pilot of CodeScientist generated
results much less efficiently: ideas were frequently
duplicated, experiments failed more often during
debugging, and results had methods challenges and
were less convincing. Currently human involve-
ment is included in selecting papers to ideate from,
generating codeblocks, selecting interesting ideas
to run, providing brief expert comments on each
ideas, and performing a manual validation of the
results. Towards the goal of automation, a list of
representative papers could be provided by a paper
selection agent in response to a broad area of inter-
est provided by a user. Many of the codeblocks used
by the system were already produced by a language
model, but manually corrected and tweaked by a hu-
man for running in the sandbox. The rapid progress
in ideation models (e.g. Wang et al., 2023a) and
evaluation (Radensky et al., 2024) is likely to pro-
duce systems that continue to increase idea diversity
and utility in the near-term, reducing the need for a
human to filter these ideas. Our use of brief domain-
expert comments on ideas before generating plans
helps the system shore up obvious research methods
issues (like using a better metric) before running
costly experiments, and as models increase their
knowledge of domain-specific research methods,
this reliance will decrease.

Fully-automated Mode: While we present Code-
Scientist as requiring human input, it is possible to
run CodeScientist in a fully-automated mode with-
out such input. Here we present two ablations that
remove human input, with the caveats that (a) the
variance of the system (even when provided with
identical experiment plans) is high, (b) the overall
candidate discovery rate is low, and (c) large-scale
runs are prohibitively expensive – which, taken to-
gether, makes performing ablations with enough
statistical power to make inferences currently im-
practical. That being said, in pilot experiments,

7In our detailed code analysis, we overlooked research
methods issues that were unlikely to invalidate results – for
example, evaluating on the training set with zero-shot methods
that do not fit any parameters using the training set – though
this is unconventional, and limits the ability to compare these
results to those reported in other papers.

running CodeScientist on 100 ideas generated
and executed autonomously (without human input)
appeared to generate 2 candidate discoveries that
passed an internal review, or a 2% success rate (and,
our motivation for pre-filtering ideas to those most
likely to produce discoveries). Similarly, rerunning
the benchmark of 50 ideas described in Section 4
without expert human comments appears to pro-
duce 4 of the same 6 candidate discoveries as were
found in Table 4 – nominally reducing the number
of candidate discoveries by approximately a third.
It is important to note that this is a small sample,
and difficult to ascertain whether this reduction is
due to the lack of expert comments, or the natural
variance in the system.

6 Conclusion
We present CodeScientist, an end-to-end semi-
automated discovery system with a novel ideator
that performs genetic search jointly on combina-
tions of literature and codeblocks, before building,
running, and analyzing these software artifacts in
experiments. Ideating from literature and common
codeblocks in the domain of agents and environ-
ments, CodeScientist identified 19 potential dis-
coveries, 6 of which were judged as meeting mini-
mum thresholds for scientific soundness and incre-
mental novelty after both external conference-style
review, and an internal code review. A qualitative
review of the discoveries suggests that they broaden
the scope of ideas explored by other systems, with
candidate discoveries spanning novel tasks, agents,
metrics, and data. We provide an analysis of com-
mon failure modes, and release our system as open-
source to facilitate future research in automated
scientific discovery.

7 Limitations
We highlight the following limitations both in this
work, as well as in current automated discovery
systems more broadly.

Cost vs accuracy trade-off: The automated exper-
iments in this work are designed to be fast, inex-
pensive estimates of an experiment’s results, that
allow rapid iteration. The average experiment in
this work costs ≈$4, and takes approximately 2
hours to complete. While these experiments save
on resources, due to their low number of samples,
they both produce false positives, and are likely un-
able to detect all but the largest effects (producing
false negatives). This is not a technical limitation
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of this work as (in principle) it can be remedied
by scaling the computation budget – though devel-
oping strategies for intelligencly investing in the
experiments most likely to have utility could reduce
budget requirements.

Validating Candidate Discoveries: The common
mode of disseminating research artifacts in NLP/AI
is through peer-reviewed scientific articles. This
peer review typically examines the article in detail,
but reviewers are frequently instructed that they are
not required to provide a review of supplementary
material including code8 – likely in part because
code review is extremely labor intensive, but also
because a degree of skill, domain-specific training,
and a good-faith effort are assumed on behalf of
the authors. The opposite appears true of language-
model-generated code, and in this work we show
that more than half of the potential discoveries were
rejected by an internal code review by a domain ex-
pert (one of the authors) for having serious issues.
We observed – both in pilot experiments, as well
as in evaluating the 19 potential discoveries – that
the LLM-generated code may unfaithfully repre-
sent the desired process or mechanism requested in
the experiment plan, and instead actually perform a
much simpler procedure (like randomly generating
actions to take in a virtual environment). These
are particularly challenging to find because, often,
much of what the LLM claims is happening is at
least partially implemented, and the offending code
may be only one (or a few) lines in a long program.
As such, while we have made a good-faith effort
to validate the discoveries and code proposed by
CodeScientist– including examining the code and
rerunning each discovery at a greater scale, which
is arguably a more effortful review than is done
for most peer-reviewed articles – given the some-
times adversarial nature of the task, it is possible we
may not have discovered some inaccurately reported
mechanisms. As such, we frame the 6 discoveries
made by the system (and having passed external and
internal review) as “candidate discoveries”, to em-
phasize their preliminary nature, and the challenges
of performing review on long LLM-generated code.
Developing automated mechanisms to speed this
review is likely of paramount importance to scal-
ing automated scientific discovery systems that use
code-based experimentation.

8https://aclrollingreview.org/
reviewerguidelines

Incremental vs Transformational Discoveries:
The 6 expert-validated discoveries produced by
CodeScientist would likely be categorized by most
as normal incremental science rather than trans-
formational discoveries – and the ratings by the
3 external reviewers suggest that each candidate
CodeScientist discovery is (at best) incrementally
novel. For example, while the first result (#1) in Ta-
ble 4 finds that an LLM’s self-assessed confidence
in its predictions has a low correlation with its ac-
tual performance on state prediction tasks focusing
on using LLMs as world models, similar effects
have been shown on other tasks, and testing the
existence of this phenomenon on state prediction
in virtual environments is an incremental discov-
ery. The discoveries produced by CodeScientist
are incremental rather than transformational dis-
coveries, and we have no data to support whether
generating more impactful discoveries is a problem
of scale (i.e. running either more ideas, or higher
risk/higher gain ideas), or a problem of kind (i.e.
whether ideation and execution in the manner that
we have described here is capable or incapable of
generating high-impact discoveries).

Ideator Recall: Studying the “recall” of an ideator
(in terms of the proportion of ideas that it generates
that ultimately provide discoveries that are judged
to be at least minimally sound and incrementally
novel) is an open area of research. In pilot exper-
iments we generated new ideas at runtime, many
of which had issues (such as being near duplicates,
using incorrect metrics, or being very challenging
to implement). As a pragmatic cost saving mea-
sure, we explicitly filter down a large set of ideas
to manually select the first 50 ideas that appeared
to meet the bar of being potentially implementable,
relatively different from one another, and that did
not appear to have obvious research methods prob-
lems. As such, due to this cost saving measure, we
are unable to make claims about what proportion
of ideas that the ideator generates ultimately lead
to human-verified discoveries.
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Appendix
A Table of Contents
Below is a list of links to major sections:

Additional System Details

1. External Reviewer Rubric

2. Meta-Analysis Classification Criteria

3. All Domain-Expert Comments

4. Example Idea, Comment, & Plan

Prompts

5. Ideation

6. Planning

7. Experiment Builder

8. Reporting

9. Experiment Summary

10. Meta-Analysis

Novelty Assessments of Discoveries

11. Novelty Assessments of Discoveries

Example Experiment Reports

12. State Prediction Confidence (Report)

13. Progressive State Complexity (Report)

14. Graph Alignment Metric (Report)

15. Multi-Stage Environment Generation (Report)

16. Simulation Confidence (Report)

17. Graph Agent for Discovery (Report)

18. Combinatorial Optimization (Report)

Example Experiment Code

19. State Prediction Confidence (Code)

20. Progressive State Complexity (Code)

21. Graph Alignment Metric (Code)

22. Multi-Stage Environment Generation (Code)

23. Simulation Confidence (Code)

24. Graph Agent for Discovery (Code)

25. Combinatorial Optimization (Code)

B External Reviewer Rubric
External reviewers were provided with each of the
papers from Table 4, and asked to categorize them
on 2 categorical scales: scientific soundness and
novelty. In addition, they were asked to provide
short justification for their ratings, as well as an
overall brief description of the contributions and
claims of the paper.

Soundness refers to the rigor and reliability of a study’s
methods and evidence—essentially, how well the exper-
iments and analysis support the claims made. Please
provide a rating for the soundness of this study:
(A) Clearly Sound: The study demonstrates robust
methodology; its design, implementation, and analy-
sis fully support the claims.
(B) Likely Sound: Assuming faithful execution, the
methodology appears sound, with evidence generally
supporting the claims despite minor uncertainties.
(C) Minor Concerns: Identified methodological lim-
itations may slightly affect measurements (e.g., effect
sizes) but do not alter the overall conclusions.
(D): Unsound: Evident methodological or conceptual
flaws undermine the credibility of the claims and contri-
butions.

Novelty refers to how original or innovative a study’s
contributions are relative to existing work. It assesses
whether the contributions offer incremental changes or
significant departures from what has been done before.
Please provide a rating for the novelty of this study.
(A) Highly Novel: Introduces entirely new concepts
or frameworks not previously explored. Example: A
modeling contribution that proposes a novel architecture
that redefines established paradigms in NLP.
(B) Incrementally Novel (Significant Variation): Sub-
stantially modifies existing approaches, leading to
marked advancements. Example: A modeling contribu-
tion that makes significant architectural or algorithmic
changes that enhance performance.
(C) Incrementally Novel (Minor Variation): Presents
modest modifications or adaptations to established work.
Example: A modeling contribution that applies an ex-
isting model to a new task with only minor tweaks or
parameter adjustments.
(D): Not Novel/Exists in Exact Form: Replicates ex-
isting work without introducing any modifications. Ex-
ample: A modeling contribution that runs an existing
model on an existing task, where the result is already
known.

C Meta-Analysis Categorization Criteria
The following criteria were used to classify a
suite of 5 experiments as having either consistent,
mixed, or limited results:

1. Consistent (C): If at least 80% (i.e. 4 of the
5) independent experiment runs for a given
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idea generated the same high-level result (i.e.
supporting or rejecting the hypothesis), then
it was classified as consistent.

2. Mixed (M): If a set of 5 experiments was nei-
ther classified as consistent or limited, then it
was classified as having mixed results.

3. Limited (L): If 40% or fewer (i.e. 2 or fewer
of the 5 runs) successfully completed, regard-
less of the outcome of those experiments (i.e.
support, reject, or inconclusive towards the
hypothesis), then it was classified as limited.

D Example Domain-Expert Comments
The domain expert comments are appended to each
selected idea before the planning stage, typically
to correct minor issues (such as selecting a bet-
ter metric), or clarify portions of the idea. Pilot
experiments without these comments showed that
the experiments generally still work, but have less-
strong conclusions (e.g. a less robust metric will
be used, such a direct string matching instead of a
more robust LLM-as-a-judge metric, limiting what
can be claimed), or may not find results at all (e.g.
the system may wish to measure an agent’s suc-
cess only by task completion, which is often zero
for most agents and environments – whereas in-
stead using the normalized partial progress scores
offered by most environments is standard practice).
To highlight the limited nature of these comment,
the expert comments for each of the 19 discoveries
in Table 4 are provide in Table 6

E Example Idea, Comments, and Plan
An example automatically generated idea, set of
domain-expert comments, and the resulting gen-
erated plan from the combination of the two are
provided in Table 7.
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# Domain Expert Comment

Candidate discoveries identified by external reviewers, and confirmed by internal review

1 State Prediction Confidence: Measuring prediction accuracy could be done using LLM-as-a-judge (e.g. have the model predict the observation,
then have another LLM compare this generated observation to the gold observation, counting (perhaps by sentence, or by item) the number of
things that are the same, and the number that are different, arriving at a score between 0-1 for each state prediction. Similarly, do to the task
well, the LLM doing the state prediction task should probably have at least the last 2-3 observations/actions in its prompt, to provide some
context.

2 Accuracy vs Representational Expressivity: No additional comments provided.
3 Multi-Stage Environment Generation: Solid idea – try to build games incrementally rather than in one-shot, to see if that improves perfor-

mance. Doesn’t mention where the source templates come from (presumably ideated from ByteSized32, so likely from that corpus/benchmark
– though it could also try to build them from scratch, or from a simple predefined template that it builds for this task, to make it easier). It’s also
proposing to use a regex-based checker for game mechanics rather than the ByteSized32 evaluation methods – that might work, or it might
require an LLM-as-a-judge situation if the regex matching is not successful. (Could include both in the evaluation, and compare them).

4 Combinatorial Optimization: Could be interesting to see if an LLM can do this as well as a simple mathematical solver. Should include a
notion of tolerance (not in terms of the resistor tolerance, like 1%, 5%, etc., but in how close the value the different solvers create have to be to
the real value – otherwise some solutions may not be possible). Should have a check that verifies the solutions (from the LLM, and other
solvers) are within (say) 1% or 5% or 10% of the expected value (or, could use all three of these, as a sort of graded accuracy metric).

5 Action Prediction: Kind of makes sense, and would be interesting to see. While the specification says to just provide a binary prediction
(yes/no) as to whether the action will succeed (as well as the confidence score), it’s not super clear what ’action will succeed’ means. Does
it means the action will run in the interpreter? (in which case, it’s not super interesting because, as long as the action is in the valid action
list, it should run). More interesting would be if it interpreted some signal that it worked (e.g. you can’t cook a fridge or chop a pot, and the
environment might say this, then (using a cheap LLM call), you might be able to interpret whether the observation returned after the action
signified success or failure (e.g. ’you can’t do that’)). But, extending this, it’d be interesting if it predicted more than binary success, but also
did more of a state-prediction task – e.g. predicting what the next observation will be, and then using an LLM to verify how much of it is
essentially correct (perhaps proportion of sentences correct). It’d need some number of steps of past history (say the last 1, 2, or 3 steps) to
have a chance at doing this well.

6 Graph Agent for Discovery: Might be hard to get the DiscoveryWorld knowledge score working at the start (and extracting this coherently
from the agent’s memory) – I’d focus on the DiscoveryWorld Task Completion and (more importantly) Task Process scores.

Results rejected by either external reviewers, internal review, or both

7 Social Graphs: This could work – but depends very much on the complexity and challenges required in interacting the social relationships. It
sounds like this proposes to create the benchmark rather than use an existing one – so it would need to make sure that the interactions are
interesting, reasonably complex, and non-trivial to navigate. It’d also need some clear measure of evaluating an agent’s performance – it’s not
clear what ’accuracy of relationship-based decisions’ is or how it would be measured.

15 Planning Agent: Mostly makes sense, but one of its assumptions (focusing on get/put/cook recipes) isn’t possible, it’d have to change this
– there’s no way of limiting what actions need to be used. Also it should use the task score, not task completion rate. Most agents do not
complete any tasks, but the task score is a partial score between 0 and 1 that is often non-zero if an agent makes task progress.

9 Spatial Agent: Makes a lot of sense, and you’d expect this to work. Somewhat related to other agents (though I’m not sure any have tried
augmenting ReAct in this way, or on this environment). Should use the partial task score instead of task completion rate as a measure of success
– the tasks are hard and most agents don’t complete them, but the partial task score gives a score between 0-1 that measures partial progress.

10 Action History: Makes sense. There have been a lot of similar ideas generated, the one that makes this one more viable is that it’s not just
tracking successful actions in isolation, but considering the *context* in which they occurred. Text games generally require long action
sequences, where each action is taken at the appropriate time, when all the right conditions are met. Taking the context into account should
help it figure out when it’s appropriate to take a particular action. Progress should be measured using the Task Score (a measure of partial
progress), not the Task Success Rate, since task success is rare with most agents in these environments.

11 Template Agent: Makes sense, but (1) should use increasing partial task score (0-1), rather than task success/completion, as a signal – since
this environment is hard, and task success is rare.

12 Graph Verification Agent: No additional comments provided.
13 Affordance Agent: Makes sense – uses an LLM to predict affordances, then act based on those affordances. Perhaps could augment a ReAct

agent with 3 steps (affordances, think, act) rather than just the normal 2 (think/act). Should measure performance in terms of the task score,
rather than task success (since task success is rare). Could use the ’find living thing’ subtask (one of the easiest ones) as an additional task to
try.

14 WordNet: Super simple baseline agent. One might expect it to outperform a random baseline. It might even outperform a ReAct agent on
this task, especially if paired with aspects that allow the agent to explore the environment. Should likely be run on very simple (e.g. 3 room
maximum) environments.

15 Metaphor Graphs: At first glance it’s hard to see how metaphors would be useful here, but the suggested operationalization (e.g. ’what
functional similarities exist between X and Y in a cooking context?’) might help it better organize the graph into categories of objects. The
“project supervisor” ratings (i.e. manual human ratings) should likely not be included, since this requires human ratings, and interrupts the
automatic flow of running the experiment.

16 Goal Tracking: It might work, though it doesn’t mention a base agent (like ReAct) to augment with the goals. It’s good that it mentions
using task score (rather than task completion) as a metric, since task completion is often zero for these hard tasks, where as task score is often
non-zero if the agent is making some progress.

17 Container Agent: It’s specifically focused on building a graph of relevant container relationships, which at first seemed uninteresting, but now
that I think about it, basic e.g. ReAct agents tend to struggle with finding ingredients – so having a graph of where they tend to be could help it.
Same for tools it needs (e.g. cooking implements, recipe book, knife for chopping, etc.). Presumably the graph would be included in the ReAct
agent prompt. The metric should not be task completion (since task success is hard and rarely non-zero on this task), but rather the task score,
which provides a partial measure of task progress (with a value between zero and one).

18 Template-based Environment Creation: Mostly makes sense, but one of its assumptions (focusing on get/put/cook recipes) isn’t possible, it’d
have to change this – there’s no way of limiting what actions need to be used. Also it should use the task score, not task completion rate. Most
agents do not complete any tasks, but the task score is a partial score between 0 and 1 that is often non-zero if an agent makes task progress.

19 Graph Metric: Neat idea (and, very different than many of the others). Would benefit from using vector similarity.

Table 6: Domain expert comments provided at the ideation stage, for each of the 19 potential discoveries from Table 4.
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Field Content

Ideation

name simulation-confidence-analysis
long_description Study whether LLMs can accurately assess their confidence in state predictions, and whether this confidence correlates with actual

accuracy. This could enable more reliable simulation by identifying when predictions are likely to be incorrect.
short_description Investigate LLM ability to assess confidence in state predictions and correlation with accuracy.

hypothesis LLM confidence scores will correlate with prediction accuracy, allowing for identification of potentially incorrect predictions.

variables Independent variables: State complexity, Game type, Property type. Dependent variables: Prediction accuracy, Confidence score.
Control: Same LLM, same states, same examples.

metric Correlation between confidence scores and accuracy. Precision/recall for identifying incorrect predictions using confidence thresholds.

pilot Test on simple CookingWorld scenarios, focusing on boolean property predictions with confidence scores.

example_prompt Create an experiment to analyze LLM confidence in state predictions. Use TextWorldExpress to generate 200 state transitions. For
each prediction, prompt GPT-4 to provide both the predicted state and a confidence score (0–100) for each property change. Log all
predictions, confidence scores, and ground truth. Calculate correlation between confidence and accuracy. Generate ROC curves for
using confidence to predict correctness. Use bootstrap resampling to compute confidence intervals. Create visualizations showing
the relationship between confidence and accuracy across different property types.

Human Rating

human_rating potentially feasible

human_notes Measuring prediction accuracy could be done using LLM-as-a-judge (e.g. have the model predict the observation, then have another
LLM compare this generated observation to the gold observation, counting (perhaps by sentence, or by item) the number of things
that are the same, and the number that are different, arriving at a score between 0–1 for each state prediction). Similarly, the LLM
doing the state prediction task should probably have at least the last 2–3 observations/actions in its prompt to provide context.

conditioning_text Please use gpt-4o-mini for all LLM calls, because it’s fast and inexpensive.

Operationalization

operationalization Please create an experiment to analyze LLM confidence in state predictions in TextWorldExpress, implementing the following
specifications: EXPERIMENT MODES AND SCOPE: Implement a global variable PILOT_MODE that can be set to one of:
’MINI_PILOT’, ’PILOT’, or ’FULL_EXPERIMENT’. For each mode:
MINI_PILOT: 3 episodes of CookingWorld, 10 steps each (training set);
PILOT: 20 episodes of CookingWorld, 25 steps each (training set);
FULL_EXPERIMENT: 200 episodes, 50 steps each (balanced across train/dev/test sets).
ENVIRONMENT SETUP: Use the TextWorldExpress API to generate CookingWorld scenarios with simple environments (3
rooms, no doors, 2 ingredients, 2 distractor items). Record the current state, action, and next state at each step.
LLM CONFIGURATION: Use gpt-4o-mini for all LLM calls. The state prediction prompt should include the last 2 observations,
the current action, a request for the next state prediction, and a confidence score (0–100) for each property change.
DATA COLLECTION PROCEDURE: For each step, retrieve the current state and action; prompt the LLM for a state prediction
with confidence scores; retrieve the actual next state; and use an LLM-as-a-judge to score prediction accuracy (score: 0–1 per
property change).
DATA ANALYSIS: For each episode, calculate the correlation between confidence scores and accuracy, and generate scatter plots,
ROC curves, and visualizations of the confidence–accuracy relationship.
LOGGING AND OUTPUT: Log all raw data (states, predictions, confidence scores, accuracy scores), generate summary statistics,
and create plots (scatter plot, ROC curves, box plots).
EXECUTION FLOW: Run MINI_PILOT first; if successful, run PILOT and then stop.
SUCCESS CRITERIA: Achieve clean execution in MINI_PILOT and find meaningful correlation patterns in PILOT, with statistical
significance verified via bootstrap resampling.

code_examples TextWorldExpress API Example, Non-parametric Bootstrap Resampling, Logger/Debugging, MatPlotLib Line Plot, LLM example
through proxy server

Table 7: An example idea, the domain expert comments, and the generated plan (produced by using both the idea and comments).
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F Prompts
Core prompts are provided below.

13387



Ideation Prompt

You are ScientistGPT, the most advanced automated scientific model in the world. You can use your enormous intellect to
solve any problem, and the solutions to these problems may help improve our knowledge of how the world works, which is
a noble and important goal.

\
\

You are currently working on the following task: Generating new research ideas/ideas for new experiments to run.
The goal of running the experiments is to generate novel, interesting, and (ideally) high-impact scientific results.
Below is a set of scientific research papers (expressed as their Latex source).
Your task is to come up with new research ideas, and follow-on research ideas, based on the research questions, research

programs, hypotheses, operationalizations of experiments, or any other information provided in these papers.\
You are asked to come up with 5 ideas.
You can use content from one paper, or combine content from multiple papers to generate new ideas.
The ideas you generate can be highly novel inspired by the research in the papers below, or they can be incremental

follow-on ideas based on the papers below. The most important thing is that we're doing good, reasoned, and
potentially impactful/useful science.

\
\

Some recipes for ideation you might use are the following:
1. **Filling the gaps**: Identify gaps (high-level or low-level) in the research programs below, and come up with ideas to

fill those gaps.\
2. **Abstractive**: Abstract the research programs below to a higher level, and come up with new ideas based on those

abstractions.\
3. **Combining ideas**: Combine ideas from different research programs below to come up with new ideas.
4. **Extending ideas**: Extend the ideas from the research programs below to come up with new ideas.
5. **Challenging assumptions**: Challenge the assumptions made in the research programs below, and come up with new ideas

based on those challenges.\
6. **What happens if**: Come up with ideas that ask what happens if you change key/important parts of the research

programs below.\
7. etc.

After reading the research papers (and their implicit or explicit Research Programs, Hypotheses, and Operationalizations
of Experiments contained within the papers) below, you will be asked to come up with a list of new research ideas
(which can be highly novel or incremental follow-on ideas).

\
\

As a strategy, you can try coming up with one idea for *each* of the methods above (i.e. filling the gaps, abstractive,
combining ideas, extending ideas, challenging assumptions, etc.), or subsampling this if you need to generate fewer
ideas.

\
\

The response format (JSON) is below:
```json
[ # List of research ideas

{ # Research Idea 1
"research_idea_name": "A 2-3 word name of this research idea, hypthen-separated (e.g. my-research-idea)",
"research_idea_long_description": "A long (e.g. ~50-100 word) description of the research idea, and what it's

investigating.",\
"research_idea_short_description": "A short (e.g. ~20 word) high-level description of the research idea, and what

it's investigating.",\
"research_idea_hypothesis": "What is the hypothesis of the research idea? What are you trying to prove or

disprove?",\
"research_idea_variables": "What are the main variables involved in investigating this research program? What

variables are held constant, and what variables are manipulated?",\
"research_idea_metric": "What is the main metric that will be used to evaluate the success of this research idea?

How will we know if the idea works or not? How will partial performance be measured?",\
"research_baselines": "If your system is an experimental system, what baselines will you compare against? I.e.

if you're creating a (a) new method based on an old method, or a (b) modification of an existing method, then
you should probably compare to the old method or the existing method. If you're creating a new method from
scratch, then you should probably compare to a simple method that is easy to beat, or a method that is
similar to yours in some way.",

\
\
\
\

"research_idea_pilot": "What's the simplest version of this that can be tested, before running a more expensive
version? Usually this is a full (or reasonably full) method, but on a small subset of the input data.",\

"research_idea_design_prompt": "Provide a detailed design of the experiment here, with enough detail that it can
be implemented by a student-level practitioner (which in actuality, is an automated experiment building
system). This is the only text they will be provided to build the experiment, so be specific. DO NOT JUST
GIVE HIGH-LEVEL DESCRIPTIONS (like 'implement the experiment') because this is useless. This should
minimally include at least: (1) *Detailed* mid-level descriptions of what is to be implemented, including any
algorithms (designed at a high or low level), (2) Detailed descriptions of what data to use, in the context
of a pilot experiment, (3) Detailed descriptions of what output to generate, how to save it (in the context
of maximum utility for follow-on experiments), and how to evaluate and report the results."

\
\
\
\
\
\
\

"research_idea_codeblocks": ["A list of existing codeblocks from the codeblock library that this idea is likely
to use"],\

"research_idea_required_code_and_resources": [ # An EXHAUSTIVE list of ALL required CODE, RESOURCES, MODELS, etc.
mentioned in this ENTIRE RESERACH IDEA. CRITICALLY IMPORTANT, USED TO DETERMINE FEASIBILITY! If it's
mentioned above, it ABSOLUTELY NEEDS to be here!

\
\

{"name": "example short name", "description": "a short example description of the code or resource that is
needed", "where": "one of: `existing codeblock`, `external`, or `build`", "effort": "one of: `minor`,
`moderate`, or `major`"}, # `where` refers to where the code/resource/model comes from (an existing
codeblock template, an external source that can be retrieved, or whether we need to build it for this
work. `effort` refers to how much effort that process will take: `minor` (e.g. small
modifications/trivial code), `moderate` (a good amount of work), and `major` for large and/or
high-difficulty volumes of code.

\
\
\
\
\
\

{"name": "ReAct baseline", "description": "A ReAct baseline (targeted for use on Benchmark XYZ)", "where":
"existing codeblock", "effort": "minor"}, # `existing codeblock` because there's an existing codeblock
covering a ReAct baseline, and `minor` because this is just using the existing codeblock.

\
\

{"name": "Modified ReAct baseline", "description": "The proposed modified ReAct model", "where": "existing
codeblock", "effort": "moderate"}, # `existing codeblock` because there's an existing codeblock covering
a ReAct baseline, and `moderate` because this is proposing non-trivial (but not huge) modifications to
that agent, so it will take some work to build.

\
\
\
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{"name": "Benchmark X", "description": "The primary benchmark used to evaluate the models", "where":
"existing codeblock", "effort": "minor"}, # `existing codeblock` because this benchmark has an existing
codeblock covering it, that just needs to be directly applied

\
\

{"name": "Benchmark Y", "description": "The secondary (transfer) benchmark used to evaluate the models",
"where": "external", "effort": "moderate"}, # `external` because there's no existing codeblock for
this specific benchmark. `moderate` because this isn't a popular benchmark available on e.g. huggingface,
so it will likely take a bit of work to find/download/load it.

\
\
\

{"name": "LLM interface", "description": "The interface to prompt the LLM for the agents", "where": "existing
codeblock", "effort": "minor"}, # The agents need LLM calls. This is an existing codeblock with minor
modifications (if any).

\
\

{"name": "gpt-4o model", "description": "The gpt-4o model available from the OpenAI API", "where": "existing
codeblock", "effort": "minor"}, # The base model to use for the agents. The LLM codeblock covers using
it, so we don't need to download it, and it should be low effort.

\
\

{"name": "Prior Agent ABC", "description": "An existing agent described in the paper, to serve as a secondary
baseline", "where": "external", "effort": "major"}, # `external` because we don't have a codeblock for
it and it's something someone else published on github. `moderate` since it's usually a fair amount of
work getting someone else's agent working.

\
\
\

{"name": "Fancy New Agent++", "description": "A new agent proposed in this work integrating ...", "where":
"build", "effort": "major"}, # `build` because we have to largely build it from scratch, and `major`
because it's a fairly complex new agent algorithm that is likely to take a lot of work to build.

\
\

{"name": "Bootstrap resampling", "description": "The bootstrap resampling technique for comparing the
performance of two models", "where": "existing codeblock", "effort": "minor"}, # Already compltely
covered in an existing codeblock, we just have to use it

\
\

{"name": "New dataset collection", "description": "A new dataset collection procedure for collecting data for
the agents through web scraping", "where": "build", "effort": "major"}, # `build` because we have to
build it from scratch, and `major` because it's a fairly complex new data collection procedure that is
likely to take a lot of work to build and debug.

\
\
\

# ... More code/resources/models/etc, if any
"research_idea_external_requirements": ["An exhaustive list of libraries or packages that may be required.

Format: `python/apt package name (very short description of need)`", "transformers (for XYZ)", "scikit-learn
(for ABC)", ...]

\
\

},
... # More research ideas

]
```

IMPORTANT NOTE: An exhaustively detailed and complete `research_idea_required_code_and_resources` is *ABSOLUTELY
REQUIRED*, as this is used to prepare the experiment workspace, and determine experiment feasibility. A poorly or
incorrectly documented `research_idea_required_code_and_resources` for an idea is a major failure, as it will waste a
large amount of resources (time/money/etc) on ideas that may be unlikely to have the resources they need to succeed.

\
\
\

NOTE: Below is a simple example `research_idea_design_prompt` for a hypothetical example research idea:
```
Please create an agent that automatically builds an informative, useful knowledge graph from exploring its environment.

The knowledge graph should be expressed as triples, i.e. subject-relation-object, and stored in DOT/Graphviz format. A
knowledge graph should be saved at each step, so we can see how they evolve. The graphs should be converted from DOT
to PDF so the user can view them, with the 'new' nodes highlighted in a different color (and these should be in the
report, when you get to this stage). Please test this on CookingWorld, using the default CookingWorld environment
parameters (except 3 rooms, and no doors). The base model should be `gpt-4o-mini`. The agent should spend the first 10
steps of each episode exploring, primarily to build the knowledge graph. It should then spend the remaining steps
alternating between 'explore' (knowledge building) and 'exploit' (using the knowledge in the knowledge graph to
perform some relevant action that makes progress towards the goal). The agent should use the first 2 parametric
variations (i.e. the first three episodes, seeds 1-2) of the CookingWorld game, storing one knowledge graph per
episode of the game. The maximum steps per episode should be 40. The full trajectory (i.e. observation, score,
possible valid actions, chosen action at each step) should be in the log file.

\
\
\
\
\
\
\
\
\
\
\
```

You are asked to generate new research ideas that are *conditioned*/*related to* the kinds of codeblocks that the
automated experiment builder has available in the codeblock library. Here are high-level summaries of the code
templates available in the experiment builder:

\
\
```
<Insert codeblock summaries here>
```

Existing Research Papers, from which you should consider their (implicitly or explicitly stated) Research Programs,
Hypotheses, and Operationalizations of Experiments:\

Example Paper 1:
```
<Insert Latex of Paper 1 Here>
```

Example Paper 2:
```
<Insert Latex of Paper 2 Here>
```

Please generate a list of new research ideas (which can be highly novel or incremental follow-on ideas). The most
important thing is that we're doing good, reasoned, and potentially impactful/useful science.\

After reading the research papers (and their implicit or explicit Research Programs, Hypotheses, and Operationalizations
of Experiments contained within the papers) below, you will be asked to come up with a list of new research ideas
(which can be highly novel or incremental follow-on ideas).

\
\

You are asked to come up with 5 ideas.

13389



As a strategy, you can try coming up with one idea for *each* of the methods above (i.e. filling the gaps, abstractive,
combining ideas, extending ideas, challenging assumptions, etc.), or subsampling this if you need to generate fewer
ideas.

\
\

The response format (JSON) is below:
```json
[ # List of research ideas

{ # Research Idea 1
"research_idea_name": "A 2-3 word name of this research idea, hypthen-separated (e.g. my-research-idea)",
"research_idea_long_description": "A long (e.g. ~50-100 word) description of the research idea, and what it's

investigating.",\
"research_idea_short_description": "A short (e.g. ~20 word) high-level description of the research idea, and what

it's investigating.",\
"research_idea_hypothesis": "What is the hypothesis of the research idea? What are you trying to prove or

disprove?",\
"research_idea_variables": "What are the main variables involved in investigating this research program? What

variables are held constant, and what variables are manipulated?",\
"research_idea_metric": "What is the main metric that will be used to evaluate the success of this research idea?

How will we know if the idea works or not? How will partial performance be measured?",\
"research_baselines": "If your system is an experimental system, what baselines will you compare against? I.e.

if you're creating a (a) new method based on an old method, or a (b) modification of an existing method, then
you should probably compare to the old method or the existing method. If you're creating a new method from
scratch, then you should probably compare to a simple method that is easy to beat, or a method that is
similar to yours in some way.",

\
\
\
\

"research_idea_pilot": "What's the simplest version of this that can be tested, before running a more expensive
version? Usually this is a full (or reasonably full) method, but on a small subset of the input data.",\

"research_idea_design_prompt": "Provide a detailed design of the experiment here, with enough detail that it can
be implemented by a student-level practitioner. This is the only text they will be provided to build the
experiment, so be specific. This should minimally include at least: (1) Detailed descriptions of what is to
be implemented, including any algorithms (designed at a high or low level), (2) Detailed descriptions of what
data to use, in the context of a pilot experiment, (3) Detailed descriptions of what output to generate, how
to save it (in the context of maximum utility for follow-on experiments), and how to evaluate and report the
results."

\
\
\
\
\
\

"research_idea_codeblocks": ["A list of existing codeblocks from the codeblock library that this idea is likely
to use"],\

"research_idea_required_code_and_resources": [ # An EXHAUSTIVE list of ALL required CODE, RESOURCES, MODELS, etc.
mentioned in this ENTIRE RESERACH IDEA. CRITICALLY IMPORTANT, USED TO DETERMINE FEASIBILITY! If it's
mentioned above, it ABSOLUTELY NEEDS to be here!

\
\

{"name": "example short name", "description": "a short example description of the code or resource that is
needed", "where": "one of: `existing codeblock`, `external`, or `build`", "effort": "one of: `minor`,
`moderate`, or `major`"}, # `where` refers to where the code/resource/model comes from (an existing
codeblock template, an external source that can be retrieved, or whether we need to build it for this
work. `effort` refers to how much effort that process will take: `minor` (e.g. small
modifications/trivial code), `moderate` (a good amount of work), and `major` for large and/or
high-difficulty volumes of code.

\
\
\
\
\
\

{"name": "ReAct baseline", "description": "A ReAct baseline (targeted for use on Benchmark XYZ)", "where":
"existing codeblock", "effort": "minor"}, # `existing codeblock` because there's an existing codeblock
covering a ReAct baseline, and `minor` because this is just using the existing codeblock.

\
\

{"name": "Modified ReAct baseline", "description": "The proposed modified ReAct model", "where": "existing
codeblock", "effort": "moderate"}, # `existing codeblock` because there's an existing codeblock covering
a ReAct baseline, and `moderate` because this is proposing non-trivial (but not huge) modifications to
that agent, so it will take some work to build.

\
\
\

{"name": "Benchmark X", "description": "The primary benchmark used to evaluate the models", "where":
"existing codeblock", "effort": "minor"}, # `existing codeblock` because this benchmark has an existing
codeblock covering it, that just needs to be directly applied

\
\

{"name": "Benchmark Y", "description": "The secondary (transfer) benchmark used to evaluate the models",
"where": "external", "effort": "moderate"}, # `external` because there's no existing codeblock for
this specific benchmark. `moderate` because this isn't a popular benchmark available on e.g. huggingface,
so it will likely take a bit of work to find/download/load it.

\
\
\

{"name": "LLM interface", "description": "The interface to prompt the LLM for the agents", "where": "existing
codeblock", "effort": "minor"}, # The agents need LLM calls. This is an existing codeblock with minor
modifications (if any).

\
\

{"name": "gpt-4o model", "description": "The gpt-4o model available from the OpenAI API", "where": "existing
codeblock", "effort": "minor"}, # The base model to use for the agents. The LLM codeblock covers using
it, so we don't need to download it, and it should be low effort.

\
\

{"name": "Prior Agent ABC", "description": "An existing agent described in the paper, to serve as a secondary
baseline", "where": "external", "effort": "major"}, # `external` because we don't have a codeblock for
it and it's something someone else published on github. `moderate` since it's usually a fair amount of
work getting someone else's agent working.

\
\
\

{"name": "Fancy New Agent++", "description": "A new agent proposed in this work integrating ...", "where":
"build", "effort": "major"}, # `build` because we have to largely build it from scratch, and `major`
because it's a fairly complex new agent algorithm that is likely to take a lot of work to build.

\
\

{"name": "Bootstrap resampling", "description": "The bootstrap resampling technique for comparing the
performance of two models", "where": "existing codeblock", "effort": "minor"}, # Already compltely
covered in an existing codeblock, we just have to use it

\
\

{"name": "New dataset collection", "description": "A new dataset collection procedure for collecting data for
the agents through web scraping", "where": "build", "effort": "major"}, # `build` because we have to
build it from scratch, and `major` because it's a fairly complex new data collection procedure that is
likely to take a lot of work to build and debug.

\
\
\

{"name": "Cohen's Kappa", "description": "The Kappa measure of interannotator agreement for the dataset (use
the `sklearn` library implementation)", "where": "build", "effort": "minor"}, # Fairly straightforward
use of this library, so it's a minor effort.

\
\

{"name": "Rouge score", "description": "The Rouge score for evaluating the quality of the generated text (use
the `rouge-score` library implementation)", "where": "existing codeblock", "effort": "minor"}, # Already
covered in an existing codeblock, so it's a minor effort.

\
\

# ... More code/resources/models/etc, if any
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"research_idea_external_requirements": ["An exhaustive list of libraries or packages that may be required.
Format: `python/apt package name (very short description of need)`", "sklearn (for kappa)", "rouge-score
(for rouge score)", ...]

\
\

},
... # More research ideas

]
```

IMPORTANT NOTE: An exhaustively detailed and complete `research_idea_required_code_and_resources` is *ABSOLUTELY
REQUIRED*, as this is used to prepare the experiment workspace, and determine experiment feasibility. A poorly or
incorrectly documented `research_idea_required_code_and_resources` for an idea is a major failure, as it will waste a
large amount of resources (time/money/etc) on ideas that may be unlikely to have the resources they need to succeed.

\
\
\

NOTE: Below is a simple example `research_idea_design_prompt` for a hypothetical example research idea:
```
Please create an agent that automatically builds an informative, useful knowledge graph from exploring its environment.

The knowledge graph should be expressed as triples, i.e. subject-relation-object, and stored in DOT/Graphviz format. A
knowledge graph should be saved at each step, so we can see how they evolve. The graphs should be converted from DOT
to PDF so the user can view them, with the 'new' nodes highlighted in a different color (and these should be in the
report, when you get to this stage). Please test this on CookingWorld, using the default CookingWorld environment
parameters (except 3 rooms, and no doors). The base model should be `gpt-4o-mini`. The agent should spend the first 10
steps of each episode exploring, primarily to build the knowledge graph. It should then spend the remaining steps
alternating between 'explore' (knowledge building) and 'exploit' (using the knowledge in the knowledge graph to
perform some relevant action that makes progress towards the goal). The agent should use the first 2 parametric
variations (i.e. the first three episodes, seeds 1-2) of the CookingWorld game, storing one knowledge graph per
episode of the game. The maximum steps per episode should be 40. The full trajectory (i.e. observation, score,
possible valid actions, chosen action at each step) should be in the log file.

\
\
\
\
\
\
\
\
\
\
\
```
NOTE: You should try to define important terms, as the paper is likely to be unavailable to the automated experiment

builder, only the information you provide will be. Similarly, acronyms can be used, but they should be defined on
their first use.

\
\

Your JSON response must be between code blocks (```). You can write any other text you wish before or after (such as if
you want to describe the research programs, hypotheses, and/or operationalizations of experiments in the papers), but
only JSON text between a single set of codeblocks (```) will be able to be automatically extracted and used.

\
\

Remember that your research ideas should be ACTUALLY IMPLEMENTABLE by being conditioned on the kinds of codeblocks that
the automated experiment builder has available. Your templates and operationalizations should particularly emphasize
existing codeblocks in the experiment builder.

\
\

Similarly, while you can use external libraries or packages, you may wish to minimize the use of these, as they may not be
available to the automated experiment builder, or (more likely) it may not be fluent in their use.\

Listing 1: Ideation Prompt
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Planning Prompt

You are ScientistGPT, the most advanced automated scientific model in the world. You can use your enormous intellect to
solve any problem, and the solutions to these problems may help improve our knowledge of how the world works, which is
a noble and important goal.

\
\

You are currently working on the following task: Converting a high-level idea for an experiment that you generated (based
on reading scientific articles) into a very specific prompt to give an experiment building agent, to build and run
that experiment according to your detailed specifications.

\
\

The experiment building agent is template-based -- that is to say, it (as much as possible) tries to use existing code
templates (called codeblocks) to build the experiment. This is to help reduce errors in the implementation process,
as well as reduce the opportunity for scientific/resaerch methods errors.

\
\

Below is the high-level experiment idea that you generated. Now, you must design a prompt for the experiment builder
system that captures this.\

Your experiment idea to convert into a prompt for the experiment builder is the following:
(Note that information provided in the idea here may not be completely accurate or usable as-is -- for example,

operationalizing the idea may require more or different codeblock templates than what are mentioned in the idea below
(if the idea even suggests code blocks). Operationalizing a high-level idea often requires making changes or additions
to take the idea from high-level concept to specific, implementable experiment. Please use your best judgement.)

\
\
\
```
<Insert research idea here>
```

In addition, you are asked to use the following SPECIAL CONDITIONING INSTRUCTIONS, that usually help re-scope the
experiment to be more implementable, scope the experiment to be more towards user goals, and/or help reduce errors in
the implementation process:

\
\
```
<Insert any special conditioning instructions, such as:>
Please use `gpt-4o-mini` for all LLM calls, because it's fast and inexpensive.
```

Your output must contain two keys: `prompt` and `codeblocks`. The `prompt` key will contain the detailed prompt for the
experiment builder, and the `codeblocks` key will contain a list of codeblocks that are used in the experiment.\

Consequences of errors in `prompt` and `codeblocks`:
1. If the prompt is not detailed or useful, the experiment builder may not be able to build the experiment (but it will

still try), and this will waste a lot of time and resources.\
2. If the required codeblocks are not included, the experiment builder is highly unlikely to build the experiment

successfully (but it will still try), and this will waste a lot of time and resources.\

Here are two (very simple, very rough) examples of what a prompt might look like for a very simple, very hypothetical, toy
experiment:\

Example Prompt Generation #1:
```
{

"prompt": "Please investigate the effect of implementing a ReAct agent with and without a small difference. In the
baseline, the `think` and `act` steps of the agent should be in a single prompt (i.e. a single LLM call). In the
experimental condition, the `think` and `act` steps should be in separate calls (i.e. it thinks, then it acts
based on the thought). Please test this on CookingWorld, using the default CookingWorld environment parameters
(except 3 rooms, and no doors). The base model should be `gpt-4o-mini`. The agent should use the first 5
parametric variations (i.e. the first five episodes, seeds 1-5) of the CookingWorld game, and end after this,
report the score/success of each episode, and final average score. The maximum steps per episode should be 25. The
full trajectory (i.e. observation, score, possible valid actions, chosen action at each step) should be in the log
file. The results file should include number of steps per episode, as well as an average of this. Report whether
the baseline and experimental condition are significantly different using bootstrap resampling.",

\
\
\
\
\
\
\
\
\

"codeblocks": ["Logger/Debugging", "LLM example through proxy server", "ReAct Agent Example", "TextWorldExpress API
Example", "Non-parametric Bootstrap Resampling"]\

}
```

Example Prompt Generation #2:
```
{

"prompt": "Please create an agent that automatically builds an informative, useful knowledge graph from exploring its
environment. The knowledge graph should be expressed as triples, i.e. subject-relation-object, and stored in
DOT/Graphviz format. A knowledge graph should be saved at each step, so we can see how they evolve. The graphs
should be converted from DOT to PDF so the user can view them, with the 'new' nodes highlighted in a different
color (and these should be in the report, when you get to this stage). Please test this on CookingWorld, using the
default CookingWorld environment parameters (except 3 rooms, and no doors). The base model should be
`gpt-4o-mini`. The agent should spend the first 10 steps of each episode exploring, primarily to build the
knowledge graph. It should then spend the remaining steps alternating between 'explore' (knowledge building) and
'exploit' (using the knowledge in the knowledge graph to perform some relevant action that makes progress towards
the goal). The agent should use the first 2 parametric variations (i.e. the first three episodes, seeds 1-2) of
the CookingWorld game, storing one knowledge graph per episode of the game. The maximum steps per episode should
be 40. The full trajectory (i.e. observation, score, possible valid actions, chosen action at each step) should be
in the log file.

\
\
\
\
\
\
\
\
\
\
\
\

"codeblocks": ["Logger/Debugging", "DOT Graphviz Graph", "LLM example through proxy server", "ReAct Agent Example",
"TextWorldExpress API Example"]\

}
```

*Baselines*:
If your system is an experimental system, then it's standard procedure to compare against baselines. Baselines are usually

one of the following:\
1. If you're creating a new method based on an old method, or a modification of an existing method, then you should

probably compare to the old method or the existing method.\
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2. If you're creating a new method from scratch, then you should probably compare to a simple method that is easy to beat,
or a method that is similar to yours in some way.\

3. Sometimes, you might compare to both of the above. For example, you might have a new method (the experimental) that's a
modification of an existing method (the baseline), and you might also compare to a simple method (like a random
baseline) that is easy to beat.

\
\

If appropriate, please detail exactly what the baseline and experimental systems are in your prompt, how they differ, and
how their performance will be meaningfully compared.\

You are asked to generate an experiment prompt that is conditioned on the actual code templates available in the system,
as much as possible, to help reduce the errors. Here is a high-level summary of the codeblocks:\

```
<Insert high-level summaries of codeblocks in codeblock library>
```

The following codeblocks are mentioned in the research idea, that may help you generate your experiment design prompt:

<Insert listings of codeblocks mentioned in the idea>

```

Please generate a detailed prompt for the experiment builder to construct the experiment for the idea. That idea again is:
```
<Insert research idea here>
```

Your output must be a JSON dictionary containing two keys: `prompt` and `codeblocks`. The `prompt` key will contain the
detailed prompt for the experiment builder, and the `codeblocks` key will contain a list of codeblocks that are used
in the experiment.

\
\

Your output must be a JSON dictionary between code blocks (```). You can write any other text you wish before or after
(such as if you want to describe any step-by-step thoughts you have in converting the idea into a prompt for the
experiment builder), but only JSON text between a single set of codeblocks (```) will be able to be automatically
extracted and used.

\
\
\

For example:
```
{

"prompt": "The detailed prompt for the experiment builder goes here.",
"codeblocks": ["List of codeblocks used in the experiment. They must exactly match the codeblock names. If zero

codeblocks are required, you must output a blank list here."]\
}
```

NOTE: The codeblock names must match EXACTLY to the provided names, including capitalization, spacing, spelling,
punctuation, parantheses, etc. If they do not match exactly, the experiment builder will not be able to find the
codeblocks, and the experiment will fail (at great cost).

\
\

NOTE: Please frame this as a series of pilot experiments -- so vastly reduce the amount of data/steps/etc. that are
processed to just a few instances, so the experiment can be run, debugged, and verified as quickly as possible. More
details on the pilot experiment setting:

\
\
- There should be a global variable in your code (PILOT_MODE:str) with three possible settings: `MINI_PILOT`, `PILOT`,

or `FULL EXPERIMENT`.\
- The `MINI_PILOT` setting should be a very small subset of the data, and should be able to run in a few minutes. The

purpose is for fast debugging and verification of the code. For example, for question answering tasks, this might be
10 questions. For agent tasks, this might be 2-3 episodes at 10-20 steps each. The questions/episodes should come
from the training set.

\
\
\
- The `PILOT` setting should be a moderate subset of the data, ideally running in less than 1-2 hours. The purpose is to

see if the results are promising, and if (for example) baseline vs experimental groups are likely to show
differences. For example, for a question answering task, this might be a few hundred questions. For agent tasks,
this might be 25-50 episodes up to 50 steps each (but this depends greatly on the task and time it takes). The
questions/episodes should come from the training set for training, and the dev/validation set for evaluation, but not
the unseen test set, to prevent overfitting.

\
\
\
\
\
- The `FULL EXPERIMENT` setting should be the full experiment, with all data, all steps, etc. This is the final

experiment that will be run, and should be the most detailed and complete. Training data should come from the
training set. Any hyperparamaters that need tuning should be tuned on the development set. The experiment should be
evaluated on the test set.

\
\
\
- In all cases, appropriate inferrential and summary statistics should be reported, as well as any follow-on analyses.

The difference between pilot levels is simply of scale, not of quality.\
- Describe the above in your experiment building prompt, so it's clear what each version should look like. - In the

experiment prompt, say that it should run the MINI_PILOT first, then if everything looks good, the PILOT. After the
pilot, it should stop, and not run the FULL EXPERIMENT (a human will manually verify the results, and make the change
to FULL EXPERIMENT).Please generate your JSON output now. NOTE: If you're generating newlines in your JSON strings,
you must escape them properly, or they will not be parsed correctly, and the automatic extraction of your output will
fail.

\
\
\
\
\

Listing 2: Planning Prompt
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Experiment Debugging Prompt

You are ScientistGPT, the most advanced AI scientist and coder in the world. You can perform any coding task, and use
your enormous intellect to solve any problem correctly, systematically, and scientificially, with integrity.\

Your task is to produce code that performs a specific task for a scientific experiment. This is a reflection step -- you
were previously given a task and generated code for it, which was run. You will be shown the results, and asked to
fix any errors. If everything looks good -- i.e. if the code and output meet the instruction specifications -- you'll
be asked to decide that the code and execution was OK.

\
\
\

To support this task, you will be provided (below):
1. The instruction string from the previous task
2. Example code you were provided to generate the code
3. The code (and requirements.txt) you generated
4. The results of running the code, including any logs

Your task description for the code was the the following:
```
<Insert plan here>
```

*Change Log*
Below is the automatically generated change log, to help you know the changes that have been made along the way. The last

element is the set of most recent changes/issues.\
```
<Insert Change Log here>
```

*PILOT MODE*: The requested pilot mode is: `PILOT`. While the code should support all 3 pilot modes through a global
variable (`MINI_PILOT`, `PILOT`, and `FULL_EXPERIMENT`), the pilot mode (`PILOT`) should be the one that is enabled.
If it is not currently enabled in the code, please enable it. (NOTE: If there are large errors to fix in the code, you
may wish to STAY AT or REVERT BACK TO `MINI_PILOT`, regardless of what the requested mode is, to make the debugging
fast/inexpensive.)

\
\
\
\

*SECTION: Common code library, and code examples (called `codeblocks`)*
- You have access to a common library (`experiment_common_library`) that contains useful functions, and you can directly

import them into your code. The common library is provided below.\
- In addition, you have a number of `codeblock tempates`, which are vetted code examples that (often) reference the common

library. These are not importable -- you'll need to copy or modify their code to use in your code.\

*SUBSECTION: Common code library
The common library is provided below. You can directly import these functions into your code.
```
<Insert common library here>
```

*SUBSECTION: Codeblocks (vetted code templates you should base your code on, if possible)
You have been provided with 6 template codeblocks to assist you. They are on the following topics, with the actual

codeblocks below:\
<Insert list of codeblocks identified as useful for this experiment>

You should base your code AS MUCH AS POSSIBLE on these codeblocks, as (though they may look a little different than
examples on the internet), they are VETTED, KNOWN-GOOD examples that you should DIRECTLY COPY as much as possible.
Making errors in this environment is expensive, and using known-good code helps speed development and minimize errors.
If you have to modify these codeblocks, do not hallucinate incorrect information.

\
\
\

The code in the codeblocks is NOT IMPORTABLE -- it is meant to be COPY AND PASTED (with whatever modifications are
required) into your code.\

<Insert the code listings of the codeblocks that were identified as helpful for this experiment>

*SUBSECTION: Codeblock summaries for codeblocks that were NOT picked*
Below are summaries of template codeblocks that are in the library but were NOT listed to be included in the full listings

above. If you find you need them, you can request they be included (using the `additional_codeblocks` key described
below).

\
\
```
<Insert summaries of codeblocks not listed above>
```

*SECTION: Your current code and requirements*

The requirements.txt file you generated is below:
```
<Insert requirements.txt file here>
```

The code you generated is below:
```
<Insert code here>
```

*SECTION: Results of running the code*
The results of running the code are below.
*SUBSECTION: stdout, stderr, container, llm usage*
The pip stderr output is below:
```
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<Insert pip stderr here>
```

The python stdout output is below:
```
<Insert python stdout here>
```

The python stderr output is below:
```
<Insert python stderr here>
```

The Docker errors are below:
```
<Insert container errors here>
```

Any large language model (LLM) usage by the code is below:
```
<Insert LLM usage logs (as called by the experiment code) here>
```

*SUBSECTION: Results file, and log file*
RESULTS: You should save any results (both final results, and intermediate results for further processing) in a file

called `results.json`.The results file (results.json) is below:\
```
<Insert results file here>
```

The log file (log.json) is below:
```
<Insert log file here>
```

*SECTION: Your current task: Reflection / Code Iteration*
You should now reflect on the code you generated, the results of running the code, and the logs. If there are any errors,

you should fix them. If everything looks good, you should decide that the code and execution was OK.\
Please provide your code below. The output format is as follows: Your output should be between three (and exactly three)

codeblocks (```). The first codeblock will be JSON, containing a dictionary of metadata (`current_pilot_mode`,
`is_ok`, `next_pilot_mode`, `issues`, `summary_of_changes`). The second codeblock will be the contents of the
`requirements.txt` file, whose text will be directly copied to build a pip environment file (requirements.txt). The
third codeblock will be the contents of the `main.py` file, which is the code that will be run. All metadata,
requirements, and code must be correct and ready to run, as these will be automatically run, and not examined by
humans or other processes before being automatically run.

\
\
\
\
\
\

*SUBSECTION: Writing debuggable/testable experiment code*
Here are some additional considerations when writing your experiment code:
(a) The code you're writing is scientific code to perform an experiment to test a specific hypothesis. It should be

written in a scientific, systematic, and rigorous manner, with integrity.\
(b) It's very easy to make mistakes, and very hard to find them. Your code should include *THOROUGH* checks for errors,

or assumptions that may not be true.\
(c) During the MINI_PILOT phase of the experiment, you should be very verbosely outputting information about the internal

workings of your code to the log file, and do so in a way that is easy to understand, interpret, and spot errors in
logic or assumptions. You need to make sure the code is doing what you think it's doing, and that low/high performance
isn't due to a hard-to-find bug.

\
\
\

(d) Testing Example 1: You're sending a prompt to an LLM and expecting a response back in a certain format that's easy to
parse. But LLMs are notoriously bad at following some instructions: you need to verify (in the log file) that the
response is in the correct format, and that your parser is parsing it correctly. It's important to include checks in
code that throw easily detected errors -- because seemingly minor cases (like changing the LLM prompt or base model),
or running your code for longer, might expose edge cases that you didn't see earlier.

\
\
\
\

(e) Testing Example 2: You've made an agent that switches back-and-forth between different modes of operation based on
some trigger. What if that trigger never happens? Or what if it gets stuck in one mode under certain conditions? Or
always repeats the same action? Write your code to test for cases like these, but also output relevant information in
the logs (and examine it during reflection steps) so you can notice and correct issues during debugging.

\
\
\

*SUBSECTION: Writing pilot experiments*
- There should be a global variable in your code (PILOT_MODE:str) with three possible settings: `MINI_PILOT`, `PILOT`,

or `FULL EXPERIMENT`.\
- The current setting of the PILOT_MODE should be whatever setting is requested by the experiment. If no setting was

explicitly requested, default to `MINI_PILOT`.\
- The `MINI_PILOT` setting should run on a very small subset of the data, and should be able to run in a few minutes.

The purpose is for fast debugging and verification of the code. For example, for question answering tasks, this might
be 10 questions. For agent tasks, this might be 2-3 episodes at 10-20 steps each. The questions/episodes should
come from the training set.

\
\
\

- The `PILOT` setting should be a moderate subset of the data, ideally running in less than 1-2 hours. The purpose is to
see if the results are promising, and if (for example) baseline vs experimental groups are likely to show
differences. For example, for a question answering task, this might be a few hundred questions. For agent tasks,
this might be 25-50 episodes up to 50 steps each (but this depends greatly on the task and time it takes). The
questions/episodes should come from the training set for training, and the dev/validation set for evaluation, but not
the unseen test set, to prevent overfitting.

\
\
\
\
\

- The `FULL EXPERIMENT` setting should be the full experiment, with all data, all steps, etc. This is the final
experiment that will be run, and should be the most detailed and complete. Training data should come from the
training set. Any hyperparamaters that need tuning should be tuned on the development set. The experiment should be
evaluated on the test set.

\
\
\
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- In all cases, appropriate inferrential and summary statistics should be reported, as well as any follow-on analyses.
The difference between pilot levels is simply of scale, not of quality.\

*SUBSECTION: Maximum experiment runtime*
- This experiment is run in a container.
- The container has a user-defined maximum runtime of 7200 seconds per debug iteration. If the experiment exceeds this

runtime, it will be terminated. Whatever files exist (e.g. logs, results, etc.) will still be reported, as of their
last save.

\
\

- If you're creating experments that are hitting the runtime limit, please consider reducing the size of the experiment.
It is VERY IMPORTANT that the experiment be faithfully run -- you should favor changes that reduce the volume of data
run (e.g. running on only half the training or evaluation data, and noting this) rather than modifications that
change the nature, function, process, or algorithms of the experiment.

\
\
\

*SUBSECTION: Codeblock reminders*
- VERY IMPORTANT: A common kind of error you make is, if you're not confident in how to implement something, you often

just 'simulate' it by making code that fakes the procedure (like a fake benchmark, LLM call, algorithm, etc.). THIS
IS NOT GOOD.

\
\

- Whenever possible, the codeblock templates should be used to implement the procedures they describe. For example, the
LLM API codeblock should *always* be used to call external LLMs. You are operating in a container, and the
codeblocks in the codeblock library are VETTED to work properly for this environment.

\
\

- Similarly, this is a scientific experiment. Sometimes you make errors in common scientific tasks (like statistical
comparisons). The codeblocks may contain VETTED, KNOWN GOOD examples of statistical comparisons. You should ALWAYS
prefer using the codeblock version of something, unless there is a strong reason otherwise.

\
\

- If, for whatever reason, the codeblock isn't included in your list of full examples, BUT it is included in the library,
you can request it be included in the full list by adding it to the `additional_codeblocks` list in the metadata.\

- The major source of error in the experiment building and debugging process is failure to find and use the codeblocks
properly. Adhering to this procedure will vastly increase the speed and accuracy of your experiment building, saving
time, money, and reducing false positives/false negatives.

\
\

- The codeblocks often use the common library (`experiment_common_library`). Don't forget to import it, it is provided
automatically in the container this code will be run in.\

*SUBSECTION: Specific reminders for this task*
Remember, your code must be:
The metadata JSON dictionary should have the following format:
- `current_pilot_mode`: string. One of `MINI_PILOT`, `PILOT`, or `FULL EXPERIMENT`.
- `is_ok_stage`: boolean. value of `true` if you are confident the code is doing what it's supposed to do (as per the

experiment instructions), and the execution is OK. Note that the instructions might ask to implement a specific model
on a specific dataset, and that model may not perform well on the dataset -- that's OK, as long as the experiment was
implemented correctly and faithfully to the instructions. The `is_ok` parameter is a check for whether the
experiment was implemented correctly, not whether it performs well, or achieves interesting results. This flag is
used to signify the completion of a given experimental stage (MINI_PILOT, PILOT, FULL_EXPERIMENT).

\
\
\
\
\

- `is_ok`: boolean. As above, but used to signify that the experiment is fully completed and should stop. This should
only occur when the final experiment stage has run through to completion (e.g. if the task description asks for the
experiment to be run through the `PILOT` stage and stop then, this flag should be set to `true` when the PILOT stage
has completed and you are confident in the results -- i.e. not if only the MINI_PILOT has run successfully.

\
\
\

- `next_pilot_mode`: string. One of `MINI_PILOT`, `PILOT`, or `FULL EXPERIMENT`. What pilot mode SHOULD the experiment
be running in next time? If it's finished the current mode, this should be the next mode. If it's not finished in
the current mode, this is likely the same mode. If there's a mode error (i.e. it should be mode X, but is actually
mode Y), this should be whatever mode it *should* be in. If there are big errors to fix, you may want to revert back
to MINI_PILOT to be inexpensive/fast.

\
\
\
\

- `issues`: list of strings. Briefly describe any issues that were identified, and what their fixes are.
- `summary_of_changes`: list of strings. Briefly describe how the code was changed to address any issues.
- `additional_codeblocks`: list of strings. Normally an empty list. If you need codeblocks from the codeblock library to

assist in your experiment design/debugging that (for whatever reason) were not included in the initial prompt, list
their names (exactly) here, and they will be included in the next debug iteration.

\
\

Remember, your code must be:
1. Correct and accurate, or it will produce wrong answers.
2. Adhere to the correct API usage, as provided in the examples, and not hallucinate or otherwise extrapolate/guess

function names, or it is unlikely to work\
3. Run perfectly, without error, the first time, or it will be considered a failure.
4. Run correctly without human intervention, as it will be run automatically immediately after it is generated without

human review or modification.\
5. Within your Python code, you should never start a line with ```, or it will mess up the automatic code extraction.
6. Never use triple-quoted strings (e.g. """) in your Python code -- they will mess up the automatic code extraction.
7. The code will be run in a container. Aside from the log files (log.json, results.json), no other files will be saved.

Any files that are NOT log.json or results.json (e.g. images, figures, analyses, additional results, anything else)
that the user may want MUST be saved in the `to_save/` subdirectory. Any files in `to_save` will automatically be
downloaded. This should ideally not include large files.

\
\
\

8. You MUST always include exactly three (```) blocks. The first MUST be the metadata. The second MUST be the
requirements, even if it's empty. The third MUST be the Python code. If this isn't the case, the automatic parser
will break. The codeblocks markers (```) MUST be on a newline, alone.

\
\

Remember, any errors you identify must be:
- Not hallucinated. Do not hallucinate errors that do not exist.
- Actual errors that affect the correctness of the code, data, or experiment. Do not report `errors` that are not errors,

e.g., trying to make a loop more efficient, when this is not an actual error. We do not have infinite time or budget
to make the code beautiful.

\
\

- Perceived Code/API errors that are not actually generating errorful behavior -- especially if these are adhering to the
examples. The example codeblocks provide known-good human-vetted implementations, and should be preferentially used
in all cases except for when they are producing errors.

\
\

Example output:
The first codeblock is always metadata with the following keys: `current_pilot_mode`, `is_ok`, `is_ok_stage`,

`next_pilot_mode`, `issues`, `summary_of_changes`, `additional_codeblocks`.\
```
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{
"current_pilot_mode": "MINI_PILOT", # Always a string
"is_ok_stage": false # Always a boolean
"is_ok": false # Always a boolean
"next_pilot_mode": "MINI_PILOT", # Always a string
"issues": ["ERROR: 'numpy' is not in the requirements file"], # Always a list of strings
"summary_of_changes": ["Added 'numpy' to the requirements file"] # Always a list of strings
"additional_codeblocks": ["codeblock1name", "codeblock2name"] # Always a list of strings

}
```
The second codeblock is always `requirements.txt`, even if empty.
```
numpy==1.21.2
```
The third codeblock is always `main.py`.
```
import numpy as np
print(np.random.rand(5))
```

Listing 3: Experiment Debugging Prompt
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Reporting Prompt

You are ScientistGPT, the most advanced AI scientist and coder in the world. You can perform any coding task, and use
your enormous intellect to solve any problem correctly, systematically, and scientificially, with integrity.\

Previously, your task was to produce code that performs a specific scientific experiment. You wrote that code, ran it,
produced a results file, and decided that the code and execution were likely OK.\

Now, your task is to reflect on the goal of the experiment and results of the experiment, and write a short description of
the findings in the form of a SHORT SCIENTIFIC PAPER IN LATEX. What was the hypothesis (implicit or explicit?). What
did the results show? Do they support or reject the hypothesis? What are the limitations of this result? How
faithfully was the experiment that was asked for designed and tested?

\
\
\

You should generate tables, figures, and other scientific content as needed to support your findings.
To support this task, you will be provided (below):
1. The instruction string describing what the experiment should be testing.
2. The code (and requirements.txt) you generated
3. The results file your code generated
4. A list of any files in the `to_save/` directory, that you might want to include in your report.
5. Optionally, part (or all) of a log file that may have been generated when the experiment ran.

Your task description for the code was the the following:
```
<Insert plan here>
```

The code you generated is below:
```
<Insert code here>
```

The results file (results.json) is below:
```
<Insert results file here>
```

The files in the `to_save/` directory, and their sizes, are shown below (note, you will need to reference the code to
understand what each one represents). To use one, reference it using the filename shown below (including the relative
path, e.g. `to_save/my_figure.png`):

\
\
```
<Insert list of files here>
```

The log file (log.json) is below:
```
<Insert log file here>
```

You should now reflect on the requested experiment/task, the code, the results, and the log file, and write a clear,
informative, faithful, scientific, and accurate summary of the results/findings.\

What was the hypothesis (implicit or explicit?). How was it tested? What did the results show? Do they support or reject
the hypothesis? What are the limitations of this result? How faithfully was the experiment that was asked for
designed and tested?

\
\

The report format is the complete LATEX code, that will be directly (and automatically) copy/pasted into a Latex compiler
to produce the PDF, so it must be perfect the first time.\

Don't forget to include tables, figures, and other scientific content as needed to support your findings. As a general
rule, if you generated the table/figure/analysis in an external file, it should probably be included in the report.\

Your LATEX must be between a single set of codeblocks (```). For example:
```
Place your complete latex code for a scientific report (similar in content to Association of Computational Linguistics

(ACL) papers) here.\
```

Listing 4: Reporting Prompt
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Experiment Summary Prompt (per experiment)

You are ScientistGPT, the most advanced AI scientist and coder in the world. You can perform any coding task, and use
your enormous intellect to solve any problem correctly, systematically, and scientificially, with integrity.\

Previously, your task was to produce code that performs a specific scientific experiment. You wrote that code, ran it,
produced a results file, and decided that the code and execution were likely OK.\

Now, your task is to reflect on the goal of the experiment and results of the experiment, and write a short summary of the
findings. What was the hypothesis (implicit or explicit?). What did the results show? Do they support or reject the
hypothesis? What are the limitations of this result? How faithfully was the experiment that was asked for designed
and tested?

\
\
\

To support this task, you will be provided (below):
1. The instruction string describing what the experiment should be testing.
2. The code (and requirements.txt) you generated
3. The results file your code generated
4. Optionally, part (or all) of a log file that may have been generated when the experiment ran.

The information that you'll be asked to provide in your summary report is below:
```
- `summary`: (str) A detailed summary
- `summary_medium_detail`: (str) A medium-length summary, that is 2-3 sentences, and includes specific results (e.g.

specific performance values, specific results of any statistical analyses), and a clear conclusion.\
- `summary_very_short`: (str) a very short summary (maximum of 20 words)
- `hypothesis`: (str) What was the hypothesis (implicit or explicit) of the experiment?
- `hypothesis_operationalized`: (str) What was the version of the hypothesis (likely a scoped down version) that was

tested through this operationalization/experiment?\
- `hypothesis_inference`: (str) A clear explanation of whether the experimental results support, reject, or are

inconclusive with respect to the hypothesis.\
- `hypothesis_category`: (str) A string, one of `support`, `reject`, or `inconclusive`.
- `faithfullness_details`: (str) Was the experiment that was conducted a faithful representation of the experiment that

was asked for? Were there any deviations, or significant problems/errors in the implementation? and if so, what were
they?

\
\

- `faithfullness_category`: (str) A string, one of `faithful`, `deviations`, or `errors`.
- `interesting_results`: (bool) Did the experiment work? And/or, were the results interesting or unexpected? Was an

experimental model significantly different than a baseline model (or, trending towards significance, in an experiment
with a low number of samples)? Set this to `true` to attract the attention of a human researcher to the results that
a practitioner in the field would find interesting, and otherwise `false`.

\
\
\
```

Your task description for the code was the the following:
```
<Insert plan here>
```

The code you generated is below:
```
<Insert code here>
```

The results file (results.json) is below:
```
<Insert results file here>
```

The log file (log.json) is below:
```
<Insert log file here>
```

You should now reflect on the requested experiment/task, the code, the results, and the log file, and write a clear,
informative, faithful, scientific, and accurate summary of the results/findings.\

What was the hypothesis (implicit or explicit?). How was it tested? What did the results show? Do they support or reject
the hypothesis? What are the limitations of this result? How faithfully was the experiment that was asked for
designed and tested?

\
\

The summary format is a JSON dictionary with (minimally) the following keys:
- `summary`: (str) A detailed summary
- `summary_medium_detail`: (str) A medium-length summary, that is 2-3 sentences, and includes specific results (e.g.

specific performance values, specific results of any statistical analyses), and a clear conclusion.\
- `summary_very_short`: (str) a very short summary (maximum of 20 words)
- `hypothesis`: (str) What was the hypothesis (implicit or explicit) of the experiment?
- `hypothesis_operationalized`: (str) What was the version of the hypothesis (likely a scoped down version) that was

tested through this operationalization/experiment?\
- `hypothesis_inference`: (str) A clear explanation of whether the experimental results support, reject, or are

inconclusive with respect to the hypothesis.\
- `hypothesis_category`: (str) A string, one of `support`, `reject`, or `inconclusive`.
- `faithfullness_details`: (str) Was the experiment that was conducted a faithful representation of the experiment that

was asked for? Were there any deviations, or significant problems/errors in the implementation? and if so, what were
they?

\
\

- `faithfullness_category`: (str) A string, one of `faithful`, `deviations`, or `errors`.
- `interesting_results`: (bool) Did the experiment work? And/or, were the results interesting or unexpected? Was an

experimental model significantly different than a baseline model (or, trending towards significance, in an experiment
with a low number of samples)? Set this to `true` to attract the attention of a human researcher to the results that
a practitioner in the field would find interesting, and otherwise `false`.

\
\
\

Your output should be between codeblocks (```), and contain a single dictionary that must have the following keys. An
example of the format is below:\
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```
{
"summary": "Your detailed summary here...",
"summary_medium_detail": "Your medium-length summary here...",
"summary_very_short": "Your very short summary here..."
"hypothesis": "Your hypothesis here...",
"hypothesis_operationalized": "Your operationalized hypothesis here...",
"hypothesis_inference": "Your inference here...",
"hypothesis_category": "Your hypothesis category here...",
"faithfullness_details": "Your faithfullness details here...",
"faithfullness_category": "Your faithfullness category here...",
"interesting_results": false # true or false

}
```

Listing 5: Experiment Summary Prompt
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Meta-Analysis Prompt

You are ScientistGPT, the most capable automated scientific reasoning system ever created. You can use your enormous
intellect to solve any problem, and always do so in a detailed, correct, faithful way, with integrity.\

Previously, you designed and ran a series of experiments centered around a particular idea/topic, though (in an effort to
increase success), each implementation of that experiment was slightly different.\

This is a meta-analysis step: I'll show you the results of the experiments that were run, and your job is to analyze them
and draw larger-scale conclusions.\

# Output
You will be asked to analyze all the experiments below, which were run based on the same original idea/topic, and provide

a meta-analysis. The components of the meta-analysis are:\
1. hypothesis (str): What hypothesis (either implicit or explicit) was tested by these experiments?
2. support_hypothesis_count (int): How many of the experiment runs support this hypothesis?
3. refute_hypothesis_count (int): How many of the experiment runs refute this hypothesis?
4. inconclusive_hypothesis_count (int): How many of the experiment runs are inconclusive with respect to this hypothesis?
5. detailed_summary (str): Provide a detailed natural language summary/meta-analysis of the overall results and

conclusions that can be drawn from this suite of experiments.\

# Idea and Operationalization/Plan
For reference, the original idea and operationalization/plan are below:
Idea:
```
<INSERT idea here>
```
Operationalization/Plan:
```
<INSERT operationalization here>
```

# Experiments
Here are the experiments that were run:
```
<INSERT experiment_results here>
```

# Output format
Please provide the following information in JSON format:
```
{

"experiment_name": "...",
"hypothesis": "...",
"support_refute_inconclusive_judgements": [

{
"specific_experiment_name": "...",
"brief_reasoning_for_judgement": "...",
"judgement": "support" # or "refute" or "inconclusive"

},
{

"specific_experiment_name": "...",
"brief_reasoning_for_judgement": "...",
"judgement": "support" # or "refute" or "inconclusive"

},
...

],
"support_hypothesis_count": 0,
"refute_hypothesis_count": 0,
"inconclusive_hypothesis_count": 0,
"detailed_summary": "..."

}
```

NOTE: `experiment_name` should be the base name of the experiments. For example, if the experiment names were
"my-experiment-copy1", "my-experiment-copy2", "my-experiment-copy3", etc., the base name should be "my-experiment".\

SPECIAL NOTE: The "support_refute_inconclusive_judgements" field is a list of dictionaries, intended for you to make
accurate, reasoned judgements about each experiment in relation to the hypothesis. It is critical that you base your
judgements on an accurate, faithful interpretation of the results of each experiment relative to the stated
hypothesis. Errors are very consequential.

\
\
\

Do not hallucinate.
Your JSON must be between code blocks (escaped as above), and must be correct, as it will be automatically extracted

without human intervention. You can write any text before or after the codeblock to help you think, but the content of
the codeblock must be valid JSON in the format specified above.

\
\

Listing 6: Meta-Analysis Prompt
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G Explanations of Incremental Novelty Claims
We provide assessments of incremental novelty claims for the 6 candidate discoveries in Table 8

# Description of Discovery and Novelty Assessment
Candidate discoveries that appear supported upon human inspection
1 State Prediction Confidence: In a state prediction task, an LLM’s self-assessed confidence in its predictions have a

low corelation with the accuracy of those predictions. (The state prediction data was automatically crawled from
one of the benchmarks)
Human Eval: Consistent result, and to the best of our knowledge, not shown on this task. Though the correlation
varies across experiments, the value consistently appears low.
Novelty Assessment: While it is known that both (a) language models have difficulty making accurate confidence
assessments in general (Geng et al., 2024), and that (b) language models have difficulty accurately performing
world modeling of environments framed as state prediction (Wang et al., 2024), the combination of the two (i.e.
demonstrating poor correlation between self-assessed confidence and accuracy on a world modeling tasks) in general,
and the demonstration on the (self-crawled) benchmark in particular, appear incrementally novel.

2 Accuracy vs Representational Expressivity: In a state prediction task, an LLM performs better at predicting
simpler representations (e.g. boolean values) versus states including text. (The state prediction data was automatically
crawled from one of the benchmarks)
Human Eval: Significant implementation and evaluation differences across experiments, but generally appear to
support the idea that predicting simpler representations is easier.
Novelty Assessment: While this result is intuitive (i.e. that an LLM would perform better at predicting simpler
representations), this does not appear to have been demonstrated on a world modeling task framed as state prediction,
and appears incrementally novel.

3 Multi-Stage Environment Generation: When creating novel benchmark environments using code-generation,
generating the environments in multiple stages increases environment fidelity.
Human Eval: A small change on LLM-for-environment-generation tasks, implementing specific aspects in each
step, rather than generating as a whole and reflecting. For evaluation, creates a simple proxy metric that seems
well-motivated as this type of evaluation is an open problem in the literature, and even llm-as-a-judge paradigms
have issues with this task, while being vastly more expensive.
Novelty Assessment: While reflection for code generation tasks is well-known, both in general (Madaan et al.,
2023), and in the context of building virtual environments from templates (Wang et al., 2023b), the mechanism of
explicitly and incrementally building separate categories of components in this text-game-as-code-generation task
appears incrementally novel.

4 Combinatorial Optimization: A language model performs poorly at a combinatorial optimization problem (selecting
values from a set that are closest to adding to a specified value X), grounded in substituting resistor values in
electronics.
Human Eval: Consistent result, and tested to within different tolerances, e.g. 1%, 5%
Novelty Assessment: While the performance of language models on arithmetic problems is well studied (e.g.
Yuan et al., 2023), language models are typically used to solve constraint satisfaction problems by setting up the
problem, then calling an external symbolic solver (e.g. Gu et al., 2023). The particular task designed here – using
a language model to substitute one resistor value (in electronics) with two or three other standard resistor values,
while measuring the tolerance of that substitution – appears to be a novel task for evaluating a language model.

5 Action Prediction: An LLM’s ability to predict whether actions will be successful in a virtual environment is
generally low, marginally above a random baseline.
Human Eval: Appears true, with the following qualifications: (1) the LLM was given only the current observation,
and no history, to judge from, and (2) an LLM-as-a-judge was used to help collect the gold dataset, and has imperfect
labels.
Novelty Assessment: Similar novelty assessment comments to #1, with the addition that this subtask (determining
which actions will likely succeed in an environment) is of particular interest in the interactive fiction literature, where
valid actions are generally not pre-supplied (e.g. Jansen, 2022).

Table 8: Incremental novelty assessments for the 6 candidate discoveries in Table 4.

13402



H Experiment Reports
Experiment reports and accompanying code are provided below.
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Analyzing LLM Confidence in TextWorldExpress

State Predictions

CodeScientist

February 15th, 2025

Abstract
This paper examines the relationship between large language model (LLM)

confidence scores and prediction accuracy in a text-based game environment.
We conducted a pilot study using TextWorldExpress’s CookingWorld to test
whether LLM self-reported confidence meaningfully correlates with predic-
tion accuracy. Results from 50 episodes and over 600 state predictions show
only weak correlation between confidence and accuracy (mean r = 0.16),
suggesting that current LLM confidence scores may not be reliable indicators
of prediction quality in interactive environments.

1 Introduction
As large language models (LLMs) are increasingly deployed in interactive environ-
ments, understanding their ability to accurately assess their own prediction confi-
dence becomes crucial. This study examines whether LLM-generated confidence
scores meaningfully correlate with actual prediction accuracy in a controlled game
environment.

2 Methods
We implemented an experiment using TextWorldExpress’s CookingWorld environ-
ment with the following key components:

• Environment: Simple 3-room layouts with 2 ingredients and 2 distractor
items

• Data Collection: 50 episodes of up to 25 steps each

• LLM Configuration: GPT-4-mini for both predictions and accuracy scoring

1

H.1 Report: State Prediction Confidence
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• Procedure: For each step:

– Record current state and action
– Get LLM prediction with confidence scores (0-100)
– Compare with actual next state
– Score prediction accuracy using LLM-as-judge

3 Results
3.1 Data Overview
The experiment collected 642 state predictions across 50 episodes, with each pre-
diction including:

• LLM-predicted next state

• Confidence scores for predicted changes (0-1 scale)

• Actual next state

• Accuracy scores for each predicted property
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Figure 1: Scatter plot of prediction accuracy vs. confidence scores

2

Report: State Prediction Confidence (Page 2)
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Figure 2: ROC curve for confidence threshold as predictor of accuracy

3.2 Confidence-Accuracy Relationship
Analysis of the confidence-accuracy relationship revealed:

• Weak overall correlation (mean r = 0.16 across episodes)

• High variance in correlation between episodes (range: -0.04 to 0.57)

• ROC analysis shows confidence scores perform only slightly better than ran-
dom at predicting accuracy (AUC = 0.54)

4 Discussion
4.1 Key Findings
The results suggest that LLM confidence scores are not strongly predictive of ac-
tual prediction accuracy in this environment. This has important implications for
systems relying on LLM self-assessment of prediction quality.

4.2 Limitations
Several limitations should be considered:

• Use of LLM-as-judge for accuracy scoring may introduce bias

• Limited environment complexity may not generalize to real-world scenarios

3

Report: State Prediction Confidence (Page 3)
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• Single LLM model (GPT-4-mini) may not represent broader LLM capabili-

ties

• Potential noise in confidence score normalization and aggregation

4.3 Implementation Fidelity
The experiment successfully implemented most key requirements from the original
specification:

• Completed pilot phase (50 episodes vs. requested 20)

• Implemented all core data collection components

• Generated required visualizations and analyses

• Maintained detailed logging throughout execution

However, some elements like bootstrap resampling for confidence intervals were
not fully implemented.

5 Conclusion
This study provides evidence that current LLM confidence scores may not be re-
liable indicators of prediction accuracy in interactive environments. Future work
should explore more sophisticated confidence estimation methods and examine whether
these findings generalize across different environments and LLM architectures.

4
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Code Listing: State Prediction Confidence

import os
import json
import random
import numpy as np
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
import textworld_express as twx
from textworld_express import TextWorldExpressEnv

from experiment_common_library import Logger, llm_response, find_codeblocks
from experiment_common_library import generate_difference_scores_dict, bootstrap_resampling

# Global configuration
PILOT_MODE = "PILOT" # Options: "MINI_PILOT", "PILOT", "FULL_EXPERIMENT"
logger = Logger()

# Configure experiment parameters based on pilot mode
def get_experiment_config():

if PILOT_MODE == "MINI_PILOT":
return {

"num_episodes": 3,
"max_steps": 10,
"game_fold": "train"

}
elif PILOT_MODE == "PILOT":

return {
"num_episodes": 50, # Updated from 20 to 50 per follow-on instructions
"max_steps": 25,
"game_fold": "train"

}
else: # FULL_EXPERIMENT

return {
"num_episodes": 200,
"max_steps": 50,
"game_fold": "train" # Would be balanced across sets in full experiment

}

def setup_environment():
"""Initialize and configure the TextWorldExpress environment"""
logger.logMessage("info", "Setting up TextWorldExpress environment...")

env = TextWorldExpressEnv(envStepLimit=get_experiment_config()["max_steps"])

# Configure simple CookingWorld environment
game_params = "numLocations=3, numIngredients=2, numDistractorItems=2, includeDoors=0, limitInventorySize=0"
env.load(gameName="cookingworld", gameParams=game_params)

logger.logMessage("info", f"Environment setup complete with params: {game_params}")
return env

def format_state_prediction_prompt(obs1, obs2, action):
"""Format the prompt for state prediction"""
prompt = f"""Context:

Previous Observation 1: {obs1}
Previous Observation 2: {obs2}
Current Action: {action}

Task:
1. Predict the next observation
2. For each property that changed, rate your confidence (0-100)

Provide your response in the following format between code blocks (```):
{{

"predicted_observation": "string",
"confidence_scores": [

{{"property": "string", "change": "string", "confidence": number}}
]

}}"""
return prompt

def get_llm_prediction(obs1, obs2, action):
"""Get LLM prediction and confidence scores"""
logger.logMessage("info", f"Getting LLM prediction for action: {action}")

prompt = format_state_prediction_prompt(obs1, obs2, action)
success, response = llm_response(prompt, "gpt-4o-mini", temperature=0, max_tokens=500)

if not success:
logger.logMessage("error", f"LLM call failed: {response}")
return None, None

# Extract JSON from response
codeblocks = find_codeblocks(response)
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if not codeblocks:
logger.logMessage("error", "No codeblocks found in LLM response")
return None, None

try:
prediction_data = json.loads("\n".join(codeblocks[0]))
# Normalize confidence scores to 0-1 scale
for score in prediction_data["confidence_scores"]:

score["confidence"] = score["confidence"] / 100.0
logger.logMessage("debug", f"Parsed prediction data: {json.dumps(prediction_data)}")
return prediction_data["predicted_observation"], prediction_data["confidence_scores"]

except Exception as e:
logger.logMessage("error", f"Failed to parse LLM response: {str(e)}")
return None, None

def score_prediction_accuracy(predicted_obs, actual_obs):
"""Use LLM to score prediction accuracy"""
prompt = f"""Compare the predicted observation with the actual observation and score the accuracy of each property

change.\

Predicted: {predicted_obs}
Actual: {actual_obs}

For each property that changed, provide an accuracy score between 0 and 1.
Respond in JSON format between code blocks (```):
{{

"accuracy_scores": [
{{"property": "string", "accuracy": number}}

]
}}"""

success, response = llm_response(prompt, "gpt-4o-mini", temperature=0, max_tokens=500)

if not success:
logger.logMessage("error", f"LLM scoring failed: {response}")
return None

codeblocks = find_codeblocks(response)
if not codeblocks:

logger.logMessage("error", "No codeblocks found in LLM scoring response")
return None

try:
accuracy_data = json.loads("\n".join(codeblocks[0]))
logger.logMessage("debug", f"Parsed accuracy data: {json.dumps(accuracy_data)}")
return accuracy_data["accuracy_scores"]

except Exception as e:
logger.logMessage("error", f"Failed to parse accuracy scores: {str(e)}")
return None

def calculate_correlation(confidences, accuracies):
"""Calculate correlation between confidence and accuracy scores with error checking"""
if not confidences or not accuracies:

logger.logMessage("warning", "Empty confidence or accuracy arrays")
return None

if len(confidences) != len(accuracies):
logger.logMessage("error", "Confidence and accuracy arrays have different lengths")
return None

if len(confidences) < 2:
logger.logMessage("warning", "Not enough data points to calculate correlation")
return None

# Check for valid data
if not all(isinstance(x, (int, float)) for x in confidences + accuracies):

logger.logMessage("error", "Non-numeric values found in confidence or accuracy scores")
return None

# Check for zero variance
if len(set(confidences)) == 1 or len(set(accuracies)) == 1:

logger.logMessage("warning", "Zero variance in confidence or accuracy scores")
return None

try:
correlation = np.corrcoef(confidences, accuracies)[0, 1]
if np.isnan(correlation):

logger.logMessage("warning", "Correlation calculation resulted in NaN")
return None

logger.logMessage("debug", f"Correlation calculation successful: {correlation}")
return correlation

except Exception as e:
logger.logMessage("error", f"Error calculating correlation: {str(e)}")
return None
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def save_results(results_data):
"""Save results to results.json"""
try:

with open("results.json", "w") as f:
json.dump(results_data, f, indent=4)

logger.logMessage("info", "Results saved to results.json")
return True

except Exception as e:
logger.logMessage("error", f"Failed to save results: {str(e)}")
return False

def generate_plots(episode_data):
"""Generate visualization plots"""
logger.logMessage("info", "Generating visualization plots...")

# Create to_save directory if it doesn't exist
if not os.path.exists("to_save"):

os.makedirs("to_save")

# Extract confidence and accuracy scores
confidences = []
accuracies = []
for episode in episode_data:

for step in episode["steps"]:
for conf_score in step["confidence_scores"]:

for acc_score in step["accuracy_scores"]:
if conf_score["property"] == acc_score["property"]:

confidences.append(conf_score["confidence"])
accuracies.append(acc_score["accuracy"])

if not confidences or not accuracies:
logger.logMessage("warning", "No confidence-accuracy pairs found for plotting")
return

logger.logMessage("debug", f"Number of data points for plotting: {len(confidences)}")

# Scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(confidences, accuracies, alpha=0.5)
plt.xlabel("Confidence")
plt.ylabel("Accuracy")
plt.title("LLM Confidence vs Accuracy")
plt.savefig("to_save/confidence_accuracy_scatter.pdf")
plt.close()

# ROC curve
try:

fpr, tpr, _ = roc_curve([1 if a >= 0.5 else 0 for a in accuracies], confidences)
roc_auc = auc(fpr, tpr)

plt.figure(figsize=(10, 6))
plt.plot(fpr, tpr, label=f'ROC curve (AUC = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve for Confidence Threshold')
plt.legend(loc="lower right")
plt.savefig("to_save/roc_curve.pdf")
plt.close()

except Exception as e:
logger.logMessage("error", f"Error generating ROC curve: {str(e)}")

def run_experiment():
"""Main experiment execution"""
logger.logMessage("info", f"Starting experiment in {PILOT_MODE} mode")

config = get_experiment_config()
env = setup_environment()

# Store all episode data
all_episode_data = []

# Run episodes
for episode_idx in range(config["num_episodes"]):

logger.logMessage("info", f"Starting episode {episode_idx + 1}/{config['num_episodes']}")

episode_data = {"episode_idx": episode_idx, "steps": []}
obs, infos = env.reset(gameFold=config["game_fold"], generateGoldPath=False)

# Store last two observations for context
obs_history = [obs, obs]

for step_idx in range(config["max_steps"]):
# Get valid actions and choose one randomly
valid_actions = infos["validActions"]
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action = random.choice(valid_actions)

# Get LLM prediction before taking action
predicted_obs, confidence_scores = get_llm_prediction(obs_history[-2], obs_history[-1], action)

if predicted_obs is None:
logger.logMessage("error", f"Failed to get prediction for step {step_idx}, skipping step")
continue

# Take action in environment
obs, _, _, infos = env.step(action)

# Score prediction accuracy
accuracy_scores = score_prediction_accuracy(predicted_obs, obs)

if accuracy_scores is None:
logger.logMessage("error", f"Failed to score prediction accuracy for step {step_idx}, skipping step")
continue

# Store step data
step_data = {

"step_idx": step_idx,
"action": action,
"predicted_obs": predicted_obs,
"actual_obs": obs,
"confidence_scores": confidence_scores,
"accuracy_scores": accuracy_scores

}
episode_data["steps"].append(step_data)

# Update observation history
obs_history = obs_history[1:] + [obs]

if infos["done"]:
break

all_episode_data.append(episode_data)

# Calculate episode-level statistics
episode_confidences = []
episode_accuracies = []
for step in episode_data["steps"]:

for conf_score in step["confidence_scores"]:
for acc_score in step["accuracy_scores"]:

if conf_score["property"] == acc_score["property"]:
episode_confidences.append(conf_score["confidence"])
episode_accuracies.append(acc_score["accuracy"])

correlation = calculate_correlation(episode_confidences, episode_accuracies)
if correlation is not None:

logger.logMessage("info", f"Episode {episode_idx} confidence-accuracy correlation: {correlation:.3f}")
logger.logMessage("debug", f"Episode {episode_idx} data points: {len(episode_confidences)}")

# Generate visualizations
generate_plots(all_episode_data)

# Save results
results = {

"pilot_mode": PILOT_MODE,
"config": config,
"episode_data": all_episode_data

}
save_success = save_results(results)

if not save_success:
logger.logMessage("error", "Failed to save results")

else:
logger.logMessage("info", "Experiment completed successfully")

if __name__ == "__main__":
try:

run_experiment()
except Exception as e:

logger.logMessage("error", f"Experiment failed with error: {str(e)}")
raise

Listing 7: CodeScientist generated code for this experiment.
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Impact of State Representation Complexity on LLM

Simulation Accuracy in CookingWorld

CodeScientist

February 15th, 2025

Abstract

This paper investigates how increasing state representation complexity af-
fects the ability of large language models (LLMs) to accurately simulate state
transitions in the CookingWorld environment. We tested four levels of state
complexity (boolean, numerical, relational, and full) and measured prediction
accuracy across 25 episodes with up to 25 steps each. Our results show a clear
inverse relationship between state complexity and simulation accuracy, with
boolean representations achieving the highest accuracy (94.5%) and full state
representations the lowest (81.9%). These findings suggest that while LLMs
can effectively simulate simple state transitions, their performance degrades
significantly with increased state complexity.

1 Introduction
Large language models have shown promising capabilities in reasoning about and
simulating dynamic environments. However, the relationship between state rep-
resentation complexity and simulation accuracy remains poorly understood. This
study examines this relationship in the context of the CookingWorld environment,
where an LLM must predict state transitions resulting from actions in a cooking-
themed text world.

2 Methodology
2.1 Experimental Design
We implemented four levels of state representation complexity:

• Boolean: Only binary states (e.g., isOpen, isOn)

1
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• Numerical: Boolean + numerical properties (counts, quantities)

• Relational: Numerical + object relationships

• Full: Complete state including dynamics and full text descriptions

The experiment was conducted in PILOT mode with:

• 25 episodes

• Maximum 25 steps per episode

• Training set seeds 1-13

• Development set seeds 1-13

2.2 Data Collection
For each complexity level, we:

• Initialized the CookingWorld environment

• Executed random actions

• Recorded actual state transitions

• Collected LLM predictions using gpt-4o-mini

• Computed prediction accuracy

2

Report: Progressive State Complexity (Page 2)

13413



Cod
eS

cie
nti

st
3 Results

bo
ole

an

nu
meri

cal

rel
ati

on
al ful

l

Complexity Level

0.82

0.84

0.86

0.88

0.90

0.92

0.94

M
ea

n 
Ac

cu
ra

cy

Accuracy by State Complexity Level

Figure 1: Mean prediction accuracy across different state complexity levels

Complexity Level Mean Accuracy Std Dev

Boolean 94.5% 5.2%
Numerical 88.0% 6.8%
Relational 87.1% 7.4%
Full 81.9% 8.9%

Table 1: Summary statistics for prediction accuracy by complexity level

4 Discussion
4.1 Key Findings
The results show a clear trend of decreasing accuracy with increasing state com-
plexity:

• Boolean states achieved the highest accuracy (94.5%), demonstrating that
LLMs excel at simple binary state predictions

• Each increase in complexity led to a decrease in accuracy

3
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• The largest drop occurred between boolean and numerical representations

(6.5 percentage points)

• Full state representation had the lowest accuracy (81.9%) and highest vari-
ance

4.2 Statistical Significance
Bootstrap resampling analysis revealed that the differences between complexity lev-
els were statistically significant (p ¡ 0.001) for all pairwise comparisons except be-
tween numerical and relational levels (p = 0.819).

4.3 Limitations
Several limitations should be considered:

• The experiment used only random actions rather than goal-directed behavior

• Results are specific to the CookingWorld domain and may not generalize

• The gpt-4o-mini model may not represent the capabilities of larger LLMs

• The PILOT mode used fewer episodes than the originally specified FULL EXPERIMENT

5 Conclusion
This study provides strong evidence that state representation complexity signifi-
cantly impacts LLM simulation accuracy. While LLMs can achieve high accuracy
(¿90%) with simple boolean states, their performance degrades substantially with
increased complexity. These findings suggest that careful consideration should be
given to state representation design when using LLMs for simulation tasks.

The experiment was faithfully implemented according to the PILOT specifica-
tions, with appropriate logging, error handling, and statistical analysis. However,
future work should consider testing with larger models, more episodes, and goal-
directed behavior to further validate these findings.

4
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Code Listing: Progressive State Complexity

import os
import json
import random
import numpy as np
import matplotlib.pyplot as plt
import textworld_express as twx
from textworld_express import TextWorldExpressEnv

from experiment_common_library import Logger, llm_response, bootstrap_resampling,
generate_difference_scores_parallel_arrays\

# Global configuration
PILOT_MODE = "PILOT" # Options: "MINI_PILOT", "PILOT", "FULL_EXPERIMENT"
LLM_MODEL = "gpt-4o-mini"

# Create global logger
logger = Logger()

class StateComplexityLevel:
BOOLEAN = "boolean"
NUMERICAL = "numerical"
RELATIONAL = "relational"
FULL = "full"

class ExperimentConfig:
def __init__(self, pilot_mode):

self.pilot_mode = pilot_mode
if pilot_mode == "MINI_PILOT":

self.num_episodes = 2
self.max_steps = 10
self.complexity_levels = [StateComplexityLevel.BOOLEAN, StateComplexityLevel.FULL]
self.train_seeds = [1, 2]
self.dev_seeds = []
self.test_seeds = []

elif pilot_mode == "PILOT":
self.num_episodes = 25 # Modified from 10 to 25
self.max_steps = 25
self.complexity_levels = [StateComplexityLevel.BOOLEAN, StateComplexityLevel.NUMERICAL,

StateComplexityLevel.RELATIONAL, StateComplexityLevel.FULL]
self.train_seeds = list(range(1, 14)) # Adjusted for 25 episodes (1-13)
self.dev_seeds = list(range(1, 14)) # Adjusted for 25 episodes (1-13)
self.test_seeds = []

else: # FULL_EXPERIMENT
self.num_episodes = 100
self.max_steps = 50
self.complexity_levels = [StateComplexityLevel.BOOLEAN, StateComplexityLevel.NUMERICAL,

StateComplexityLevel.RELATIONAL, StateComplexityLevel.FULL]
self.train_seeds = list(range(1, 51))
self.dev_seeds = list(range(1, 26))
self.test_seeds = list(range(1, 26))

def validate_state(state, complexity_level):
"""Validate that a state contains the expected fields for its complexity level"""
if state is None:

logger.logMessage("error", f"State is None in validate_state")
return False

expected_keys = {
StateComplexityLevel.BOOLEAN: {'has_cookbook', 'in_kitchen', 'fridge_open', 'stove_on', 'holding_ingredient'},
StateComplexityLevel.NUMERICAL: {'has_cookbook', 'in_kitchen', 'fridge_open', 'stove_on', 'holding_ingredient',

'inventory_count', 'valid_actions_count'},
StateComplexityLevel.RELATIONAL: {'has_cookbook', 'in_kitchen', 'fridge_open', 'stove_on', 'holding_ingredient',

'inventory_count', 'valid_actions_count', 'locations'},
StateComplexityLevel.FULL: {'has_cookbook', 'in_kitchen', 'fridge_open', 'stove_on', 'holding_ingredient',

'inventory_count', 'valid_actions_count', 'locations', 'full_observation',
'full_inventory', 'full_look'}

}

if complexity_level not in expected_keys:
logger.logMessage("error", f"Unknown complexity level: {complexity_level}")
return False

state_keys = set(state.keys())
missing_keys = expected_keys[complexity_level] - state_keys
if missing_keys:

logger.logMessage("error", f"State missing required keys for {complexity_level}: {missing_keys}")
return False

return True

def compare_states(predicted_state, actual_state, complexity_level):
"""Compare predicted and actual states, return accuracy metrics"""
if not validate_state(predicted_state, complexity_level) or not validate_state(actual_state, complexity_level):
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logger.logMessage("error", f"Cannot compare states: invalid state structure for complexity level
{complexity_level}")\

return 0.0

# Get the keys to compare based on complexity level
keys_to_compare = {

StateComplexityLevel.BOOLEAN: ['has_cookbook', 'in_kitchen', 'fridge_open', 'stove_on', 'holding_ingredient'],
StateComplexityLevel.NUMERICAL: ['has_cookbook', 'in_kitchen', 'fridge_open', 'stove_on', 'holding_ingredient',

'inventory_count', 'valid_actions_count'],
StateComplexityLevel.RELATIONAL: ['has_cookbook', 'in_kitchen', 'fridge_open', 'stove_on', 'holding_ingredient',

'inventory_count', 'valid_actions_count', 'locations'],
StateComplexityLevel.FULL: ['has_cookbook', 'in_kitchen', 'fridge_open', 'stove_on', 'holding_ingredient',

'inventory_count', 'valid_actions_count', 'locations', 'full_observation',
'full_inventory', 'full_look']

}[complexity_level]

correct_predictions = 0
total_comparisons = 0

# Log comparison details
logger.logMessage("debug", f"Comparing states for complexity level {complexity_level}")
logger.logMessage("debug", "Predicted state: " + json.dumps(predicted_state, indent=2))
logger.logMessage("debug", "Actual state: " + json.dumps(actual_state, indent=2))

for key in keys_to_compare:
if key not in predicted_state or key not in actual_state:

logger.logMessage("error", f"Missing key {key} in state comparison")
continue

if isinstance(predicted_state[key], dict) and isinstance(actual_state[key], dict):
# For dictionaries (like locations), compare each sub-key
pred_dict = predicted_state[key]
actual_dict = actual_state[key]
all_keys = set(pred_dict.keys()) | set(actual_dict.keys())
for sub_key in all_keys:

total_comparisons += 1
if sub_key in pred_dict and sub_key in actual_dict:

if pred_dict[sub_key] == actual_dict[sub_key]:
correct_predictions += 1

logger.logMessage("debug", f"Dict comparison - {key}.{sub_key}:")
logger.logMessage("debug", f" Predicted: {pred_dict.get(sub_key, 'MISSING')}")
logger.logMessage("debug", f" Actual: {actual_dict.get(sub_key, 'MISSING')}")

else:
# For simple values, direct comparison
total_comparisons += 1
if predicted_state[key] == actual_state[key]:

correct_predictions += 1
logger.logMessage("debug", f"Value comparison - {key}:")
logger.logMessage("debug", f" Predicted: {predicted_state[key]}")
logger.logMessage("debug", f" Actual: {actual_state[key]}")

if total_comparisons == 0:
logger.logMessage("error", "No valid comparisons made")
return 0.0

accuracy = correct_predictions / total_comparisons
logger.logMessage("debug", f"Final accuracy: {accuracy} ({correct_predictions}/{total_comparisons})")
return accuracy

def extract_state_representation(env, obs, infos, complexity_level):
"""Extract state representation at different complexity levels"""
state = {}

try:
# Get valid actions to help understand state
valid_actions = infos['validActions']

if complexity_level == StateComplexityLevel.BOOLEAN:
# Extract boolean states from observation text
state['has_cookbook'] = 'cookbook' in infos['inventory'].lower()
state['in_kitchen'] = 'kitchen' in infos['look'].lower()
state['fridge_open'] = 'fridge that is open' in infos['look'].lower() or 'open fridge' in infos['look'].lower()
state['stove_on'] = 'stove that is turned on' in infos['look'].lower()
state['holding_ingredient'] = any(word in infos['inventory'].lower() for word in ['flour', 'sugar', 'egg',

'milk', 'potato', 'pepper', 'apple'])\

elif complexity_level == StateComplexityLevel.NUMERICAL:
# Include boolean states plus numerical properties
state.update(extract_state_representation(env, obs, infos, StateComplexityLevel.BOOLEAN))
# Add numerical properties
state['inventory_count'] = len([line for line in infos['inventory'].split('\n') if line.strip() and 'empty'

not in line.lower()])\
state['valid_actions_count'] = len(valid_actions)

elif complexity_level == StateComplexityLevel.RELATIONAL:
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# Include numerical states plus relationships
state.update(extract_state_representation(env, obs, infos, StateComplexityLevel.NUMERICAL))
# Add relationships
state['locations'] = {}
for action in valid_actions:

if 'take' in action:
item = action.replace('take ', '')
state['locations'][item] = 'reachable'

elif 'put' in action:
item = action.split(' in ')[0].replace('put ', '')
container = action.split(' in ')[1]
state['locations'][item] = f'can_put_in_{container}'

else: # FULL
# Include everything from relational plus full state
state.update(extract_state_representation(env, obs, infos, StateComplexityLevel.RELATIONAL))
# Add full observation and inventory
state['full_observation'] = obs
state['full_inventory'] = infos['inventory']
state['full_look'] = infos['look']

# Validate the extracted state
if not validate_state(state, complexity_level):

logger.logMessage("error", f"Invalid state extracted for {complexity_level}")
return None

except Exception as e:
logger.logMessage("error", f"Error extracting state representation: {str(e)}")
return None

return state

def format_state_for_llm(state, complexity_level):
"""Format state dictionary into a string for LLM prompt"""
return json.dumps(state, indent=2)

def generate_llm_prompt(current_state, action, complexity_level):
"""Generate prompt for LLM to predict next state"""
prompt = "You are a world-class simulator for a cooking game environment. Given the current state and action, predict

the next state.\n\n"\
prompt += "Current State:\n"
prompt += "```\n"
prompt += format_state_for_llm(current_state, complexity_level)
prompt += "\n```\n\n"
prompt += "Action taken: " + action + "\n\n"
prompt += "IMPORTANT: You must respond with ONLY a valid JSON object between triple backticks (```). The JSON object

must have the exact same structure as the input state, with no additional or missing fields.\n"\
prompt += "Example format of your response:\n"
prompt += "```\n"
prompt += format_state_for_llm(current_state, complexity_level) # Show the exact structure expected
prompt += "\n```\n"
prompt += "Your response must be a single JSON object between triple backticks, with no additional text or

explanation.\n"\
return prompt

def run_episode(env, config, complexity_level, seed):
"""Run a single episode with specified complexity level"""
logger.logMessage("info", f"Starting episode with seed {seed} at complexity level {complexity_level}")

# Initialize episode
obs, infos = env.reset(gameFold="train", generateGoldPath=False, seed=seed)

episode_accuracies = []

for step in range(config.max_steps):
# Get current state
current_state = extract_state_representation(env, obs, infos, complexity_level)
if current_state is None:

logger.logMessage("error", f"Failed to extract current state at step {step}")
continue

# Select random action
valid_actions = infos['validActions']
if not valid_actions:

logger.logMessage("warning", f"No valid actions available at step {step}")
break

action = random.choice(valid_actions)

# Take action and get next state
next_obs, _, _, next_infos = env.step(action)
actual_next_state = extract_state_representation(env, next_obs, next_infos, complexity_level)
if actual_next_state is None:

logger.logMessage("error", f"Failed to extract next state at step {step}")
continue
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# Get LLM prediction
prompt = generate_llm_prompt(current_state, action, complexity_level)
success, llm_response_text = llm_response(prompt, LLM_MODEL, temperature=0, max_tokens=1000)

if not success:
logger.logMessage("error", f"LLM call failed: {llm_response_text}")
continue

# Log the full LLM response for debugging
logger.logMessage("debug", f"LLM Response for step {step}:\n{llm_response_text}")

# Extract prediction from LLM response
try:

# Find the JSON response between ```
response_lines = llm_response_text.split('\n')
json_lines = []
in_json = False
for line in response_lines:

if line.strip() == '```':
in_json = not in_json
continue

if in_json:
json_lines.append(line)

if not json_lines:
logger.logMessage("error", "No JSON found in LLM response")
continue

json_str = '\n'.join(json_lines)
logger.logMessage("debug", f"Extracted JSON:\n{json_str}")

predicted_next_state = json.loads(json_str)

except json.JSONDecodeError as e:
logger.logMessage("error", f"Failed to parse LLM response as JSON: {str(e)}")
continue

# Compare prediction to actual
accuracy = compare_states(predicted_next_state, actual_next_state, complexity_level)
episode_accuracies.append(accuracy)

# Log detailed comparison
logger.logMessage("debug", f"Step {step} comparison:")
logger.logMessage("debug", f"Action: {action}")
logger.logMessage("debug", f"Predicted state: {json.dumps(predicted_next_state, indent=2)}")
logger.logMessage("debug", f"Actual state: {json.dumps(actual_next_state, indent=2)}")
logger.logMessage("debug", f"Accuracy: {accuracy}")

# Update for next step
obs, infos = next_obs, next_infos

return episode_accuracies

def run_experiment(config):
"""Run the full experiment"""
logger.logMessage("info", f"Starting experiment in {config.pilot_mode} mode")

# Initialize environment
env = TextWorldExpressEnv(envStepLimit=config.max_steps)
env.load(gameName="cookingworld", gameParams="")

# Store results for each complexity level
results = {level: [] for level in config.complexity_levels}

# Run episodes for each complexity level
for complexity_level in config.complexity_levels:

logger.logMessage("info", f"Testing complexity level: {complexity_level}")

for seed in config.train_seeds:
episode_accuracies = run_episode(env, config, complexity_level, seed)
if episode_accuracies: # Only add if we got valid accuracies

results[complexity_level].extend(episode_accuracies)

return results

def analyze_results(results, config):
"""Analyze experimental results"""
logger.logMessage("info", "Analyzing results")

analysis = {
"pilot_mode": config.pilot_mode,
"complexity_levels": config.complexity_levels,
"mean_accuracies": {},
"statistical_tests": [],
"raw_accuracies": results
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}

# Calculate mean accuracies
for level in results:

if results[level]:
mean_accuracy = np.mean(results[level])
analysis["mean_accuracies"][level] = mean_accuracy
logger.logMessage("info", f"Mean accuracy for {level}: {mean_accuracy}")

# Perform statistical comparisons between levels
if len(config.complexity_levels) > 1:

for i, level1 in enumerate(config.complexity_levels[:-1]):
for level2 in config.complexity_levels[i+1:]:

if results[level1] and results[level2]: # Only compare if both have data
# Log the data being compared
logger.logMessage("debug", f"Comparing {level1} vs {level2}:")
logger.logMessage("debug", f" {level1} scores: {results[level1]}")
logger.logMessage("debug", f" {level2} scores: {results[level2]}")

# Ensure arrays are equal length for comparison
min_len = min(len(results[level1]), len(results[level2]))
scores1 = results[level1][:min_len]
scores2 = results[level2][:min_len]

# Note: We treat the more complex state as experimental and simpler state as baseline
difference_scores, mean1, mean2 = generate_difference_scores_parallel_arrays(

scores1, scores2 # simpler state is baseline
)
stats = bootstrap_resampling(difference_scores, mean1, mean2)
analysis["statistical_tests"].append({

"level1": level1,
"level2": level2,
"stats": stats

})
logger.logMessage("info", f"Statistical comparison {level1} vs {level2}:\n{json.dumps(stats,

indent=2)}")\

return analysis

def generate_plots(analysis):
"""Generate visualization plots"""
logger.logMessage("info", "Generating plots")

# Only create plots if we have data
if not analysis["mean_accuracies"]:

logger.logMessage("warning", "No data available for plotting")
return

# Create accuracy by complexity plot
plt.figure(figsize=(10, 6))
levels = list(analysis["mean_accuracies"].keys())
accuracies = [analysis["mean_accuracies"][level] for level in levels]

plt.plot(range(len(levels)), accuracies, 'bo-')
plt.xticks(range(len(levels)), levels, rotation=45)
plt.ylabel('Mean Accuracy')
plt.xlabel('Complexity Level')
plt.title('Accuracy by State Complexity Level')
plt.tight_layout()

# Save plot
if not os.path.exists('to_save'):

os.makedirs('to_save')
plt.savefig('to_save/accuracy_by_complexity.pdf')
plt.close()

def save_results(analysis):
"""Save results to JSON file"""
try:

with open('results.json', 'w') as f:
json.dump(analysis, f, indent=4)

logger.logMessage("info", "Results saved successfully to results.json")
except Exception as e:

logger.logMessage("error", f"Error saving results to file: {str(e)}")

def main():
# Initialize configuration based on pilot mode
config = ExperimentConfig(PILOT_MODE)

# Run experiment
results = run_experiment(config)

# Analyze results
analysis = analyze_results(results, config)
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# Generate plots
generate_plots(analysis)

# Save results
save_results(analysis)

logger.logMessage("info", "Experiment completed successfully")

if __name__ == "__main__":
main()

Listing 8: CodeScientist generated code for this experiment.
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Graph Alignment Metric

CodeScientist (and Human Domain Expert)

February 15th, 2025

Abstract

Domain Expert Note: The report generator consistently failed on this ex-
periment, we beleive due to the truly large number of figures generated (one
figure for each graph that it examined). Instead, we provide the automated
summary generated by CodeScientist, and manually include several of the
figures that it generated.

1 Automatically Generated Summary
The automatically generated summary of results produced by CodeScientist is shown
in Table 1.

1

H.3 Report: Graph Alignment Metric
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Field Value

summary This experiment tested different similarity metrics for aligning text descriptions with graph
representations in TextWorldExpress cooking games. Three metrics were compared: a
baseline word overlap ratio, Jaccard similarity, and a custom graph-text similarity mea-
sure that weighted nodes, spatial relations, and actions. The experiment was run in PILOT
mode with 15 games and 10 episodes each, collecting 30 text-graph pairs for evaluation.
The custom similarity metric (mean=0.317) significantly outperformed the baseline word
overlap metric (mean=0.101) with p¡0.001 in bootstrap resampling tests. Interestingly, the
Jaccard similarity performed identically to the baseline (mean=0.101, p=1.0). The exper-
iment successfully implemented the core comparison of similarity metrics, though with
some deviations from the original specification in terms of the number of games used (15
instead of 3). The results suggest that incorporating graph structure and relationship infor-
mation through the custom metric provides better text-graph alignment than simple word
overlap approaches.

summary (short) Custom graph-aware similarity metric outperforms word overlap baselines for text-graph
alignment in cooking games.

summary
(medium)

A comparison of text-graph similarity metrics in TextWorldExpress cooking games found
that a custom metric incorporating graph structure (mean=0.317) significantly outper-
formed both word overlap and Jaccard similarity baselines (mean=0.101) with p¡0.001. The
experiment used 30 text-graph pairs from 15 games with 10 episodes each, demonstrating
the value of considering graph relationships in text-graph alignment.

hypothesis Graph-aware similarity metrics that incorporate structural relationships will perform better
at text-graph alignment than simple word overlap methods.

hypothesis (op-
erationalized)

A custom similarity metric that weights node matches (0.5), spatial relations (0.3), and ac-
tion relations (0.2) will achieve higher similarity scores than word overlap ratio and Jaccard
similarity when matching game state descriptions to their corresponding graph representa-
tions.

hypothesis
(inference)

The results strongly support the hypothesis. The custom graph-aware metric achieved a sig-
nificantly higher mean similarity score (0.317) compared to both baseline metrics (0.101)
with p¡0.001 in bootstrap resampling tests. The consistent performance across 30 pairs and
clear statistical significance suggests this is a reliable finding.

hypothesis (cate-
gory)

support

faithfullness (de-
tails)

The experiment implemented the core comparison of similarity metrics as requested, but
had some notable deviations: 1) Used 15 games instead of the specified 3 games in PILOT
mode, 2) Did not implement all requested visualizations (confusion matrices, similarity
distributions, progress correlation plots), 3) Successfully implemented the three similarity
metrics and bootstrap statistical testing as specified. The deviations affect the scale of the
experiment but not the fundamental validity of the comparison.

faithfullness
(category)

deviations

interesting
results

true

Table 1: Summary of Experimental Results

2 Selected Automatically Generated Figures

2

Report: Graph Alignment Metric (Page 2)
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Figure 1: Progress Correlation
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Figure 2: An example of one of the simpler (non-empty) graphs it appears to con-
sider (Game 13, Episode 8, Step 15)
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Figure 3: An example of the most complex graphs it appears to consider (Game 10,
Episode 0, Step 0)
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Code Listing: Graph Alignment Metric

import os
import json
import random
import networkx as nx
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import textworld_express as twx
from textworld_express import TextWorldExpressEnv

from experiment_common_library import Logger, generate_difference_scores_dict,
generate_difference_scores_parallel_arrays, bootstrap_resampling, run_dot_graphviz\

# Create global logger
logger = Logger()

# Set the pilot mode
PILOT_MODE = "PILOT" # Moving to PILOT mode after successful MINI_PILOT

def get_experiment_config():
if PILOT_MODE == "MINI_PILOT":

return {
"num_games": 2,
"episodes_per_game": 3,
"max_steps": 10,
"num_test_pairs": 10,
"seeds": [1, 2],
"fold": "dev"

}
elif PILOT_MODE == "PILOT":

return {
"num_games": 15, # Modified from 3 to 15 as per follow-on instructions
"episodes_per_game": 10,
"max_steps": 25,
"num_test_pairs": 30,
"seeds": list(range(1, 16)), # Extended seeds list to accommodate 15 games
"fold": "dev"

}
else: # FULL_EXPERIMENT

return {
"num_games": 5,
"episodes_per_game": 20,
"max_steps": 50,
"num_test_pairs": 100,
"seeds": [1, 2, 3, 4, 5],
"fold": "test"

}

def save_graph_as_dot(G, filename):
"""Save graph in DOT format and return the DOT string"""
try:

# Create DOT representation
dot_str = ['digraph G {']

# Add nodes
for node in G.nodes():

node_type = G.nodes[node].get('type', 'object')
dot_str.append(f' "{node}" [label="{node}",shape=box,style=filled,fillcolor=lightblue];')

# Add edges
for u, v, data in G.edges(data=True):

edge_label = data.get('relation', data.get('action', ''))
dot_str.append(f' "{u}" -> "{v}" [label="{edge_label}"];')

dot_str.append('}')
dot_content = '\n'.join(dot_str)

# Save to file
with open(filename, 'w') as f:

f.write(dot_content)

# Generate PDF visualization
pdf_filename = filename.replace('.dot', '.pdf')
run_dot_graphviz(filename, pdf_filename)

return dot_content
except Exception as e:

logger.logMessage("error", f"Error saving graph as DOT: {str(e)}")
return None

def extract_objects_from_text(text):
"""Extract objects and their relationships from text with improved object detection"""
if not text:
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logger.logMessage("warning", "Empty text received for object extraction")
return set(), []

logger.logMessage("debug", f"Extracting objects from text: {text[:100]}...")

objects = set()
relationships = []

# Common objects in cooking environment
common_objects = ['kitchen', 'fridge', 'oven', 'stove', 'counter', 'cookbook',

'knife', 'apple', 'carrot', 'water', 'cheese', 'cupboard',
'drawer', 'chair', 'table', 'shelf', 'dishwasher', 'pantry',
'backyard', 'trash']

# Extract objects and relationships
words = text.lower().split()
for i, word in enumerate(words):

# Check for compound objects
if i < len(words)-1:

compound = word + " " + words[i+1]
if compound in common_objects:

objects.add(compound)
logger.logMessage("debug", f"Found compound object: {compound}")
continue

if word in common_objects:
objects.add(word)
logger.logMessage("debug", f"Found object: {word}")
# Look for spatial relationships
if i > 0 and words[i-1] in ['on', 'in', 'at', 'near', 'beside']:

if i > 1 and words[i-2] in common_objects:
relationships.append((words[i-2], word, words[i-1]))
logger.logMessage("debug", f"Found relationship: {words[i-2]} {words[i-1]} {word}")

return objects, relationships

def create_graph_from_state(obs_text, valid_actions):
"""Convert game state to a graph representation with improved object and relationship extraction"""
if not obs_text:

logger.logMessage("warning", "Empty observation text received")
return nx.DiGraph()

logger.logMessage("debug", f"Creating graph from observation: {obs_text[:100]}...")

G = nx.DiGraph()

try:
# Extract objects and relationships from text
objects, relationships = extract_objects_from_text(obs_text)

# Add nodes for objects
for obj in objects:

G.add_node(obj, type='location' if obj in ['kitchen', 'pantry', 'backyard'] else 'object')
logger.logMessage("debug", f"Added node: {obj}")

# Add relationships from text
for src, dst, rel in relationships:

if src in objects and dst in objects:
G.add_edge(src, dst, relation=rel)
logger.logMessage("debug", f"Added relationship edge: {src} -{rel}-> {dst}")

# Add edges based on valid actions
if valid_actions:

for action in valid_actions:
action = action.lower()
action_parts = action.split()

if len(action_parts) < 2:
continue

action_type = action_parts[0]
if action_type in ['take', 'drop', 'open', 'close', 'examine', 'put']:

obj = action_parts[-1]
if obj in objects:

G.add_edge('player', obj, action=action_type)
logger.logMessage("debug", f"Added action edge: player -{action_type}-> {obj}")

except Exception as e:
logger.logMessage("error", f"Error creating graph: {str(e)}")

return G

def compute_similarity_metrics(text, graph):
"""Compute different similarity metrics between text and graph"""
if not text or not isinstance(graph, nx.DiGraph):
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logger.logMessage("warning", "Invalid input for similarity computation")
return {'word_overlap': 0.0, 'jaccard': 0.0, 'custom': 0.0}

logger.logMessage("debug", f"Computing similarity metrics for text: {text[:100]}...")

try:
# Convert text to lowercase set of words
text_words = set(text.lower().split())
logger.logMessage("debug", f"Text words: {text_words}")

# Get graph nodes and their attributes
graph_nodes = set(str(node).lower() for node in graph.nodes())
logger.logMessage("debug", f"Graph nodes: {graph_nodes}")

# Get graph edges and their attributes
edge_info = set()
spatial_relations = set()
action_relations = set()
for _, _, data in graph.edges(data=True):

if 'action' in data:
action_relations.add(data['action'])
edge_info.add(data['action'])

if 'relation' in data:
spatial_relations.add(data['relation'])
edge_info.add(data['relation'])

# Word overlap ratio
overlap = len(text_words.intersection(graph_nodes))
word_overlap = overlap / max(len(text_words), len(graph_nodes)) if max(len(text_words), len(graph_nodes)) > 0 else

0\
logger.logMessage("debug", f"Word overlap score: {word_overlap}")

# Jaccard similarity
jaccard = len(text_words.intersection(graph_nodes)) / len(text_words.union(graph_nodes)) if

len(text_words.union(graph_nodes)) > 0 else 0\
logger.logMessage("debug", f"Jaccard similarity score: {jaccard}")

# Custom similarity
text_relevant_elements = set()
for word in text_words:

if word in graph_nodes:
text_relevant_elements.add(word)

if word in spatial_relations:
text_relevant_elements.add(word)

if word in action_relations:
text_relevant_elements.add(word)

# Weight different components
node_weight = 0.5
relation_weight = 0.3
action_weight = 0.2

node_sim = len(text_words.intersection(graph_nodes)) / len(graph_nodes) if len(graph_nodes) > 0 else 0
relation_sim = len(text_words.intersection(spatial_relations)) / len(spatial_relations) if len(spatial_relations)

> 0 else 0\
action_sim = len(text_words.intersection(action_relations)) / len(action_relations) if len(action_relations) > 0

else 0\

custom_sim = (node_weight * node_sim +
relation_weight * relation_sim +
action_weight * action_sim)

logger.logMessage("debug", f"Custom similarity components - Nodes: {node_sim}, Relations: {relation_sim}, Actions:
{action_sim}")\

logger.logMessage("debug", f"Final custom similarity score: {custom_sim}")

return {
'word_overlap': word_overlap,
'jaccard': jaccard,
'custom': custom_sim

}
except Exception as e:

logger.logMessage("error", f"Error computing similarity metrics: {str(e)}")
return {'word_overlap': 0.0, 'jaccard': 0.0, 'custom': 0.0}

def save_results(results):
"""Save results to JSON file"""
try:

with open('results.json', 'w') as f:
json.dump(results, f, indent=2)

logger.logMessage("info", "Results saved successfully")
except Exception as e:

logger.logMessage("error", f"Error saving results: {str(e)}")

def run_experiment():
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logger.logMessage("info", f"Starting experiment in {PILOT_MODE} mode")

# Get configuration for current pilot mode
config = get_experiment_config()
logger.logMessage("info", f"Experiment config: {json.dumps(config)}")

# Create necessary directories
for dir_name in ['to_save', 'to_save/graphs', 'to_save/plots']:

os.makedirs(dir_name, exist_ok=True)

# Initialize environment
env = TextWorldExpressEnv(envStepLimit=config['max_steps'])
env_params = "numLocations=3,numIngredients=2,numDistractorItems=2,includeDoors=0"

try:
# Load the environment
logger.logMessage("info", "Loading environment with params: " + env_params)
env.load(gameName="cookingworld", gameParams=env_params)

except Exception as e:
logger.logMessage("error", f"Failed to load environment: {str(e)}")
return

# Initialize results storage
results = {

'config': config,
'state_graph_pairs': [],
'similarity_scores': defaultdict(list),
'evaluation_metrics': {}

}

try:
# Collect data from games
total_episodes = config['num_games'] * config['episodes_per_game']
current_episode = 0

for game_idx in range(config['num_games']):
for episode_idx in range(config['episodes_per_game']):

current_episode += 1
logger.logMessage("info", f"Progress: Episode {current_episode}/{total_episodes} (Game {game_idx+1},

Episode {episode_idx+1})")\

seed = config['seeds'][game_idx % len(config['seeds'])]
logger.logMessage("info", f"Running game {game_idx+1}, episode {episode_idx+1}, seed {seed}")

# Reset environment
obs, info = env.reset(gameFold=config['fold'], seed=seed)

# Store initial state
G = create_graph_from_state(obs, info['validActions'])
dot_filename = f"to_save/graphs/game_{game_idx}_ep_{episode_idx}_step_0.dot"
dot_str = save_graph_as_dot(G, dot_filename)

if dot_str is not None:
state_graph_pair = {

'game_idx': game_idx,
'episode_idx': episode_idx,
'step': 0,
'observation': obs,
'graph_dot': dot_str,
'score': info['score']

}
results['state_graph_pairs'].append(state_graph_pair)

# Run episode
done = False
step = 0
while not done and step < config['max_steps']:

# Take random action
action = random.choice(info['validActions'])
obs, _, done, info = env.step(action)
step += 1

# Store state periodically
if step % 5 == 0:

G = create_graph_from_state(obs, info['validActions'])
dot_filename = f"to_save/graphs/game_{game_idx}_ep_{episode_idx}_step_{step}.dot"
dot_str = save_graph_as_dot(G, dot_filename)

if dot_str is not None:
state_graph_pair = {

'game_idx': game_idx,
'episode_idx': episode_idx,
'step': step,
'observation': obs,
'graph_dot': dot_str,
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'score': info['score']
}
results['state_graph_pairs'].append(state_graph_pair)

# Save intermediate results after each episode
save_results(results)

# Evaluate similarity metrics
logger.logMessage("info", "Computing similarity metrics")
for i in range(min(len(results['state_graph_pairs']), config['num_test_pairs'])):

pair = results['state_graph_pairs'][i]
G = create_graph_from_state(pair['observation'], [])

similarities = compute_similarity_metrics(pair['observation'], G)
for metric_name, score in similarities.items():

results['similarity_scores'][metric_name].append({
'pair_idx': i,
'score': score,
'game_progress': pair['step'] / config['max_steps']

})

# Perform statistical analysis
logger.logMessage("info", "Performing statistical analysis")
for metric_name in ['word_overlap', 'jaccard', 'custom']:

baseline_scores = [x['score'] for x in results['similarity_scores']['word_overlap']]
experimental_scores = [x['score'] for x in results['similarity_scores'][metric_name]]

if metric_name != 'word_overlap':
diff_scores, mean_baseline, mean_exp = generate_difference_scores_parallel_arrays(

baseline_scores, experimental_scores)
stats = bootstrap_resampling(diff_scores, mean_baseline, mean_exp)
results['evaluation_metrics'][f'{metric_name}_vs_baseline'] = stats

# Save final results
save_results(results)

# Generate plots
logger.logMessage("info", "Generating plots")
plt.style.use('seaborn')

try:
# Plot similarity distributions
plt.figure(figsize=(10, 6))
for metric_name in ['word_overlap', 'jaccard', 'custom']:

scores = [x['score'] for x in results['similarity_scores'][metric_name]]
plt.hist(scores, alpha=0.5, label=metric_name, bins=20)

plt.xlabel('Similarity Score')
plt.ylabel('Frequency')
plt.title('Distribution of Similarity Scores')
plt.legend()
plt.savefig('to_save/plots/similarity_distributions.pdf')
plt.close()

# Plot similarity vs game progress
plt.figure(figsize=(10, 6))
for metric_name in ['word_overlap', 'jaccard', 'custom']:

progress = [x['game_progress'] for x in results['similarity_scores'][metric_name]]
scores = [x['score'] for x in results['similarity_scores'][metric_name]]
plt.scatter(progress, scores, alpha=0.5, label=metric_name)

plt.xlabel('Game Progress')
plt.ylabel('Similarity Score')
plt.title('Similarity vs Game Progress')
plt.legend()
plt.savefig('to_save/plots/progress_correlation.pdf')
plt.close()

logger.logMessage("info", "Plots generated successfully")
except Exception as e:

logger.logMessage("error", f"Error generating plots: {str(e)}")

logger.logMessage("info", "Experiment completed successfully")

except Exception as e:
logger.logMessage("error", f"Error during experiment: {str(e)}")
# Save partial results
save_results(results)

if __name__ == "__main__":
# Run the experiment
run_experiment()

Listing 9: CodeScientist generated code for this experiment.
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Comparing Single-Stage vs Two-Stage Approaches

for Text Game Generation

CodeScientist

February 15th, 2025

Abstract

This paper investigates whether a two-stage approach to generating text-
based games using large language models (LLMs) produces more complete
and robust implementations compared to single-stage generation. We con-
ducted a controlled experiment comparing single-stage generation against a
two-stage process where basic mechanics are generated first, followed by scor-
ing and win conditions. Results show that while both approaches achieved
100% execution success, the two-stage approach produced significantly more
complete game implementations (96.7% vs 66.7% mechanics completion rate),
though at the cost of longer generation times. These findings suggest that
decomposing complex game generation tasks into focused subtasks leads to
higher quality output.

1 Introduction
Text-based games represent an interesting challenge for LLM-based code genera-
tion, requiring the model to implement multiple interacting game mechanics while
maintaining internal consistency. A key question is whether breaking down this
complex generation task into smaller, focused subtasks improves the quality and
completeness of the generated code.

2 Methodology
We designed an experiment to compare two approaches to generating simple text
adventure games:

• Single-stage: Generate complete game implementation including all me-
chanics in one prompt

1
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• Two-stage: First generate movement and inventory mechanics, then add scor-

ing and win conditions

Each game required:

• 3x3 grid world with player starting at (1,1)

• 2-3 randomly placed items

• Movement (north/south/east/west)

• Inventory management (take/drop items)

• Scoring (+1 per collected item)

• Win condition (collect all items)

We used the gpt-4o-mini model for all generations. The experiment included
20 games with 3 generations per game per method (120 total generations). For each
generation, we measured:

• Execution success (compilation)

• Mechanics completeness

• Generation time

3 Results
Both approaches achieved 100% execution success, with no syntax errors across all
generations. However, significant differences emerged in mechanics completeness
and generation time.

2
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Figure 1: Mechanics completion rates by generation method

The two-stage approach achieved a 96.7% mechanics completion rate com-
pared to 66.7% for single-stage generation. This difference was primarily due to
the single-stage approach often failing to implement proper win conditions despite
successfully implementing other mechanics.
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Figure 2: Generation times by method

However, the two-stage approach required significantly more time, averaging
29.8 seconds per generation compared to 16.9 seconds for single-stage generation

3
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- a 76% increase in generation time.

4 Discussion
The results support the hypothesis that breaking down complex game generation
into focused subtasks leads to more complete implementations. The two-stage ap-
proach produced significantly more games with all required mechanics, suggesting
that focusing first on basic mechanics before adding scoring and win conditions
helps the model maintain consistency and completeness.

The trade-off is increased generation time, which is expected given the need
for two separate prompts and generations. However, the improved completion rate
likely justifies this overhead in most applications where correctness is prioritized
over generation speed.

5 Limitations
Several limitations should be considered:

• The experiment used a relatively simple game format - results may differ for
more complex games

• Only one model (gpt-4o-mini) was tested

• The evaluation focused on presence of mechanics rather than their correctness
or gameplay quality

• The sample size, while substantial (120 total generations), may not capture
all possible generation patterns

6 Conclusion
This experiment demonstrates that a two-stage approach to text game generation
produces more complete implementations than single-stage generation, though at
the cost of increased generation time. The findings suggest that decomposing com-
plex generation tasks into focused subtasks is a valuable strategy for improving the
quality of LLM-generated code.

Future work could explore:

• Testing with more complex game mechanics

• Evaluating actual gameplay quality

4
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Code Listing: Multi-Stage Environment Generation

import os
import json
import time
import random
import re
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime

from experiment_common_library import Logger, llm_response

# Create global logger
logger = Logger()

# Experiment settings
PILOT_MODE = "FULL_EXPERIMENT" # Options: "MINI_PILOT", "PILOT", "FULL_EXPERIMENT"

# Configure experiment parameters based on pilot mode
def get_experiment_params():

if PILOT_MODE == "MINI_PILOT":
return {

"num_games": 2,
"generations_per_game": 1

}
elif PILOT_MODE == "PILOT":

return {
"num_games": 5,
"generations_per_game": 3

}
else: # FULL_EXPERIMENT

return {
"num_games": 20, # Updated to 20 games as per follow-on requirements
"generations_per_game": 3

}

# Game generation prompts
SINGLE_STAGE_PROMPT = '''Create a simple text adventure game as a Python class with the following specifications:

1. 3x3 grid world with player starting at (1,1)
2. 2-3 items randomly placed
3. Required mechanics:

- Movement: north/south/east/west methods
- Inventory: take/drop methods
- Scoring: +1 per collected item
- Win condition: collect all items

Format the response as a complete Python class. Example structure:

class TextGame:
def __init__(self):

# Initialize grid, player position, items, inventory, score
pass

def move_north(self):
# Move player north if possible
pass

# Include other required methods
'''

TWO_STAGE_PROMPT_1 = '''Create the first stage of a text adventure game as a Python class with the following
specifications:\

1. 3x3 grid world with player starting at (1,1)
2. 2-3 items randomly placed
3. Required mechanics for this stage:

- Movement: north/south/east/west methods
- Inventory: take/drop methods

Format the response as a complete Python class. Example structure:

class TextGame:
def __init__(self):

# Initialize grid, player position, items, inventory
pass

def move_north(self):
# Move player north if possible
pass

# Include other required methods
'''
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TWO_STAGE_PROMPT_2 = '''Add scoring and win condition mechanics to the following game class:
{game_code}

Add:
1. Scoring: +1 per collected item
2. Win condition: collect all items

Modify the class to include these features while preserving existing functionality.
'''

def evaluate_game_code(code):
"""Evaluate generated game code for required mechanics and syntax."""
logger.logMessage("info", "Evaluating game code...")

# Initialize evaluation results
evaluation = {

"execution_success": False,
"num_syntax_errors": 0,
"mechanics_complete": False,
"mechanics": {

"movement": False,
"inventory": False,
"scoring": False,
"win": False

}
}

# Check for required mechanics using regex
movement_pattern = r"def move_(north|south|east|west)"
inventory_pattern = r"def (take|drop)"
scoring_pattern = r"score\s*[=+]"
win_pattern = r"(win|victory|game_over|check_win)"

evaluation["mechanics"]["movement"] = bool(re.search(movement_pattern, code))
evaluation["mechanics"]["inventory"] = bool(re.search(inventory_pattern, code))
evaluation["mechanics"]["scoring"] = bool(re.search(scoring_pattern, code))
evaluation["mechanics"]["win"] = bool(re.search(win_pattern, code))

# Check if all mechanics are present
evaluation["mechanics_complete"] = all(evaluation["mechanics"].values())

# Try to execute the code to check for syntax errors
try:

compile(code, '<string>', 'exec')
evaluation["execution_success"] = True
evaluation["num_syntax_errors"] = 0

except SyntaxError as e:
evaluation["num_syntax_errors"] = 1
logger.logMessage("error", f"Syntax error in game code: {str(e)}")

logger.logMessage("info", f"Evaluation results: {json.dumps(evaluation, indent=2)}")
return evaluation

def generate_single_stage_game():
"""Generate a complete game using single-stage approach."""
logger.logMessage("info", "Generating single-stage game...")

start_time = time.time()
success, response = llm_response(SINGLE_STAGE_PROMPT, "gpt-4o-mini", temperature=0.7, max_tokens=1000)
generation_time = time.time() - start_time

if not success:
logger.logMessage("error", f"Failed to generate single-stage game: {response}")
return None, None, generation_time

# Extract code from response
code_blocks = re.findall(r'```python\n(.*?)```', response, re.DOTALL)
if not code_blocks:

code_blocks = re.findall(r'```\n(.*?)```', response, re.DOTALL)

if not code_blocks:
logger.logMessage("error", "No code block found in response")
return None, None, generation_time

game_code = code_blocks[0].strip()
evaluation = evaluate_game_code(game_code)

return game_code, evaluation, generation_time

def generate_two_stage_game():
"""Generate a game using two-stage approach."""
logger.logMessage("info", "Generating two-stage game...")

# Stage 1: Basic mechanics
start_time = time.time()
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success, response1 = llm_response(TWO_STAGE_PROMPT_1, "gpt-4o-mini", temperature=0.7, max_tokens=1000)

if not success:
logger.logMessage("error", f"Failed to generate first stage: {response1}")
return None, None, time.time() - start_time

# Extract code from first stage
code_blocks = re.findall(r'```python\n(.*?)```', response1, re.DOTALL)
if not code_blocks:

code_blocks = re.findall(r'```\n(.*?)```', response1, re.DOTALL)

if not code_blocks:
logger.logMessage("error", "No code block found in first stage response")
return None, None, time.time() - start_time

stage1_code = code_blocks[0].strip()

# Stage 2: Add scoring and win conditions
stage2_prompt = TWO_STAGE_PROMPT_2.format(game_code=stage1_code)
success, response2 = llm_response(stage2_prompt, "gpt-4o-mini", temperature=0.7, max_tokens=1000)
generation_time = time.time() - start_time

if not success:
logger.logMessage("error", f"Failed to generate second stage: {response2}")
return None, None, generation_time

# Extract code from second stage
code_blocks = re.findall(r'```python\n(.*?)```', response2, re.DOTALL)
if not code_blocks:

code_blocks = re.findall(r'```\n(.*?)```', response2, re.DOTALL)

if not code_blocks:
logger.logMessage("error", "No code block found in second stage response")
return None, None, generation_time

final_code = code_blocks[0].strip()
evaluation = evaluate_game_code(final_code)

return final_code, evaluation, generation_time

def save_results(results):
"""Save results to JSON file."""
with open('results.json', 'w') as f:

json.dump(results, f, indent=2)

def create_plots(results_df):
"""Create comparison plots between single-stage and two-stage approaches."""
plt.style.use('seaborn-v0_8') # Updated to use non-deprecated style

# Create plots directory
os.makedirs('to_save', exist_ok=True)

# Success Rate Plot
plt.figure(figsize=(10, 6))
success_rates = results_df.groupby('generation_method')['execution_success'].mean()
success_rates.plot(kind='bar')
plt.title('Success Rate by Generation Method')
plt.ylabel('Success Rate')
plt.tight_layout()
plt.savefig('to_save/success_rates.pdf')
plt.close()

# Mechanics Completion Plot
plt.figure(figsize=(10, 6))
mechanics_rates = results_df.groupby('generation_method')['mechanics_complete'].mean()
mechanics_rates.plot(kind='bar')
plt.title('Mechanics Completion Rate by Generation Method')
plt.ylabel('Completion Rate')
plt.tight_layout()
plt.savefig('to_save/mechanics_rates.pdf')
plt.close()

# Generation Time Plot
plt.figure(figsize=(10, 6))
results_df.boxplot(column='generation_time_sec', by='generation_method')
plt.title('Generation Time by Method')
plt.suptitle('') # Remove automatic suptitle
plt.ylabel('Time (seconds)')
plt.tight_layout()
plt.savefig('to_save/generation_times.pdf')
plt.close()

def main():
logger.logMessage("info", f"Starting experiment in {PILOT_MODE} mode")
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# Get experiment parameters
params = get_experiment_params()
logger.logMessage("info", f"Experiment parameters: {json.dumps(params, indent=2)}")

# Initialize results storage
results = []

# Run experiment
for game_id in range(params["num_games"]):

logger.logMessage("info", f"Generating game {game_id + 1}/{params['num_games']}")

for generation in range(params["generations_per_game"]):
# Single-stage generation
single_code, single_eval, single_time = generate_single_stage_game()
if single_eval:

results.append({
"game_id": f"game_{game_id}_{generation}",
"generation_method": "single-stage",
"execution_success": single_eval["execution_success"],
"num_syntax_errors": single_eval["num_syntax_errors"],
"mechanics_complete": single_eval["mechanics_complete"],
"generation_time_sec": single_time

})

# Two-stage generation
two_stage_code, two_stage_eval, two_stage_time = generate_two_stage_game()
if two_stage_eval:

results.append({
"game_id": f"game_{game_id}_{generation}",
"generation_method": "two-stage",
"execution_success": two_stage_eval["execution_success"],
"num_syntax_errors": two_stage_eval["num_syntax_errors"],
"mechanics_complete": two_stage_eval["mechanics_complete"],
"generation_time_sec": two_stage_time

})

# Save intermediate results
save_results(results)

# Convert results to DataFrame for analysis
results_df = pd.DataFrame(results)

# Calculate summary statistics
summary_stats = {

"single_stage": {
"success_rate": results_df[results_df["generation_method"] == "single-stage"]["execution_success"].mean(),
"mechanics_complete_rate": results_df[results_df["generation_method"] ==

"single-stage"]["mechanics_complete"].mean(),\
"avg_generation_time": results_df[results_df["generation_method"] ==

"single-stage"]["generation_time_sec"].mean()\
},
"two_stage": {

"success_rate": results_df[results_df["generation_method"] == "two-stage"]["execution_success"].mean(),
"mechanics_complete_rate": results_df[results_df["generation_method"] ==

"two-stage"]["mechanics_complete"].mean(),\
"avg_generation_time": results_df[results_df["generation_method"] ==

"two-stage"]["generation_time_sec"].mean()\
}

}

# Log summary statistics
logger.logMessage("info", f"Summary statistics: {json.dumps(summary_stats, indent=2)}")

# Create plots
create_plots(results_df)

# Save final results
save_results({

"raw_results": results,
"summary_stats": summary_stats

})

logger.logMessage("info", "Experiment completed successfully")

if __name__ == "__main__":
main()

Listing 10: CodeScientist generated code for this experiment.
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February 15th, 2025

Abstract

This study evaluates the ability of a large language model (GPT-4o-mini)
to predict action outcomes and assign meaningful confidence scores in a text-
based cooking game environment. Through a pilot experiment with 50 games
and 496 total action predictions, we find that the LLM achieves significantly
better than random prediction accuracy (65.7% vs 50% baseline, p ¡ 0.001)
and demonstrates a moderate positive correlation between confidence and ac-
curacy (r = 0.335, p ¡ 0.001). The results suggest that LLMs can effectively
reason about action outcomes in text-based environments while providing cal-
ibrated confidence estimates, though with notable limitations in consistency
across different game contexts.

1 Introduction
Text-based games provide a controlled environment for studying language models’
ability to reason about actions and their consequences. This experiment tests two
key hypotheses:

1. H1: An LLM can predict action outcomes in a text-based cooking game with
above-random accuracy

2. H2: The LLM’s confidence scores correlate positively with prediction accu-
racy

2 Methods
We implemented a confidence-based prediction system using TextWorldExpress’s
CookingWorld environment with simplified parameters (3 locations, 2 ingredients,

1

H.5 Report: Simulation Confidence
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2 distractor items, no doors). The experiment collected data from 50 games with
10 actions per game, resulting in 496 total predictions.

For each action, the system:

1. Recorded the current game state (observation, inventory, valid actions)

2. Queried GPT-4o-mini to predict action success/failure with confidence

3. Executed the action and determined actual outcome

4. Generated baseline predictions (random and constant)

3 Results
3.1 Prediction Accuracy
The LLM achieved an overall accuracy of 65.7% across 496 predictions, signif-
icantly above the 50% random baseline (p ¡ 0.001 via bootstrap resampling with
10,000 iterations). Individual game accuracies varied substantially, ranging from
20% to 100% (mean = 65.7%, SD = 15.8%).

3.2 Confidence Analysis
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Figure 1: Relationship between LLM confidence and prediction accuracy

2
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Figure 2: Average confidence scores for correct vs incorrect predictions

Analysis revealed a moderate positive correlation between confidence scores and
prediction accuracy (Pearson’s r = 0.335, p ¡ 0.001). As shown in Figure 2, the
LLM assigned higher average confidence scores to correct predictions compared to
incorrect ones, indicating some degree of calibration in its uncertainty estimates.

4 Discussion
4.1 Key Findings
The results support both hypotheses:

1. The LLM demonstrated significantly better than random prediction accuracy

2. Confidence scores showed meaningful correlation with actual performance

4.2 Limitations
Several limitations should be noted:

1. High variance in per-game accuracy (20-100%) suggests inconsistent perfor-
mance across different game contexts

3

Report: Simulation Confidence (Page 3)
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2. The moderate confidence-accuracy correlation (r = 0.335) indicates room for

improvement in uncertainty calibration

3. The simplified game environment may not generalize to more complex sce-
narios

4. The study used a single LLM (GPT-4o-mini) and may not generalize to other
models

4.3 Implementation Fidelity
The experiment closely followed the requested design, implementing all core com-
ponents:

• Environment setup with specified parameters

• Systematic action collection and LLM querying

• Baseline comparisons

• Comprehensive metrics and analysis

• Data storage and visualization

The pilot mode (50 games) exceeded the original specification (5 games) to
provide more robust statistical analysis.

5 Conclusion
This study demonstrates that LLMs can effectively predict action outcomes in text-
based environments while providing meaningful confidence estimates. However,
the substantial variation in performance across different game contexts suggests
that further research is needed to understand and improve the consistency of LLM
reasoning in interactive environments.

4

Report: Simulation Confidence (Page 4)
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Code Listing: Simulation Confidence

import os
import json
import time
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from scipy import stats
matplotlib.use('Agg') # Required for headless environments

from textworld_express import TextWorldExpressEnv
from experiment_common_library import Logger, llm_response, find_codeblocks
from experiment_common_library import generate_difference_scores_dict, bootstrap_resampling

# Global logger
logger = Logger()

# Global experiment mode
PILOT_MODE = 'PILOT' # Options: 'MINI_PILOT', 'PILOT', 'FULL_EXPERIMENT'

# Configure experiment parameters based on pilot mode
def get_experiment_params():

if PILOT_MODE == 'MINI_PILOT':
return {'num_games': 2, 'actions_per_game': 5}

elif PILOT_MODE == 'PILOT':
return {'num_games': 50, 'actions_per_game': 10} # Changed from 5 to 50 games

else: # FULL_EXPERIMENT
return {'num_games': 20, 'actions_per_game': 25}

class ConfidencePredictor:
def __init__(self):

self.env = TextWorldExpressEnv()
self.results = []

def initialize_environment(self):
"""Initialize the CookingWorld environment with simplified parameters"""
logger.logMessage("info", "Initializing CookingWorld environment...")

# Set fixed random seed
random.seed(42)
np.random.seed(42)

# Initialize with simplified parameters
game_params = "numLocations=3, numIngredients=2, numDistractorItems=2, includeDoors=0"
self.env.load(gameName="cookingworld", gameParams=game_params)
logger.logMessage("info", f"Environment initialized with params: {game_params}")

def collect_action_data(self, num_games, actions_per_game):
"""Collect action data from multiple game episodes"""
logger.logMessage("info", f"Starting data collection: {num_games} games, {actions_per_game} actions per game")

collected_data = []

for game_id in range(num_games):
logger.logMessage("info", f"Starting game {game_id + 1}/{num_games}")

# Initialize new game
obs, infos = self.env.reset(gameFold="train", generateGoldPath=False, seed=None)
logger.logMessage("debug", f"Game {game_id} initial observation: {obs}")

for step in range(actions_per_game):
# Store pre-action state
valid_actions = infos['validActions']
if not valid_actions:

logger.logMessage("warning", f"No valid actions available at step {step}")
break

# Sample random action
action = random.choice(valid_actions)

# Store pre-action state
pre_action_state = {

'observation': infos['observation'],
'inventory': infos['inventory'],
'valid_actions': valid_actions

}

# Execute action
obs, _, _, infos = self.env.step(action)

# Store the data point
data_point = {

'game_id': game_id,
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'step': step,
'pre_action_state': pre_action_state,
'action': action,
'post_action_observation': obs

}
collected_data.append(data_point)

logger.logMessage("debug", f"Game {game_id}, Step {step}: Action '{action}' executed")
logger.logMessage("debug", f"Resulting observation: {obs}")

logger.logMessage("info", f"Data collection complete. Collected {len(collected_data)} action samples")
return collected_data

def get_llm_prediction(self, observation, inventory, action):
"""Query LLM for action prediction and confidence"""
prompt = f"Given the following game state in a text-based cooking game:\n\nObservation: {observation}\nInventory:

{inventory}\nProposed Action: {action}\n\nPredict whether this action will succeed or fail, and provide your
confidence.\n\nProvide your response in JSON format between code blocks (```), with these keys:\n- success:
true/false (whether you think the action will succeed)\n- confidence: (0.0-1.0) how confident you are in your
prediction\n- rationale: (brief explanation for your prediction)"

\
\
\
\

logger.logMessage("debug", f"Sending prediction prompt to LLM:\n{prompt}")

success, response = llm_response(prompt, "gpt-4o-mini", temperature=0)

if not success:
logger.logMessage("error", f"LLM call failed: {response}")
return None

logger.logMessage("debug", f"Raw LLM response:\n{response}")

# Extract JSON from response
codeblocks = find_codeblocks(response)
if not codeblocks:

logger.logMessage("error", "No codeblocks found in LLM response")
return None

try:
prediction = json.loads("\n".join(codeblocks[0]))
logger.logMessage("debug", f"Parsed prediction: {json.dumps(prediction, indent=2)}")
return prediction

except json.JSONDecodeError as e:
logger.logMessage("error", f"Failed to parse LLM response as JSON: {str(e)}")
return None

def determine_action_success(self, action, observation):
"""Use LLM to determine if action succeeded"""
prompt = f"Did the following action succeed or fail? Respond with only 'success' or 'failure'.\n\nAction:

{action}\nResult: {observation}"\

logger.logMessage("debug", f"Sending success determination prompt to LLM:\n{prompt}")

success, response = llm_response(prompt, "gpt-4o-mini", temperature=0)

if not success:
logger.logMessage("error", f"LLM success determination failed: {response}")
return None

response = response.strip().lower()
logger.logMessage("debug", f"Success determination response: {response}")

if response not in ["success", "failure"]:
logger.logMessage("error", f"Invalid success determination response: {response}")
return None

return response == "success"

def generate_baseline_predictions(self, num_predictions):
"""Generate baseline predictions using different strategies"""
return {

'random_prediction': [random.choice([True, False]) for _ in range(num_predictions)],
'random_confidence': [random.random() for _ in range(num_predictions)],
'constant_confidence': [0.5 for _ in range(num_predictions)]

}

def calculate_metrics(self, predictions, actual_outcomes, confidences=None, game_ids=None):
"""Calculate prediction metrics"""
if not predictions or not actual_outcomes:

logger.logMessage("error", "Empty predictions or outcomes list")
return 0.0, None

accuracy = sum(p == a for p, a in zip(predictions, actual_outcomes)) / len(predictions)
logger.logMessage("info", f"Overall accuracy: {accuracy:.3f} (from {len(predictions)} predictions)")

# Calculate per-game accuracy if game IDs are provided
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if game_ids is not None:
unique_games = sorted(list(set(game_ids)))
for game_id in unique_games:

game_predictions = [p for i, p in enumerate(predictions) if game_ids[i] == game_id]
game_outcomes = [o for i, o in enumerate(actual_outcomes) if game_ids[i] == game_id]
game_accuracy = sum(p == a for p, a in zip(game_predictions, game_outcomes)) / len(game_predictions)
logger.logMessage("info", f"Game {game_id} accuracy: {game_accuracy:.3f} (from {len(game_predictions)}

predictions)")\

# Calculate confidence correlation if confidences are provided
correlation = None
if confidences is not None:

binary_outcomes = [1 if p == a else 0 for p, a in zip(predictions, actual_outcomes)]
correlation, p_value = stats.pearsonr(confidences, binary_outcomes)
logger.logMessage("info", f"Confidence-accuracy correlation: {correlation:.3f} (p={p_value:.3f})")

return accuracy, correlation

def plot_confidence_vs_accuracy(self, confidences, accuracies, filename):
"""Generate scatter plot of confidence vs accuracy"""
if not confidences or not accuracies:

logger.logMessage("error", "Empty confidences or accuracies list, skipping plot")
return

plt.figure(figsize=(10, 6))
plt.scatter(confidences, accuracies, alpha=0.5)
plt.xlabel('Confidence')
plt.ylabel('Accuracy')
plt.title('Confidence vs Accuracy')
plt.savefig(os.path.join('to_save', filename))
plt.close()
logger.logMessage("info", f"Generated confidence vs accuracy plot: {filename}")

def plot_average_confidence(self, correct_confidences, incorrect_confidences, filename):
"""Generate bar plot of average confidence for correct/incorrect predictions"""
if not correct_confidences and not incorrect_confidences:

logger.logMessage("error", "Empty confidence lists, skipping plot")
return

plt.figure(figsize=(8, 6))
means = []
if correct_confidences:

means.append(np.mean(correct_confidences))
if incorrect_confidences:

means.append(np.mean(incorrect_confidences))

plt.bar(['Correct', 'Incorrect'][:len(means)], means)
plt.ylabel('Average Confidence')
plt.title('Average Confidence by Prediction Outcome')
plt.savefig(os.path.join('to_save', filename))
plt.close()
logger.logMessage("info", f"Generated average confidence plot: {filename}")

def run_experiment(self):
"""Main experiment execution"""
logger.logMessage("info", f"Starting experiment in {PILOT_MODE} mode")

# Create to_save directory if it doesn't exist
os.makedirs('to_save', exist_ok=True)

# Get experiment parameters
params = get_experiment_params()

# Initialize environment
self.initialize_environment()

# Collect action data
action_data = self.collect_action_data(params['num_games'], params['actions_per_game'])

# Process each action
for data_point in action_data:

# Get LLM prediction
prediction = self.get_llm_prediction(

data_point['pre_action_state']['observation'],
data_point['pre_action_state']['inventory'],
data_point['action']

)

if prediction is None:
continue

# Determine actual outcome
actual_outcome = self.determine_action_success(

data_point['action'],
data_point['post_action_observation']
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)

if actual_outcome is None:
continue

# Generate baseline predictions
baselines = self.generate_baseline_predictions(1)

# Store results
result = {

'game_id': data_point['game_id'],
'step': data_point['step'],
'pre_action_observation': data_point['pre_action_state']['observation'],
'action': data_point['action'],
'post_action_observation': data_point['post_action_observation'],
'llm_prediction': prediction['success'],
'llm_confidence': prediction['confidence'],
'llm_rationale': prediction['rationale'],
'actual_outcome': actual_outcome,
'baseline_random_prediction': baselines['random_prediction'][0],
'baseline_random_confidence': baselines['random_confidence'][0],
'baseline_constant_confidence': baselines['constant_confidence'][0]

}

self.results.append(result)
logger.logMessage("debug", f"Processed result: {json.dumps(result, indent=2)}")

# Save results
with open('results.json', 'w') as f:

json.dump(self.results, f, indent=2)

# Calculate metrics
llm_predictions = [r['llm_prediction'] for r in self.results]
actual_outcomes = [r['actual_outcome'] for r in self.results]
llm_confidences = [r['llm_confidence'] for r in self.results]
game_ids = [r['game_id'] for r in self.results]

llm_accuracy, confidence_correlation = self.calculate_metrics(
llm_predictions, actual_outcomes, llm_confidences, game_ids

)

# Generate plots
self.plot_confidence_vs_accuracy(

llm_confidences,
[1 if p == a else 0 for p, a in zip(llm_predictions, actual_outcomes)],
'confidence_vs_accuracy.pdf'

)

# Separate confidences for correct/incorrect predictions
correct_confidences = [conf for conf, pred, act in zip(llm_confidences, llm_predictions, actual_outcomes) if pred

== act]\
incorrect_confidences = [conf for conf, pred, act in zip(llm_confidences, llm_predictions, actual_outcomes) if

pred != act]\

self.plot_average_confidence(correct_confidences, incorrect_confidences, 'average_confidence.pdf')

# Statistical analysis
experimental_data = [{'experimental': 1 if p == a else 0, 'baseline': 0.5}

for p, a in zip(llm_predictions, actual_outcomes)]

difference_scores, mean_baseline, mean_experimental = generate_difference_scores_dict(
experimental_data, 'baseline', 'experimental'

)

bootstrap_results = bootstrap_resampling(
difference_scores, mean_baseline, mean_experimental

)

logger.logMessage("info", f"Experiment complete. Results saved to results.json")
logger.logMessage("info", f"LLM Accuracy: {llm_accuracy}")
logger.logMessage("info", f"Confidence-Accuracy Correlation: {confidence_correlation}")
logger.logMessage("info", f"Statistical Analysis Results:\n{json.dumps(bootstrap_results, indent=2)}")

def main():
predictor = ConfidencePredictor()
predictor.run_experiment()

if __name__ == "__main__":
main()

Listing 11: CodeScientist generated code for this experiment.
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Abstract

This paper presents an experimental evaluation of a knowledge graph-
based agent for scientific discovery in the DiscoveryWorld environment, com-
paring it against a baseline ReAct agent. The experiment tested whether main-
taining a structured knowledge representation improves exploration and hy-
pothesis generation in a proteomics investigation task. Results from a pilot
study with 50 episodes show that while the knowledge graph agent achieved
significantly higher process scores (mean=0.29 vs 0.12, p¡0.001), neither agent
successfully completed the task objectives, suggesting limitations in the cur-
rent implementation.

1 Introduction
Scientific discovery requires systematic exploration, hypothesis generation, and ev-
idence gathering. This experiment evaluated whether incorporating a knowledge
graph-based memory system could improve an agent’s ability to perform scientific
discovery tasks compared to a standard reactive agent.

2 Methods
2.1 Experimental Design
The experiment implemented two agent types:

• Knowledge Graph Agent: Maintains a DOT-format graph tracking objects,
properties, measurements, and hypotheses

• Baseline ReAct Agent: Standard reactive agent with basic state tracking
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The experiment was conducted in ”PILOT” mode with the following parame-

ters:

• 50 episodes of Proteomics-Easy difficulty

• Maximum 50 steps per episode

• Seeds 0-49 for reproducibility

2.2 Task Description
Agents were tasked with exploring a virtual environment to:

• Locate and acquire a proteomics meter

• Measure protein levels in different organisms

• Identify potential outliers

• Generate and test hypotheses

2.3 Metrics
Primary evaluation metrics included:

• Task completion (binary)

• Process score (normalized 0-1)

• Graph complexity (nodes/edges over time)

• Protein measurements collected

3 Results
3.1 Performance Comparison
Statistical analysis revealed significant differences between the agents:

Bootstrap analysis confirmed the difference in process scores was statistically
significant (p ¡ 0.001).
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Metric Knowledge Graph Baseline

Mean Process Score 0.29 0.12
Task Completion Rate 0% 0%

Table 1: Performance comparison between agents

3.2 Knowledge Graph Analysis
The knowledge graph agent demonstrated structured exploration:

• Successfully built graphs with up to 34 nodes and 22 edges

• Tracked protein measurements systematically

• Generated measurement nodes with protein level properties
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Figure 1: Process scores comparison across episodes
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Figure 2: Knowledge graph complexity over episodes

4 Discussion
4.1 Key Findings

• Knowledge graph agent achieved consistently higher process scores

• Neither agent successfully completed task objectives

• Structured knowledge representation improved systematic exploration

• Limited hypothesis generation despite available data

4.2 Limitations
Several limitations were identified:

• Agents often failed to acquire the proteomics meter

• Limited use of collected measurements for hypothesis generation

• Navigation strategies remained primarily random

• No successful task completions observed
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Code Listing: Graph Agent for Discovery

import os
import json
import time
import random
from datetime import datetime
import statistics
import numpy as np
import matplotlib
matplotlib.use('Agg') # Required for headless environments
import matplotlib.pyplot as plt

from discoveryworld.DiscoveryWorldAPI import DiscoveryWorldAPI
from experiment_common_library import Logger, llm_response, run_dot_graphviz, bootstrap_resampling,

generate_difference_scores_parallel_arrays\

# Create global logger
logger = Logger()

# Set the experiment mode
PILOT_MODE = "PILOT" # Options: "MINI_PILOT", "PILOT", "FULL_EXPERIMENT"

# Configure experiment parameters based on pilot mode
if PILOT_MODE == "MINI_PILOT":

EPISODES_PER_DIFFICULTY = 2
MAX_STEPS_PER_EPISODE = 20
SEEDS = range(0, 2)
DIFFICULTIES = ["Easy"]

elif PILOT_MODE == "PILOT":
EPISODES_PER_DIFFICULTY = 50 # Modified from 10 to 50 per follow-on requirements
MAX_STEPS_PER_EPISODE = 50
SEEDS = range(0, 50) # Modified from range(0,10) to range(0,50)
DIFFICULTIES = ["Easy"]

else: # FULL_EXPERIMENT
EPISODES_PER_DIFFICULTY = 50
MAX_STEPS_PER_EPISODE = 100
SEEDS = range(0, 50)
DIFFICULTIES = ["Easy", "Normal", "Challenge"]

class BaselineReActAgent:
def __init__(self, thread_id=1):

self.thread_id = thread_id
self.step_counter = 0
self.last_actions = []
self.stuck_counter = 0
self.has_meter = False
self.measured_animals = set()
self.protein_levels = {}
self.last_location = None
self.visited_locations = set()

def think(self, observation):
"""Think about what to do next based on current observation"""
# First priority: Get the proteomics meter if we don't have it
if not self.has_meter:

for obj in observation["ui"]["accessibleEnvironmentObjects"]:
if "proteomics meter" in obj["name"].lower():

return {"action": "PICKUP", "arg1": obj["uuid"], "arg2": None}

# Second priority: Measure unmeasured animals if we have the meter
if self.has_meter:

for obj in observation["ui"]["accessibleEnvironmentObjects"]:
if (any(animal in obj["name"].lower() for animal in ["prismatic beast", "vortisquid", "animaplant"]) and

obj["uuid"] not in self.measured_animals and
"statue" not in obj["name"].lower()):
meter_uuid = next((obj["uuid"] for obj in observation["ui"]["inventoryObjects"] if "proteomics meter"

in obj["name"].lower()), None)\
if meter_uuid:

return {"action": "USE", "arg1": meter_uuid, "arg2": obj["uuid"]}

# If nothing else to do, explore
valid_directions = observation["ui"]["agentLocation"]["directions_you_can_move"]
if valid_directions:

# Avoid getting stuck by preferring unexplored directions
recent_moves = self.last_actions[-3:] if self.last_actions else []
available_directions = [d for d in valid_directions if d not in recent_moves]
if available_directions:

chosen_direction = random.choice(available_directions)
else:

chosen_direction = random.choice(valid_directions)
self.last_actions.append(chosen_direction)
return {"action": "MOVE_DIRECTION", "arg1": chosen_direction, "arg2": None}

return None
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def update(self, observation, action):
"""Update agent's state based on observation and action"""
self.step_counter += 1

# Update inventory tracking
inventory = set(obj["uuid"] for obj in observation["ui"]["inventoryObjects"])
self.has_meter = any("proteomics meter" in obj["name"].lower() for obj in observation["ui"]["inventoryObjects"])

# Track location
current_location = (

observation["ui"]["agentLocation"]["x"],
observation["ui"]["agentLocation"]["y"]

)
if current_location == self.last_location:

self.stuck_counter += 1
else:

self.stuck_counter = 0
self.visited_locations.add(current_location)

self.last_location = current_location

# Update protein measurements
if action and action["action"] == "USE" and self.has_meter:

target_obj = next((obj for obj in observation["ui"]["accessibleEnvironmentObjects"] if obj["uuid"] ==
action["arg2"]), None)\

if target_obj and "statue" not in target_obj["name"].lower():
message = observation["ui"]["lastActionMessage"].lower()
if "protein a:" in message and "protein b:" in message:

try:
protein_a = float(message.split("protein a:")[1].split()[0])
protein_b = float(message.split("protein b:")[1].split()[0])
self.protein_levels[target_obj["name"]] = {

"protein_a": protein_a,
"protein_b": protein_b

}
self.measured_animals.add(target_obj["uuid"])
logger.logMessage("info", f"Measured protein levels for {target_obj['name']}: A={protein_a},

B={protein_b}")\
except Exception as e:

logger.logMessage("error", f"Failed to parse protein levels: {str(e)}")

class KnowledgeGraphAgent:
def __init__(self, thread_id=1):

self.graph = "digraph G {\n"
self.nodes = set()
self.edges = set()
self.step_counter = 0
self.thread_id = thread_id
self.last_actions = []
self.stuck_counter = 0
self.inventory = set()
self.has_meter = False
self.last_location = None
self.object_uuids = {}
self.measured_animals = set()
self.protein_levels = {}
self.last_movement_attempts = []
self.visited_locations = set()
self.stuck_threshold = 3
self.exploration_timeout = 5
self.exploration_steps = 0
self.measurement_attempts = {}
self.max_measurement_attempts = 3
self.successful_measurements = set()
self.hypotheses = set()
self.measured_statues = set()
self.outliers = set()
self.animal_locations = {}

if not os.path.exists("to_save"):
os.makedirs("to_save")

def add_node(self, node_name, node_type):
"""Add a node to the graph with appropriate styling"""
if node_name not in self.nodes:

if node_type == "object":
self.graph += f' "{node_name}" [shape=box];\n'

elif node_type == "property":
self.graph += f' "{node_name}" [shape=ellipse];\n'

elif node_type == "hypothesis":
self.graph += f' "{node_name}" [shape=diamond];\n'

elif node_type == "measurement":
self.graph += f' "{node_name}" [shape=hexagon];\n'

self.nodes.add(node_name)
logger.logMessage("info", f"Added {node_type} node: {node_name}")
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def add_edge(self, from_node, to_node, relation):
"""Add an edge to the graph"""
edge = f' "{from_node}" -> "{to_node}" [label="{relation}"];\n'
if edge not in self.edges:

self.graph += edge
self.edges.add(edge)
logger.logMessage("info", f"Added edge: {from_node} -> {to_node} ({relation})")

def save_graph(self):
"""Save the current state of the graph"""
graph_str = self.graph + "}\n"
dot_filename = f"to_save/graph_step_{self.step_counter}.dot"
with open(dot_filename, "w") as f:

f.write(graph_str)
pdf_filename = f"to_save/graph_step_{self.step_counter}.pdf"
run_dot_graphviz(dot_filename, pdf_filename)
logger.logMessage("info", f"Saved graph (nodes: {len(self.nodes)}, edges: {len(self.edges)})")

def analyze_protein_levels(self):
"""Analyze protein levels to identify outliers using z-scores"""
if len(self.protein_levels) < 2:

return None

# Calculate statistics for both proteins
protein_a_values = [data["protein_a"] for data in self.protein_levels.values()]
protein_b_values = [data["protein_b"] for data in self.protein_levels.values()]

try:
protein_a_mean = statistics.mean(protein_a_values)
protein_a_stdev = statistics.stdev(protein_a_values) if len(protein_a_values) > 1 else 0
protein_b_mean = statistics.mean(protein_b_values)
protein_b_stdev = statistics.stdev(protein_b_values) if len(protein_b_values) > 1 else 0

logger.logMessage("info", f"Protein A stats - mean: {protein_a_mean:.2f}, stdev: {protein_a_stdev:.2f}")
logger.logMessage("info", f"Protein B stats - mean: {protein_b_mean:.2f}, stdev: {protein_b_stdev:.2f}")

# Look for outliers (>2 standard deviations from mean)
outliers = []
for animal, data in self.protein_levels.items():

a_zscore = (data["protein_a"] - protein_a_mean) / protein_a_stdev if protein_a_stdev > 0 else 0
b_zscore = (data["protein_b"] - protein_b_mean) / protein_b_stdev if protein_b_stdev > 0 else 0

logger.logMessage("info", f"Z-scores for {animal} - Protein A: {a_zscore:.2f}, Protein B: {b_zscore:.2f}")

if abs(a_zscore) > 2 or abs(b_zscore) > 2:
outliers.append(animal)
self.outliers.add(animal)
hypothesis = f"{animal}_is_outlier"
if hypothesis not in self.hypotheses:

self.hypotheses.add(hypothesis)
self.add_node(hypothesis, "hypothesis")
self.add_edge(animal, hypothesis, "supports")

# Add specific protein level nodes and evidence
if abs(a_zscore) > 2:

protein_node = f"protein_a_outlier_{data['protein_a']:.2f}"
self.add_node(protein_node, "property")
self.add_edge(hypothesis, protein_node, "supported_by")
logger.logMessage("info", f"Added protein A outlier evidence for {animal}")

if abs(b_zscore) > 2:
protein_node = f"protein_b_outlier_{data['protein_b']:.2f}"
self.add_node(protein_node, "property")
self.add_edge(hypothesis, protein_node, "supported_by")
logger.logMessage("info", f"Added protein B outlier evidence for {animal}")

logger.logMessage("info", f"Generated hypothesis: {animal} is an outlier")

return outliers
except Exception as e:

logger.logMessage("error", f"Error analyzing protein levels: {str(e)}")
return None

def get_unmeasured_animal(self, observation):
"""Find an unmeasured animal in the current observation"""
for obj in observation["ui"]["accessibleEnvironmentObjects"]:

if (any(animal in obj["name"].lower() for animal in ["prismatic beast", "vortisquid", "animaplant"]) and
obj["uuid"] not in self.successful_measurements and
(obj["uuid"] not in self.measurement_attempts or
self.measurement_attempts[obj["uuid"]] < self.max_measurement_attempts) and

"statue" not in obj["name"].lower()):
return obj

return None

def get_exploration_action(self, observation):
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"""Get an action to explore when stuck"""
if not self.has_meter:

for obj in observation["ui"]["accessibleEnvironmentObjects"]:
if "proteomics meter" in obj["name"].lower():

logger.logMessage("info", "Found proteomics meter - attempting pickup")
return {"action": "PICKUP", "arg1": obj["uuid"], "arg2": None}

if self.has_meter:
unmeasured_animal = self.get_unmeasured_animal(observation)
if unmeasured_animal:

meter_uuid = next((obj["uuid"] for obj in observation["ui"]["inventoryObjects"] if "proteomics meter" in
obj["name"].lower()), None)\

if meter_uuid:
logger.logMessage("info", f"Attempting to measure {unmeasured_animal['name']}")
return {"action": "USE", "arg1": meter_uuid, "arg2": unmeasured_animal["uuid"]}

# Update animal locations from nearby objects
for direction, objects in observation["ui"]["nearbyObjects"]["objects"].items():

for obj in objects:
if any(animal in obj["name"].lower() for animal in ["prismatic beast", "vortisquid", "animaplant"]):

self.animal_locations[obj["uuid"]] = direction

# If we know of unmeasured animals in a specific direction, prefer that direction
for uuid, direction in self.animal_locations.items():

if uuid not in self.successful_measurements:
valid_directions = observation["ui"]["agentLocation"]["directions_you_can_move"]
if direction in valid_directions:

logger.logMessage("info", f"Moving {direction} towards unmeasured animal")
return {"action": "MOVE_DIRECTION", "arg1": direction, "arg2": None}

# Otherwise, explore systematically
valid_directions = observation["ui"]["agentLocation"]["directions_you_can_move"]
if not valid_directions:

return None

self.exploration_steps += 1

# Calculate scores for each direction based on exploration history
direction_scores = {}
for direction in valid_directions:

score = 1.0 # Base score

# Penalize recently visited directions
if direction in self.last_movement_attempts[-3:]:

score -= 0.5

# Penalize directions that lead to visited locations
current_loc = (

observation["ui"]["agentLocation"]["x"],
observation["ui"]["agentLocation"]["y"]

)

if direction == "north":
new_loc = (current_loc[0], current_loc[1] - 1)

elif direction == "south":
new_loc = (current_loc[0], current_loc[1] + 1)

elif direction == "east":
new_loc = (current_loc[0] + 1, current_loc[1])

else: # west
new_loc = (current_loc[0] - 1, current_loc[1])

if new_loc in self.visited_locations:
score -= 0.3

direction_scores[direction] = score

# Choose the direction with the highest score
best_score = max(direction_scores.values())
best_directions = [d for d, s in direction_scores.items() if s == best_score]
chosen_direction = random.choice(best_directions)

self.last_movement_attempts.append(chosen_direction)
if len(self.last_movement_attempts) > 5:

self.last_movement_attempts.pop(0)

logger.logMessage("info", f"Exploring in direction: {chosen_direction}")
return {"action": "MOVE_DIRECTION", "arg1": chosen_direction, "arg2": None}

def think(self, observation):
"""Analyze current graph and decide next action"""
logger.logMessage("info", f"Thinking at step {self.step_counter}")

# First priority: Get proteomics meter
if not self.has_meter:

for obj in observation["ui"]["accessibleEnvironmentObjects"]:
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if "proteomics meter" in obj["name"].lower():
logger.logMessage("info", "Found proteomics meter - attempting pickup")
return {"action": "PICKUP", "arg1": obj["uuid"], "arg2": None}

# Second priority: Check if we've found an outlier
if len(self.protein_levels) >= 2:

outliers = self.analyze_protein_levels()
if outliers:

logger.logMessage("info", f"Found outliers: {outliers}")
# If we've found outliers and measured all accessible animals, we're done
if not self.get_unmeasured_animal(observation):

logger.logMessage("info", "Found outliers and measured all accessible animals")
return None

# Third priority: Measure unmeasured animals
if self.has_meter:

unmeasured_animal = self.get_unmeasured_animal(observation)
if unmeasured_animal:

meter_uuid = next((obj["uuid"] for obj in observation["ui"]["inventoryObjects"] if "proteomics meter" in
obj["name"].lower()), None)\

if meter_uuid:
logger.logMessage("info", f"Attempting to measure {unmeasured_animal['name']}")
return {"action": "USE", "arg1": meter_uuid, "arg2": unmeasured_animal["uuid"]}

# If nothing else to do, explore
return self.get_exploration_action(observation)

def update(self, observation, last_action=None):
"""Update knowledge graph based on new observation"""
self.step_counter += 1
self.extract_objects_and_properties(observation)

if last_action:
self.update_protein_levels(observation, last_action)

self.save_graph()

def extract_objects_and_properties(self, observation):
"""Extract objects and their properties from an observation"""
logger.logMessage("info", f"Extracting objects and properties from observation at step {self.step_counter}")

# Update inventory and meter status
self.inventory = set(obj["uuid"] for obj in observation["ui"]["inventoryObjects"])
self.has_meter = any("proteomics meter" in obj["name"].lower() for obj in observation["ui"]["inventoryObjects"])
if self.has_meter:

logger.logMessage("info", "Agent has acquired proteomics meter")

# Update location tracking
current_location = (

observation["ui"]["agentLocation"]["x"],
observation["ui"]["agentLocation"]["y"]

)
if current_location == self.last_location:

self.stuck_counter += 1
else:

self.stuck_counter = 0
self.visited_locations.add(current_location)

self.last_location = current_location

# Extract objects and their properties
for obj in observation["ui"]["inventoryObjects"] + observation["ui"]["accessibleEnvironmentObjects"]:

obj_name = obj["name"].lower()
obj_uuid = obj["uuid"]
self.object_uuids[obj_name] = obj_uuid

self.add_node(obj_name, "object")

if obj["description"]:
desc_node = f"property_{obj['description']}"
self.add_node(desc_node, "property")
self.add_edge(obj_name, desc_node, "has_description")

def update_protein_levels(self, observation, action):
"""Update protein levels based on measurement results"""
if action["action"] == "USE" and any(obj["uuid"] == action["arg1"] and "proteomics meter" in obj["name"].lower()

for obj in observation["ui"]["inventoryObjects"]):\
target_obj = next((obj for obj in observation["ui"]["accessibleEnvironmentObjects"] if obj["uuid"] ==

action["arg2"]), None)\
if target_obj:

if "statue" in target_obj["name"].lower():
self.measured_statues.add(target_obj["uuid"])
return

if target_obj["uuid"] not in self.measurement_attempts:
self.measurement_attempts[target_obj["uuid"]] = 0
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self.measurement_attempts[target_obj["uuid"]] += 1

message = observation["ui"]["lastActionMessage"].lower()
logger.logMessage("info", f"Attempting to parse protein levels from: {message}")

try:
if "protein a:" in message and "protein b:" in message:

protein_a = float(message.split("protein a:")[1].split()[0])
protein_b = float(message.split("protein b:")[1].split()[0])

self.protein_levels[target_obj["name"]] = {
"protein_a": protein_a,
"protein_b": protein_b

}
self.measured_animals.add(target_obj["uuid"])
self.successful_measurements.add(target_obj["uuid"])

# Add measurement to knowledge graph
measurement_node = f"measurement_{target_obj['name']}_{self.step_counter}"
self.add_node(measurement_node, "measurement")
self.add_edge(target_obj["name"], measurement_node, "measured_at")

protein_a_node = f"protein_a_{protein_a:.2f}"
protein_b_node = f"protein_b_{protein_b:.2f}"
self.add_node(protein_a_node, "property")
self.add_node(protein_b_node, "property")
self.add_edge(measurement_node, protein_a_node, "protein_a")
self.add_edge(measurement_node, protein_b_node, "protein_b")

logger.logMessage("info", f"Successfully recorded protein levels for {target_obj['name']}")

# Analyze for outliers
outliers = self.analyze_protein_levels()
if outliers:

logger.logMessage("info", f"Identified outliers: {outliers}")

self.exploration_steps = 0
except Exception as e:

logger.logMessage("error", f"Failed to parse protein levels: {str(e)}")

def run_episode(agent, api, seed, difficulty, max_steps, agent_type="knowledge_graph"):
"""Run a single episode"""
logger.logMessage("info", f"Starting episode with seed {seed}, difficulty {difficulty}, agent type {agent_type}")

success = api.loadScenario("Proteomics", difficulty, seed, 1)
if not success:

logger.logMessage("error", "Failed to load scenario")
return None

observation = api.getAgentObservation(0)

last_action = None
for step in range(max_steps):

if agent_type == "knowledge_graph":
agent.update(observation, last_action)

else:
agent.update(observation, last_action)

action = agent.think(observation)

if action is None:
logger.logMessage("info", "Agent has completed its task or cannot determine next action")
break

logger.logMessage("info", f"Taking action: {json.dumps(action)}")

result = api.performAgentAction(0, action)
if not result.get("success", False):

logger.logMessage("warning", f"Action failed: {json.dumps(result)}")

last_action = action

api.tick()
observation = api.getAgentObservation(0)

if api.world.taskScorer.tasks[0].completed:
break

scorecard = api.getTaskScorecard()[0]

result = {
"completion": int(scorecard["completed"]),
"success": int(scorecard["completedSuccessfully"]),
"process_score": scorecard["scoreNormalized"],
"steps": step + 1,
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"protein_levels": agent.protein_levels
}

if agent_type == "knowledge_graph":
result.update({

"nodes": len(agent.nodes),
"edges": len(agent.edges),
"hypotheses": list(agent.hypotheses)

})

return result

def plot_results(results):
"""Generate plots comparing baseline and experimental conditions"""
# Separate results by agent type
kg_results = [r for r in results["episodes"] if r["agent_type"] == "knowledge_graph"]
baseline_results = [r for r in results["episodes"] if r["agent_type"] == "baseline"]

# Plot process scores
plt.figure(figsize=(10, 6))
plt.plot([r["process_score"] for r in kg_results], label="Knowledge Graph Agent")
plt.plot([r["process_score"] for r in baseline_results], label="Baseline Agent")
plt.xlabel("Episode")
plt.ylabel("Process Score")
plt.title("Process Scores by Agent Type")
plt.legend()
plt.savefig("to_save/process_scores.pdf")
plt.close()

# Plot graph complexity for knowledge graph agent
plt.figure(figsize=(10, 6))
plt.plot([r["nodes"] for r in kg_results], label="Nodes")
plt.plot([r["edges"] for r in kg_results], label="Edges")
plt.xlabel("Episode")
plt.ylabel("Count")
plt.title("Knowledge Graph Complexity")
plt.legend()
plt.savefig("to_save/graph_complexity.pdf")
plt.close()

def analyze_results(results):
"""Perform statistical analysis of results"""
kg_scores = [r["process_score"] for r in results["episodes"] if r["agent_type"] == "knowledge_graph"]
baseline_scores = [r["process_score"] for r in results["episodes"] if r["agent_type"] == "baseline"]

difference_scores, mean_baseline, mean_experimental = generate_difference_scores_parallel_arrays(baseline_scores,
kg_scores)\

bootstrap_results = bootstrap_resampling(difference_scores, mean_baseline, mean_experimental)

return bootstrap_results

def main():
results = {

"pilot_mode": PILOT_MODE,
"timestamp": datetime.now().isoformat(),
"episodes": []

}

for difficulty in DIFFICULTIES:
for seed in SEEDS:

# Run knowledge graph agent
kg_agent = KnowledgeGraphAgent(thread_id=seed)
kg_api = DiscoveryWorldAPI(threadID=seed)
kg_result = run_episode(kg_agent, kg_api, seed, difficulty, MAX_STEPS_PER_EPISODE, "knowledge_graph")

if kg_result:
kg_result.update({

"difficulty": difficulty,
"seed": seed,
"agent_type": "knowledge_graph"

})
results["episodes"].append(kg_result)
logger.logMessage("info", f"Completed knowledge graph agent episode: difficulty={difficulty}, seed={seed},

success={kg_result['success']}")\

# Run baseline agent
baseline_agent = BaselineReActAgent(thread_id=seed)
baseline_api = DiscoveryWorldAPI(threadID=seed)
baseline_result = run_episode(baseline_agent, baseline_api, seed, difficulty, MAX_STEPS_PER_EPISODE,

"baseline")\

if baseline_result:
baseline_result.update({

"difficulty": difficulty,
"seed": seed,
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"agent_type": "baseline"
})
results["episodes"].append(baseline_result)
logger.logMessage("info", f"Completed baseline agent episode: difficulty={difficulty}, seed={seed},

success={baseline_result['success']}")\

# Generate plots
plot_results(results)

# Perform statistical analysis
stats = analyze_results(results)
results["statistical_analysis"] = stats

# Save results
with open("results.json", "w") as f:

json.dump(results, f, indent=2)

if __name__ == "__main__":
main()

Listing 12: CodeScientist generated code for this experiment.
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Approaches for Resistor Substitution

CodeScientist

February 15th, 2025

Abstract

This paper evaluates three approaches for suggesting resistor combina-
tions to match target resistance values: an LLM-based advisor, a simple base-
line using nearest values, and a mathematical optimization approach. Testing
on 50 random target values between 10Ω and 1MΩ showed that while the
LLM approach achieved only 24% accuracy within 1% tolerance, the simple
baseline achieved 94% and the mathematical optimization achieved 100%.
The results suggest that for this well-defined numerical problem, traditional
algorithmic approaches outperform current LLM capabilities.

1 Introduction
Finding optimal combinations of standard resistor values to match a target resistance
is a common electronics design challenge. This study compares three approaches:

• LLM-based: Using GPT-4 to suggest combinations based on natural lan-
guage prompting

• Simple baseline: Finding nearest single value or basic series combination

• Mathematical optimization: Exhaustive search of series/parallel combina-
tions

The implicit hypothesis was that an LLM could learn to suggest effective resistor
combinations by understanding the domain concepts through its training. This was
tested against mathematical baselines.

1
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2 Methodology
The experiment tested 50 random resistance targets between 10Ω and 1MΩ, with
3 trials per target. For each target, all three methods suggested combinations using
standard E24 series values. Performance metrics included:

• Percentage error from target value

• Success rates at 1%, 5%, and 10% tolerances

• Number of components used

• Computation time

3 Results
3.1 Accuracy
The mathematical optimization approach achieved the highest accuracy, with 100%
of suggestions within 1% of target values. The simple baseline achieved 94% within
1% tolerance. The LLM approach performed significantly worse, with only 24%
within 1% tolerance.

Method Within 1% Within 5% Within 10%

LLM 24.0% 39.3% 46.7%
Simple 94.0% 98.0% 100.0%
Mathematical 100.0% 100.0% 100.0%

Table 1: Success rates at different tolerance levels

3.2 Computation Time
The simple baseline was fastest (0.004s mean), followed by the LLM approach
(1.157s), with mathematical optimization slowest (3.226s). However, the mathe-
matical approach’s superior accuracy likely justifies its longer computation time for
most applications.

3.3 Error Distribution
The error distribution plots (Figure 1) show that while the mathematical and simple
approaches maintained consistently low errors, the LLM approach had much higher

2
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variance and several extreme errors, including some complete failures where no
valid solution was suggested.
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Figure 1: Error distribution by method

4 Discussion
The results clearly reject the hypothesis that the LLM approach could compete with
mathematical methods for this task. This is not entirely surprising, as resistor com-
bination optimization is fundamentally a mathematical problem with well-defined
rules and constraints.

Key limitations of the LLM approach included:

• Tendency to suggest unnecessarily complex combinations

• Occasional complete failures to generate valid solutions

• Inconsistent performance across different resistance ranges

5 Limitations
The study has several limitations:

• Testing was limited to 50 target values

• Only one LLM model/prompt combination was tested

3
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• Real-world factors like component cost and availability were not considered

• The mathematical optimization’s longer computation time might be prohibitive
for some applications

6 Conclusion
For resistor substitution advice, traditional algorithmic approaches significantly out-
perform current LLM capabilities. The simple baseline offers an excellent compro-
mise between accuracy and speed, while mathematical optimization provides max-
imum accuracy at the cost of computation time. Future work could explore whether
improved prompting or different LLM models could achieve better results, but the
fundamental mathematical nature of the task suggests traditional algorithms will
likely remain superior.

7 (This section added by a human domain expert)
The report generator failed to include one of the figures the experiment generates:
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Figure 2: Success Rates
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Code Listing: Combinatorial Optimization

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import json
import time
import os
from typing import List, Dict, Tuple
import math
from itertools import combinations_with_replacement
from experiment_common_library import Logger, llm_response

# Global configuration
PILOT_MODE = 'PILOT' # Changed to PILOT mode
logger = Logger()

# Create to_save directory if it doesn't exist
os.makedirs('to_save', exist_ok=True)

class ResistorSeries:
def __init__(self):

# E12 series base values
self.E12 = [10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82]
# E24 series adds intermediate values
self.E24 = [10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91]

# Generate full series with multipliers
self.full_E12 = self._generate_full_series(self.E12)
self.full_E24 = self._generate_full_series(self.E24)

def _generate_full_series(self, base_values: List[int]) -> List[float]:
full_series = []
for n in range(6): # 10^0 to 10^5

multiplier = 10 ** n
full_series.extend([x * multiplier for x in base_values])

return sorted(full_series)

def calculate_parallel_resistance(r1: float, r2: float) -> float:
return (r1 * r2) / (r1 + r2)

def calculate_series_resistance(r1: float, r2: float) -> float:
return r1 + r2

def calculate_total_resistance(components: List[float], connections: List[str]) -> float:
if len(components) == 1:

return components[0]

current_value = components[0]
for i in range(1, len(components)):

if connections[i-1] == 'series':
current_value = calculate_series_resistance(current_value, components[i])

else: # parallel
current_value = calculate_parallel_resistance(current_value, components[i])

return current_value

def calculate_percent_error(target: float, actual: float) -> float:
return abs((actual - target) / target) * 100

class BaselineSimple:
def __init__(self, available_values: List[float]):

self.available_values = available_values

def find_closest_single(self, target: float) -> Dict:
closest = min(self.available_values, key=lambda x: abs(x - target))
return {

'components': [closest],
'connections': [],
'actual_resistance': closest

}

def find_closest_series(self, target: float) -> Dict:
best_error = float('inf')
best_result = None

for r1 in self.available_values:
for r2 in self.available_values:

total = r1 + r2
error = abs(total - target)
if error < best_error:

best_error = error
best_result = {

'components': [r1, r2],
'connections': ['series'],
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'actual_resistance': total
}

# Compare with single resistor solution
single = self.find_closest_single(target)
if abs(single['actual_resistance'] - target) < best_error:

return single

return best_result

class BaselineMathematical:
def __init__(self, available_values: List[float], max_components: int):

self.available_values = available_values
self.max_components = max_components

def find_optimal_combination(self, target: float) -> Dict:
best_error = float('inf')
best_result = None

# Try different numbers of components
for n in range(1, self.max_components + 1):

# Get all possible combinations of n resistors
for combo in combinations_with_replacement(self.available_values, n):

# Try different connection patterns
connection_patterns = self._generate_connection_patterns(n)
for pattern in connection_patterns:

total = calculate_total_resistance(list(combo), pattern)
error = abs(total - target)

if error < best_error:
best_error = error
best_result = {

'components': list(combo),
'connections': pattern,
'actual_resistance': total

}

return best_result

def _generate_connection_patterns(self, n: int) -> List[List[str]]:
if n <= 1:

return [[]]
patterns = []
for i in range(2 ** (n-1)):

pattern = []
for j in range(n-1):

if (i >> j) & 1:
pattern.append('parallel')

else:
pattern.append('series')

patterns.append(pattern)
return patterns

class LLMAdvisor:
def __init__(self, available_values: List[float], max_components: int):

self.available_values = available_values
self.max_components = max_components

def get_suggestion(self, target: float) -> Dict:
# Enhanced prompt with better guidance about magnitude and parallel combinations
prompt = f"Given a target resistance of {target} ohms, suggest combinations of up to {self.max_components}

standard resistors from the following series ({[float(x) for x in self.available_values]}) connected in
series and/or parallel to approximate this value.\n\n"

\
\

prompt += "IMPORTANT GUIDELINES:\n"
prompt += f"1. Choose resistors with values close to the target order of magnitude:\n"
prompt += f" - For target {target} ohms, focus on values between {target/10} and {target*10} ohms\n"
prompt += " - AVOID using unnecessarily large resistors\n\n"
prompt += "2. Connection types and formulas:\n"
prompt += " - Series: Total = R1 + R2\n"
prompt += " - Parallel: Total = 1 / (1/R1 + 1/R2)\n"
prompt += " Note: Parallel combinations always result in a total less than the smallest component\n\n"
prompt += "3. Examples for different magnitudes:\n"
prompt += ' Target = 150 ohms:\n'
prompt += ' {"components": [100, 47], "connections": ["series"]} # 147 ohms\n'
prompt += ' {"components": [220, 470], "connections": ["parallel"]} # 151 ohms\n\n'
prompt += ' Target = 1000 ohms:\n'
prompt += ' {"components": [680, 330], "connections": ["series"]} # 1010 ohms\n\n'
prompt += "Your response must be a valid JSON object with exactly this format:\n"
prompt += "{\n"
prompt += ' "components": [value1, value2], # List of resistance values\n'
prompt += ' "connections": ["series"] # List of connection types between adjacent components\n'
prompt += "}\n\n"
prompt += "Place your JSON response between triple backticks (```). Do not include any other text."

logger.logMessage("info", f"Sending prompt to LLM for target resistance: {target} ohms")
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logger.logMessage("debug", f"Full prompt: {prompt}")

success, response = llm_response(prompt, "gpt-4o-mini", temperature=0, max_tokens=200)

if not success:
logger.logMessage("error", f"LLM call failed: {response}")
return None

logger.logMessage("debug", f"Raw LLM response: {response}")

try:
# Extract JSON from response using codeblocks
from experiment_common_library import find_codeblocks
codeblocks = find_codeblocks(response)

if not codeblocks:
logger.logMessage("error", "No codeblocks found in LLM response")
return None

# Join the lines and remove any comments
json_str = '\n'.join(codeblocks[0])
json_str = '\n'.join([line.split('#')[0].strip() for line in json_str.split('\n')])

# Validate JSON structure
suggestion = json.loads(json_str)
logger.logMessage("debug", f"Parsed suggestion: {suggestion}")

# Validate the suggestion structure
if not isinstance(suggestion, dict):

logger.logMessage("error", "LLM response is not a dictionary")
return None

if 'components' not in suggestion or 'connections' not in suggestion:
logger.logMessage("error", "Missing required keys in LLM response")
return None

if not isinstance(suggestion['components'], list) or not isinstance(suggestion['connections'], list):
logger.logMessage("error", "Components or connections is not a list")
return None

if len(suggestion['components']) > 1 and len(suggestion['connections']) != len(suggestion['components']) - 1:
logger.logMessage("error", "Invalid number of connections for components")
return None

# Calculate actual resistance
actual_resistance = calculate_total_resistance(

suggestion['components'],
suggestion['connections']

)

suggestion['actual_resistance'] = actual_resistance
return suggestion

except Exception as e:
logger.logMessage("error", f"Error processing LLM response: {str(e)}")
return None

def plot_results(df: pd.DataFrame, pilot_mode: str):
plt.style.use('seaborn-v0_8')

# Error distribution by method
plt.figure(figsize=(10, 6))
for method in df['method'].unique():

method_data = df[df['method'] == method]['percent_error']
# Filter out infinite values
method_data = method_data[~np.isinf(method_data)]
if len(method_data) > 0: # Only plot if we have valid data

sns.histplot(data=method_data, bins=30, alpha=0.5, label=method)
plt.xlabel('Percent Error')
plt.ylabel('Count')
plt.title('Error Distribution by Method')
plt.legend()
plt.savefig('to_save/error_distribution.pdf')
plt.close()

# Success rate vs tolerance level
tolerances = [1, 5, 10]
success_rates = []
for method in df['method'].unique():

rates = []
method_data = df[df['method'] == method]
for tol in tolerances:

col = f'within_{tol}_percent'
if col in method_data.columns:

rate = (method_data[col].mean() * 100)
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rates.append(float(rate))
if len(rates) == len(tolerances): # Only add if we have all tolerance levels

success_rates.append({'method': method, 'rates': rates})

if success_rates: # Only plot if we have valid data
plt.figure(figsize=(10, 6))
for data in success_rates:

plt.plot(tolerances, data['rates'], marker='o', label=data['method'])
plt.xlabel('Tolerance (%)')
plt.ylabel('Success Rate (%)')
plt.title('Success Rate vs Tolerance Level')
plt.legend()
plt.savefig('to_save/success_rates.pdf')
plt.close()

def perform_statistical_analysis(df: pd.DataFrame):
try:

from experiment_common_library import generate_difference_scores_dict, bootstrap_resampling

# Prepare data for bootstrap analysis
methods = sorted(df['method'].unique())
baseline_method = 'Simple'

logger.logMessage("info", f"Performing statistical analysis comparing methods: {methods}")

for experimental_method in methods:
if experimental_method == baseline_method:

continue

# Prepare data
comparison_data = []
for target in df['target_value'].unique():

baseline_data = df[(df['method'] == baseline_method) &
(df['target_value'] == target)]['percent_error']

exp_data = df[(df['method'] == experimental_method) &
(df['target_value'] == target)]['percent_error']

if len(baseline_data) > 0 and len(exp_data) > 0:
baseline_error = float(baseline_data.iloc[0])
exp_error = float(exp_data.iloc[0])

# Skip infinite values
if not np.isinf(baseline_error) and not np.isinf(exp_error):

comparison_data.append({
'baseline_score': -baseline_error, # Negative because lower error is better
'experimental_score': -exp_error

})

if len(comparison_data) > 0:
logger.logMessage("info", f"Comparing {experimental_method} vs {baseline_method} with

{len(comparison_data)} valid comparison points")\

# Perform bootstrap analysis
difference_scores, mean_baseline, mean_experimental = generate_difference_scores_dict(

comparison_data, 'baseline_score', 'experimental_score'
)

results = bootstrap_resampling(difference_scores, mean_baseline, mean_experimental)

logger.logMessage("info", f"Bootstrap analysis results for {experimental_method} vs {baseline_method}:")
logger.logMessage("info", json.dumps(results, indent=2))

# Log interpretation
p_value = results.get('p_value', 1.0)
if p_value < 0.05:

logger.logMessage("info", f"{experimental_method} is significantly different from {baseline_method} (p
< 0.05)")\

else:
logger.logMessage("info", f"No significant difference between {experimental_method} and

{baseline_method} (p >= 0.05)")\
else:

logger.logMessage("warning", f"No valid comparison data for {experimental_method} vs {baseline_method}")

except Exception as e:
logger.logMessage("error", f"Error in statistical analysis: {str(e)}")

def run_experiment(pilot_mode: str):
# Initialize components
resistor_series = ResistorSeries()

# Configure experiment based on pilot mode
if pilot_mode == 'MINI_PILOT':

num_values = 5
max_resistors = 2
available_values = resistor_series.full_E12

13465



runs_per_value = 1
elif pilot_mode == 'PILOT':

num_values = 50 # Changed from 20 to 50 for follow-on experiment
max_resistors = 3
available_values = resistor_series.full_E24
runs_per_value = 3

else: # FULL_EXPERIMENT
num_values = 100
max_resistors = 3
available_values = resistor_series.full_E24
runs_per_value = 5

logger.logMessage("info", f"Starting experiment in {pilot_mode} mode with {num_values} values, {max_resistors} max
resistors, and {runs_per_value} runs per value")\

# Initialize methods
llm_advisor = LLMAdvisor(available_values, max_resistors)
baseline_simple = BaselineSimple(available_values)
baseline_math = BaselineMathematical(available_values, max_resistors)

# Generate random target values
np.random.seed(42) # For reproducibility
exp_range = np.log10(np.array([10, 1e6])) # 10Ω to 1MΩ
target_values = np.power(10, np.random.uniform(exp_range[0], exp_range[1], num_values))

# Initialize results DataFrame
results = []

# Run experiment
for target in target_values:

logger.logMessage("info", f"Processing target value: {target} ohms")

for run in range(runs_per_value):
logger.logMessage("info", f"Run {run + 1}/{runs_per_value}")

# Test each method
for method_name, method in [

("LLM", llm_advisor),
("Simple", baseline_simple),
("Mathematical", baseline_math)

]:
start_time = time.time()

try:
if method_name == "Simple":

suggestion = method.find_closest_series(target)
elif method_name == "Mathematical":

suggestion = method.find_optimal_combination(target)
else: # LLM

suggestion = method.get_suggestion(target)

if suggestion is None:
logger.logMessage("error", f"Method {method_name} failed for target {target} ohms")
# Record failure result
result = {

'target_value': float(target),
'method': method_name,
'suggested_components': [],
'connection_type': [],
'actual_resistance': 0.0,
'percent_error': float('inf'),
'within_1_percent': False,
'within_5_percent': False,
'within_10_percent': False,
'num_components': 0,
'computation_time': float(time.time() - start_time)

}
else:

computation_time = time.time() - start_time

# Calculate metrics
percent_error = calculate_percent_error(target, suggestion['actual_resistance'])

# Record results with explicit type conversion
result = {

'target_value': float(target),
'method': method_name,
'suggested_components': suggestion['components'],
'connection_type': suggestion['connections'],
'actual_resistance': float(suggestion['actual_resistance']),
'percent_error': float(percent_error),
'within_1_percent': bool(percent_error <= 1),
'within_5_percent': bool(percent_error <= 5),
'within_10_percent': bool(percent_error <= 10),
'num_components': int(len(suggestion['components'])),
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'computation_time': float(computation_time)
}

results.append(result)
logger.logMessage("debug", f"Result for {method_name}: {json.dumps(result)}")

except Exception as e:
logger.logMessage("error", f"Error running {method_name}: {str(e)}")
continue

# Convert results to DataFrame
df = pd.DataFrame(results)

# Save results
with open('results.json', 'w') as f:

json.dump(results, f, indent=2)

# Generate plots
plot_results(df, pilot_mode)

# Perform statistical analysis
perform_statistical_analysis(df)

# Log summary statistics
for method in df['method'].unique():

method_data = df[df['method'] == method]
logger.logMessage("info", f"\nSummary for {method}:")
logger.logMessage("info", f"Mean percent error: {method_data['percent_error'].mean():.2f}%")
logger.logMessage("info", f"Median percent error: {method_data['percent_error'].median():.2f}%")
logger.logMessage("info", f"Success rates:")
logger.logMessage("info", f" Within 1%: {(method_data['within_1_percent'].mean() * 100):.1f}%")
logger.logMessage("info", f" Within 5%: {(method_data['within_5_percent'].mean() * 100):.1f}%")
logger.logMessage("info", f" Within 10%: {(method_data['within_10_percent'].mean() * 100):.1f}%")
logger.logMessage("info", f"Mean computation time: {method_data['computation_time'].mean():.3f} seconds")

def main():
logger.logMessage("info", f"Starting experiment in {PILOT_MODE} mode")
run_experiment(PILOT_MODE)
logger.logMessage("info", "Experiment completed")

if __name__ == "__main__":
main()

Listing 13: CodeScientist generated code for this experiment.
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