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Abstract

Retrieval-augmented Generation (RAG) relies
on effective retrieval capabilities, yet tradi-
tional sparse and dense retrievers inherently
struggle with multi-hop retrieval scenarios. In
this paper, we introduce GEAR, a system
that advances RAG performance through two
key innovations: (i) an efficient graph expan-
sion mechanism that augments any conven-
tional base retriever, such as BM25, and (ii) an
agent framework that incorporates the result-
ing graph-based retrieval into a multi-step re-
trieval framework. Our evaluation demon-
strates GEAR’s superior retrieval capabilities
across three multi-hop question answering
datasets. Notably, our system achieves state-
of-the-art results with improvements exceed-
ing 10% on the challenging MuSiQue dataset,
while consuming fewer tokens and requiring
fewer iterations than existing multi-step re-
trieval systems. The project page is available at
https://gear-rag.github.io.

1 Introduction

Retrieval-augmented Generation (RAG) has en-
hanced the performance of Large Language Models
(LLMs) (OpenAI, 2023) in Question Answering
(QA) tasks (Lewis et al., 2020). While effective for
simple queries, multi-hop QA presents a more com-
plex challenge, requiring reasoning across several
passages or documents. Consider the example in
Table 1, where finding the correct answer requires
building a 3-hop reasoning chain starting from the
question’s main entity (i.e. “Stephen Curry”). A
base retriever cannot, by design, retrieve all neces-
sary information in a single step.

To address these complex reasoning require-
ments, researchers have increasingly turned to
graph-based approaches (Fang et al., 2024; Li et al.,
2024; Edge et al., 2024; Gutierrez et al., 2024;

†The authors contributed equally to this work.

In what year did Stephen Curry’s father join the team
from which he started his college basketball career?

Table 1: A motivating example of a multi-hop question
where a base retriever cannot, by design, retrieve all
necessary information in a single step. Graph expansion
(see §4.2), which we incorporate within GEAR, enables
retrieval of subsequent hops and guides the system to-
ward the correct answer without using an LLM.

Liang et al., 2024). By extracting entities, atomic
facts, or semantic triples (Li et al., 2024; Fang et al.,
2024; Gutierrez et al., 2024), these graphs can es-
tablish more direct pathways for multi-hop reason-
ing. For instance, HippoRAG extracts triples from
passages to form a knowledge graphs and employs
a variant of PageRank for passage retrieval (Gutier-
rez et al., 2024). GraphReader uses an LLM agent
with graph-navigating operations to explore the re-
sulting graph structure (Li et al., 2024). TRACE
relies on an LLM to iteratively select triples for
constructing reasoning chains, which then either
ground answer generation, or filter irrelevant doc-
uments from initially retrieved results (Fang et al.,
2024). However, recursively prompting LLMs to
traverse graphs remains computationally expensive,
particularly as search spaces expand.

In this paper, we present GEAR, a Graph-
enhanced Agent for Retrieval-augmented gener-
ation. During the offline stage, we align passages
with their extracted triples to create interconnected
indices. This alignment allows passages to be
connected through graphs of triples. GEAR fea-
tures a graph-based passage retrieval component
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called SyncGE. Unlike previous approaches that
require expensive LLM calls for graph exploration,
our method uses an LLM only to locate initial
nodes (triples) and then employs a generic seman-
tic model to expand the triple sub-graph by ex-
ploring diverse triple beams. Additionally, GEAR
uses multi-hop context retrieved by SyncGE to con-
struct a memory that summarises information for
multi-step retrieval.

Our work refines the neurobiology-inspired
paradigm proposed by Gutierrez et al. by modeling
the communication between the hippocampus and
neocortex during episodic memory formation. In
our design, an array of proximal triples functions
as a memory gist learned through the hippocam-
pus within one or a few shots (iterations), which
is then projected back to the neocortex for later re-
call stages (Hanslmayr et al., 2016; Griffiths et al.,
2019). We highlight the complementary potential
between our graph retrieval approach and an LLM,
which, within our system, emulates the synergy
between the hippocampus and neocortex, offering
insights from a biomimetic perspective.

We evaluate the retrieval performance of GEAR
on three multi-hop QA benchmarks: MuSiQue,
HotpotQA, and 2WikiMultihopQA. GEAR pushes
the state of the art, achieving significant improve-
ments in both single- and multi-step retrieval set-
tings, with gains exceeding 10% on the most chal-
lenging MuSiQue dataset. Furthermore, we demon-
strate that our framework can address multi-hop
questions in fewer iterations while consuming sig-
nificantly fewer LLM tokens. Even with a single
iteration, GEAR offers a more efficient alterna-
tive to other iterative retrieval methods, such as
HippoRAG w/ IRCoT. Our contributions can be
summarised as follows:

• We introduce a novel graph-based retriever,
SyncGE, which leverages an LLM for locat-
ing initial nodes for graph exploration and
subsequently expands them by diversifying
beams of triples that link multi-hop passages.

• We incorporate this graph retrieval method
within an LLM-based agent framework, ma-
terialising GEAR, achieving state-of-the-art
retrieval performance across three datasets.

• We conduct comprehensive experiments show-
casing the synergetic effects between our pro-
posed graph-based retriever and the LLM
within the GEAR framework.

2 Related Work

Our work draws inspiration from two branches of
research: (i) retrieval-augmented models for QA
and (ii) multi-hop QA using combinations of LLMs
with graphical structures.

2.1 Retrieval-augmented Models for QA

Lewis et al. first showcased the benefits of augment-
ing language models’ input context with relevant
passages. Recent work by Wang et al. and Shen
et al. explores query expansion approaches, gener-
ating pseudo-documents from language models to
expand the content of original queries. Subsequent
frameworks, beginning with IRCoT, have investi-
gated the interleaving of retrieval and prompting
steps, allowing each step to iteratively guide and
refine the other (Trivedi et al., 2023; Jiang et al.,
2023; Su et al., 2024).

2.2 Multi-hop QA with LLMs and Graphs

Several architectures have introduced an offline
indexing phase to form hierarchical passage sum-
maries (Chen et al., 2023; Sarthi et al., 2024; Edge
et al., 2024). However, summarisation must be
repeated when adding new data, making knowl-
edge base updates computationally expensive. Re-
cent approaches have leveraged structured knowl-
edge to address multi-hop QA challenges with
LLMs (Park et al., 2023; Shen et al., 2024b; Li
et al., 2024; Gutierrez et al., 2024; Liang et al.,
2024; Wang et al., 2024). GraphReader, TRACE
and HippoRAG propose offline methods for ex-
tracting entities and atomic facts or semantic triples
from passages (Li et al., 2024; Fang et al., 2024;
Gutierrez et al., 2024). This allows chunks contain-
ing the same or neighbouring entities to construct
a graph of indexed passages. TRACE relies on
an LLM to iteratively select triples for reasoning
chains, which ground answer generation or filter
retrieved results. However, its search space is lim-
ited by pre-filtered candidate lists for each query.
Li et al. employ an LLM agent that selects from
a set of predefined actions to traverse knowledge
graph nodes in real time given an input question.
Liang et al. later introduced additional graph stan-
dardisation, including instance-to-concept linking
and semantic relation completion. However, this
approach heavily depends on associating triples
with pre-defined concepts for logical form-based
retrieval.

HippoRAG leverages an alignment of passages
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and extracted triples to retrieve passages based on
the Personalized PageRank algorithm (Gutierrez
et al., 2024). While achieving improvements for
single- and multi-step retrieval (when coupled with
IRCoT (Trivedi et al., 2023)), it remains agnostic
to the semantic relationships of extracted triples.
In this paper, we leverage a similar alignment of
passages and extracted triples but introduce a new
graph-based retrieval framework that uses a small
semantic model for exploring multi-hop relation-
ships. Our framework considers the contributions
of all triple elements participating in reasoning
chains, offering a more robust solution for asso-
ciating questions with triple reasoning chains.

3 Preliminaries

Let C = {c1, c2, . . . , cC} be an index of passages
and T = {t1, t2, . . . , tT : tj = (sj , pj , oj)} be an-
other index representing a set of triples associated
with the passages in C s.t. ∀tj ∈ T∃! ci ∈ C,
where sj , pj and oj the respective subject, predi-
cate and object of the j-th triple. In this setup, each
triple is uniquely linked to exactly one passage,
and a passage can potentially be associated with
multiple triples.

Given an input query q and an index of interest
R = {r1, . . . , rR}, retrieving items from R rele-
vant to q can be achieved by using a base retrieval
function hkbase (q,R) ⊆ R that returns a ranked list
of k items from R in descending order, according
to a retrieval score. BM25 or a conventional dense
retriever can serve as a base retrieval function, with-
out requiring any multi-hop capabilities.

Our goal is to retrieve relevant passages from C
that enable a retrieval-augmented model to answer
multi-hop queries (Lewis et al., 2020). To this end,
we introduce GEAR, which is a graph-enhanced
framework of retrieval agent (see Figure 1).

4 Retrieval with Synchronised Graph
Expansion

Given an input query q, let C′
q = hkbase (q,C) be

a list of passages returned by the base retriever.
Given this list, C′

q, our goal is to derive relevant
multi-hop contexts (passages) by retrieving a sub-
graph of triples that interconnect their source pas-
sages. Two challenges arise in materialising such
sub-graph retrieval: (i) locating initial triples (i.e.
starting nodes) Tq, and (ii) expanding the graph
from these initial triples while reducing the search

Figure 1: System Architecture. The left section (blue)
depicts SyncGE (detailed in §4), while the the right sec-
tion (orange), completes the GEAR system (described
in §5). A visual step-by-step walk-through of the system
is presented in Appendix C.

space. The following sections address these chal-
lenges within GEAR.

4.1 Knowledge Synchronisation

We describe a knowledge Synchronisation (Sync)
process to locate initial nodes for graph expan-
sion. We first employ an LLM to read C′

q (see
Appendix K.2) and summarise knowledge triples
that can support answering the current query q:

T′
q = read

(
C′

q,q
)
. (1)

T′
q is a collection of triples to which we refer

as proximal triples. Initial nodes Tq for graph
expansion are identified by linking each triple in
T′

q to a triple in T, using the tripleLink function:

Tq =
{
ti|ti = tripleLink(t′i) ∀t′i ∈ T′

q

}
. (2)

The implementation of tripleLink can vary. How-
ever, in this paper we consider it to be simply
retrieving the most similar triple from T using
h1base (t

′
i,T) ∀t′i ∈ T′

q.

4.2 Diverse Triple Beam Search

We borrow the idea of constructing reasoning triple
chains (Fang et al., 2024) for expanding the graph,
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Algorithm 1 Diverse Triple Beam Search
Input: q: query

b: beam size
l: maximum length
score(·, ·): scoring function
{t1, t2, . . . , tn}: initial triples
γ: hyperparameter for diversity

1: B0 ← [ ]
2: for t ∈ {t1, t2, ..., tn} do
3: s← score(q, [t])
4: B0.add(⟨s, [t]⟩)
5: B0 ← top(B0, b)
6: for i ∈ {1, . . . , l − 1} do
7: B ← [ ]
8: for ⟨s, T ⟩ ∈ Bi−1 do
9: V ← [ ]

10: for t ∈ get_neighbours(T.last()) do
11: if exists(t, Bi−1) then
12: continue
13: s′ ← s+score(q, T ◦t) # concat
14: V.add(⟨s′, T ◦ t⟩)
15: sort(V,descending)
16: for n ∈ {0, . . . , V.length()− 1} do
17: ⟨s′, T ◦ t⟩ ← V [n]

18: s′ ← s′ × e
−min(n,γ)

γ

19: B.add(⟨s′, T ◦ t⟩)
20: Bi ← top(B, b)

21: return Bi

and present a retrieval algorithm: Diverse Triple
Beam Search (see Alg. 1).

We maintain top-b sequences (beams) of triples
and the scores at each step are determined by a
scoring function. In this paper, we focus on lever-
aging a dense embedding model to compute the
cosine similarity between embeddings of the query
and a candidate sequence of triples, leaving other
implementations of the scoring function for future
work (see Section 9).

Considering all possible triple extensions at each
step, in a Viterbi decoding fashion, would be in-
tractable due to the size of T. Consequently, we
define the neighbourhood of a triple as the set
of triples with shared head or tail entities (i.e.
get_neighbours in Alg. 1). During each expan-
sion step, we only consider neighbours of the last
triple in the sequence, and avoid selecting previ-
ously visited triples (i.e. exists in Alg. 1) to further
reduce the search space.

While regular beam search can reduce the search
space, it is prone to producing high-likelihood se-
quences that differ only slightly from one another
(Ippolito et al., 2019; Vijayakumar et al., 2018).
Our algorithm increases the diversity across beams
to improve the recall for retrieval. In detail, for
each beam, we sort candidate sequences extended
from that beam in descending order, and weight
their scores based on their relative positions. Can-
didate sequences that are ranked lower, within a
beam, will receive smaller weights. Consequently,
the resulting top-b beams at each step are less likely
to share the same starting sequence.

The top-b returned sequences are flattened in a
breadth-first order. Each triple in the resulting list is
then mapped to its source passage. This alignment
between triples and passages is described in more
detail in Section 3. Let C̃q be the list of unique
passages after alignment. The output of our graph
expansion is then given by the Reciprocal Rank
Fusion (RRF) (Cormack et al., 2009) of C̃q and
the initial C′

q list of passages :

Cq = RRF
(
C̃q,C

′
q

)
. (3)

We refer to this method for retrieving passages as
Syncronised Graph Expansion (SyncGE).

5 Multi-step Extension

We further present an agentic framework that
models a human-like information-seeking process
through multi-turn interactions with the graph-
enhanced retriever. The resulting agent is referred
to as GEAR. We focus on:

• maintaining a gist memory of proximal knowl-
edge obtained throughout the different steps

• incorporating a similar synchronisation pro-
cess that summarises retrieved passages in
proximal triples to be stored in this multi-turn
gist memory

• determining if additional steps are needed for
answering the original input question

Within this multi-turn setting, the original input
question q is iteratively decomposed into simpler
queries: q(1), . . . ,q(n), where q(1) = q and n ∈
N represents the number of the current step. For
each query q(n), we use the graph retrieval method
introduced in Section 4 in order to retrieve relevant
passages Cq(n) .
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5.1 Gist Memory Constructor
To facilitate the multi-step capabilities of our agent,
we introduce a gist memory, G(n), which is used for
storing knowledge as an array of proximal triples.
At the beginning of the first iteration, the gist mem-
ory is empty. During the n-th iteration, similar to
the knowledge synchronisation module explained
in Section 4.1, we employ an LLM to read a collec-
tion of retrieved paragraphs Cq(n) and summarise
their content with proximal triples:

TG
q(n) =




read

(
Cq(n) ,q

)
, if n = 1

read
(
Cq(n) ,q,G(n−1)

)
, if n ≥ 2

(4)

Apart from the first iteration where Eq. 1 and 4
are identical, the inclusion of the memory in the
read operation differentiates the construction of
proximal triples produced at the subsequent steps
compared to the ones from Eq. 1. G(n) maintains
the aggregated content of proximal triples s.t.

G(n) =
[
TG

q(1) ◦ · · · ◦TG
q(n)

]
, (5)

where ◦ defines the concatenation operation. The
triple memory serves as a concise representation of
all the accumulated evidence, up to the n-th step.

We believe the process introduced by the read
step along with the information storage paradigm
served by the gist memory, aligns well with the
communication between the hippocampus and neo-
cortex. The combination of the two establishes the
synergetic behaviour between our graph retriever
and the LLM that we seek to achieve within GEAR.

5.2 Reasoning for Termination
After updating G(n), we assess whether it contains
sufficient evidence to answer the original question
through an LLM reasoning step:

a(n), r(n) = reason(G(n),q), (6)

where a(n) denotes the query’s answerability given
the evidence in G(n), and r(n) represents the rele-
vant reasoning. When the query is deemed answer-
able, the system concludes its iterative process.

5.3 Query Re-writing
The query re-writing process leverages an LLM
that incorporates three key inputs: the original
query q, the accumulated memory, and crucially,

the reasoning output r(n) from the previous step.
This process can be formally expressed as:

q(n+1) = rewrite
(
G(n),q, r(n)

)
, (7)

where q(n+1) represents the updated query, which
serves as input for the retriever in the next iteration.

5.4 After Termination

GEAR aims to return a single ranked list of pas-
sages. Given the final gist memory G(n) upon ter-
mination, we link each proximal triple in G(n) to a
list of passages as follows:

Ctj = passageLink (tj , k) , (8)

where j ∈
{
1, . . . , |G(n)|

}
. Similar to

tripleLink, passageLink is implemented by re-
trieving passages with a triple as the query (see
Appendix B.2). The final list of passages returned
by GEAR is the RRF of the resulting linked pas-
sages and passages retrieved across iterations:

C
(n)
q = RRF

(
Ct1 , . . . ,Ct|G(n)|

,

Cq(1) , . . . ,Cq(n)

)
. (9)

All relevant prompts for the read, reason and
rewrite steps are provided in Appendix K.2.

6 Experimental Setup

We evaluate our framework on three open-domain
multi-hop QA datasets: MuSiQue (Trivedi et al.,
2022), HotpotQA (Yang et al., 2018), and 2Wiki-
MultiHopQA (2Wiki) (Ho et al., 2020). For
MuSiQue and 2Wiki, we use the data provided
in the IRCoT paper (Trivedi et al., 2023) which
includes the full corpus, while for HotpotQA, we
follow the same setting as HippoRAG (Gutierrez
et al., 2024) to limit experimental costs. More de-
tails are provided in Appendix A.

We measure both retrieval and QA performance,
with our primary contributions focused on the re-
trieval component. For retrieval evaluation, we use
Recall@k (R@k) for k ∈ {5, 10, 15}, showing the
percentage of questions where the correct entries
are found within the top-k retrieved passages. We
include an analysis about the selected recall ranks
in Appendix D. Following standard practices, QA
performance is evaluated with Exact Match (EM)
and F1 scores (Trivedi et al., 2023).
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Retriever
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

Single-step
Retrieval

ColBERTv2 39.4 44.8 47.7 59.1 64.3 66.2 79.3 87.1 90.1
HippoRAG 41.0 47.0 51.4 75.1 83.2 86.4 79.8 89.0 92.4
BM25 33.8 38.5 41.3 59.5 62.7 64.1 74.2 83.6 86.3

+ NaiveGE 37.5 45.5 48.4 65.0 70.7 71.8 79.1 89.1 91.9
+ SyncGE 44.7 52.6 57.4 70.5 76.1 79.3 87.4 93.0 94.0

SBERT 31.1 37.9 41.6 41.2 48.1 51.5 72.1 79.3 84.0
+ NaiveGE 32.2 41.4 45.4 45.1 54.0 57.3 76.1 84.7 88.8
+ SyncGE 41.6 51.3 54.2 54.8 64.9 70.7 84.1 89.6 92.8

Hybrid 39.9 46.3 49.1 60.0 65.8 66.6 77.8 85.8 89.7
+ NaiveGE 41.8 49.4 53.0 63.0 70.8 72.6 80.6 89.4 92.7
+ SyncGE 48.7 57.7 61.2 72.6 80.9 82.4 87.4 93.3 95.2

Multi-step
Retrieval

IRCoT (BM25) 46.1 54.9 57.9 67.9 75.5 76.1 87.0 92.6 92.9
IRCoT (ColBERTv2) 47.9 54.3 56.4 60.3 86.6 69.7 86.9 92.5 92.8
HippoRAG w/ IRCoT 48.8 54.5 58.9 82.9 90.6 93.0 90.1 94.7 95.9
GEAR 58.4 67.6 71.5 89.1 95.3 95.9 93.4 96.8 97.3

Table 2: Retrieval performance for single- and multi-step retrievers on MuSiQue, 2Wiki, and HotpotQA. Results
are reported using Recall@k (R@k) metrics for k ∈ {5, 10, 15}.

6.1 Baselines

We evaluate GEAR against strong, multi-step base-
lines, including IRCoT (Trivedi et al., 2023) and
HippoRAG w/ IRCoT (Gutierrez et al., 2024),
which, similar to our framework, combines graph
retrieval and a multi-step agent. To demonstrate
our graph retriever’s (i.e. SyncGE) benefits, we
evaluate it against several stand-alone, single-step
retrievers: (i) BM25, (ii) Sentence-BERT (SBERT),
(iii) a hybrid approach combining BM25 and
SBERT through RRF and (iv) HippoRAG. Follow-
ing Gutierrez et al., we refer to the single-step setup
when multiple LLM iterations are not supported.

6.2 Implementation Details

We reproduce HippoRAG and IRCoT using the
code provided by Gutierrez et al.. To en-
sure fair comparisons, we employ GPT-4o mini
(gpt-4o-mini-2024-07-18) for all methods that
require an LLM as well as their corresponding
triple extraction. The temperature is set to 0. Our
triple extraction prompt (in Appendix K.1) is in-
spired by Gutierrez et al.. We run QA experiments
using the prompts provided in Appendix K.3.

In addition to our proposed SyncGE, we consider
a more naive implementation of GE (i.e. NaiveGE)
to evaluate the performance when no LLM is in-
volved and further demonstrate the effectiveness of
synchronisation. In NaiveGE, we input all triples
associated with C′

q (see Section 4) for diverse triple
beam search. Comprehensive implementation de-
tails are provided in Appendices B–D. Addition-
ally, Appendix F provides more experiments evalu-

1 2 3 4
Number of Iterations (n)

40

45

50

55

60

65

70

R
@

15

69.5

51.7

61.2

GeAR
Hybrid + SyncGE
HippoRAG w/ IRCoT
IRCoT (BM25)
IRCoT (ColBERTv2)

Figure 2: R@15 over 4 iterations on MuSiQue. Re-
call is computed at each iteration using the cumulative
set of retrieved documents, with prior recall values car-
ried forward for questions that terminated in earlier
iterations. The horizontal line indicates the single-step
performance of Hybrid + SyncGE.

ating GEAR with varying configurations.

7 Results

GEAR demonstrates state-of-the-art perfor-
mance in multi-step retrieval The multi-step
results in Table 2 show that our agent-based ap-
proach to multi-step retrieval is highly effective,
achieving state-of-the-art results across all datasets.
While we see significant improvements on satu-
rated datasets like 2Wiki and HotpotQA, GEAR
especially excels on MuSiQue, delivering perfor-
mance gains of over 10% compared to competitors.

SyncGE contributes to state-of-the-art perfor-
mance in single-step retrieval As shown in the
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single-step section of Table 2, our proposed Hy-
brid + SyncGE method achieves state-of-the-art
single-step retrieval performance on both MuSiQue
and HotpotQA datasets. We observe consistent
improvements using NaiveGE and SyncGE, out-
performing HippoRAG in many setups regardless
of the base retriever (i.e. sparse, dense or hybrid).
Most notably, Hybrid + SyncGE surpasses Hip-
poRAG by up to 9.8% at R@15 on MuSiQue.

Higher recall leads to higher QA performance
Our analysis shows a positive correlation between
recall and QA performance, aligning with the re-
sults of prior works (Gutierrez et al., 2024). As
shown in Table 3, GEAR achieves the highest EM
and F1 scores. A closer examination reveals in-
teresting insights. Taking MuSiQue as an exam-
ple, GEAR shows a 21% relative improvement in
R@15 compared to HippoRAG w/ IRCoT, while
achieving a 37% relative improvement in both EM
and F1 scores. Similarly to Table 2, SyncGE out-
performs HippoRAG on MuSiQue and HotpotQA.

Retriever
MuSiQue 2Wiki HotpotQA

EM F1 EM F1 EM F1

No Passages 2.6 12.5 17.2 27.9 19.5 34.3
Gold Passages 36.6 59.2 54.4 70.3 55.0 75.9

Hybrid + SyncGE 14.0 27.1 38.0 50.2 45.0 63.4
HippoRAG 8.2 18.2 39.8 51.8 40.1 57.6

IRCoT (BM25) 7.6 15.9 28.8 38.5 34.3 50.8
IRCoT
(ColBERTv2) 12.2 24.1 32.4 43.6 45.2 63.7

HippoRAG w/
IRCoT 14.2 25.9 45.6 59.0 49.2 67.9

GEAR 19.0 35.6 47.4 62.3 50.4 69.4

Table 3: End-to-end QA performance using the top-
5 retrieved passages. The best model is in bold and
second best is underlined. The top part shows the lower
and upper bounds of QA performance, while the middle
and bottom sections display scores for single-step and
multi-step retrievers, respectively.

8 Discussion

8.1 What makes GEAR work?

NaiveGE vs SyncGE As shown in Table 2, both
graph expansion variants enhance every base re-
triever’s performance across all datasets. The su-
perior performance of SyncGE indicates the effec-
tiveness of using LLMs for locating initial nodes.
Notably, it surpasses HippoRAG w/ IRCoT’s on
MuSiQue without multiple iterations.

Metric Dataset w/ Diversity w/o Diversity

R@5
MuSiQue 48.7 47.0
2Wiki 72.6 68.2
HotpotQA 87.4 85.0

R@10
MuSiQue 57.7 53.9
2Wiki 80.9 76.0
HotpotQA 93.3 92.2

R@15
MuSiQue 61.2 58.4
2Wiki 82.4 77.4
HotpotQA 95.2 94.3

Table 4: Effects of beam search diversity on Hybrid +
SyncGE across MuSiQue, 2Wiki and HotpotQA.

Diverse Triple Beam Search improves perfor-
mance As shown in Table 4, our diverse triple
beam search consistently outperforms standard
beam search across all datasets and recall ranks. By
incorporating diversity weights into beam search,
we align a language modelling-oriented solution
with information retrieval objectives that involve
satisfying multiple information needs underlying
multi-hop queries (Drosou and Pitoura, 2010).

GEAR mostly nails it the first time While
GEAR supports multiple iterations, Figure 2 shows
that GEAR achieves strong retrieval performance
in a single iteration on MuSiQue. This differenti-
ates it from IRCoT-oriented setups that require at
least 2 iterations to reach maximum performance.
This can be attributed to the fact that GEAR reads
(Eq. 4) multi-hop contexts and associates proximal
triples in gist memory with passages, establishing
synergy between our graph retriever and the LLM.
We believe this mirrors the hippocampal process
of forming and resolving sparse representations,
where gist memories are learned in a one or few-
shot manner (Hanslmayr et al., 2016). The 10%
performance gap between Hybrid + SyncGE and
GEAR at n = 1 indicates that the LLM reading
and linking processes effectively approximate the
hippocampus’s role within our framework.

8.2 How robust is GEAR?

GEAR excels at questions of low-to-moderate
complexity Figure 3 presents a detailed break-
down of retrieval performance across different hop
types, including path-finding and path-following
questions categorized by Gutierrez et al.. For 2-
hop questions, while GEAR and HippoRAG w/
IRCoT achieve similar interquartile ranges, GEAR
shows a higher mean recall, indicating superior
performance on low-complexity questions. This
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Figure 3: Analysis of R@15 performance divided by hop types on MuSiQue. The hop categorisation follows the
MuSiQue documentation. Mean recall values are indicated by grey dots for each hop type.

advantage becomes more pronounced with 3-hop
questions, where GEAR’s entire interquartile range
exceeds HippoRAG w/ IRCoT’s median perfor-
mance across both hop subdivisions. This demon-
strates GEAR’s enhanced capability in handling
moderately complex questions. In addition to
MuSiQue, 2Wiki and HotpotQA, we test GEAR
against the hand-picked case study data provided
by Gutierrez et al.. These include four path-finding
questions across four different domains. Our find-
ings (Appendix I.3) indicate that GEAR’s perfor-
mance is on par with HippoRAG w/ IRCoT, out-
performing the competition in three out of the four
cases, in terms of recall.

GEAR’s performance remains consistent across
chunks with varying numbers of triples Using
MuSiQue, we group questions based on the average
number of triples (i.e. triple density, ρt) associated
with their golden passages, and evaluate R@15
across four ranges: (i) ρt < 9, (ii) 9 ≤ ρt < 11,
(iii) 11 ≤ ρt < 13 and (iv) 13 ≤ ρt. Across
all these ranges, the recall performance of both
SyncGE and GeAR exhibits lower variation, with
significantly smaller standard deviations of 1.18≪
2.04 and 2.08 ≪ 5.59, respectively, compared to
NaiveGE and HippoRAG w/ IRCoT. Further de-
tails are provided in Appendix H.

8.3 Is GEAR efficient?

As observed in Figure 2, GEAR requires fewer iter-
ations than the competition to reach its maximum
recall performance. Furthermore, Figure 4 shows
that GEAR can act as a more efficient alternative
with respect to LLM token utilisation. We note
that even for a single iteration, GEAR uses fewer

tokens than HippoRAG w/ IRCoT. In contrast to
ours, this trend exacerbates for the competition as
the number of iterations increases. These findings
also reiterate the value of SyncGE, which outper-
forms a significantly more LLM-heavy solution on
MuSiQue, using almost 2.9 million fewer tokens.
Even in the case that HippoRAG w/ IRCoT runs
for a single iteration it would require more than
0.7 million tokens that Hybrid + SyncGE, with a
substantially lower R@15 of 51.7.
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1M
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3M

4M

To
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Hybrid + SyncGE Input
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Figure 4: Progressive accumulation of input and out-
put LLM tokens across agent iterations on MuSiQue.
The Hybrid + SyncGE method appears only to the left
of Iteration 1 as it is a single-step approach.

9 Conclusion

We propose GEAR, a novel framework that incor-
porates a graph-based retriever within a multi-step
retrieval agent to model the information-seeking
process for multi-hop question answering.

We showcase the synergy between our proposed
graph retriever (i.e. SyncGE) and the LLM within
the GEAR framework. SyncGE leverages the LLM
to synchronise information from passages with
triples and expands the graph by exploring diverse
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beams of triples that link multi-hop contexts. Our
experiments reveal that this strategy improves over
more naive implementations, demonstrating the
LLM’s capability to guide the exploration of initial
nodes for graph expansion. Furthermore, GEAR
utilises multi-hop contexts returned by SyncGE and
constructs a gist memory which is used for effec-
tively summarising information across iterations.
GEAR achieves superior performance compared to
other multi-step retrieval methods while requiring
fewer iterations and LLM tokens.

Limitations

The scope of this paper is limited to retrieval using
a graph of triples that bridge corresponding pas-
sages. While we demonstrate the effectiveness of
our graph expansion approach and GEAR, several
components could be further refined. More so-
phisticated graph construction methods addressing
challenges such as entity disambiguation (Dredze
et al., 2010) and knowledge graph completion (Lin
et al., 2015) may yield further improvements, as
discussed in Appendix E. Similarly, our choice of a
dense embedding model for the scoring function in
the diverse triple beam search could be replaced by
alternatives, such as formulating this as a natural
language inference task (Wang et al., 2021).

Beyond the core graph and scoring mecha-
nisms, our design choices for other agent com-
ponents—such as the gist memory, reasoner, and
query rewriter—adopt commonly validated prac-
tices from prior research (Trivedi et al., 2022; Li
et al., 2024; Fang et al., 2024). While effective,
exploring more sophisticated designs specifically
tailored for these functions presents an opportunity
for future performance gains.
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A Dataset Choices and Statistics

MuSiQue 2Wiki HotpotQA

Split Source IRCoT IRCoT HippoRAG

# Hops 2− 4 2 2
# Documents 139, 416 430, 225 9, 221
# Test Queries 500 500 1, 000

# Chunks (C) 148, 793 490, 454 10, 293
# Triples (T) 1, 521, 136 4, 993, 637 122, 492
Av. # T/C 10.2 10.2 11.9

Table 5: Dataset characteristics and preprocessing statis-
tics, where triples are extracted from chunks, and Av.
# T/C represents the average number of triples per
chunk.

Table 5 serves as a summary of various facts
and statistics related to the employed datasets and
the chunking and triple extraction process intro-
duced in Section 3. Please note for all the evalu-
ated datasets, we use their open-domain setting and
answerable subset if applicable.

Reasoning behind dataset split choices For
MuSiQue and 2Wiki, we use the data provided
by Trivedi et al., including the full corpus and sub-
sampled test cases for each dataset. To limit the
experimental cost for HotpotQA, we follow the set-
ting by Gutierrez et al. where both the corpus and
test split are smaller than IRCoT’s counterpart.

B More Implementation Details

B.1 Baselines Details
We implement all proposed approaches using
Elasticsearch1. For SBERT, we employ the
all-mpnet-base-v2 model with approximate k-
nearest neighbours and cosine similarity for vector
comparisons. In IRCoT experiments, we evalu-
ate both ColBERTv2 and BM25 retrievers — Col-
BERTv2 for alignment with HippoRAG’s base-
lines, and BM25 for consistency with the original
IRCoT implementation.

For all multi-step approaches, including ours, we
follow Gutierrez et al. with respect to the maximum
number of retrieval iterations, which vary based on
the hop requirements of each dataset. Thus, we
use a maximum of 4 iterations for MuSiQue and 2
iterations for HotpotQA and 2Wiki.

B.2 GEAR Details
GEAR involves several hyperparameters, such as
the beam size inside graph expansion. We ran-

1https://www.elastic.co

domly sampled 500 questions from the MuSiQue
development set, which we ensure not to overlap
with the relevant test set. We select our hyperpa-
rameters based on this sample without performing
a grid search across all possible configurations. Our
goal is to demonstrate that our method is able to
achieve state-of-the-art results without extensive
parameter tuning.

The initial retrieval phase utilises the chunks
index C as the information source, while leaving
the triple index T unused. Our graph expansion
component implements beam search with length
2, width 10, and 100 neighbours per beam. The
hyperparameter γ employed in diverse triple beam
search is set to twice the beam search width. For the
scoring function, we use the cosine similarity score
and the SBERT embedding model. In Appendix F,
we test the performance of GEAR across different
beam search length values and maximum numbers
of agent iterations.

For the single-step configurations (i.e. any base
retriever with NaiveGE or SyncGE), we set the base
retriever’s maximum number of returned chunks
to match our evaluation recall threshold. With the
multi-step setup, we maintain a consistent maxi-
mum of 10 retrieved chunks before knowledge syn-
chronisation for the purpose of matching IRCoT’s
implementation. While this 10-chunk limitation
applies to individual retrieval rounds, please note
that the total number of accessible chunks can ex-
ceed this threshold through graph expansion and
multiple GEAR iterations.

passageLink Details We use passageLink to
link each triple tj ∈ G(n) to its corresponding pas-
sages in C by running a retrieval step as follows:

hkbase (q,C ∪T) = RRF
(
hkbase (tj ,C) ,

hkbase (tj ,T)
)
, (10)

where j ∈
{
1, . . . , |G(n)|

}
and hkbase (tj ,C ∪T)

is the RRF of passages returned by both T and C
when queried with tj .

C Walkthrough Example

Table 6 provides a visual step-by-step example of
our framework. The example demonstrates how
each component contributes to the final retrieved
passages, which we hope offers useful context for
understanding our design decisions.

12060

https://www.elastic.co


Module Intermediate Output Fig.1 Sections

Offline Index Building Stage

For each passage ci ∈ C = {c1, c2, . . . , cC},
an LLM extracts a triple set, such that each
triple is uniquely linked to one single passage.

↓ Input Query from MuSiQue (Trivedi et al., 2022) (Answer: 1929)
When did the location of the basilica which is named for the same saint that the Bremen Cathedral is named for become a country?

Online Retrieval Stage

1. Base Retrieval (see §4)
For a query q, C′

q = hkbase (q,C) is a list of
passages given by the retriever, implemented
as BM25, SBERT, or a mix of both.

P1 Bremen Cathedral, P2 Münster Cathedral, P3 Basilica of the Sacred Heart
P4 Saint Justin’s Church, Frankfurt-Höchst, P5 Alatri Cathedral

2. Reader (see §4.1)

An LLM reads C′
q and summarises

knowledge triples, outputting a collection T′
q

of triples: the proximal triples.

T ′
1 ⟨Bremen Cathedral, dedicated to, St. Peter⟩

T ′
2 ⟨Alatri Cathedral, dedicated to, Saint Paul⟩

T ′
3 ⟨Alatri Cathedral, co-cathedral of, Diocese Anagni-Alatri⟩

T ′
4 ⟨Bremen, is located in, Germany⟩

2. tripleLink (see §4.1)

Initial nodes Tq for graph expansion are
identified by linking each triple in T′

q to a
triple in T, using the tripleLink function.

T 1 ⟨Bremen Cathedral, dedicated to, St. Peter⟩
T 2 ⟨Alatri Cathedral, dedicated to, Saint Paul⟩
T 3 ⟨Diocese of Macerata-Tolentino-Recanati-Cingoli-Treia, type, co-cathedral⟩
T 4 ⟨Bremen, part of, Germany⟩

4. Graph Expansion (see §4.2)

The primary component of graph expansion is
Diverse Triple Beam Search. Here, we explore
neighbourhood of a triple (defined as other
triples with shared head or tail entities) and
maintain top-b sequences (beams) of triples.

5. Gist Memory (see §5.1)

Similar to the Reader, an LLM reads a
collection of retrieved paragraphs Cq(n) and
extracts an array of proximal triples TG

q(n) ,

which are stored in the Gist Memory G(n).

T 1 ⟨Bremen Cathedral, dedicated to, St. Peter⟩
T 2 ⟨Alatri Cathedral, dedicated to, Saint Paul⟩
T 3 ⟨Lund Cathedral, dedicated to, Saint Lawrence⟩
T 4 ⟨Bremen, part of, Germany⟩

6. Reasoner (see §5.2)

After updating G(n), we assess whether it
contains sufficient evidence to answer the
original question via an LLM reasoning step.

Answerable: False Answer or reason: The provided facts do not contain
information about the location of the basilica named for St. Peter, nor do they provide
any details about when it became a country. The facts only mention the dedication of
other cathedrals to different saints.

7. Rewriter (see §5.3)

Given the original q, the accumulated
memory G(n), and the reasoning output r(n),
an LLM is used to re-write the query.
We return to step 1 and repeat.

Next query: What is the location of the basilica dedicated to St. Peter, and when did
that location become a country?

Table 6: Visual walk-through example of the modules involved in offline index construction and online retrieval in
GEAR. After query-rewriting, steps 1-7 are repeated until termination by the Reasoner, or reaching the maximum
number of iterations.
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MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

HippoRAG original prompt 41.9 46.9 51.1 75.4 83.5 86.9 79.7 88.4 91.4
our prompt 41.0 47.0 51.4 75.1 83.2 86.4 79.8 89.0 92.4

HippoRAG
w/ IRCoT

original prompt 49.9 56.4 59.3 81.5 90.2 92.3 90.2 94.7 95.8
our prompt 48.8 54.5 58.9 82.9 90.6 93.0 90.1 94.7 95.9

Table 7: Retrieval performance comparison between HippoRAG’s sequential triple extraction method and our joint
extraction approach across three datasets.

LLM Retriever MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

GPT-3.5 turbo
Hybrid + SyncGE 48.3 55.0 58.1 70.7 78.4 79.7 86.1 92.0 94.3
HippoRAG w/ IRCoT 45.5 51.0 54.8 80.0 87.9 89.8 87.4 92.6 94.6
GEAR 52.9 62.1 64.4 84.2 90.0 90.3 91.0 95.6 96.1

Table 8: Retrieval performance for our proposed retrievers and HippoRAG w/ IRCoT across various datasets. We
use gpt-3.5-turbo-1106 (temperature = 0) as the underlying LLM, to replicate HippoRAG’s experimental setup.

D Ensuring Fair Comparisons

Although related studies often use common
datasets, their experimental settings are frequently
inconsistent. For instance, Gutierrez et al. used
heavily sub-sampled corpora, drastically reducing
the number of documents (e.g., from over 5M to
9k for HotpotQA) compared to the full datasets
originally established for IRCoT (Trivedi et al.,
2022). We believe such reductions significantly
simplify the retrieval task. Therefore, in our paper,
we reproduced HippoRAG on MuSiQue and 2Wiki
using the same dataset settings (i.e., full corpus and
identical evaluation split) as defined in the original
IRCoT paper (Trivedi et al., 2022). On HotpotQA,
however, processing the full corpus established by
Trivedi et al. (2022) (over 5 million passages) was
computationally prohibitive, so we follow the same
setting as HippoRAG to limit the experimental cost.

To ensure fairness in our comparisons, we ran
all baselines using a consistent experimental setup.
Additionally, for areas of potential discrepancy, and
where possible, we report the retrieval performance
of baselines in their original configuration to con-
firm that the used experimental setup does not ad-
versely affect performance. Below, we address
any potential discrepancies in the following areas:
(i) triple extraction methodology, (ii) retrieval met-
rics, and (iii) LLMs.

Choice of triple extraction methodology Hip-
poRAG employs a sequential approach to triple ex-
traction: it first identifies named entities from a text
chunk, and then uses these entities to guide triple

extraction in a second step. In contrast, our method
extracts both entities and triples simultaneously.
Table 7 shows that both approaches achieve com-
parable retrieval performance across all datasets,
with each method excelling in different scenarios.
These results validate that joint entity and triple ex-
traction can match the effectiveness of sequential
extraction while reducing the number of required
processing steps.

Reasoning behind retrieval metrics The
MuSiQue dataset contains 2-hop, 3-hop and 4-hop
questions, where a k-hop question is defined as
one that requires k pieces of evidence to reach the
correct answer (Trivedi et al., 2022). This means 3-
hop and 4-hop questions require more than 2 pieces
of evidence. If we used Recall@2 to evaluate them,
as previous works such as (Gutierrez et al., 2024)
do, we would be misjudging these questions, since
it assumes only two pieces of evidence are enough
for perfect recall. Additionally, given modern
LLMs’ expanding context length capabilities
(Ding et al., 2024), examining recall beyond R@5
(HippoRAG’s highest evaluated rank) provides
valuable insights. Following IRCoT’s approach,
we measure up to R@15 and include R@10 as
an intermediate point, offering a comprehensive
view of model performance across retrieval depths.
Therefore, our evaluation employs recall at ranks
5, 10, and 15 (R@5, R@10, R@15).

Choice of LLM Gutierrez et al. use
gpt-3.5-turbo-1106 for their experiments,
whereas in this paper we reproduce it with GPT-4o
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mini. GPT-4o mini was selected as a more
capable alternative to GPT-3.5 Turbo (please
refer to: https://openai.com/index/gpt-4
-mini-advancing-cost-efficient-intelli-
gence). In order to alleviate any concerns
regarding discrepancies with respect to the
selected LLM, we also run experiments using
gpt-3.5-turbo-1106. Table 8 shows the retrieval
results of our proposed methods against Hip-
poRAG w/ IRCoT. We observe a similar trend to
that in Table 2—GEAR surpasses the performance
of HippoRAG w/ IRCoT.

E Why this graph construction method?

We adopt an LLM-based triple extraction methodol-
ogy, following the approach outlined in HippoRAG
(Gutierrez et al., 2024). In their study, they evalu-
ated the performance of various LLMs in OpenIE
and compared these results with those of the end-
to-end REBEL model (Huguet Cabot and Navigli,
2021). They reported substantial improvements
in triple extraction when using LLMs in domains
that deviate from conventional ClosedIE or OpenIE
settings, which are respectively overly constrained
and unconstrained in terms of named entities and
pre-defined relations. Similar concerns about the
generalisability and scalability of conventional KG
construction approaches in open-domain scenarios
are recognised by Wang et al., who sought to con-
struct their graphs without relying on pre-existing
ontologies, or KGs for named entity disambigua-
tion.

These findings resonate with the growing in-
terest in recent literature towards applying such
methodologies for automatic, schema-free knowl-
edge graph construction (Li et al., 2024; Fang et al.,
2024; Gutierrez et al., 2024; Park et al., 2024). As
our primary focus is retrieval rather than graph
construction, we adopt the triple extraction method-
ology from HippoRAG and refer readers to their
paper for a more detailed analysis.

Our work presents a novel framework for advanc-
ing the performance of RAG systems in the context
of texts associated with schema-free triples. We
follow HippoRAG’s graph construction approach,
as exploring graph construction methods falls out-
side the scope of this paper. However, this does
not imply that our proposed method relies on this
specific approach, and we believe that further im-
provements in graph construction could lead to
additional gains.

F GEAR across Different Configurations

Table 9 illustrates the performance of GEAR across
varying hyperparameter configurations, including
beam search length—applied during graph expan-
sion—and the maximum number of agent iterations.
As the maximum number of iterations increases,
GEAR achieves better retrieval performance. How-
ever, consistently with the trends shown in Figure 2,
this improvement levels off when setting the max-
imum number of iterations at n ≥ 3. In contrast,
increasing beam sffearch length above 2 slightly
reduces performance. Despite this, GEAR main-
tains highly competitive results and significantly
outperforms alternative methods shown in Table 2.

G Compatibility with Open-weight
Models

GEAR Results As shown in Table 10, we eval-
uate GEAR using popular 7-8B parameter open-
weight models, comparing them against a closed-
source alternative. On HotpotQA, Llama-3.1-7B
surpasses the closed-source alternative, achiev-
ing higher recall rates at R@10 and R@15. For
MuSiQue and 2Wiki, while the closed-source
model maintains a slight superior edge in per-
formance, the margin is narrow. Importantly,
all tested open-weight models consistently out-
perform the previous state-of-the-art, HippoRAG
w/IRCoT. This decouples GEAR from the need to
use closed-source models, suggesting that state-of-
the-art multi-step retrieval can be achieved using
more accessible models.

Diverse Beam Search Results Expanding upon
Table 4, Table 11 demonstrates that diverse beam
search consistently improves retrieval performance
across both closed-source and open-weight models
when using our proposed Hybrid + SyncGE setup.
This further confirms the broader applicability of
this approach.

H Robustness Studies

We assess the robustness of our framework in re-
trieving passages when triple extraction produces
either limited or excessive triple content. Using the
MuSiQue dataset, we group questions based on the
average number of triples (i.e. triple density, ρt)
associated with their golden passages and evaluate
R@15 performance across these ranges. Table 12
presents the results for both the single- and multi-
step retrieval settings. The passage length remains
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R@k across Different Maximum Numbers of Iterations

n = 1 n = 2 n = 3 n = 4

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

Beam Search
Length

b = 2 58.1 66.0 69.5 59.2 68.9 71.3 57.9 68.0 71.5 58.4 67.6 71.5
b = 3 55.9 64.6 67.9 57.2 66.6 70.2 58.1 67.8 71.0 56.7 66.1 70.4
b = 4 54.9 62.9 67.3 56.6 66.3 69.3 58.1 67.9 71.0 56.1 66.1 69.9

Table 9: GEAR’s retrieval performance across different hyper-parameters in terms of maximum number of agent
iterations (n) and graph expansion’s beam search length (b). Results are reported using Recall@k (R@k) for
k ∈ {5, 10, 15} for the MuSiQue dataset.

consistent across passages; hence, triple density
serves as a proxy for the quality of triple extrac-
tion.

The results showcase that SyncGE and GEAR
are more robust than the competition at retrieving
suitable passages. NaiveGE’s performance tends
to decline when the average number of triples as-
sociated with the gold passages either falls below
or exceeds a certain threshold (for MuSiQue, the
average number of triples extracted from the gold
passages is 11.71). A similar trend is observed
for HippoRAG w/ IRCoT in the case of golden
passages associated with more than 11 triples. We
believe that this trend can be partially attributed to
the Personalised PageRank machinery that makes
HippoRAG agnostic to the semantic relationships
of the extracted triples. In contrast, SyncGE and
GEAR are able to maintain consistent performance
across both dense and sparse triple extraction out-
comes.

I Qualitative Analysis

I.1 Positive Instances in MuSiQue
Table 13 showcases some query instances where
GEAR achieves perfect recall in a single iteration,
while HippoRAG w/ IRCoT achieves lower re-
call and consumes all available iterations. The
presented examples illustrate how GEAR’s Gist
Memory G(n) precisely captures the essential infor-
mation needed to answer MuSiQue’s queries, main-
taining the appropriate level of granularity with-
out including superfluous details. In contrast, Hip-
poRAG w/ IRCoT struggles to retrieve crucial in-
formation—whether due to limitations in its triple
extraction step or retriever functionality—such as
the exact population of Venice, which is necessary
for accurate responses. Furthermore, the verbose
nature of IRCoT’s thought process component con-
trasts with GEAR’s streamlined approach. The
lack of such verbose component in our approach
contributes to the fact that GEAR requires fewer

LLM tokens than the competition, as explained in
subsection 8.3.

I.2 Negative Instances in MuSiQue

We manually assess 20 problematic cases in
MuSiQue where GEAR did not achieve full re-
call performance, and we identify the specific error
types responsible for each. The findings, presented
in Table 14 indicate that the majority of the errors
are due to hallucinations of the LLM read steps,
and only a very limited number of cases can be
attributed to triple extraction.

I.3 Beyond MuSiQuE, 2Wiki and HotpotQA

We evaluate our framework on three open-domain
multi-hop QA datasets: MuSiQue (Trivedi et al.,
2022), HotpotQA (Yang et al., 2018), and 2Wiki-
MultiHopQA (2Wiki) (Ho et al., 2020). Our
dataset choices closely align with the multi-hop
QA tasks, and are consistent with related studies
in this space (Li et al., 2024; Fang et al., 2024;
Gutierrez et al., 2024; Park et al., 2024).

In order to explore the generalisability of GEAR
in additional scenarios, we use the hand-picked
case study data2 provided by Gutierrez et al.. These
include four path-finding questions across four dif-
ferent domains: books, movies, universities and
biomedicine. We test GEAR against HippoRAG
w/ IRCoT on these cases. Table 15 displays the
results. In three out of the four cases, GEAR out-
performs the competition in recall, successfully
identifying more relevant passages, and misses the
relevant passages in only one case.

J Increasing the Number of Agent
Iterations

Figure 5 expands upon the analysis shown in Figure
2 by evaluating retrieval performance over 20 itera-
tions, rather than the initial 4 iterations. The results

2https://github.com/OSU-NLP-Group/HippoRAG/
tree/main/data
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LLM
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

Closed-source GPT-4o mini 58.4 67.6 71.5 89.1 95.3 95.9 93.4 96.8 97.3

Open-weight Llama-3.1-8B 52.4 62.3 66.7 81.6 91.0 93.7 92.2 97.4 98.1
Qwen-2.5-8B 53.7 63.7 66.7 85.9 91.6 93.0 91.7 96.2 96.9

Table 10: Retrieval performance of GEAR across different closed-source and open-weight models on MuSiQue,
2Wiki and HotpotQA. Results are reported using Recall@k (R@k) for k ∈ {5, 10, 15}, showing the percentage of
questions for which the correct entries are found within the top-k retrieved passages.

MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

GPT-4o mini w/ diversity 48.7 57.7 61.2 72.6 80.9 82.4 87.4 93.3 95.2
w/o diversity 47.0 53.9 58.4 68.2 76.0 77.4 85.0 92.2 94.3

Llama-3.1-8B-Instruct w/ diversity 46.2 54.3 57.4 69.1 78.1 81.6 87.3 92.8 95.1
w/o diversity 44.9 52.7 55.0 66.9 75.9 78.2 85.0 91.7 94.4

Table 11: Retrieval performance of the Hybrid + SyncGE method with different LLMs for the read step (see Eq. 1)
w/ and w/o diversity for triple beam search. Results are reported using Recall@k (R@k) for k ∈ {5, 10, 15},
showing the percentage of questions for which the correct entries are found within the top-k retrieved passages.

Retriever ρt < 9 9 ≤ ρt < 11 11 ≤ ρt < 13 13 ≤ ρt

Single-step Retrieval Hybrid + NaiveGE 50.6 54.6 54.1 50.0
Hybrid + SyncGE 62.8 (↑ 12.2%) 61.2 (↑ 6.6%) 59.8 (↑ 5.7%) 60.1 (↑ 10.1%)

Multi-step Retrieval HippoRAG w/ IRCoT 64.4 65.5 55.0 52.8
GEAR 73.6 (↑ 9.2%) 73.7 (↑ 8.2%) 69.3 (↑ 14.3%) 69.7 (↑ 16.9%)

Table 12: Retrieval performance for single- and multi-step retrievers across different triple density measurements in
MuSiQue. Results are reported using R@15. Triple densities (ρt) are calculated as the average number of triples
associated with the gold documents for the questions within the MuSiQue’s test set.
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Number of Iterations (n)
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Figure 5: Evolution of R@15 over 20 iterations on MuSiQue. Recall is computed at each iteration using the
cumulative set of retrieved documents, with prior recall values carried forward for questions that terminated in
earlier iterations. The horizontal line indicates the single-step performance of Hybrid + SyncGE.
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Query GEAR HippoRAG w/ IRCoT

What team is the player who
led the league in sacks in
2017 a member of?

⟨Chandler Jones, team, Arizona Cardinals⟩
⟨Chandler Jones, led the league in sacks in, 2017⟩

To answer the question about the player
who led the league in sacks in 2017, I
need to identify the player and their
team from external sources, as the
provided documents do not contain that
specific information

Who is the CEO of
FleetBoston Financial’s
purchaser?

⟨FleetBoston Financial, purchaser, Bank of America⟩
⟨Bank of America, CEO, Brian Moynihan⟩

The purchaser of FleetBoston Financial
is Bank of America. To find the CEO of
Bank of America, I need to look for
information about the current leadership
of the bank. Next, I will check for the
current CEO of Bank of America to
answer the question accurately.

What UK label was
purchased by the company
that, along with the
distributor of The Cube,
and ABC, is the other
major New York-based
broadcaster?

⟨CBS, purchased, Oriole Records⟩
⟨CBS, is a major broadcaster based in, New York⟩
⟨NBC, is a major broadcaster based in, New York⟩
⟨The Cube, was distributed by, NBC⟩

The original network of Undercovers is
NBC, which is one of the major
broadcasters based in New York. Now, I
need to find out which UK label was
bought by NBC ...

What was the 2018
population of the Italian
city that’s underwater?

⟨Venice, population in 2018, 260 897⟩
The Italian city that is underwater is
Krag, British Columbia, which is a
ghost town...

Table 13: Comparison of MuSiQue queries where GEAR achieves 100% recall at R@15 in a single iteration, while
HippoRAG w/ IRCoT shows lower performance despite using all four available iterations. Cell colors indicate
recall performance: green for 100% recall, red for 0% recall, and yellow for any intermediate value. Cell values
in GEAR represent the proximal triples stored in the Gist Triple Memory. Cell values in HippoRAG w/ IRCoT
represent IRCoT’s thought process.

demonstrate a consistent pattern across all methods:
retrieval performance stabilises after approximately
4 iterations, with no substantial improvements or
degradation in subsequent iterations. While some
minor fluctuations occur beyond this point, they
are negligible.

This performance plateau can be attributed to
two key factors. First, the query re-writing mech-
anisms in all investigated approaches struggle to
generate effective subsequent queries. Second, our
analysis has identified several cases of unanswer-
able queries within MuSiQue’s answerable subset.
A representative example is provided in Table 16.
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Error Category Count Example

Base Retriever
Limitations

2/20 (10%)

Question: Who owns the record label where the singer of All Right records?
Failure Explanation: Instead of retrieving passages about the song ‘All Right,’ the base
retriever returns passages about the songs ‘All Right Now’ and ‘Who Owns My Heart,’
which are unrelated to the gold passage.

Reasoner Hallucinations 2/20 (10%)

Question: What is the name of the castle in the city where the headquarters of the
production company of A Cosmic Christmas is located?
Failure Explanation: The LLM Reasoner concluded the question was answerable, even
though key information related to ‘A Cosmic Christmas’ was still missing.

Reader Hallucinations 7/20 (35%)

Question: Who played the character in Willy Wonka and the Chocolate Factory that the
performer of Victrola was named after?
Failure Explanation: The triple ⟨Victrola, named after, Violet Beauregardel⟩ is
hallucinated to complete the hop needed to reach the answer.

Dataset Issues 5/20 (25%)

Question: What other recognition did the Oscar winner for Best Actor in 2006 receive?
Failure Explanation: The corpus has no mention that the ‘Oscars in 2006’ were also
called the ‘78th academy awards’, preventing the system from finding the relevant
information.

Missing Details during
Triple Extraction

1/20 (5%)

Question: What was the form of the language that the last name Sylvester comes from,
used in the era of the man crowned Roman Emperor in AD 800, later known as?
Failure Explanation: No triple extracted about the last sentence in the gold paragraph
(titled ‘Middle Ages’): ‘By the reign of Charlemagne, the language had so diverged from
the classical that it was later called Medieval Latin.’

Quality of the Constructed
Graph (Triple Index)

3/20 (15%)

Question: What is the largest medical school in the nation where, along with the country
of citizenship of the mother of Marie Antoinette, many expelled French Jews relocated?
Failure Explanation: The disambiguation between Marie Antoinette and Duchess Marie
Antoinette is not correctly handled.

Table 14: Analysis of 20 problematic cases in the MuSiQue dataset, divided into various error categories.
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Query
GEAR HippoRAG w/ IRCoT

Passage Titles R@5 R@10 R@15 Passage Titles R@5 R@10 R@15

Which book
was published
in 2012 by an
English author
who is a
Whitbread
Award winner?

P1 A Stitch in Time
P2 Stevie Parle
P3 The Red House
P4 Whitbread Awards
. . .
P10 Mark Haddon

50 100 100

P1 Oranges Are Not
. . .
P2 Mark Haddon
P3 William Trevor . . .
P4 The Curious . . .
. . .
P11 The Red House

50 50 100

Which war film
based on a non
fiction book
was directed by
someone
famous in the
science fiction
and crime
genres?

P1 And the Band . . .
P2 Band of Brothers
P3 Aircraft in Fiction
P4 Unchained
. . .

0 0 0

P1 Shangai Patrol
P2 Black Hawk Down
P3 Ridley Scott
P4 Outline of science
. . .

100 100 100

Which Stanford
professor works
on the
neuroscience of
Alzheimer’s?

P1 Thomas C. Sudhof
P2 Thomas C. Sudhof
P3 Judes Poirier
P4 Thomas C. Sudhof
. . .
P10 Robert Malenka
P13 Robert Malenka

50 75 100

P1 Thomas C. Sudhof
P2 Thomas C. Sudhof
P3 Manolis Kellis
P4 Giovanna Malluci
P5 Dena Dubal

50 50 50

What drug is
used to treat
chronic
lymphocytic
leukemia by
interacting with
cytosolic p53?

P1 P53 Regulation
P2 Venetoclax
P3 Chlorambucil
P4 Chronic Lympho-
cytic Leukemia

50 50 50

P1 P53
P2 Cirmtuzumab
P3 MDC1 Function
P4 Chronic Lympho-
cytic Leukemia

0 0 0

Table 15: Retrieval performance comparison between GEAR and HippoRAG w/ IRCoT. Both models are configured
with a maximum number of 4 iterations. The example questions are taken from Gutierrez et al. and showcase
multi-hop path-finding queries across different domains: books, movies, universities and biomedicine. Cell colours
indicate recall performance: green for 100% recall, red for 0% recall, and yellow for any intermediate value.
Retrieved passage titles are listed in the ’Passage Titles’ columns, with bold text indicating gold passages and Pn

indicating their position in the retrieved list.

Question Who did the producer of Big Jim McLain play in True Grit?

Gold Passages

1. Big Jim McLain: Big Jim McLain is a 1952 political thriller film starring John Wayne and
James Arness as HUAC investigators.

2. True Grit is a 1969 American western film. It is the first film adaptation of Charles Portis’
1968 novel of the same name. The screenplay was written by Marguerite Roberts. The film was
directed by Henry Hathaway and starred Kim Darby as Mattie Ross and John Wayne as U.S.
Marshal Rooster Cogburn. Wayne won his only Academy Award for his performance in this film
and reprised his role for the 1975 sequel Rooster Cogburn.

Comment No information about who was the producer of Big Jim McLain is provided in the gold passages

Table 16: Example of a query from MuSiQue that is not answerable solely based on the provided gold passages.
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K Prompts

K.1 Offline Prompts

Triple Extraction (§6.2)

# Instruction

Your task is to construct an RDF (Resource Description Framework) graph from the given passages and named
entity lists.
Respond with a JSON list of triples, with each triple representing a relationship in the RDF graph.
Pay attention to the following requirements:
- Each triple should contain at least one, but preferably two, of the named entities in the list for each passage.
- Clearly resolve pronouns to their specific names to maintain clarity.

Convert the paragraph into a JSON dict containing a named entity list and a triple list.

# Demonstration #1

Paragraph:
“‘
Magic Johnson

After winning a national championship with Michigan State in 1979, Johnson was selected first overall in the
1979 NBA draft by the Lakers, leading the team to five NBA championships during their "Showtime" era.
“‘
{{"named_entities": ["Michigan State", "national championship", "1979", "Magic Johnson",
"National Basketball Association", "Los Angeles Lakers", "NBA Championship"]}}
{{
"triples": [
("Magic Johnson", "member of sports team", "Michigan State"),
("Michigan State", "award", "national championship"),
("Michigan State", "award date", "1979"),
("Magic Johnson", "draft pick number", "1"),
("Magic Johnson", "drafted in", "1979"),
("Magic Johnson", "drafted by", "Los Angeles Lakers"),
("Magic Johnson", "member of sports team", "Los Angeles Lakers"),
("Magic Johnson", "league", "National Basketball Association"),
("Los Angeles Lakers", "league", "National Basketball Association"),
("Los Angeles Lakers", "award received", "NBA Championship"),
]
}}
“‘

# Demonstration #2

Paragraph:
“‘
Elden Ring

Elden Ring is a 2022 action role-playing game developed by FromSoftware. It was directed by Hidetaka Miyazaki with
worldbuilding provided by American fantasy writer George R. R. Martin.
“‘
{{"named_entities": ["Elden Ring", "2022", "Role-playing video game", "FromSoftware", "Hidetaka Miyazaki", "United
States of America", "fantasy", "George R. R. Martin"]}}
{{
"triples": [
("Elden Ring", "publication", "2022"),
("Elden Ring", "genre", "action role-playing game"),
("Elden Ring", "publisher", "FromSoftware"),
("Elden Ring", "director", "Hidetaka Miyazaki"),
("Elden Ring", "screenwriter", "George R. R. Martin"),
("George R. R. Martin", "country of citizenship", "United States of America"),
("George R. R. Martin", "genre", "fantasy"),
]
}}

# Input
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Convert the paragraph into a JSON dict, it has a named entity list and a triple list.

Paragraph:
“‘
{wiki_title}

{passage}

K.2 Online Retrieval Prompts

The blue-highlighted portions of the Reader prompt below indicate additional text that is only required
when the Gist Memory G(n) is active. When Gist Memory is inactive, these blue sections should be
omitted, and the {triples} parameter should be left empty.

Reader with and without Gist Memory (§4.1 and §5.1)

Your task is to find facts that help answer an input question.

You should present these facts as knowlege triples, which are structured as ("subject", "predicate", "object").
Example:
Question: When was Neville A. Stanton’s employer founded?
Facts: ("Neville A. Stanton", "employer", "University of Southampton"), ("University of Southampton", "founded in",
"1862")

Now you are given some documents:
{docs}

Based on these documents and some preliminary facts provided below,
find additional supporting fact(s) that may help answer the following question.

Note: if the information you are given is insufficient, output only the relevant facts you can find.

Question: {query}
Facts: {triples}

Reasoning for Termination (§5.2)

# Task Description:
You are given an input question and a set of known facts:
Question: {query}
Facts: {triples}

Your reply must follow the required format:
1. If the provided facts contain the answer to the question, your should reply as follows:
Answerable: Yes
Answer: ...

2. If not, you should explain why and reply as follows:
Answerable: No
Why: ...

# Your reply:

Query Re-writing (§5.3)

# Task Description:
You will be presented with an input question and a set of known facts.
These facts might be insufficient for answering the question for some reason.
Your task is to analyze the question given the provided facts and determine what else information is needed for the next step.

# Example:
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Question: What region of the state where Guy Shepherdson was born, contains SMA Negeri 68?
Facts: ("Guy Shepherdson", "born in", "Jakarta")
Reason: The provided facts only indicate that Guy Shepherdson was born in Jakarta, but they do not provide any information
about the region of the state that contains SMA Negeri 68.
Next Question: What region of Jakarta contains SMA Negeri 68?

# Your Task:
Question: {query}
Facts: {triples}
Reason: {reason}

Next Question:

K.3 Online Question Answering Prompts

The following prompt with retrieved passages combines the QA generation prompts from Gutierrez et al.
and Wang et al.. For the variation without retrieved passages, we omit the preamble and only include the
instruction, highlighted in purple .

Retrieved Passages with In-context Example (Table 3)

As an advanced reading comprehension assistant, your task is to analyze text passages and corresponding questions
meticulously, with the aim of providing the correct answer.
==================
For example:
==================
Wikipedia Title: Edward L. Cahn
Edward L. Cahn (February 12, 1899 – August 25, 1963) was an American film director.

Wikipedia Title: Laughter in Hell
Laughter in Hell is a 1933 American Pre-Code drama film directed by Edward L. Cahn and starring Pat O’Brien. The film’s
title was typical of the sensationalistic titles of many Pre-Code films. Adapted from the 1932 novel of the same name
buy Jim Tully, the film was inspired in part by "I Am a Fugitive from a Chain Gang" and was part of a series of films
depicting men in chain gangs following the success of that film. O’Brien plays a railroad engineer who kills his wife and
her lover in a jealous rage and is sent to prison. The movie received a mixed review in "The New York Times" upon its
release. Although long considered lost, the film was recently preserved and was screened at the American Cinematheque in
Hollywood, CA in October 2012. The dead man’s brother ends up being the warden of the prison and subjects O’Brien’s
character to significant abuse. O’Brien and several other characters revolt, killing the warden and escaping from the prison.
The film drew controversy for its lynching scene where several black men were hanged. Contrary to reports, only blacks were
hung in this scene, though the actual executions occurred off-camera (we see instead reaction shots of the guards and other
prisoners). The "New Age" (an African American weekly newspaper) film critic praised the scene for being courageous
enough to depict the atrocities that were occurring in some southern states.

Wikipedia Title: Theodred II (Bishop of Elmham)
Theodred II was a medieval Bishop of Elmham. The date of Theodred’s consecration unknown, but the date of his death was
sometime between 995 and 997.

Wikipedia Title: Etan Boritzer
Etan Boritzer( born 1950) is an American writer of children ’s literature who is best known for his book" What is God?"
first published in 1989. His best selling" What is?" illustrated children’s book series on character education and difficult
subjects for children is a popular teaching guide for parents, teachers and child- life professionals. Boritzer gained national
critical acclaim after" What is God?" was published in 1989 although the book has caused controversy from religious
fundamentalists for its universalist views. The other current books in the" What is?" series include What is Love?, What is
Death?, What is Beautiful?, What is Funny?, What is Right?, What is Peace?, What is Money?, What is Dreaming?, What
is a Friend?, What is True?, What is a Family?, What is a Feeling?" The series is now also translated into 15 languages.
Boritzer was first published in 1963 at the age of 13 when he wrote an essay in his English class at Wade Junior High School
in the Bronx, New York on the assassination of John F. Kennedy. His essay was included in a special anthology by New York
City public school children compiled and published by the New York City Department of Education.

Wikipedia Title: Peter Levin
Peter Levin is an American director of film, television and theatre.

Question: When did the director of film Laughter In Hell die?
Answer: August 25, 1963.
==================
Given the following text passages and questions, please present a concise, definitive answer, devoid of additional elaborations,
and of maximum length of 6 words.
==================
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Wikipedia Title : {title} {text} for each retrieved passage ...
Question: {question}

Answer:

No Retrieved Passages (Table 3)

Given the following question, please present a concise, definitive answer, devoid of additional elaborations, and of maximum
length of 6 words.

Question: {question}

Answer:
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