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Abstract

Large Action Models (LAMs) for AI Agents of-
fer incredible potential but face challenges due
to the need for high-quality training data, es-
pecially for multi-steps tasks that involve plan-
ning, executing tool calls, and responding to
feedback. To address these issues, we present
LAM SIMULATOR, a comprehensive frame-
work designed for online exploration of agentic
tasks with high-quality feedback. Our frame-
work features a dynamic task query generator,
an extensive collection of tools, and an interac-
tive environment where Large Language Model
(LLM) Agents can call tools and receive real-
time feedback. This setup enables LLM Agents
to explore and solve tasks autonomously, facil-
itating the discovery of multiple approaches
to tackle any given task. The resulting action
trajectory data are then used to create high-
quality training datasets for LAMs. Our exper-
iments on popular agentic benchmarks, Tool-
Bench and CRMArena, highlight the effective-
ness of LAM SIMULATOR: models trained with
self-generated datasets using our framework
achieve significant performance gains, up to a
49.3% improvement over their original base-
lines. LAM SIMULATOR requires minimal hu-
man input during dataset creation, highlighting
LAM SIMULATOR’s efficiency and effective-
ness in speeding up development of AI agents.

1 Introduction

Large Action Models (LAMs) (Zhang et al., 2024b;
Xu et al., 2024; Liu et al., 2024b) are an advanced
type of Large Language Model, specifically opti-
mized for tool usage, reasoning, and function call-
ing. Recent advancements have propelled their
capabilities, making them integral to applications
such as AI agents and task automation. LAMs
benefit from specialized training for enhanced per-
formance in agent applications. As use cases grow,
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the demand for more accurate models will continue
to increase.

Current approaches for creating LAMs include
prompt engineering, incorporating additional con-
textual information into prompts, Supervised Fine-
Tuning (SFT), Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022),
among others. Most of these methods, however,
rely heavily on manual data curation, a process that
is both time-consuming and expensive.

To address this challenge, the use of LLM
Agents to explore environments autonomously has
emerged as a promising method to reduce the need
for human labeling and annotation in agent model
development. Recent studies, such as ToolTalk
(Farn and Shin, 2023), WebArena (Zhou et al.,
2023), APIGen (Liu et al., 2024b), and Learn-by-
Interact (Su et al., 2025), have demonstrated the
ability to automatically generate action trajectory
data for agent learning and evaluation. However,
ToolTalk is limited to specific tasks that are curated
or filtered by humans. WebArena offers a very lim-
ited action space within Web domain. APIGen and
Learn-by-Interact, while showing considerable po-
tential in generating agentic data, are limited to the
heavy usage of LLMs to assess data quality, thus
introducing a notable amount of uncertainty, which
is an important issue to consider.

Given these limitations, we introduce LAM SIM-
ULATOR, a comprehensive framework designed to
enhance data generation for agent learning through
exploration. As shown in Figure 1, LAM SIMULA-
TOR employs a template-filling strategy to dynam-
ically create queries. Users only need to develop
a series of query templates and descriptions for
query parameters, along with logic to compute task
answers using these parameters. A large language
model (LLM) then creates values to fill into the
query parameters in real-time and populates the
templates to form real user queries. These gener-
ated queries are then given to LLM Agents, which
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Figure 1: Overview of the LAM SIMULATOR, illustrating the framework’s main components, their interactions, and emphasizing
the its ability to generate tool-use data, execute functions, and evaluate results. Query Instance Generation is responsible for
generating tasks, including creating user queries, preparing available tools for the LLM Agent, and dynamically computing
ground-truth answers. Trajectory Synthesis manages the generation of agent trajectories by facilitating interactions between the
LLM Agent and various environments, and by providing feedback and quality assessments for the generated trajectories.

explore solutions using a provided set of tools that
might differ from those used to generate the ground-
truth answers. As the agent tackles each task by
making a series of function calls, LAM SIMULA-
TOR provides immediate feedback. This enables a
smooth interaction between the agent and its envi-
ronment, allowing agents to freely explore problem-
solving and rectify their actions through real-time
feedback. Once the agent finishes its task, we ap-
ply thorough filtering to the generated trajectories,
utilizing both the agent’s data and pre-computed
ground-truth answers. This process facilitates the
creation of diverse action trajectory datasets suit-
able for LAM training.

Our testing on well-known agentic benchmarks,
ToolBench (Qin et al., 2023) and CRMArena
(Huang et al., 2025), demonstrates the high quality
of data produced using LAM SIMULATOR. When
fine-tuning top-performing models with data they
generated themselves, we observed a pass rate in-
crease of 4.1% for gpt-4o on ToolBench, and a
24.1% increase on CRMArena. In addition, mod-
els with lower baseline performance showed sig-
nificant improvement, with mixtral-8x7b-inst
achieving over a 19.3% increase on ToolBench, and
gpt-4o-mini improving by 49.3% on CRMArena.
These results clearly demonstrate substantial per-
formance enhancements resulting from exploration
through LAM SIMULATOR, underscoring the ef-
fectiveness of our framework across diverse envi-

ronments. Our experiments demonstrate the re-
markable effectiveness of the LAM SIMULATOR

in improving model performance and identifying
and addressing model weaknesses in an automated
manner.

Our main contributions are:
1. We introduce a robust and high-quality data gen-
eration framework that features dynamic answer
computation, enabling the creation of diverse, re-
liable agent trajectories for both single-turn and
multi-turn scenarios.
2. We assemble an extensive library of over 3,000
interactive tools and design 36 comprehensive high-
level tasks for ToolBench and CRMArena. This
supports the generation of thousands of unique
tasks. Our approach can be easily support new
environments using the same methodology.
3. We conduct thorough benchmarking of the LAM
Simulator on challenging, realistic agentic bench-
marks. Our results show substantial performance
gains over base models, and direct comparisons
with existing baselines further highlight the signifi-
cant improvements delivered by our framework.

2 Related Work

With the rapid evolution of Large Language
Models (LLMs), there has been a significant in-
crease in their application to tool-use and function-
calling scenarios. Enhancing the capabilities of
LLMs (Achiam et al., 2023; Anthropic, 2024;
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Dubey et al., 2024; Zhang et al., 2024b) with exter-
nal tools allows them to go beyond the limitations
of their static parametric knowledge and text-based
input-output interfaces. This extension enables
them to access real-time information, leverage ex-
ternal reasoning systems, and perform meaningful
actions in dynamic environments.

Recently, open-sourced research has focused in-
creasingly on enhancing the efficiency of LLMs
in tool-use contexts (Qin et al., 2023; Chen et al.,
2023; Liu et al., 2024a; Zhang et al., 2024a; Yan
et al., 2024), while also exploring various prompt-
ing and training strategies to improve their per-
formance in agentic tasks. Prominent prompt-
ing techniques like Chain of Thought (CoT) (Wei
et al., 2022), Reflection (Shinn et al., 2024), and
ReACT (Yao et al., 2023) have garnered atten-
tion. While initial efforts centered on In-Context
Learning (ICL)—where pre-trained LLMs were
prompted with API specifications and tool-use ex-
amples—current approaches are increasingly in-
corporating fine-tuning methods to enhance model
accuracy.

Moreover, popular agent environments such as
ToolEval (Qin et al., 2023), AgentBench (Liu
et al., 2023), WebArena (Zhou et al., 2023), OS-
world (Xie et al., 2024), AgentBoard (Ma et al.,
2024), SpecTool (Kokane et al., 2024), and τ -
bench (Yao et al., 2024) facilitate agent interactions
and evaluations within various scenarios such as
web navigation, shopping, games, and computer en-
vironments. ToolEval offers a large test set with di-
verse scenarios, but the heavy reliance on LLMs for
evaluation introduces undesired and uncontrollable
variability. AgentBoard designs two multi-turn en-
vironments for tool query and operations, but they
only contain 100 user queries in total and do not
include real-time feedback. WebArena, OSWorld,
and τ -bench simulates conversations between a
user and a language agent, providing API tools and
policy guidelines with some limited domains: as
web, OS, retail and airline.

The development of data generation pipelines
for agentic learning has also seen significant ad-
vancements in recent years. ToolBench (Qin et al.,
2023) introduced a wide range of tasks and tools
but often suffers from lower data quality because
it relies heavily on LLMs to create and evaluate
tasks, which can introduce noise. APIGen (Liu
et al., 2024b) improves data quality by using multi-
layered evaluation schemes, but it is limited to han-
dling only single-turn conversations. ETO (Song

et al., 2024) uses a fixed set of instructions and
labeled data to generate trajectories, making it un-
suitable for situations lacking pre-existing training
data. Lastly, Learn-by-Interact (Su et al., 2025)
brings diversity to tasks by constructing them back-
ward from desired outcomes, but its dependence on
comprehensive documentation limits its usefulness
in domains with sparse references.

Our proposed framework, LAM SIMULATOR,
addresses these limitations and introduces several
key innovations. Unlike previous approaches, LAM

SIMULATOR natively supports complex multi-turn
conversations, rather than being confined to single-
turn interactions. It also allows an open-ended
action space with limited context or documentation
needed, meaning the agent can use any combina-
tion of tools without restrictions. We automate data
generation at scale, combining a vast collection of
tools with carefully-crafted, high-quality task tem-
plates. Furthermore, all evaluations in our frame-
work are fully programmatic, ensuring the consis-
tency and accuracy of the constructed datasets by
avoiding the variability introduced by LLM-based
evaluation. Table 1 summarizes how our approach
advances AI agent trained compared to previously
leading systems.

3 LAM SIMULATOR

We propose LAM SIMULATOR to enable LLM
Agents to autonomously explore and enhance their
problem-solving skills. We first construct query
instances, each of which details the goals the LLM
Agents should accomplish and the available tools
(§3.2). Based on the given query instance, LLM
Agents self-synthesize trajectories by iteratively
interacting with the environment until the final
state is reached (§3.3). Finally, the generated
trajectories are filtered based on ground-truth
answers, and subsequently used for training
LLM Agents. Figure 1 shows an overview of our
framework. We describe how each component
works in the following subsections.

3.1 Preliminaries

The task defined by each query instance can be
conceptualized as a Partially Observable Markov
Decision Process (POMDP), defined by the tuple(U ,S,A,O, T ). Here, U denotes the user query
space, S represents the state space, A is the action
space, O refers to the observation space, T ∶ S ×
A → S is the state transition function.
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Framework Multi-turn
Open

Action
Automated
Data Gen

Program-
matic Evals

ToolBench (Qin et al., 2023) ✔ ✔ ✔ ✗

APIGen (Liu et al., 2024b) ✗ ✔ ✔ ✗

Learn-by-Interact (Su et al., 2025) ✔ ✔ ✔ ✗

LAM SIMULATOR (ours) ✔ ✔ ✔ ✔

Table 1: LAM SIMULATOR compared to prior frameworks. Multi-turn indicates support for multi-turn settings, Open Action
indicates if agent’s actions space are predefined or open, Automated Data Gen indicates automated training data generation
capabilities, and Programmatic Evals indicates if ALL evaluators in the framework are using a programmatic approach without
using LLMs.

3.2 Query Instance Generation
Query instances form the starting point for trajec-
tory synthesis, comprising three elements: a user
query u ∈ U , a set of available tools F , and a
ground-truth answer y. The user query and tools
initiate agents’ iterative self-exploration, while the
ground-truth answer is used to verify the validity of
the resulting trajectory, as detailed in §3.3. Below,
we illustrate the details of each element.

User Query Construction. User queries are
natural-language questions that specify the objec-
tives the agent must achieve. We begin constructing
user queries by manually creating query templates
with placeholders. The variation in language style
can be later managed through the use of LLMs
for paraphrasing. Once the query templates are in
place, we utilize LLMs to sample values for these
placeholders. The queries that result from filling
in the placeholders are paraphrased and finalized
as user queries.1 A detailed example for a Query
Instance is covered in Appendix A.1.

Ground-truth Answer Computation. In devel-
oping query templates, each template is linked
to a sequence of tool usages aimed at deriving a
ground-truth answer. This programmatic approach
ensures the accurate production of answers. Here,
the ground-truth-answer will later be used to com-
pare with agent’s answer during trajectory filter-
ing step. Nonetheless, the tools used to generate
the ground-truth answer are unlikely to align with
those later made accessible to LLM Agents for
exploration. This potential discrepancy is inten-
tional, as we encourage agents to engage in ex-
ploratory problem-solving with all the available
tools, rather than merely replicating a predefined
sequence of tool calls. Consequently, a successful
strategy may either align with these hidden solution

1In this work, we employ gpt-4o to generate appropriate
placeholder values and paraphrase texts.

paths or comprise an alternative series of actions
that achieve the same objective.

Available Tools. The available tools for each user
query are dependent on the environment. We de-
scribe the details of tools in §4.

3.3 Trajectory Synthesis

Iterative Self-exploration. Given a user query
u ∈ U , for each time step t at state st ∈ S, the
agent selects an action at = (f, p) ∈ A by choos-
ing an appropriate tool from the available set of
tools f ∈ F and corresponding tool-call arguments
p. This tool is used to interact with the environ-
ment, resulting in an observation ot ∈ O after the
function is executed. This process continues itera-
tively until a final state is reached. The final state
is achieved under one of two conditions: (1) the
agent performs an action that returns a result to the
user, such as the submit function in CRMArena
(Huang et al., 2025); or (2) the trajectory of actions
exceeds the predefined maximum number of steps.

To guarantee the proper execution of tool calls
and enable agents to learn from significant feed-
back from the environment, we introduced an ac-
tion handler. This handler checks the structure,
syntax, and validity of the tool call to ensure re-
sponses are in the correct required format, and also
to avoid hallucinations like fabricated tool names
or malformatted tool-call arguments. Second, it
retrieves the error message from the sandbox and
sends it back to the agent for correction, while also
maintaining a record of the error history for the
trajectory filtering stage.

Trajectory Filtering. Trajectory filtering guar-
antees that the resulting paths are both valid and
useful for training. We accomplish this by using
string matching to compare the final response y

′

of each trajectory with the actual answer y. Any
discrepancies (y ≠ y

′) result in exclusion from the
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selected set. Furthermore, to ensure the quality of
our training dataset, we selectively include trajec-
tories that meet the following criteria: (1) the LLM
Agent completes the process without any errors, or
(2) if any errors occur during tool usage, they are
rectified in the subsequent action. For example, if
the agent incorrectly applies a parameter to a tool
at action at, we required that it is corrected in the
next action, at+1.

Programmatic Evaluation. Our framework in-
cludes the Action Handler for assessing actions
and Trajectory Filtering for monitoring trajectory
quality. This ensures the selection of trajectories
that demonstrate effective tool use and accuracy,
enhancing our confidence in the data quality. By
pre-calculating the ground-truth answer and lever-
aging the components within Action Handlers and
Trajectory Filtering, we can simulate high-quality
feedback for each agent’s action and trajectory,
eliminating the inconsistencies and noisy evalu-
ations often associated with using LLMs.

3.4 Agent Training

After the trajectory synthesis process, we train our
LLM Agents on these self-generated trajectories.
This approach offers two advantages over using
only the gold-standard trajectories from §3.2. First,
training on agent-explored trajectories, which
may include errors and corrections in subsequent
iterations, allows the model to explicitly learn error
recovery strategies. This is crucial for real-world
deployments where unexpected inputs or tool
states are common. Second, our approach allows
the model to encounter and adapt to a wider
range of scenarios, including potential interactions
with previously unseen tools or alternative, valid
solution paths. As empirically demonstrated in
§5, exposing the model to this broader range
of interactions during training notably enhances
its generalization abilities and its robustness in
utilizing tools and completing agent-based tasks.

3.5 Generalizability

The proposed LAM SIMULATOR framework is eas-
ily generalizable to a wide range of agentic en-
vironments and tasks. To support a new set of
tasks and environments, one only needs to design
a set of query templates reflecting the specific task
goals and establish the associated mappings from
these templates to sequences of tool calls that yield
the ground-truth answers. The capacity to rapidly

adapt to novel tasks not only underscores the gen-
eralizability of LAM SIMULATOR but also high-
lights its potential as a universal tool for enhancing
problem-solving capabilities of AI Agents.

4 Applications

LAM SIMULATOR is engineered to be seamlessly
adaptable to a wide range of scenarios, showcasing
its potential in advancing contemporary models.
To demonstrate the effectiveness of LAM SIMULA-
TOR, we supported its application to two prominent
environments for agentic tasks: ToolBench (Qin
et al., 2023) and CRMArena (Huang et al., 2025).
ToolBench emphasizes generic tool-use capability,
while CRMArena delves into complex and real-
istic Customer Relationship Management (CRM)
scenarios. Our goal is to exhibit LLM Agent’s self-
improvement capability via explorative processes
through LAM SIMULATOR.

4.1 ToolBench

Tool collection creation. We leveraged Tool-
Bench (Qin et al., 2023)’s extensive repository,
which encompasses 16,464 REST APIs sourced
from the RapidAPI Hub. Although this collection
is notably extensive, we encountered numerous
entries that were either non-functional or inade-
quately documented. To enhance the quality and
reliability of our exploration, we conducted a thor-
ough clean-up process as detailed in Appendix A.3.
This refinement led us to a more manageable and
useful collection comprising 3,420 effective tools.
Additionally, given that the ToolBench’s tools col-
lection necessitated the use of tools from various
providers, availability issues could arise during ex-
ploration. To address these challenges and ensure
stability in exploration, our team constructed a suite
of 57 tools. These tools encompass critical do-
mains, such as Data, Science, Entertainment, and
Tool Usage. This strategic approach aims to reduce
reliance on external providers, thereby enhancing
the reliability and consistency of tool availability
during exploration.

Query Instances. We devised 30 query templates
based on instances from the ToolBench training
dataset, each addressing objectives such as retriev-
ing movie details or housing property searches. For
these tasks, we developed sequences of tool calls
to generate solutions utilizing our in-house tools,
as detailed above. This process yielded 400 unique
query instances, with each instance consists of a
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paraphrased fill-in query with parameters produced
by LLMs, a pre-determined ground-truth answer,
and a set of tools for exploration. These tools in-
clude either those used to compute the solutions
or alternative options, along with supplementary
tools intended to challenge the decision-making
capabilities of agents.

4.2 CRMArena

Tool collection creation. To facilitate explo-
ration in solving the tasks for CRMArena, rele-
vant tools necessary for the four supported tasks
were extracted, representing 15 out of the 25 tools
available in CRMArena (Huang et al., 2025). The
remaining 10 tools were deliberately left unseen to
rigorously test the system’s adaptability in out-of-
domain scenarios.

Query Instances. From the six finely crafted
tasks derived from their framework: New Case
Routing (NCR), Handle Time Understanding
(HTU), Monthly Trend Analysis (MTA), Best Re-
gion Identification (BRI), Transfer Count Under-
standing (TCU), and Top Issue Identification (TII),
we selected the first four tasks—NCR, HTU, MTA,
and BRI—for exploration, leaving TCU and TII
for rigorous out-of-domain testing. We follow the
same procedure indicated in §4.1 to generate 400
query instances, all formatted consistently.

5 Experimental Setup

With the integration of environments into LAM

SIMULATOR detailed in §4, we conducted exper-
iments to demonstrate our framework’s effective-
ness on ToolBench and CRMArena benchmarks.

5.1 Evaluation datasets and metrics

ToolBench Evaluation. To comprehensively as-
sess ToolBench’s performance, we employed three
distinct test sets with 600 instances tailored to ex-
amine different scenarios. The first test set, Unseen
Instruction, or G1_inst, is designed to measure
how well the model performs when presented with
new instructions for potentially familiar tools. It is
important to highlight that due to the small number
of tasks and tools selected for exploratory purposes,
as detailed in §4.1, the likelihood of encountering
similar instructions or tools in this set is exceed-
ingly low. The second test set, Unseen Tools, or
G1_tool, evaluates the model’s ability to manage
tools it has never encountered before. Finally, the
Unseen Tools & Unseen Categories, or G1_cat,

test set presents the most challenging scenario by
testing the model on tasks from entirely new cate-
gories, requiring the use of unfamiliar tools.

CRMArena Evaluation. In evaluating CR-
MArena, we utilized public test sets corresponding
to the six tasks detailed in §4.2. Each task contains
130 entirely new instances to the exploration data.
The NCR, HTU, MTA, and BRI tasks, while shar-
ing similar scenarios or tools encountered during
exploration, are distinguished by their novel use
cases. In contrast, the TCU and TII tasks are en-
tirely distinct from any previously explored domain,
ensuring these tests are entirely out-of-domain.

5.2 Agent LLM

ToolBench. In our study, we focused on the
two leading models in the ToolBench benchmark:
gpt-4o (Achiam et al., 2023) and xlam-8x7b
(Zhang et al., 2024b). For a more comprehen-
sive analysis, we also included their more compact
counterparts, gpt-4o-mini and xlam-7b-r, in our
exploration and fine-tuning processes. To assess a
broader range of performance capabilities, we ad-
ditionally experimented with the lower-performing
model, mixtral-8x7b-inst (Jiang et al., 2024).

CRMArena. In the CRMArena environment,
which demands advanced planning and the com-
plex use of tools, we chose the best-performing
model, gpt-4o, along with its compact version,
gpt-4o-mini, as our baseline LLM Agents for
exploration and fine-tuning. Given these require-
ments, we observed that lower-performing mod-
els such as mixtral-8x7b-inst struggled to pro-
duce effective trajectories. Thus, constrained by
time and resources, we opted not to experiment
with models failing to meet the environment’s high-
performance demands.

5.3 Training Datasets

We incorporated the Query Instances from Section
§4 for exploration. We let the Agent LLM to contin-
uously explore the given tasks with temperature 1.0,
and collected all trajectories that passed our evalu-
ators, until it reached 500 trajectories for training.
The filtered trajectories then directly being used to
finetune the same base model.

5.4 Comparison with other work

To highlight the effectiveness of LAM SIMULA-
TOR, we conducted a comparative analysis against
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Model Name ALL G1_inst G1_cat G1_tool
gpt-4o-ls (ours) 0.515 0.465 0.555 0.525
gpt-4o 0.474 0.437 0.519 0.466
xlam-8x7b-ls (ours) 0.498 0.440 0.530 0.525
xlam-8x7b-r 0.435 0.415 0.490 0.400
gpt-4o-mini-ls (ours) 0.497 0.475 0.540 0.475
gpt-4o-mini 0.452 0.415 0.505 0.435
xlam-7b-ls (ours) 0.413 0.400 0.460 0.380
xlam-7b-r 0.392 0.355 0.425 0.395
mixtral-8x7b-ls (ours) 0.310 0.280 0.385 0.265
mixtral-8x7b-inst 0.117 0.085 0.160 0.105

Table 2: Pass Rate (%) on three distinct ToolBench test sets. "ALL" denotes the average performance across all test sets. Models
are categorized into baseline versions and their fine-tuned counterparts, with models trained using self-generated data through
LAM SIMULATOR highlighted in cyan.

the ToolLLM approach (Qin et al., 2023). Tool-
LLM pioneered the use of large language mod-
els (LLMs) to automatically generate and eval-
uate tasks for agentic training data. For a fair
comparison, we reproduced two versions of their
methodology: ToolLLM_Full, which faithfully
follows the original process using GPT-4o and
GPT-4o-mini to both generate and evaluate tasks,
and ToolLLM_Partial, which combines our high-
quality task generation process with ToolLLM’s
LLM-based evaluation procedure. We selected CR-
MArena as the testing environment because this
benchmark presents highly complex and challeng-
ing tasks, making it ideal for a robust evaluation of
both methods. This setup allows us to clearly assess
the impact of our data generation and evaluation
improvements.

6 Results and Discussions

6.1 ToolBench

The evaluation of the ToolBench datasets, as pre-
sented in Table 2, demonstrates substantial per-
formance improvements in our fine-tuned models
relative to their baselines. The gpt-4o-ls model
shows a marked improvement, increasing its per-
formance from 47.4% to 51.5% compared to the
baseline gpt-4o. Similarly, the xlam-8x7b-ls
model exhibits a notable enhancement, rising from
43.5% to 49.8% over its baseline, xlam-8x7b-r.
Among compact models, gpt-4o-mini-ls and
xlam-7b-ls achieved performance gains of 4.5%
and 2.1%, respectively, when compared to their
baselines. These improvements are particularly
impressive because these models already rank
among the best in the benchmark. Notably, low-
performing models benefited even more from our
approach. The mixtral-8x7b-inst model, ini-
tially achieving an 11.7% pass rate, improved

significantly to 31.0% after fine-tuning to the
mixtral-8x7b-ls version. This demonstrates the
effectiveness of self-generated data in enhancing
model performance.

When analyzing the performance across dif-
ferent test sets, we observed substantial gains
in out-of-domain tasks. This is evident in the
improvements on the G1_cat (Unseen Tools in
Unseen Category) and G1_tool (Unseen Tool)
datasets. For instance, top-performing model
xlam-8x7b-ls gained 4% on G1_cat and 12.5%
on G1_tool compared to its baseline. Similarly,
the lower-performing mixtral-8x7b-ls model
recorded more than double gains on both G1_cat
and G1_tool over its baseline. These results high-
light the efficacy of our framework in producing
high-quality data for enhancing agentic learning.

6.2 CRMArena

For CRMArena test sets, which require ad-
vanced problem-solving abilities in complex, re-
alistic CRM environments, our fine-tuned model,
gpt-4o-ls, demonstrates a marked improvement.
It achieves an overall pass rate of 86.4%, repre-
senting a significant increase of 24.1% over its
baseline version, gpt-4o, which scores 62.3%.
This enhancement is even more pronounced in
the weaker model, where our framework boosts
gpt-4o-mini’s performance nearly fourfold, ele-
vating the accuracy from 18.5% to 67.8%. Such a
transformation turns a previously inadequate model
into one that is highly effective for these tasks.

When compared to the ToolLLM method-
ologies, our approach consistently outperforms
both ToolLLM_Full and ToolLLM_Partial
across all test sets. For example, our model
gpt-4o-ls achieves an average pass rate that is
over 31% higher than gpt-4o-ToolLLM_full
(54.6%) and nearly 10% higher than
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Model Name ALL NCR HTU MTI BRI TCU TII
gpt-4o-ls (ours) 0.864 0.677 0.808 0.985 0.869 0.862 0.985
gpt-4o-ToolLLM_partial 0.768 0.285 0.785 0.969 0.762 0.854 0.954
gpt-4o-ToolLLM_full 0.546 0.120 0.269 0.815 0.446 0.685 0.938
(base) gpt-4o 0.623 0.600 0.477 0.277 0.592 0.815 0.977
gpt-4o-mini-ls (ours) 0.678 0.262 0.715 0.762 0.485 0.877 0.969
gpt-4o-mini-ToolLLM_partial 0.455 0.038 0.277 0.454 0.431 0.569 0.962
gpt-4o-mini-ToolLLM_full 0.232 0.023 0.246 0.446 0.192 0.346 0.138
(base) gpt-4o-mini 0.185 0.080 0.108 0.000 0.215 0.108 0.600

Table 3: Pass Rate (%) on six distinct CRMArena test sets. "ALL" denotes the average performance across all test sets. Models
are shown as baseline versions and as those fine-tuned using either the ToolLLM or our own methodology. For ToolLLM models,
ToolLLM_full follows the original approach of leveraging LLMs (GPT-4o and GPT-4o-mini) for both task generation and
evaluation, while ToolLLM_partial uses our high-quality tasks with LLM-based evaluation. Models trained with self-generated
data from LAM SIMULATOR are highlighted in cyan.

gpt-4o-ToolLLM_partial (76.8%). Impor-
tantly, for the mini-model variants, the gains
are even more substantial: gpt-4o-mini-ls
surpasses gpt-4o-mini-ToolLLM_full (23.2%)
and gpt-4o-mini-ToolLLM_partial (45.5%),
confirming the robustness and effectiveness of
our data generation framework, especially in
low-resource settings.

Crucially, these performance improvements
extend beyond just in-domain tasks to also
significantly impact out-of-domain tasks.
gpt-4o-mini-ls shows notable gains, achieving
a 76.9% increase on the TCU task and a 36.9%
increase on the TII task. Compared to the relatively
modest gains seen with ToolLLM variants, these
results illustrate a substantial enhancement in the
model’s understanding and generalization of CRM
tools and associated tasks, both within and beyond
the immediate training domain. Overall, our
method clearly leads to superior task competence
and better generalization than existing approaches.

6.3 Ablation Studies

6.3.1 Tools usage errors reduction
Besides discussing the effectiveness of LAM SIM-
ULATOR in enhancing agents’ overall problem-
solving capabilities, we also examined its utility
in improving agents’ tool usage. Our study in-
volved models xlam-8x7b-ls and xlam-7b-ls,
compared against their baseline counterparts
xlam-8x7b-r and xlam-7b-r. We randomly se-
lected 200 states, each with preceding steps gen-
erated by one of these four models, tasked with
solving tasks from the ToolBench test sets. Each
model’s subsequent actions were assessed for er-
rors using our Action Handler.

Our analysis focused on three layers of errors:
1) structural errors, where actions are unparseable;
2) toolname errors, where actions are parseable

Model Name ALL Structure Toolname Arguments
xlam-8x7b-ls 16.67 25 1 24
xlam-8x7b-r 25.33 30 6 40
xlam-7b-ls 13.67 17 12 12
xlam-7b-r 35.00 42 8 55

Table 4: Number of errors (lower is better) for actions gen-
erated from 200 sampled states across ToolBench test sets,
comparing different models. Error types include structural
errors (Structure), hallucinated tool calls (Toolname), and in-
correct tool argument usage (Arguments). "ALL" indicates
overall average number of errors. Models fine-tuned via LAM
SIMULATOR are highlighted in cyan.

but the tool names are hallucinated; and 3) argu-
ments errors, where both parsing and tool names
are correct, but arguments are misused.

The results in Table 4 illustrates that LAM SIMU-
LATOR substantially reduces errors, nearly halv-
ing them on average. For the compact model
xlam-7b-r, substantial reductions were observed
particularly in structural errors and incorrect tool
argument errors. Though there’s a slight increase
in tool hallucination, it can be attributed to the base-
line model primarily committing structural errors,
resulting in previously obscured toolname errors
being revealed. Even among top-performing mod-
els, notable reductions in argument errors were
observed. This suggests that LAM SIMULATOR ef-
fectively enhances agents’ tool usage capabilities.

6.3.2 Impact of Core Monitoring Components
We conducted an ablation study to evaluate the
impact of core monitoring components in our LAM

SIMULATOR framework. Specifically, we sought
to understand the contributions of Action handler,
which monitors the LLM Agent’s ability to perform
correct actions through tool usage, and Trajectory
filtering, which examines the agent’s overall task-
solving ability by comparing its trajectory against
a ground-truth solution.

We used the mixtral-8x7b-inst as our base-
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Figure 2: Ablation study on monitoring components across
three ToolBench test sets. mixtral-8x7b-inst shows base-
line model performance. "Not monitor Action" indicates per-
formance when fine-tuning with a self-exploration dataset
via LAM SIMULATOR without action monitoring, while "Not
monitor Trajectory" shows results without trajectory monitor-
ing. mixtral-8x7b-ls demonstrates performance with both
action and trajectory monitoring enabled.

line LLM Agent. We utilized LAM SIMULATOR

with the LLM Agent as it interacted with tasks
from ToolBench, as specified in §4.1, similar to the
primary experiment. However, we made a critical
modification by disabling the Action Handler when
collecting training trajectories. That means, the
Agent’s actions, particularly those involving tool
calls, were not monitored. We then fine-tuned the
baseline model with the self-generated data and
evaluated on the three ToolBench test sets used in
the main experiment, enabling us to analyze the
impact of "Not monitor Action".

Similarly, we started with the same baseline
LLM Agent and pass through LAM SIMULATOR

for generating data while disabling ground-truth
comparison within Trajectory filtering. In this ap-
proach, there was no quality control for trajecto-
ries misaligned with the task requirements. Subse-
quently, we fine-tuned the baseline model and per-
formed evaluations on the same three ToolBench
test sets. This allowed us to assess the impact of
"Not monitor Trajectory".

Our ablation study, depicted in Figure 2, un-
derscores the essential role of both action-level
and trajectory-level monitoring in our model’s per-
formance. The removal of action-level monitor-
ing ("Not monitor Action" in Figure 2) results in
a significant decline in pass rates across all test
sets. This suggests that without proper regula-
tion of tool usage, errors accumulate, which the
model is unable to rectify autonomously. Similarly,
the absence of trajectory-level monitoring ("Not

monitor trajectory") hinders the overall effective-
ness of the model by failing to ensure alignment
with task requirements. This shortcoming is par-
ticularly evident in the out-of-domain G1_cat set-
ting, where the pass rate drastically decreases from
38.5% to 19.0%. These findings underscores the
importance of monitoring the actions and outcomes
of LLM Agents in scenarios where we aim to apply
self-improvement to agentic models, thus, clearly
demonstrate the importance of incorporating all
monitoring components in our LAM SIMULATOR.

7 Conclusion

In this paper, we presented LAM SIMULATOR, a
comprehensive framework designed to advance the
development of Large Action Models (LAMs) by
enabling self-learning through online exploration
and automated prorgammatic feedback. Our sys-
tem effectively addresses the limitations of tradi-
tional supervised learning and manual data cura-
tion, offering a scalable solution that enhances both
agentic performance and training efficiency. LAM

SIMULATOR provides real-time interactions, multi-
turn task processing, and high-quality feedback,
contributing to significant improvements in model
training performance across various benchmarks,
such as ToolBench and CRMArena, where models
trained with self-generated data via LAM SIMU-
LATOR gained a significant improvements and po-
tentially outperformed other leading models. Our
framework accelerates the learning and adaptation
process of LAMs with minimal human interven-
tion, demonstrating its potential as a pivotal tool
for future research and development in AI agents.

8 Limitations

LAM SIMULATOR still has some limitations, its cur-
rent implementation focuses on predefined tasks
and tools, which may limit its adaptability in more
dynamic or unstructured environments. In future
work, we aim to expand the framework’s general-
ization capabilities by incorporating a wider range
of tasks and tool integrations, as well as exploring
methods for better handling ambiguous or incom-
plete task specifications. Furthermore, we plan to
investigate the scalability of the system in envi-
ronments with more complex action spaces and
interdependencies, pushing the boundaries of au-
tonomous agent learning.
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A Appendix

A.1 Examples of Query Instance
Query template Here, we are providing an ex-
ample for query templates. As we can see from
Figure 3, a query template contains natural text
portions and placeholders to-be-filled.

"query_template": "I've been looking up {
movie_detail} about the movie {movie_name}. Fun
fact: the set of {movie_name} was built inside
a massive warehouse to create a surreal

atmosphere!"

Figure 3: Example of Query Templates

Placeholders description We then provide exam-
ple for query template’s placeholders’ descriptions
(Figure 4).

"placeholders_metadata": {
"movie_name": {

"type": str,
"description": "The name of the movie to

search for.",
},
"movie_detail": {

"type": str,
"description": "The detail of the movie to

search for.",
}

}

Figure 4: Example of Placeholders description

Generated Placeholders Given the query tem-
plate and its placeholders’ descriptions, we can use
Large Language Models (LLMs) for generating dy-
namic values for the placeholders. An example of
a generated placeholder is shown in Figure 5.

"placeholders": {
"movie_name": "The Dark Knight",
"movie_detail": "genres"

}

Figure 5: Example of generated Placeholders

Filled-in query With Query Template (3), and
Generated Placeholders (5), we can fill in the value
of the placeholder into the query template to create
Filled-in query. An example is showned at 6.

Answer computation We also give an example
of how we can compute answer for the generated
query 6. As illustrated in Figure 7, we pre-define a
solution path for any task that can be formed with
the query template. This solution path will then

"filled_in_query": "I've been looking up genres
about the movie The Dark Knight. Fun fact: the
set of The Dark Knight was built inside a
massive warehouse to create a surreal
atmosphere!"

Figure 6: Example of Filled-in Query with Query tem-
plate 3 and generated Placeholders 5. Note that after
this, the query can be further paraphrased with LLM for
diversity purpose.

being used by any generated task with the query
template 3 for ground-truth answer computation.

"solution_paths": [
{

"tool_call": "
get_search_movie_for_movie_tools",

"arguments": {
"movie_name": null

}
},
{

"tool_call": "
get_movie_details_for_movie_tools",

"arguments": {
"id": null

}
}

]

Figure 7: Example of a solution path for the task 6.
The arguments would be searched among 1) placeholder
values and 2) objects generated during execution. In this
example, movie_name can be extracted directly from the
placeholder value (The Dark Night), from 5, while id is
a new field can be retrieved from the execution response
of get_search_movie.

Available tools We then provide an ex-
ample of a set of available tools provided
to LLM Agents for exploration. As we
can see from 8, the tools set does not in-
clude get_search_movie_for_movie_tools,
but instead include an alternative version
search_movie_for_imdb, which does the similar
objective with get_search_movie, but it is a
different tool with different way to use. In addition,
there are extra tools provided here to, where the
LLM Agent is expected to decide what is the right
tool to use at a given time step.

A.2 Example of LLM Agent system prompt

We also include an example of a system prompt
for LLM Agent that we derived from ToolBench’s
(Qin et al., 2023) and xLAM’s (Zhang et al.,
2024b) system prompt, as shown in 10.
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"task_available_tools": [
"get_movie_details_for_movie_tools",
"search_movie_for_imdb",
"get_movie_production_companies_for_movie_tools",
"get_current_temp_for_weather_tools",
"Finish"

]

Figure 8: Example set of available tools to be provided for
LLM Agent for exploration. Note that this tools set does not in-
clude get_search_movie_for_movie_tools, but instead in-
clude an alternative version search_movie_for_imdb, which
does the similar objective with get_search_movie, but it is a
different tool with different way to use. In addition, there are
extra tools provided here to, where the LLM Agent is expected
to decide what is the right tool to use at a given time step.

Figure 9: Tools distribution for ToolBench environment.

A.3 Clean-up Toolbench tools

We leveraged ToolLLM’s extensive work under
Apache-2.0 license, which collated over 16,464
REST APIs across 49 categories from RapidAPI
Hub. Despite the breadth, the quality and docu-
mentation of these tools were inconsistent due to
their mass collection approach, leading to many
non-functional or poorly documented entries. To
rectify this, critical elements such as tool names,
parameters, execution code, and related metadata
were extracted. Large language models (LLMs)
played a crucial role in refining the tool descrip-
tions and docstrings to ensure clarity and coher-
ence. This process involved integrating necessary
Python code components, conducting validations
for code executability, and leveraging LLMs to
assess quality. Moreover, rule-based techniques
and LLM prompting were used to eliminate du-
plicate or similar tools, enhancing the collection’s
integrity. In Figure 9, we display the distribution of
our tools collection for ToolBench after cleaning

up and rewriting documentations.
Note that for now, we are only utilizing a small

subset of this collection for exploration. In the
future, we are going to scale up to try to use all of
the processed tools.

B Licenses

Here, we discussed about the licenses of the arti-
facts we used in our work.

For tools (code logic), we used tools from
ToolBench and CRMArena. ToolBench is under
Apache-2.0 License, and CRMArena is under Cre-
ative Commons Attribution 4.0 License (CC BY).

For evaluation datasets, we also used the datasets
from ToolBench and CRMArena, in which licenses
are mentioned above.

For models we used for exploration (data gen-
eration), finetuning, and evaluating, we used
gpt-4o, gpt-4o-mini, xlam-8x7b-r, xlam-7b-r,
mixtral-8x7b-inst. Here:

• gpt-4o and gpt-4o-mini (Achiam et al.,
2023) is under MIT License.

• xlam-8x7b-r and xlam-7b-r (Zhang et al.,
2024b) is under Apache 2.0 License.

• mixtral-8x7b-inst (Jiang et al., 2024) is
under Apache 2.0 License.

.
All of the licenses above enable us to perform

research experiments.

C Experimental Detail

Our data generation and trainings of
mixtral-8x7b-inst (56B parameters),
xlam-8x7b-r (56B parameters), and xlam-7b-r
(7B parameters) are performed with 4*H100s
machines. Each of the exploration iteration to
generate data is limited to 8 hours, and corre-
sponding training time is limited by 4 hours. The
hyperparameters of training all instances are at
5e − 6 for 3 epochs.

For the data generations and trainings on gpt-4o
and gpt-4o-mini, we used OpenAI’s endpoint
with the same time limit. For trainings, we used
default hyperparameters and number of epochs sug-
gested by OpenAI, which is at between 1 and 2 for
LR multiplier and for 3 epochs.

For evaluations, we configured the generative
temperature to be 0.0. This allows us to have deter-
ministic results for the presented ones in Section
5.
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[BEGIN OF TASK INSTRUCTION]
You are an expert in agentic task. You will be given a task, and you can use many tools sequentially to

solve the task. At each time step, you will call exactly 1 tool, and based on the environment feedback,
you will be able to decide your next step. Keep repeating this action until you gather enough

information to solve the task. By that time, call the special function "Finish" given to use to return
the final answer in the exact format.

Remember:
1. MOST IMPORTANT, in your response of the "Finish" step, you MUST strictly follow the response format of

what to be written inside "final_answer".
2. The state change is irreversible, you can 't go back to one of the former state.
3. All the thought is short, at most in 5 sentences.
4. Your action must be calling one of the given tools (functions).
5. Your action input must be in json format, where action inputs must be realistic and from the user. Never

generate any action input by yourself or copy the input description. Do not add unrelated parameters if
not needed. Do not add optional parameters when it is not required or when these information is not

needed.
6. You can do more then one trys, so if your plan is to continusly try some conditions, you can do one of

the conditions per try.

Task description:
You should use functions to help handle the real time user querys. Remember:
1. ALWAYS call "Finish" function at the end of the task. And the final answer should contain enough

information to show to the user.
[END OF TASK INSTRUCTION]

Figure 10: Example of system prompt for LLM Agent

D Others

When constructing this paper, we used gpt-4o
(Achiam et al., 2023) for several paraphrasing.
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