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Abstract

Real-world instructions with multiple con-
straints pose a significant challenge to existing
large language models (LLMs). An observa-
tion is that the LLMs exhibit dramatic perfor-
mance fluctuation when disturbing the order of
the incorporated constraints. Yet, none of the
existing works has systematically investigated
this position bias problem in the field of multi-
constraint instruction following. To bridge this
gap, we design a probing task where we quan-
titatively measure the difficulty distribution of
the constraints by a novel Difficulty Distribu-
tion Index (CDDI). Through the experimental
results, we find that LLMs are more perfor-
mant when presented with the constraints in
a “hard-to-easy” order. This preference can
be generalized to LLMs with different archi-
tecture or different sizes of parameters. Ad-
ditionally, we conduct an explanation study,
providing an intuitive insight into the corre-
lation between the LLM’s attention and con-
straint orders. Our code and dataset are publicly
available at https://github.com/meowpass/
PBIF.

1 Introduction

Large language models (LLMs) have made im-
pressive progress in massive natural language
tasks (Wan et al., 2024; Zhang et al., 2024b) and
have been applied to various real-world scenar-
ios (Bai et al., 2023; Bi et al., 2024). To achieve
satisfactory performance, it is crucial for LLMs
to understand the user’s instructions and convey
desired outputs, which is known as the Instruction
Following capacity of LLM (Yin et al., 2023; Xu
et al., 2024).

In practice, instructions are usually incorporated
with multiple constraints of different types, e.g.,
format constraint which limits the model’s output
to a specific format. Nevertheless, existing LLMs
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Figure 1: (a) In single-round inference, the LLM per-
forms differently when handling the same instruction
with different constraint orders. (b) In multi-round in-
ference, the latter response is evitably affected by the
former context.

often struggle to follow multi-constraint instruc-
tions, making multi-constraint instruction follow-
ing an obstacle to hinder LLMs’ real-world appli-
cation (Wen et al., 2024; Yin et al., 2023).

Recently, a lot of works have demonstrated that
LLMs are sensitive to the position of the referred
context in many tasks, such as multi-document
question answering, text evaluation, and list-wise
ranking (Liu et al., 2024; Zheng et al., 2023; Tang
et al., 2024). Since there are usually multiple con-
straints coexisting in the complex instruction, the
position bias problem is also significant in multi-
constraint instructions. As shown in Fig. 1, in
the single-round scenario, the LLM’s performance
varies significantly when presented with instruc-
tions that have different constraint orders, even
though the two instructions are semantically iden-
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Figure 2: The procedure of the probing task. First, we synthesize the initial instructions by sampling seed instructions
and corresponding constraints. Then, we obtain instructions with different constraint orders by reordering the
incorporated constraints. Finally, we conduct model inference on single and multi-round settings.

tical. When it comes to the multi-round scenario,
different constraint orders impose different impacts
on the intermediate responses, thus inevitably lead-
ing to a discrepancy in the quality of the final re-
sponses.

Nevertheless, the position bias of constraint or-
ders in the multi-constraint instruction following
remains an under-explored problem. Existing work
manually assigns difficulty to different constraints
based on a predefined rule and orders the con-
straints according to their difficulty. They empiri-
cally demonstrate the existence of LLMs’ perfor-
mance fluctuation brought by different constraint
order (Chen et al., 2024). However, on the one
hand, handcraft difficulty categorization fails to
reflect the real difficulty disparity of different con-
straints (Dentella et al., 2024; Srivastava et al.,
2023). On the other hand, they merely analyze
the constraint order in a qualitative way, lacking
a quantitative metric to measure the disparity of
constraint order. Additionally, none of the existing
works has provided an intuitive explanation for the
position bias in multi-constraint instructions. It re-
mains unclear how the LLMs handle instructions
with different constraint orders.

To address all the problems above, we systemat-
ically investigate the position bias problem in the
multi-constraint instructions. First, we propose a
novel metric called the Constraint Difficulty Distri-
bution Index (CDDI) to quantitatively describe the
disparity of constraint order from the perspective
of constraint difficulty. We leverage the accuracy
of the LLM to quantify the difficulty of different
constraints, thus precisely reflecting their disparity.
Then, for a thorough study of the position bias prob-
lem, we design a probing task. As shown in Fig. 2,
we construct a large number of multi-constraint in-
stances with different constraint orders and explore
two practical scenarios: single-round inference and
multi-round inference. Our experiments find ex-
isting LLMs commonly perform better with the
“hard-to-easy” constraint orders, i.e., possibly plac-
ing harder constraints in former positions. Finally,
to make an intuitive explanation of our findings, we
resort to a gradient-based method (Wu et al., 2023).
We visualize the importance of different constraints
located in different positions. We observe that the
constraint order will affect how the LLM handle the
constraints and is highly correlated to the LLM’s
performance on a specific constraint.
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In summary, our main contributions are as fol-
lows: (1) We are the first to systematically investi-
gate the position bias problem in multi-constraint
instruction following. (2) We propose a novel
CDDI metric to quantify the disparity of different
constraint orders in the multi-constraint instruc-
tions. (3) Through extensive experiments, we find
that existing LLMs can achieve a better perfor-
mance when presented with constraints in “hard-
to-easy” orders. This finding can be generalized
in both single-round and multi-round scenarios, re-
gardless of the architecture of LLM, the size of
LLM'’s parameters and the number of constraints.
(4) Our explanation study explores how the LLMs
assign attention when provided with instructions in
different constraint orders and demonstrates the sig-
nificant correlation between the attention patterns
and the LLMs’ performance on specific constraints.

2 Related Work

2.1 Complex Instruction Following

Riding on the wave of the large language model, the
instruction following has attracted increasing atten-
tion for it is easy to be perceived by the users (Zhou
et al., 2023a; Lou et al., 2024). Practical instruc-
tions are complex, usually incorporated with mul-
tiple constraints of different types (Zhou et al.,
2023b; He et al., 2024). A lot of evaluation bench-
marks have found that multi-constraint instruction
following is nontrivial for the LLMs (Jiang et al.,
2023b; Wen et al., 2024; Qin et al., 2024). Con-
sequently, several works propose to improve the
LLM’s complex instruction following capacity by
introducing additional instruction fine-tuning (Sun
et al., 2024; Cheng et al., 2024; Zhang et al.,
2024a).

Different from these works, we focus on the
inference stage of the LLMs instead of model train-
ing. Especially, we aim to investigate the posi-
tion bias problem brought by the constraint order,
which poses an essential impact on the model per-
formance.

2.2 Position Bias in the LLM

The position bias problem is common in the var-
ious LLM tasks (Liu et al., 2024; Zheng et al.,
2023; Zeng et al., 2023). Researchers fisrt find
that the LLM’s performance degrades dramatically
by merely changing the order of relevant informa-
tion in the long-context question answering. A lot
of works have studied the position bias problem

in the field of logical reasoning (Chen et al.; Liu
et al., 2023; Berglund et al., 2023). They find the
LLM is sensitive to the order of premises, although
such ordering actually does not alter the reasoning
task (Chen et al.; Liu et al., 2023).

Despite so, none of these works has studied the
position bias problem in the field of instruction
following, especially multi-constraint instruction
following. SIFo (Chen et al., 2024) is the most re-
lated work to ours. They manually differentiate the
constraints based on the context length they will
influence and conduct an empirical study to verify
whether the model performance will be affected by
the constraint order. However, Their investigation
of position bias is fairly qualitative. Different from
them, we are the first to make a systematical and
thorough investigation on the position bias of con-
straints in multi-constraint instruction following.

3 Method

3.1 Background

In this paper, we mainly focus on the multi-
constraint instruction /... It can be formulated as a
seed instruction incorporated with n constraints:

I.=1;&C&..6C,, (1)

where the seed instructions I; describe a task,
e.g., write a story, while these constraints y ;" , C;
limit the output from different aspects, e.g., format,
length, content, etc. @ stands for the concatenation
operation.

3.2 Probing Task
3.2.1 Task Formulation

To investigate the impact of constraint order, we
introduce a probing task. In this task, the LLM is
given multi-constraint instructions with constraints
arranged in various orders. The LLM’s task is to
generate a response that follows all constraints. We
evaluate the LLM in two practical scenarios: single-
round and multi-round inference. The LLM’s re-
sponses are then evaluated to determine its per-
formance across various constraints. The overall
procedure is illustrated in Fig. 2. In the following
sections, we will provide a detailed explanation.

3.2.2 Multi-constraint Instruction Synthesis

To ensure the generalizability of probing data, we
construct the initial multi-constraint instructions
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which include a variety of tasks and diverse con-
straint combinations. The multi-constraint instruc-
tion synthesis can be further divided into two parts:
seed sampling and constraint sampling.

For the seed sampling, we sample data from
three source datasets: (1) Natural Instructions
V2 (Wang et al., 2022). It is an instruction col-
lection covering more than 1600 NLP tasks. We
filter those tasks that are too easy and could po-
tentially conflict with complex constraints, e.g.,
object classification and sentiment tagging. Then,
we randomly sample 52 instructions from the re-
maining tasks. (2) Self-Instruct (Wang et al., 2023).
We only sample 83 instances from their initial 175
seed instructions which are formulated by humans.
(3) Open Assistant (Kopf et al., 2024). Following
the strategy of Suri (Li et al., 2023), we filter out
the first turn of the conversation with the highest
quality (marked as rank O in the dataset) and sam-
ple 65 instances from them. Overall, we obtain 200
seed instructions, where the number of instructions
is denoted as 14eeq-

As for the constraint sampling, we first cate-
gorize the constraints into 8 groups with 25 fine-
grained types (Zhou et al., 2023a). For each type of
constraint, we employ 8 different expressions to de-
scribe it'. Then, we sample n constraints from the
constraint taxonomy and use the predefined rules
to avoid possible conflicts. To ensure diversity,
we repeat the sampling process to obtain n.. dis-
tinct constraint combinations, deriving ngeeq X Nee
multi-constraint instructions.

3.2.3 Constraint Reordering

To quantitatively construct instructions with differ-
ent constraint orders, here are two questions that
need to be answered: (1) How do we distinguish
the disparity of different constraints? (2) After
we order the constraints based on their disparity,
how do we quantitatively describe the disparity of
constraint orders?

An appropriate solution for the first question is
to categorize the constraints based on their diffi-
culty (Chen et al., 2024). In this paper, we also
sort the constraints based on their difficulty. How-
ever, different from existing works which designate
the difficulty of the constraints based on handcraft
rules, we measure the difficulty of a constraint via
the overall accuracy of following it in our probing

"More details are shown in Appx. A.2

datasets. The formulation is as follows:

Dff, = Softmax(1 — Accc,), (2)
1 o

A — i 3

cceo, N, ; c;, 3)

The C', refers to a specific type of constraint, the
N, stands for the total number of instructions cor-
responding to the constraint C, and the ¢!, is a
binary value to reflect whether the constraint C, is
followed in the " instruction.

To quantitatively describe the disparity of con-
straint order, we propose a novel metric called the
Constraint Difficulty Distribution Index (CDDI)
which quantifies a specific constraint order based
on its difficulty distribution. Given the difficulty
of different types of constraints, we can readily
attain the difficulty distribution of the constraints
incorporated in the multi-constraint instructions.
Specifically, for a multi-constraint instruction, we
rank the incorporated constraints based on their
difficulty, from the hardest to the easiest. We set
this “hard-to-easy”’ constraint order as an anchor
since it depicts an extreme situation, i.e., we des-
ignate the CDDI = 1 when the constraints fall in
this order. Consequently, akin to the Kendall tau
distance (Cicirello, 2020), we measure the diffi-
culty distribution of a specific constraint order o
by comparing it with the “hard-to-easy” constraint
order 0,,4.. The formula is shown as:

Neon — Nais 2 (Ncon Ndis)

CDDI, = _ = — 4
° Npair n(n —1) )

where N, and Ny;, represent the number of con-
cordant and discordant distribution pairs of con-
straints between o and 0,,4;, respectively. The
Npair 1s the total number of compared constraint
pairs. Overall, we select ngyy different difficulty
distributions, finally comprising ngeeq X Nee X Ngg
instances.

3.2.4 Sequential-Sensitive Inference

Given the multi-constraint instructions with dif-
ferent constraint orders, we evaluate the model’s
performance in two common scenarios: single-
round inference and multi-round inference. In
single-round inference, the LLM is directly given
the multi-constraint instructions with different con-
straint distributions. We argue that different con-
straint distributions could impose different levels of
difficulty on the LLM to handle. The multi-round
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Figure 3: The statistic of different types of constraints
in the probing data. The 7cons and 9cons stand for the
setting when n=7 and n=9, respectively.

inference introduces a more typical setting: the
user will first provide the LLM with the core in-
tention (i.e., the seed instruction in this work), and
then iteratively put forward the constraints in order
to obtain a final response.

To evaluate the model performance, apart from
the constraint following accuracy mentioned in
Eq.(3), we also verify its constraint-level accuracy
Acceons and instruction-level accuracy Accipst.
Corresponding formulas are shown below:

Acceons = % ; ; el AcCipgt = % ; ]1;[1 c. (35
where m and n refer to the number of instructions
and constraints in the instruction, respectively. Sim-
ilar to Eq.(3), the ¢/ is a binary value which equals
1 when the constraint is followed in the 7* instruc-
tion. All the evaluation is conducted by leveraging
the script introduced in (Zhou et al., 2023a). We
only evaluate the final responses produced by the
LLMs.

4 Empirical Study

4.1 Experiment Setup

Models For our probing task, to ensure the gen-
eralizability of our study, we conduct experiments
on both closed and open-source LL.Ms with vary-
ing architectures and parameter sizes. Specifically,
we introduce the following models: (1) LLaMA3-
8B-Instruct and LLaMA3-70B-Instruct (Dubey
et al., 2024). (2) LLaMA2-13B-Chat (Touvron
et al., 2023). (3) Mistral-7B-Instruct (Jiang et al.,
2023a).> (4) Qwen2.5-7B-Instruct (Yang et al.,
2024). (5) GPT40-mini (Achiam et al., 2023).

Datasets We construct various multi-constraint
instructions with different constraint orders

2We use the latest v0.3 version.

(Sec.3.2). We empirically set the number of con-
straints n to 7. To ensure the diversity and complex-
ity, we set the number of constraint combinations
Nee to 10 and the number of difficulty distributions
ngq to 12, finally obtaining 200 x 10 x 12 = 24K
samples. To verify the influence of constraint num-
ber, we also conduct experiments on the setting
when n = 9. The statistic of the data for the prob-
ing task is provided in Fig. 3.

4.2 Results

LLMs prefer to ‘“hard-to-easy’ constraint distri-
bution. As shown in Fig. 4, most of the LLMs ex-
hibit a dramatic performance fluctuation on instruc-
tions with varying constraint distributions. When
the constraint number is set to 7, the LLaMA3-8B-
Instruct and Qwen2.5-7B-Instruct show approxi-
mately 7% and 5% performance disparity in ex-
treme situations. This indicates the vulnerability
of existing LLMs to the position bias brought by
the constraint order. Also, the LLMs tend to be
more performant to instructions with higher CDDI
values. Even the LLaMA3-70B-Instruct exposes a
clear preference for higher CDDI value as the num-
ber of constraints increases to 9, demonstrating that
“hard-to-easy” is a superior constraint distribution
for existing LL.Ms.

Multi-round inference exhibits more severe po-
sition bias compared with the single-round in-
ference. The LLMs’ performance in multi-round
inference is presented in the Fig. 5. Compared with
the results in the single-round inference, the per-
formance gap becomes more prominent. All the
LLMs gain approximately 10% improvement on
C_level accuracy. Surprisingly, the LLaMA3-8B-
Instruct and LLaMA3-70B-Instruct achieve approx-
imately 25% performance improvement by chang-
ing the constraint distribution from “easy-to-hard”
(CDDI=-1) to “hard-to-easy” (CDDI=1). This in-
dicates that the LLMs are more sensitive to the
position bias problem in a multi-round scenario.

LLMs perform better in multi-round inference
when provided with the instructions in appro-
priate constraint order Comparing the results
in single-round (Fig. 4) and multi-round inference
(Fig. 5), we observe that the LL.Ms reach better
performance if the incorporated constraints are ar-
ranged in an appropriate order. Specifically, when
the CDDI value is negative, the performance of
LLMs in multi-round inference lags behind that
in single-round inference. Nevertheless, with the
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results with the number of constraints n set to 7 and 9, respectively. With the increase of the CDDI, the constraint
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increase of the CDDI value, the LLMs can achieve
superior performance in multi-round inference and
reach their best performance in CDDI=1. An excep-
tion is the Mistral-7B-Instruct-v0.3. We attribute
this to its inferiority in processing multi-round in-
formation (Chen et al., 2024).

Position bias varies in different types of con-
straints. We present the performance of the
LLaMA3-8B-Instruct across different types of con-
straints in Tab. 1. As observed, with the increase of
the CDDI value, the model’s performance across
most constraint types shows an upward trend ex-
cept for Startend and Content, indicating that not all
the constraints can benefit from the “hard-to-easy’
constraint distribution in single-round inference.
We make a more comprehensive explanation study
in Sec. 5.3 for further investigation. Regarding the
multi-round inference, the model’s performance
only exhibits a drop tendency in the Length type

i

as the CDDI value increases, indicating that the
LLMs struggle to generate a length-controlled final
response when the length constraint is applied early
in the multi-round inference (Yuan et al., 2024).

4.3 Robustness of CDDI

Since the CDDI is calculated by comparing the con-
cordant and discordant pairs of two different con-
straint orders, there are usually multiple constraint
orders sharing the same CDDI value. Therefore,
we conduct a testing experiment to assess whether
the LLM exhibits significant fluctuations across
different constraint orders with the same CDDI
value. Specifically, we set the CDDI to -0.05, a
value that includes the most constraint orders in
our setting, and conduct single-round inference for
3 times. The experiment results are shown in Tab 2.
We calculate the P-value of the data, finding that
the P-value is much larger than 0.05. This indicates
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CDDI Length Punctuation Language ChangeCase Startend Format Keywords Content C_level 1 _level
Single-round Inference
-1 27.50 23.30 28.20 49.57 62.92 71.14 68.58 81.22 53.30 1.95
-0.8 28.23 23.90 30.70 49.00 63.50 73.64 68.46 77.78 53.60 1.80
-0.6 28.53 26.60 31.10 49.79 60.92 71.23 69.25 78.22 53.56 1.95
-04 28.53 30.70 36.10 51.64 62.33 72.41 71.58 77.83 55.05 2.10
-0.2 29.33 35.30 39.30 50.07 60.75 73.82 72.08 77.44 55.74 2.40
-0.05  30.27 36.80 42.90 52.14 60.50 74.95 73.46 77.50 56.91 2.90
0.05 29.17 38.00 46.70 50.79 61.50 72.68 74.75 75.33 56.57 2.75
0.2 28.17 43.30 50.50 52.07 61.42 76.05 75.92 72.94 57.55 2.75
04 30.23 46.40 54.50 54.07 62.83 76.64 76.29 74.17 59.14 2.65
0.6 29.83 49.70 59.20 56.71 58.58 79.09 77.42 74.33 60.12 3.00
0.8 29.40 51.70 60.50 58.07 58.25 7791 77.63 73.89 60.16 3.05
1 30.03 53.10 67.10 59.21 57.42 78.00 77.21 74.61 60.95 3.50
Multi-round Inference

-1 62.60 54.20 64.00 62.50 10.83 21.59 57.79 16.61 44.47 0.75
-0.8 59.63 61.50 64.90 61.93 13.17 22.27 62.46 17.39 45.57 0.75
-0.6 54.65 65.67 67.87 59.47 22775 25.74 67.83 20.08 47.40 0.65
-0.4 52.77 64.46 68.74 61.44 30.78 32.30 69.57 26.21 49.98 1.05
-0.2 48.73 62.42 68.74 59.16 39.00 38.67 74.67 32.02 52.07 1.25
-0.05 4648 67.17 69.97 60.97 48.79 46.38 76.04 46.58 56.35 1.40
0.05 45.32 68.84 70.08 62.18 52.68 51.19 76.62 50.47 58.04 1.80
0.2 44.81 66.73 69.91 60.34 62.41 58.35 80.20 63.22 61.79 341
04 44.30 69.10 72.50 63.50 68.00 64.50 81.75 73.56 65.39 5.60
0.6 43.71 68.20 68.87 59.83 71.98 71.71 83.87 81.77 67.47 5.05
0.8 44.35 68.00 68.37 61.54 70.31 75.94 84.49 84.88 68.76 6.00
1 44.07 69.60 70.90 64.43 72.58 81.41 85.08 87.22 70.74 4.00

Table 1: The overall performance of LLaMA3-8B-Instruct on multi-constraint instructions with different CDDI
values. From left to right, we sort the constraint types from the hardest to the easiest.

Round Length Punctuation language ChangeCase  Startend Format keywords Content C_level I_level
1 29.93 34.40 44.40 50.68 59.92 76.59 73.46 77.11 56.01 2.70
2 29.83 32.60 43.80 50.79 61.50 73.36 73.29 78.17 55.49 2.65
3 30.27 36.80 42.90 52.14 60.50 74.95 73.46 77.50 56.91 2.90
30.01+0.23  73.40+0.10 43.70+£0.75 51.20£0.82 74.97+1.61 77.59+0.53 60.64+£0.80 34.60£2.11 56.14+0.72 2.75+0.13

Table 2: The performance of LLaMA3-8B-Instruct when given the multi-constraint instruction in different constraint
orders while sharing the same CDDI value. By calculation, we obtain the P-value=0.9979.

that the fluctuation of LLM’s performance is negli-
gible among different constraint orders in the same
CDDI value.

4.4 Application of CDDI

To demonstrate the generalization of the CDDI
index, we apply it to the inference of LLaMA3-8B-
Instruct. We take the most challenging subset of
IFEval (Zhou et al., 2023b) (comprising instruc-
tions that incorporate the largest number of con-
straints) as the testing set. Since the constraints
are explicitly annotated in the IFEval, we can read-
ily reorder the test set according to the “hard-to-
easy’ constraint order defined by the CDDI index.
We then compare the model’s performance under
this reordered setting with its performance on the
original, unaltered constraint order. As shown
in the Table 3, the reordering leads to improve-

ments of 4.34% and 2.92% in constraint-level and
instruction-level accuracy, respectively. Notably,
this reordering strategy can be readily extended to
other datasets as long as the constraints within the
instructions are identifiable.

5 Explanation Study

5.1 Explanation Metric

To make an explanation for the influence brought
by the constraints of different orders, we make an
explanation study on where the LLMs mainly focus
when handling multi-constraint instructions via a
feature attribution-based explanation method (Li
etal., 2016; Wu et al., 2020). Specifically, we lever-
age the importance of the input tokens to measure
the LLMs’ attention to them. To obtain the impor-
tance of a specific instruction token ¢, to a response
token t,,, we calculate the confidence change after
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Model Length language Punctuation Format keywords ChangeCase Startend Content C_level I level
LLaMA3-8B-Instruct 55.56 33.34 25.00 84.62 85.71 95.65 72.41 97.56 36.96  70.07
LLaMA3-8B-Instruct-hard2easy ~ 55.56 44.44 50.00 69.23 85.71 95.65 82.76 90.91 4130 72,99

Table 3: The model performance on the hardest subset of IFEval. By applying the hard2easy constraint order
(CDDI=1), the LLaMA3-8B-Instruct achieves higher accuracy in instruction following.
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Figure 6: (a) The importance weights assigned by the LLM when handling constraints in different positions. (b)
The total importance weights which designated to the constraint part in the multi-constraint instructions among
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Figure 7: The importance weights across different types
of constraints under three distinct constraint orders in
the single-round setting.

the removal of the ¢,., as formulated below:

Itwyty = p(ty‘Zy) - p(ty’Zy,/tz)a (6)

where p(-|-) is the conditional probability produced
by the LLM f, Z, is the tokens before the t, and
Zy /1, 1s the tokens of Z,, after removing the token
t;. To reduce the computation, we approximate the
I, t, with the first-order gradient % (Wu
et al., 2023), where E [t,] is the token embedding
of ;. We normalize the importance I, ;, and ob-
tain the standard importance Stz,ty with the for-
mula:
L x Iy,

Nx
max; Iy

; (N

Stoty, =
ity

where Ny is the number of instruction tokens
and L is a hyper-parameter which helps to filter
the noise brought by the first-order approximation.
To visualize the LLMs’ attention to different con-
straints, we calculate the importance weight of a
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Figure 8: The importance weights across different types
of constraints under three distinct constraint orders in
the multi-round setting.

specific constraint Cy, to the final response Y with
the formula:

Seor =5 X X Sty )

ty€Y tz€C;
where Ny is the number of response tokens.

5.2 Experiment Set-up

We conduct our explanation study on the LLaMA3-
8B-Instruct model. We set the hyper-parameter
L to 10 in Eq.(7) and select three most typical
difficulty distributions: hard-to-easy (indicated by
CDDI=1), easy-to-hard (indicated by CDDI=-1)
and random (indicated by CDDI=-0.05) to con-
duct our experiments. We randomly sample 200
instances from the corresponding data which fall
in the required CDDI value in the probing task to
serve as the dataset.

12486



5.3 Results

Hard-to-easy constraint order induces the LLM
to pay more attention to the constraint part in
the multi-constraint instructions. We visualize
the importance weights of the model on the con-
straints in different positions. As shown in Fig. 6
(a), in the multi-constraint instruction following,
the model’s attention on different positions varies
with changes in the constraint orders. Specifi-
cally, when the constraints are randomly distributed
across different positions (represented by CDDI=-
0.05), the model assigns similar attention to all
positions. As the constraint order becomes more
structured (represented by CDDI=-1 and CDDI=1),
the model’s attention neither exhibits the “lost in
the middle” phenomenon observed in long-context
processing (Liu et al., 2024), nor a simply sequen-
tial distribution, but follows an iterative, laddered
order. Then, in Fig. 6 (b), we present the total
importance weight the model assigns to the con-
straint part. We observe that the “hard-to-easy”
constraint order attracts the most attention from the
model towards the constraint part, which provides
an explanation for the superiority of this constraint
order.

The LLM’s performance on various constraints
is strongly correlated with its attention patterns.
The importance weights of the model on different
types of constraints in single-round setting are pre-
sented in Fig. 7. Among the three distinct difficulty
distributions, the “hard-to-easy” (represented by
CDDI = 1) assigns the highest importance weights
to various types of constraints except for the Con-
tent and Startend. It is worth noting that this is
exactly in accord with quantitative results in Tab. 1,
i.e., as the CDDI value increases, the model’s per-
formance on the Content and Startend constraints
shows a decreasing trend instead. A similar phe-
nomenon can be observed in the multi-round set-
ting, as illustrated in Fig. 8. Overall, the results
show that the model’s accuracy in following a spe-
cific type of constraint is strongly correlated with
the attention assigned to it by the model.

6 Conclusion

In this paper, we systematically investigate the posi-
tion bias problem in the multi-constraint instruction
following. To quantitatively measure the disparity
of constraint order, we propose a novel Difficulty
Distribution Index (CDDI). Based on the CDDI,
we design a probing task. First, we construct a

large number of instructions consisting of differ-
ent constraint orders. Then, we conduct experi-
ments in two distinct scenarios. Extensive results
reveal a clear preference of LLMs for “hard-to-
easy” constraint orders. To further explore this,
we conduct an explanation study. We visualize
the importance of different constraints located in
different positions and demonstrate the strong cor-
relation between the model’s attention distribution
and its performance.

7 Limitations

Our work mainly focuses on the position bias prob-
lem in the multi-constraint instruction following.
We make a quantitative analysis of the influence
brought by different constraint orders in the instruc-
tions. However, there are still some limitations.
The constraints in our work are usually parallel
to each other, which means the order change will
not affect the semantic meaning of the instructions.
The position bias problem for for those sequential
constraints need to be further explored. Moreover,
we only investigate the phenomenon of position
bias in existing LLM without offering a solution.
In further work, we will conduct a further prob-
ing task in sequential constraints to improve the
generalization of our findings.
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A Appendix

A.1 Implementation Details

We utilize 8 NVIDIA A800 80GB GPUs to con-
duct all the experiments. We employ the vLLM
framework (Kwon et al., 2023) to accelerate the
model inference. For reproducibility, we employ
the greed search in the whole inference (i.e., setting
the “do_sample” to false.).

A.2 More details for Comstraint Sampling

In this work, We categorize the constraints into
8 different groups. The categorization is shown
in the Tab. 4. For each group, there are multiple
types of constraints. Specifically, the constraints
are designated to: (1) Keyword constraints. These
constraints focus on controlling the inclusion or
exclusion of specific words or phrases within the
response. (2) Language constraints. Language
constraints govern the linguistic properties of the
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response, including the language in which the re-
sponse is written (e.g., English). (3) Length con-
straints. These constraints focus on controlling the
overall length of the response, including the num-
ber of paragraphs, words, and sentences. (4) Con-
tent Constraints. Content-related constraints define
additional rules to ensure the response contains spe-
cific elements. (5) Format constraints. Formatting
constraints focus on how the response is structured
and styled. For example. (6) ChangeCase Con-
straints. These constraints focus on adjusting the
case of words in the response. They may require
the entire response to be in uppercase letters (e.g.,
ALL CAPS), or entirely in lowercase letters (e.g.,
all lowercase). (7) StartEnd constraints. These con-
straints limit the very beginning or ending of the
model outputs. (8) Punctuation constraints. These
constraints limit the appearance of specific com-
mas.

Considering the LLM is vulnerable to different
descriptions of the constraints (Yan et al., 2024),
we employ the GPT4o-mini to generate differ-
ent descriptions of the same constraints. Specif-
ically, given a description example, we leverage
the prompt shown in the Tab. 5 to seven distinct
variants. Overall, we obtain 8 distinct descriptions
for a specific type of constraint.
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Constraint Group

Constraint

Description Example

Include Keywords

Include keywords [keyword1], [keyword2] in
your response.

Keyword Exclude Keywords Do not include keywords [forbidden words] in
the response.
Keyword Frequency In your response, the word should appear N times.
Letter Frequency In your response, the letter [1etter] should ap-
pear [N] times.
Laneuace Response Laneuace Your ENTIRE response should be in [1anguage],
guag P guag no other language is allowed.
Your response should contain [N] paragraphs.
Number Paragraphs You separate paragraphs using the markdown di-
vider **x*,
Length :
Number Words Answer with at least/around/at most [N] words.
Answer with at least/around/at most [N] sen-
Number Sentences
tences.
Number Paragraphs -+ There should be [N] paragraphs.' Paragraphs and
. .o only paragraphs are separated with each other by
First Word in i-th Para- . .
raoh two line breaks. The [i]-th paragraph must start
grap with [first_word].
. At the end of your response, please add a
Postscript . . . .
Content postscript starting with [postscript marker].
The response must contain at least [N] placehold-
Number Placeholder ers representing the word space brackets, such as
[address].
Your response must contain exactly [N] bullet
Number Bullets points. Use the markdown bullet points such as: *
This is a pont.
. Your answer must contain a title, wrapped in dou-
Format Title . .
ble angular brackets, such as «option of joy».
Choose From Yogr response .should contain one of the following
options: [options].
Minimum Number High- | Highlight at least [N] sections in your answer
lighted Section with markdown, i.e. *highlighted section*.
Your response must have [N] sections.
Multiple Sections Mark the beginning of each section with
[section_splitter] X.
JSON Format Entire output should be wrapped in JSON format.
All Uppercase Your entire response should be in English, capital
ChaneeCase letters only.
& Your response should be in English, and in all
All Lowercase .
lowercase letters. No capital letters are allowed.
Frequency of All-capital | In your response, words with all capital letters
Words should appear at least [N] times.
End Checker Your response must finish with this phrase:
StartEnd <end_phrase>.
Quotation Wrap uour entire response with double marks.
. In your entire response, refrain from the use of
Punctuation No Commas

any commas.

Table 4: The categorization for different constraints.
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I* Task prompt */

You are provided with a <constraint> in an instruction. As a prompt engineer, your task is to rephrase the provided <constraint>
to make it more diverse. You ought to provide five more variants of the <constraint>. Make sure your revision does not
change the meaning of the original <constraint>.

/* Example */

—INPUT—

<constraint>:

Your response should contain at least 3 sentences.
—OUTPUT—

variants:

1. Respond with at least three sentences

2. Use at least 3 sentences in your reply

3. Your entire response should include at least three sentences
4. Organize your entire response in at least 3 sentences

5. Please make sure the response is at least 3 sentences long

/* Input */
—INPUT—
<constraint>:
{Given_constraint}
—OUTPUT—
variants:

Table 5: The prompts for diversifying the descriptions of a given constraint. We utilize one-shot in-context learning
to enhance the performance. The information that requires manual input is highlighted.
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