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Abstract

We propose Fast-and-Frugal Text-Graph (FnF-
TG) Transformers, a Transformer-based frame-
work that unifies textual and structural infor-
mation for inductive link prediction in text-
attributed knowledge graphs. We demonstrate
that, by effectively encoding ego-graphs (1-hop
neighbourhoods), we can reduce the reliance
on resource-intensive textual encoders. This
makes the model both fast at training and infer-
ence time, as well as frugal in terms of cost.
We perform a comprehensive evaluation on
three popular datasets and show that FnF-TG
can achieve superior performance compared
to previous state-of-the-art methods. We also
extend inductive learning to a fully inductive
setting, where relations don’t rely on transduc-
tive (fixed) representations, as in previous work,
but are a function of their textual description.
Additionally, we introduce new variants of ex-
isting datasets, specifically designed to test the
performance of models on unseen relations at
inference time, thus offering a new test-bench
for fully inductive link prediction.

1 Introduction

Knowledge graphs (KGs) represent complex infor-
mation as a structured collection of entities and
their relations. They are a fundamental component
of various applications, including information ex-
traction (Mintz et al., 2009; Bosselut et al., 2019;
Theodoropoulos et al., 2021) and retrieval (Dalton
et al., 2014; Gupta et al., 2019), question answering
(Saxena et al., 2022; Yu et al., 2022; Coman et al.,
2023), reasoning (Zhang et al., 2020; Jiang et al.,
2022; Niu et al., 2022), fact-aware language mod-
elling (Logan et al., 2019; Yang et al., 2023), and
many others (Fensel et al., 2020; Schneider et al.,
2022). Text-attributed KGs extend KGs by associ-
ating each entity and relation with a corresponding
textual description, which provide a richer repre-
sentation of the knowledge encoded in the graph.
In particular, the text associated with an entity may

provide a description of its relationships to other
entities. This combination of explicit structural
and implicit textual information makes modelling
text-attributed KGs particularly challenging.

Initial attempts to model KGs focused on their
graph nature, typically addressing a transductive
setting (Bordes et al., 2013; Nickel et al., 2015;
Wang et al., 2017). These models could only make
predictions for entities observed during training
and only considered the structural information of
the KG, ignoring any textual information.

To overcome this limitation, later work focused
on using the textual descriptions in KGs to ad-
dress an inductive setting (Xie et al., 2016; Shi
and Weninger, 2018; Wang et al., 2021b), meaning
that predictions can be made even for entities not
observed during training, using entity representa-
tions computed based on their textual descriptions.

Combining information from textual descrip-
tions and graph structures has proven crucial
(Schlichtkrull et al., 2017). An entity’s ego-graph,
which represents it’s 1-hop neighbourhood, pro-
vides valuable context that can help disambiguate
its role and distinguish it from similar entities.
While there has been progress in leveraging ego-
graphs, we believe that there is significant room for
more effective approaches.

Modelling text-attributed KGs in an inductive
setting poses several challenges, particularly when
it comes to effectively integrating textual and struc-
tural information in embeddings. Transformers
(Vaswani et al., 2017) have shown remarkable suc-
cess at modelling unstructured (text) data (Devlin
et al., 2019; Raffel et al., 2019; Brown et al., 2020;
Touvron et al., 2023). While their ability to model
structured (graph) data is less evident, the inher-
ent graph processing abilities of a Transformer’s
self-attention mechanism make it a natural fit for
modelling graph structures (Henderson et al., 2023).
We leverage recent advances in using Transformers
for graph encoding (Mohammadshahi and Hender-
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son, 2020, 2021; Miculicich and Henderson, 2022;
Coman et al., 2024), and propose Fast-and-Frugal
Text-Graph (FnF-TG) Transformers, which unify
textual and structural information in a framework
based solely on Transformers.

Another challenge is that text encoders are
resource-intensive, especially when the textual
descriptions of both entities and their ego-graph
neighbours need to be encoded, leading to con-
siderably increased training and inference time
(Markowitz et al., 2022). This cost can be reduced
by using smaller text encoders, but they can be con-
siderably less effective. We demonstrate that we
can reduce the dependence on large text encoders
with a more effectively encoding of ego-graphs,
using our FnF-TG Transformers and their more ap-
propriate inductive biases. This makes the overall
framework both fast in terms of time, as well as
frugal in terms of cost.

A third challenge is that previous models fail to
leverage the textual descriptions of relation labels.
They still assume a fixed (transductive) inventory of
relations, meaning that they cannot handle relations
which they did not see during training and thus
are not fully inductive. We propose an extension
of this method to address the challenge of being
fully inductive, by computing a relation embedding
from the text describing that relation. This embed-
ding serves as both the relation representation for
link prediction, analogous to the transductive case,
and also as the relation label which is input to the
self-attention mechanism of the FnF-TG’s graph
encoder component.

We showcase the effectiveness of our proposed
model on three popular datasets for inductive link
prediction in text-attributed KGs from the experi-
mental setting of Daza et al. (2021) and Wang et al.
(2021b), namely WN18RRIND, FB15k-237IND,
and Wikidata-5MIND. We show that it improves
over the state-of-the-art in all cases.

Additionally, we introduce new variants of ex-
isting datasets which are specifically designed to
evaluate the performance of models on relations
which are unseen until test time, thus offering a
new test-bench for fully inductive link prediction.

Contributions:
1. We propose a KG embedding model which

leverages the intrinsic graph processing capa-
bilities of Transformers to effectively capture
the information in both the KG’s textual de-
scriptions and the KG’s graph structure.

2. We demonstrate that Fast-and-Frugal Text-
Graph (FnF-TG1) Transformers achieve supe-
rior performance compared to previous state-
of-the-art results on three popular datasets,
even with small and efficient text encoders.

3. We extend inductive KG learning to a fully in-
ductive setting, where both entity and relation
representations are computed as functions of
their textual descriptions.

4. We introduce a new test-bench for fully in-
ductive link prediction by modifying existing
datasets to specifically test models’ perfor-
mance on unseen relations.

2 Related Work

Transductive Link Prediction In this setting,
link prediction aims to identify missing links within
a fixed and fully observable graph where all enti-
ties and their other connections are known during
training. Typically, it involves learning embed-
dings within a geometric space, as demonstrated by
models like RESCAL (Nickel et al., 2011), NTN
(Socher et al., 2013), TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014), ComplEx (Trouillon
et al., 2016), TorusE (Ebisu and Ichise, 2018), Ro-
tatE (Sun et al., 2019), and SimplE (Kazemi and
Poole, 2018). Additionally, there are approaches
that incorporate convolutional layers such as R-
GCN (Schlichtkrull et al., 2017), ConvE (Dettmers
et al., 2018), HypER (Balazevic et al., 2018), and
ConvR (Jiang et al., 2019). Moreover, recent ad-
vances have seen the integration of Transformers
in models such as CoKE (Wang et al., 2019b) and
HittER (Chen et al., 2021).

Inductive Link Prediction In this setting, link
prediction involves predicting missing links in a
dynamic graph where only partial information is
available during training. Much work has explored
leveraging limited relational knowledge between
novel entities and those already present in the train-
ing graph (Bhowmik and de Melo, 2020; Wang
et al., 2020). Examples include LAN (Wang et al.,
2019a), IndTransE (Dai et al., 2021), OpenWorld
(Shah et al., 2019), GraIL (Teru et al., 2020),
NBFNet (Zhu et al., 2021), NodePiece (Galkin
et al., 2021), and BERTRL (Zha et al., 2021). More-
over, approaches such as DKRL (Xie et al., 2016),
Commonsense (Malaviya et al., 2020), KG-BERT
(Yao et al., 2019), KEPLER (Wang et al., 2021b),

1https://github.com/idiap/fnf-tg
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BLP (Daza et al., 2021), StAR (Wang et al., 2021a),
SimKGC (Wang et al., 2022), StATIK (Markowitz
et al., 2022), iHT (Chen et al., 2023), and KnowC
(Yang et al., 2024) use language models to encode
entities based on their textual descriptions. Among
these, StATIK (Markowitz et al., 2022) stands out
as it combines both a language model and a graph
encoder, specifically employing a Message Passing
Neural Network (MPNN) (Gilmer et al., 2017) to
create entity embeddings. This makes StATIK par-
ticularly relevant to our approach and we will use it
as the state-of-the-art method of reference and com-
pare our proposed method against it to demonstrate
its effectiveness.

Transformers and Graphs Graph Transformers
(GTs) represent a significant evolution in graph in-
put methods within the Transformer architecture
(Henderson et al., 2023). Early work such as G2GT
(Mohammadshahi and Henderson, 2020, 2021; Mi-
culicich and Henderson, 2022) laid the foundation
by incorporating explicit graphs into Transformer’s
latent attention graph. Later work introduced Ro-
Former (Su et al., 2021), which uses a rotation ma-
trix to encode absolute positions, and Graphormer
(Ying et al., 2021), which uses node centrality en-
coding and soft attention biases. Other models, like
SSAN (Xu et al., 2021), JointGT (Ke et al., 2021),
TableFormer (Yang et al., 2022), and GADePo (Co-
man et al., 2024), have applied GTs to various
tasks such as document-level relation extraction,
knowledge-to-text generation, table-based question
answering, and graph-aware declarative pooling.

We continue to advance graph input methods and
show that GTs, when combined with an effective
inductive bias in the input and the latent attention
graph, achieve superior performance compared to
the previous state-of-the-art.

3 Background

3.1 Inductive Representation Learning
A text-attributed knowledge graph can be defined
as G = (E ,R, T ,D) where E represents the set
of entities, R denotes the set of relation labels,
T consists of the set of relation triples (h, r, t) ∈
E ×R×E , and D contains the textual descriptions
associated with entities and relation labels. In each
triple, h and t represent the head and tail entities, re-
spectively, which are connected by a directional re-
lation r. Inductive link prediction involves complet-
ing missing triples in the graph by leveraging the
textual descriptions associated with the entities and

relation labels. If the textual description of an entity
mentions the target relation, then this resembles an
open relation extraction task (Banko et al., 2007),
and if not then it resembles a knowledge graph com-
pletion task (Lin et al., 2015), with a continuum of
difficulties in between. Our goal is to learn an em-
bedder that maps these descriptions and the partial
graph to a representation space where the missing
triples can be inferred. Specifically, given a training
graph Gtrain = (Etrain,R, Ttrain,Dtrain), where
Etrain ⊂ E , Dtrain ⊂ D and Ttrain ⊂ T only in-
cludes triples involving entities in Etrain, the goal
is to infer the missing triples in T \ Ttrain. During
evaluation, for a given query triple Ti = (h, r, t),
the model is tasked with performing head or tail
prediction on the graph G \ Ti. This involves two
types of queries: tail prediction, where the query
is of the form (h, r, ê) and head prediction, where
the query is of the form (ê, r, t). In both cases,
the model must rank all possible candidate entities
ê ∈ Ê to identify the correct entity êt or êh and
place it at the top of the ranked list.

3.2 Structural Objective and Loss Function

We adopt the margin-based ranking loss from Bor-
des et al. (2013) as our optimisation criterion. We
construct two sets of triples: a set of true triples
T and a set of negative triples T ′, where a nega-
tive triple consists of a corrupted version of a true
triple with either the head or tail entity replaced by
a random entity (target excluded) from the train-
ing minibatch. We define the structural objective
function f using the TransE (Bordes et al., 2013)
model, which represents each triple (h, r, t) as:

fTransE(h, r, t) = −||h+ r − t||1
where h, r, and t are the vector representations of
the head entity, relation, and tail entity, respectively.
The loss function is then defined as:

Loss =
∑

(t,t′)∈(T×T ′)

max(0, 1− f(t) + f(t′))

where f(t) and f(t′) are the scores assigned to the
true triple t and the negative triple t′, respectively.

3.3 Evaluation and Metrics

Evaluation Scenarios We assess our models in
two inductive scenarios, following Bordes et al.
(2013). In the first setting, called dynamic eval-
uation, new entities may appear in the head or
tail positions, and the candidates set is defined as
Ê = Etrain ∪ Eeval. In the second setting, called
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Figure 1: Architecture of the proposed Fast-and-Frugal Text-Graph (FnF-TG) Transformer model.

transfer evaluation, both head and tail entities are
new and unseen during training, and the candidates
set is defined as Ê = Eeval, where Eeval is disjoint
from the training set of entities Etrain.

Metrics For each evaluation triple, we create two
types of queries: (h, r, ê) for predicting tails and
(ê, r, t) for predicting heads, where ê ∈ E repre-
sents all possible candidate entities, as described
in Subsection 3.1. We rank candidate triples by
their scores and evaluate the ranking of the correct
triple. We report Mean Reciprocal Rank (MRR)
and Hits@k (H@k) with k ∈ {1, 3, 10} averaged
across head and tail prediction tasks. We adopt the
filtered setting as in Bordes et al. (2013), remov-
ing valid triples from the set of negative candidate
triples when ranking candidate targets.

3.4 Proposed Architecture
Figure 1 shows the overall architecture of our pro-
posed model. There are three main components:
Knowledge Graph (KG), Text Transformer Encoder
(TT) and Graph Transformer Encoder (GT).

Knowledge Graph The text-attributed KG
component contains a set of triples of type
(hKG, rKG, tKG), along with their corresponding
textual descriptions. For each head hKG and tail
tKG, we also extract their ego-graphs (1-hop neigh-
bourhood), denoted as E(hKG) and E(tKG), re-
spectively. Then we encode each of these nodes
with the text encoder, discussed below. Specifically,
for each centre entity, we encode its textual descrip-
tion, as well as encoding the textual descriptions
of its neighbouring entities and the relations that
connect the centre entity to its neighbours.

Text Transformer Encoder The textual descrip-
tions from the KG module are passed to the Text

Transformer Encoder (TT), which produces vector
representations xTT for each entity and relation
textual description xKG in the ego-graph. More
formally, we apply the following function:

xTT = σ(BERTSIZE(xKG)[CLS]W0)W1

where W0,W1 ∈ Rd×d are two linear projection
matrices and σ is the SiLU (Elfwing et al., 2017) ac-
tivation function. We employ BERT (Devlin et al.,
2019) as our encoder and use the [CLS] vector rep-
resentation output by the encoder as the embedding.
BERTSIZE indicates that we employ different sizes
of this model released by Turc et al. (2019).

When encoding candidate entities ê ∈ Ê , we sim-
ply pass the text associated with the entity through
the TT component. The same is true for any neigh-
bouring entities required by the graph encoder (dis-
cussed below). In contrast, when encoding queries
(h, r, ·) and (·, r, t) we condition h and t on the rela-
tion type r. Similarly to StAR (Wang et al., 2021a)
and StATIK (Markowitz et al., 2022), for tail pre-
diction queries (h, r, ·) we concatenate the text as-
sociated with hKG and rKG, resulting in [h||r]KG.
For head prediction queries (·, r, t), we create an
inverse version of the relation text by prepending
its textual description with the text "inverse of",
denoted as r−1

KG. We then concatenate the text asso-
ciated with tKG and r−1

KG, resulting in [t||r−1]KG.

Graph Transformer Encoder The outputs of
the TT component, together with the ego-graphs
E(hTT ) and E(tTT ) are then input to the Graph
Transformer Encoder (GT). The input embedding
for each node of the graph is the vector output
by the TT encoder for that entity, as described
above. In addition, we add learnable segment em-
beddings to each node input, indicated as s[CENTRE]
and s[NEIGHBOUR], to disambiguate between the cen-
tre and neighbour nodes in the ego-graph. These
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embeddings indicate to the model which input
nodes will be used subsequently as the embedding
representation of the ego-graph.

To encode the graph relations, we follow Mo-
hammadshahi and Henderson (2020, 2021); Miculi-
cich and Henderson (2022); Coman et al. (2024)
in leveraging the intrinsic graph processing capa-
bilities of the Transformer model by incorporating
graph relations as relation embeddings input to the
self-attention function. But unlike in that previous
work, our relation embeddings are computed from
the text associated with the relation, rather than
coming from a fixed set of relations. For every pair
of input nodes ij, the pre-softmax attention score
eij ∈ R is computed from both the respective node
embeddings xi,xj ∈ Rd, and the embedding of
the relation rij between the i-th and j-th nodes, as:

eij =
xiWQ diag(1+ LN(rij)WR) (xjWK)⊤√

d

where WQ,WK ∈ Rd×d represent the query and
key matrices, respectively, rij represents the rela-
tion embedding output by the TT module when it
encodes the text associated with the relation be-
tween the i-th and j-th nodes, and WR ∈ Rd×d

is the relation matrix. Thus, LN(rij)WR is the
embedding of the relation between i and j, where
LN stands for the LayerNorm operation. Finally,
diag(1+ . . .) maps this vector into a diagonal ma-
trix plus the identity matrix.

When encoding candidate entities and queries
in the GT, it is crucial to ensure that no informa-
tion regarding the target triple (h, r, t) leaks into
the E(ê), E(hTT ), or E(tTT ) ego-graphs. This
precaution prevents the model from learning trivial
solutions or biases from leaked information.

3.5 Datasets and Setting

Daza et al. (2021) introduced the WN18RRIND
and FB15k-237IND inductive variants of the well-
known WN18RRTRA (Dettmers et al., 2018) and
FB15k-237TRA (Toutanova and Chen, 2015) trans-
ductive KGs. The inductive setting simulates a
dynamic scenario where new entities and triples
are dynamically added to the graph. The train-
ing graph is constructed as Gtrain = {(h, r, t) ∈
Ttrain : h, t ∈ Etrain}. The validation and test
graphs are constructed by incrementally adding
entities and triples, such that Gval = {(h, r, t) ∈
Tval : h, t ∈ Etrain∪Eval} and Gtest = {(h, r, t) ∈
Ttest : h, t ∈ Etrain ∪ Eval ∪ Etest}.

In contrast, the Wikidata5MIND KGs curated by

Wang et al. (2021b) provide a transfer learning
scenario in which the evaluation graphs are con-
structed such that the validation and test entity and
triple sets, Eval and Etest, and Tval and Ttest are dis-
joint from the training entity and triple set Etrain
and Ttrain. The validation and test graphs are con-
structed as Gval = {(h, r, t) ∈ Tval : h, t ∈ Eval}
and Gtest = {(h, r, t) ∈ Ttest : h, t ∈ Etest}. Be-
cause the graphs Gval and Gtest do not include the
entities from Gtrain, they are much smaller graphs
(see Appendix Table 6), which poses challenges for
generalisation with graph-aware models, as will be
discussed further below. We evaluate our model’s
ability to generalise to entirely new entities and
triples in this setting.

We conduct our experiments in the above-
mentioned settings of Daza et al. (2021) and Wang
et al. (2021b), where textual information extrac-
tion is an integral part. Our method is directly
comparable to DKRL (Xie et al., 2016), BLP
(Daza et al., 2021), KEPLER (Wang et al., 2021b),
StAR (Wang et al., 2021a), and the state-of-the-art
method, StATIK (Markowitz et al., 2022) which
employ the same textual encoder, structural objec-
tive, and loss function. Similar to StATIK, our work
aims to jointly model the text and the structure of
knowledge graphs, including extracting informa-
tion about KG links from the text. This sets us apart
from the setting of Teru et al. (2020), which uses
different KGs splits and is employed in GraIL (Teru
et al., 2020), NBFNet (Zhu et al., 2021), and Node-
Piece (Galkin et al., 2021), that solely focus on
using the structure of the graph without incorporat-
ing any textual information extraction component.

3.6 Controlled Experimental Setup
When comparing the performance of different mod-
els on link prediction tasks, it is crucial to establish
a fair and consistent baseline. Our experiments
in Table 2 highlight the importance of carefully
setting this baseline, as various factors can greatly
influence the results.

Specifically, we demonstrate that the computa-
tional budget, which determines training hyperpa-
rameters, can have a substantial impact on model
performance. Starting with the baseline model
BLPBERTBASE (Daza et al., 2021), we introduce im-
provements such as using inductive relations, in-
creasing the number of negative triples to match the
batch size (negatives batch tying), increasing the
embedding dimension from 128 to 768, doubling
the batch size from 64 to 128, and modifying the
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WN18RRIND FB15k-237IND
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Text-Only Models
DKRL∗

BERTBASE
0.139 0.048 0.169 0.320 0.144 0.084 0.151 0.263

BOW∗
BERTBASE

0.180 0.045 0.244 0.450 0.173 0.103 0.184 0.316

BLP∗
BERTBASE

0.285 0.135 0.361 0.580 0.195 0.113 0.213 0.363

FnF-TBERTBASE 0.373 0.238 0.442 0.647 0.266 0.174 0.297 0.453
FnF-TBERTMEDIUM 0.342 0.213 0.405 0.603 0.253 0.164 0.281 0.431
FnF-TBERTSMALL 0.320 0.197 0.379 0.572 0.239 0.152 0.265 0.411
FnF-TBERTMINI 0.268 0.156 0.318 0.498 0.204 0.128 0.223 0.354
FnF-TBERTTINY 0.193 0.098 0.230 0.385 0.164 0.100 0.176 0.289

Structure-Informed Models
StAR⋆

BERTBASE
0.321 0.192 0.381 0.576 0.163 0.092 0.176 0.309

StATIK⋆
BERTBASE

0.516 0.425 0.558 0.690 0.224 0.143 0.248 0.381

FnF-TGBERTBASE 0.732 0.652 0.785 0.875 0.316 0.214 0.350 0.524
FnF-TGBERTMEDIUM 0.737 0.661 0.789 0.873 0.314 0.214 0.353 0.515
FnF-TGBERTSMALL 0.727 0.648 0.781 0.867 0.316 0.216 0.354 0.518
FnF-TGBERTMINI 0.713 0.632 0.768 0.857 0.302 0.204 0.337 0.502
FnF-TGBERTTINY 0.638 0.543 0.700 0.808 0.288 0.195 0.318 0.475

Table 1: WN18RRIND and FB15k-237IND test set results. ∗Daza et al. (2021); ⋆Markowitz et al. (2022).

MRR
Model WN18RRIND FB15k-237IND
BLPBERTBASE 0.285 0.195

BLP•
BERTBASE

0.280 0.205

+ inductive relations 0.281 0.219
+ negatives batch tying 0.300 0.221
+ bigger embedding size 0.339 0.254
+ bigger batch size 0.366 0.260
+ better sampling method 0.373 0.266

FnF-TBERTBASE (ours) 0.373 0.266

Table 2: WN18RRIND and FB15k-237IND test set re-
sults with cumulative additions over the baseline model
BLPBERTBASE (Daza et al., 2021) that lead to our im-
proved baseline model FnF-TBERTBASE . BLP•

BERTBASE
indicates our reimplementation of BLPBERTBASE .

negative sampling strategy to two-sided reflexive,
where both head and tail entities are considered
as potential negatives. These cumulative improve-
ments lead to the development of a new text-only
model baseline, FnF-TBERTBASE , which shows sub-
stantial improvements on both the WN18RRIND
and FB15k-237IND datasets.

To ensure a fair comparison, we fixed our com-
putational budget to a constant in this paper, using a
consumer-grade GPU (NVIDIA RTX3090 24GB).
This allows for a consistent and reproducible exper-
imental setup, enabling a more accurate assessment
of performance. For more details, see Appendix A.

3.7 Inductive Link Prediction Results

As shown in the top half of Table 1, for both the
WN18RRIND and the FB15k-237IND datasets, our
inductive relation embeddings and the enhanced

Model MRR H@1 H@3 H@10
Text-Only Models

KEPLER⋄
BERTBASE

0.402 0.222 0.514 0.730

BLP∗
BERTBASE

0.478 0.241 0.660 0.871

FnF-TBERTBASE 0.597 0.427 0.722 0.896
FnF-TBERTMEDIUM 0.588 0.418 0.712 0.890
FnF-TBERTSMALL 0.588 0.417 0.714 0.889
FnF-TBERTMINI 0.562 0.391 0.683 0.870
FnF-TBERTTINY 0.526 0.348 0.649 0.849

Structure-Informed Models
StATIK⋆

BERTBASE
0.770 0.765 0.771 0.779

FnF-TGBERTBASE 0.799 0.741 0.833 0.911
FnF-TGBERTMEDIUM 0.785 0.727 0.817 0.900
FnF-TGBERTSMALL 0.781 0.721 0.816 0.898
FnF-TGBERTMINI 0.779 0.719 0.814 0.894
FnF-TGBERTTINY 0.761 0.697 0.799 0.883

Table 3: Wikidata5MIND test set results. ⋄Wang et al.
(2021b); ∗Daza et al. (2021); ⋆Markowitz et al. (2022).

controlled experimental setup result in improved
text-only models. These models rely heavily on
having powerful text encoders, as shown by the
degradation in performance when using smaller
versions of BERT as the text encoder.

The addition of our graph encoder to the model
(bottom half of Table 1) leads to a substantial in-
crease in link prediction accuracy over the text-only
model. We also see that our TG (text-graph) en-
coder results in substantially better accuracy than
the previous state-of-the-art model, StATIK. Inter-
estingly, this more effective use of graph context
also has a big impact on the model’s dependence
on powerful text encoders. Reducing the size of
the text encoder (BERTBASE > BERTMEDIUM >
BERTSMALL > BERTMINI > BERTTINY) does re-
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sult in some degradation of accuracy, but the differ-
ences are much smaller than in the text-only case.
Even with a BERTTINY text encoder, the graph-
aware model performs better than the text-only
model with a BERTBASE encoder. This shows that
the inductive bias of explicit graph relations can
be an effective alternative to extracting the same
information from text with a powerful text encoder.

This pattern of results is repeated in the transfer
case, shown in Table 3. Here, the training set is
much larger, but the graph in the test set is relatively
small with each entity having fewer neighbours
(see Appendix Table 6). This reduces the advantage
gained from adding an effective graph encoder and
the margin of our models’ improvement over the
text-only models, and over the previous state-of-
the-art model, StATIK.2 But we still see the same
pattern where the size of the text encoder has less
effect on accuracy for the graph-aware model.

3.8 Ablation Study

Table 4 presents results from our ablation studies,
showing the impact of removing various design fea-
tures from our graph-aware model on its accuracy.

MRR
Model WN18RRIND FB15k-237IND
FnF-TGBERTMEDIUM | SMALL

0.737 0.316

− rij 0.733 0.306
− s[CENTRE], s[NEIGHBOUR] 0.677 0.298
− E(hTT ), E(tTT ) 0.480 0.251
− [h||r]KG, [t||r−1]KG 0.342 0.239

Table 4: Ablation studies on the WN18RRIND and
FB15k-237IND test sets using the top FnF-TG model.
Each row indicates the performance after cumulatively
removing a specific feature.

Removing the rij relation embeddings in the pre-
softmax attention score leads to a decline in model
performance, with a more substantial drop ob-
served on the FB15K-237IND dataset compared
to the WN18RRIND dataset. Note that with this
modification the model still knows that there is
some relation to the neighbours, but does not know
its label. Removing the learnable segment embed-
dings s[CENTRE] and s[NEIGHBOUR] then removes this
unlabelled graph structure, which considerably im-
pacts the model’s performance. Eliminating the
ego-graph neighbours altogether results in an even

2StATIK has a surprisingly high H@1 score, almost iden-
tical to its H@3, H@10 and MRR scores. It is not clear why
this is the case. Regardless, our model’s MRR, H@3, and
H@10 scores are better than StATIK. MRR is the primary
evaluation measure since it summarises the entire ranking.

more substantial performance drop. Despite this,
the model remains competitive as a text-only model
compared to the BLP baseline, owing to its ability
to leverage relation conditioning features to rep-
resent candidate relations. Finally, removing the
relation conditioning [h||r]KG and [t||r−1]KG, re-
sults in a further notable decrease in performance.
Without relation conditioning, the model loses its
ability to anticipate the query relation, severely im-
pacting its accuracy.

3.9 Efficient Text Encoders
Being able to reduce the size of the text encoder
with minimal degradation in accuracy is important
because the text encoder is a substantial part of
the training cost. In Figure 2 we plot the relative
reduction in accuracy against the relative reduc-
tion in training time as we reduce the size of the
text encoder, for the WN18RRIND and the FB15k-
237IND datasets. We see that reducing the encoder
size by a factor of four reduces the training time
by a factor of three for WN18RRIND (and nearly
two for FB15k-237IND) with very little reduction
in accuracy.
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Figure 2: Accuracy and training time plotted as a func-
tion of text encoder size, relative to the largest text
encoder with the highest accuracy, shown as (1.0, 1.0).
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WN18RR FB15k-237 Wikidata5M
Training Evaluation MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

FnF-TBERTTINY

IND IND 0.193 0.098 0.230 0.385 0.164 0.100 0.176 0.289 0.526 0.348 0.649 0.849
FIR IND 0.169 0.080 0.198 0.346 0.143 0.087 0.153 0.253 0.478 0.306 0.591 0.793

IND IND \ FIR 0.307 0.210 0.353 0.495 0.171 0.102 0.185 0.308 0.594 0.451 0.697 0.849
FIR IND \ FIR 0.064 0.012 0.082 0.159 0.024 0.007 0.026 0.052 0.219 0.054 0.334 0.499

FnF-TGBERTTINY

IND IND 0.638 0.543 0.700 0.808 0.288 0.195 0.318 0.475 0.761 0.697 0.799 0.883
FIR IND 0.573 0.480 0.629 0.738 0.249 0.165 0.274 0.418 0.711 0.644 0.749 0.837

IND IND \ FIR 0.585 0.483 0.652 0.769 0.282 0.176 0.311 0.514 0.726 0.646 0.781 0.867
FIR IND \ FIR 0.108 0.028 0.147 0.242 0.050 0.023 0.051 0.099 0.401 0.287 0.480 0.589

Random baseline

− − 0.0003 − − − 0.0007 − − − 0.0013 − − −

Table 5: Fully inductive link prediction results.

3.10 Fully Inductive Link Prediction Results

The experimental setting of Daza et al. (2021) and
Wang et al. (2021b) do not support evaluation on
unseen relations. One distinctive advantage of our
model is that it is not restricted to a fixed set of
relation labels learned during training. Although
we do show that conditioning on relation texts im-
proves accuracy even on seen relations (see Table
2), it is important to evaluate our model in a fully
inductive setting, where relations are also unseen,
in addition to entities.

To this end, we propose a new experimental set-
ting for a fully inductive relations (FIR) evaluation,
by converting the WN18RRIND, FB15k-237IND,
and Wikidata-5MIND evaluations to their respec-
tive FIR versions. More specifically, we focus on
the long tail of relations and remove the least fre-
quent relation labels until 10% of edges have been
removed from the training graph Gtrain. We then
train a new set of models on this new version so
they have not seen the removed relation labels, and
evaluate them on both the full set of test relations
(IND) and specifically on the relations for the un-
seen labels (IND \ FIR). Given that all the pre-
vious models (DKRL, BLP, KEPLER, StAR, and
StATIK) are inductive in entities but transductive
in relations, none of them can make informed pre-
dictions in this setting, so we compare to a random
baseline which computes the expected MRR for
random rankings of candidate entities Ê as follows:

E[MRRrandom] =
1

|Ê |

|Ê|∑

i=1

1

i

The results in Table 5 show the performance of our
model on this new setting. Our approach shows

promising results as it outperforms the random
baseline by a significant margin. However, the
performance drops considerably when training on
FIR and evaluating on IND \ FIR, indicating that
the model struggles with unseen relations. Notably,
the results on the Wikidata-5M dataset are consid-
erably better than those obtained on the WN18RR
and FB15k-237 datasets, probably due to having
relations with more descriptive texts. Nevertheless,
these results highlight the need for further research
in developing models that can effectively general-
ize to unseen relations.

4 Conclusion

We presented a new Transformers-based approach
to link prediction in text-attributed knowledge
graphs that combines textual descriptions and
graph structure in a fully inductive setting. Our
Fast-and-Frugal Text-Graph (FnF-TG) Transform-
ers outperform previous state-of-the-art models on
three popular datasets, showcasing the importance
of capturing rich structured information about en-
tities and their relations. Our approach achieves
superior performance while maintaining efficiency
and scalability, making it a promising solution for
large-scale knowledge graph applications. More-
over, our ablation studies provide insights into the
key factors contributing to its effectiveness, demon-
strating the value of each component in our model.
Additionally, we proposed a new evaluation setting
for fully inductive link prediction, where relations
are also inductive, and demonstrated the potential
of our approach in this setting.
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Limitations

While our approach has achieved promising results,
there are opportunities for further improvement.

One area for exploration is optimising the scal-
ability of our Graph Transformer Encoder com-
ponent (see Figure 1), which currently requires
computing fully quadratic attention over the entire
ego-graph of a given entity. In fact it could still re-
quire considerable resources if the number of nodes
in the ego-graph is scaled to the order of thousands,
hundreds of thousands, or even millions.

Our work demonstrates that effectively captur-
ing even local neighbourhood information is both
non-trivial and under-explored and that it can sig-
nificantly enhance performance. Indeed, our sim-
plification to a 1-hop neighbourhood (ego-graph)
was a careful decision to balance effectiveness
and complexity. This approach not only allows
for a fair comparison with the current state-of-the-
art method, StATIK (Markowitz et al., 2022), but
also mitigates the exponential increase in computa-
tional complexity (see Appendix Subsection A.2)
associated with larger neighbourhoods. While this
predefined 1-hop neighbourhood provides a solid
starting point, there is room to explore better al-
ternatives. For instance, investigating multi-hop
neighbourhoods or adaptive neighbourhood defini-
tions could uncover more nuanced insights from the
graph structure, potentially leading to even better
results.

By building upon our framework, future work
could refine these aspects, ultimately enhancing the
effectiveness and versatility of our approach.
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A Appendix

A.1 Datasets statistics

Table 6 provides the statistics of the datasets used
in our experiments. E represents the set of entities,
R denotes the set of relation labels, T consists of
the set of relation triples (h, r, t) ∈ E × R × E ,
and E(e) shows the mean and standard deviation
(µσ) of the number of neighbours in an entity’s
ego-graph.

A.2 Complexity of FnF-TG

Our method exhibits identical computational com-
plexity to StATIk (Markowitz et al., 2022), with
O(N +Q) complexity, where N denotes the num-
ber of nodes in the graph and Q represents the
number of queries (h, r, ê) and (ê, r, t).

A.3 Training and Implementation Details

We provide details on the training and implementa-
tion of our models on three datasets: WN18RRIND,
FB15k-237IND, and Wikidata5MIND.

Seeds and Epochs We run our experiments
with five different seeds (73, 21, 37, 3, 7) for
WN18RRIND and FB15k-237IND, and two seeds
(73, 21) for Wikidata5MIND due to its large scale
(see Table 6). We train our models for 40 epochs on
WN18RRIND and FB15k-237IND, and 5 epochs on
Wikidata5MIND, following previous works (Daza
et al., 2021; Markowitz et al., 2022).
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Dataset R Etrain Ttrain E(e)train Eval Tval E(e)val Etest Ttest E(e)test
WN18RRIND 11 32, 755 69, 585 2, 123,15 4, 094 11, 381 1, 171,33 4, 456 12, 037 1, 181,35
FB15K-237IND 237 11, 633 215, 082 18, 4928,91 1, 454 42, 164 4, 7010,63 2, 416 52, 870 4, 9712,29
Wikidata-5MIND 822 4, 579, 609 20, 496, 514 4, 484,41 7, 374 6, 699 0, 910,78 7, 475 6, 894 0, 920,81

Table 6: WN18RRIND, FB15K-237IND, and Wikidata-5MIND datasets statistics. E represents the set of entities, R
denotes the set of relation labels, T consists of the set of relation triples (h, r, t) ∈ E ×R× E , and E(e) shows the
mean and standard deviation (µσ) of the number of neighbours in an entity’s ego-graph.

Hyperparameters We set the number of sam-
pled neighbors per entity based on the dataset statis-
tics (Table 6): 10 for WN18RRIND, 40 for FB15k-
237IND, and 1 for Wikidata5MIND. We use 24
words of text for each xKG in WN18RRIND and
FB15k-237IND, and 64 words for Wikidata5MIND.

Graph Transformer Encoder We implement
the Graph Transformer Encoder layer using a pre-
LayerNorm Transformer (Xiong et al., 2020) with
a SwiGLU-type pointwise feed-forward network
(Shazeer, 2020). We use a single GT layer, as
multiple layers did not improve performance while
increasing latency.

Optimisation We set the learning rate to 1e−5

for a batch size of 32 and scale it proportionally
with the batch size following a power-of-2 rule to
fit the GPU budget. We use RAdam (Liu et al.,
2020) as our optimiser and a cosine learning rate
decay throughout the training process.

Libraries We develop our models using PyTorch
(Paszke et al., 2019), Lightning (Falcon and The Py-
Torch Lightning team, 2019), and Hugging Face’s
Transformers (Wolf et al., 2020) libraries.

A.4 Computational Budget
We fix our computational budget to a constant
consumer-grade GPU (NVIDIA RTX3090 24GB)
as stated in Subsection 3.6 and report the GPU bud-
get per run for each dataset on FnF-TGBERTBASE rel-
ative to the largest text encoders. The GPU budget
per run is 4 GPU/h for WN18RRIND, 6 GPU/h for
FB15k-237IND, and 40 GPU/h for Wikidata5MIND.
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