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Abstract

We introduce the first highly multilingual
speech and American Sign Language (ASL)
comprehension dataset by extending BELE-
BELE. Our dataset covers 91 spoken languages
at the intersection of BELEBELE and FLEURS,
and one sign language (ASL). As a by-product
we also extend the Automatic Speech Recogni-
tion Benchmark, FLEURS, by 20%.

We evaluate 2M-BELEBELE dataset for both
5-shot and zero-shot settings and across lan-
guages, the speech comprehension accuracy
is =~ 10% average lower compared to reading
comprehension.

1 Introduction

From an AI perspective, text understanding and
generation services are used globally in more than
a hundred languages, but the scarcity of labeled
data poses a significant challenge to developing
functional systems in most languages. Although
natural language processing (NLP) datasets with
extensive language coverage, such as FLORES-
200 (NLLBTeam, 2024), are available, they mainly
concentrate on machine translation (MT). Multilin-
gual evaluation benchmarks such as those for mul-
tilingual question answering (Lewis et al., 2020;
Clark et al., 2020), natural language inference (Con-
neau et al., 2018), summarization (Hasan et al.,
2021; Ladhak et al., 2020), and reasoning datasets
(Ponti et al., 2020; Lin et al., 2021) collectively
cover only about 30 languages. Furthermore, the
extension of such datasets to speech or American
Sign Language (ASL) is lacking, with the excep-
tion of FLEURS (Conneau et al., 2022; Tanzer,
2024), which is based on FLORES-200.

The recent BELEBELE benchmark is the first
corpus that addresses text reading comprehension
for a large number of languages following a multi-
way parallel approach (Bandarkar et al., 2023). The
entire BELEBELE text statistics are summarized in
Table 1 in Appendix A.
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Figure 1: 2M-BELEBELE entry: beyond passage, ques-
tion and multiple choice answers in text from BELE-
BELE, we extend to ASL and 91 speech languages.

In this work, we extend the BELEBELE dataset
to speech and sign (Section 3). By doing so, we
create the first highly multilingual speech and sign
comprehension dataset: 2M-BELEBELE, which is
composed of human speech recordings covering
91 languages and human sign recordings for ASL.
This dataset will enable to researchers conducting
experiments on multilingual speech and ASL un-
derstanding.

As a by-product of 2M-BELEBELE, we also ex-
tend the FLEURS dataset (which is widely used
to benchmark language identification and ASR) by
providing recordings for more FLORES-200 sen-
tences than were previously available and adding
sign language, creating a new 2M-FLORES. This
2M-FLORES extends FLEURS by 20%.

Finally, we provide a very basic set of experi-
ments that evaluate 2M-BELEBELE and provide
some reference results. We use direct and/or cas-
caded systems to evaluate 2M-BELEBELE dataset
(Section 4). We also list several further experimen-
tation that 2M-BELEBELE unblocks. Note that the
main contribution of this paper is the creation of the
first highly multilingual speech and sign compre-
hension dataset. The complete set of experiments
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is out of the scope of this paper (Limitations). By
open-sourcing our dataset, we encourage the scien-
tific community to pursue such experimentation.

2 Related Work

Speech Comprehension The outstanding perfor-
mance of some MT and text-to-speech (TTS) mod-
els has enabled a rise in the number of works using
synthetically generated training data. Furthermore,
some recent works propose to also use synthetic
data for evaluation; e.g., (Ustiin et al., 2024; SEAM-
LESSCommunicationTeam, 2025; Nguyen et al.,
2024; Nachmani et al., 2023). This strategy al-
lows researchers to extend datasets to low-resource
languages and to other modalities, such as speech.
However, we prove that using synthetic data for
evaluation does not provide comparable conclu-
sions as relying on human speech for the particular
task of automatic speech recognition (ASR) and the
FLEURS domain (Appendix C). The evaluation
dataset that is closest to the speech comprehension
evaluation dataset presented in this paper is the gen-
erative QA dataset proposed in (Nachmani et al.,
2023). The dataset covers 300 questions in English.

ASL Comprehension Compared to spoken lan-
guages, sign languages are considered low-
resource languages for natural language processing
(Yin et al., 2021). Most popular datasets cover
small domains discourse; e.g., weather broadcasts
(Camgoz et al., 2018), which has limited real world
applications. There have been previous releases
of large scale open domain sign language datasets;
e.g., (Albanie et al., 2021; Shi et al., 2022; Uthus
et al., 2024). However, the results and challenges
on such datasets suggest that computational sign
language research still requires additional datasets
to reach the performance of their spoken language
counterparts (Miiller et al., 2022, 2023). With the
release of the ASL extension of the BELEBELE
dataset, we aim to provide additional, high quality
sign language data with gloss annotations to under-
pin further computational sign language research.
Furthermore, due to the paragraph-level nature
of the BELEBELE dataset, we enable paragraph-
context sign language translation, which has been
reported to improve translation performance (Sin-
can et al., 2023).

3 2M-BELEBELE

FLEURS and BELEBELE passage alignment.
Since BELEBELE uses passages constructed from

sentences in the FLORES-200 dataset, and
FLEURS (Conneau et al., 2022) is a human speech
version of FLORES-200 for a subset of its lan-
guages, we create a speech version of BELEBELE
by aligning its passages with the speech segments
available in FLEURS. This extension can be done
without extra human annotation, just by comput-
ing the alignment between FLEURS and BELE-
BELE passages. However, such alignment does
not cover the entire BELEBELE corpus because
FLEURS does not cover the entirety of FLORES-
200. There are 91 languages shared between
FLEURS and BELEBELE. FLEURS does not
cover the same passages as BELEBELE in all those
91 languages, which means that some languages
have more speech passages than others. In gen-
eral, we are able to match almost ~ 80% of the
passages. Figure 2 shows the number of FLEURS
paragraphs we can match, thus obtaining the num-
ber of paragraphs that must be recorded in order to
cover all passages BELEBELE.

Speech recordings. We commission human
recordings for the part of the BELEBELE dataset
that is not covered by existing FLEURS record-
ings, as well as for elements of BELEBELE that do
not exist in FLEURS (i.e. questions and answers).
Recording participants must be native speakers of
the languages they record. They must have an im-
peccable grasp of the conventions used in their
respective languages for the narration of texts. The
three tasks that participants are asked to perform
are: (1) Read aloud and record the text passages
provided (from FLORES-200); (2) Read aloud
and record the provided written questions; (3) Read
aloud and record the provided written answers. For
the task, we provide the participants with (a) the
text of the sentences to be recorded in TSV format
(the number of passages may differ from language
to language), (b) the written questions (900 per lan-
guage, and (c) the written answer options (3,600
per language). Additional details on the recording
guidelines provided to annotators are reported in
the appendix B. We verify the quality of the record-
ings by randomly selecting 270 recordings (30%
of sample size) and ensuring that the recordings do
not contain background or ambient noise and that
the voices of the participants are clearly audible.

Sign recordings. To obtain ASL sign recordings,
we provide translators of ASL and native signers
with the English text version of the sentences to
be recorded. The interpreters are then asked to

10894



B Flewrs [ 2M-Belsbele

100%

5%

50%

26%

Figure 2: FLEURS vs New Recordings from 2M-BELEBELE for sentences in passages.

translate these sentences into ASL, create glosses
for all sentences, and record their interpretations
into ASL one sentence at a time. The glosses are
subjected to an additional quality check by expert
annotators to harmonize the glossing format. To
harmonize the recording conditions and eliminate
visual bias, the videos are recorded against plain
monochrome backgrounds (e.g., white or green),
and signers are requested to wear monochrome
upper body clothing (e.g., black). All videos are
captured in 1920x1080p resolution with all of the
signing space covered in FOV. The recordings are
done in 60 frames per second to address most of
the motion blur that happens during signing.

2M-BELEBELE Statistics. The final dataset is
composed of 91 in speech plus 1 in sign. Each of
the languages’ respective subsets includes 2,000
utterances organized in 488 distinct passages, 900
questions, and 4 multiple choice answers per ques-
tion. For our recorded data (the red portion of
Figure 2 plus questions and answers), we have one
audio file or two per sentence, depending on the
number of available participants (one participant
only in 23 languages, and two participants in 51
languages). When two speakers are available, we
request that one should represent a higher-pitch
range, and the other a lower-pitch range for each
passage. More details are available in Appendix A.

In addition, the data set includes video record-
ings in ASL for 2,000 FLORES sentences (not
including the test partition) and is similarly orga-
nized in 488 distinct passages, as well as 900 ques-
tions and 4 multiple-choice answers for each ques-
tion (see summary table 1). The ASL dataset was
recorded by two interpreters, but, contrary to what
was possible in other languages, each interpreter
could only cover one-half of the dataset each.

Passages Questions/Answers

Distinct Q 900
Multiple-choice A 4

Avg words Q (std) 12.9 (4.0)
Avg words A (std) 4.22.9)

Distinct Passages 488
Questions per passage 1-2

Avg words (std) 79.1 (26.2)
Avg sentences (std) 4.1(1.4)

Table 1: Statistics for 2M-BELEBELE, which covers 91
spoken languages plus ASL. Average words are com-
puted for English.

4 Experiments

We evaluate 2M-BELEBELE, and compare per-
formance across modalities. Our comparison is
limited in number of systems and combination of
modalities. 2M-BELEBELE offers the opportunity
to check multimodal comprehension by combining
speech/text/sign passages; questions and answers.
In our case, we only provide results for entire text
passages, questions and answers and speech pas-
sages, text questions and answers. A more compre-
hensive set of experiments is out of the scope of
this paper, which aims at unblocking such experi-
mentation by open-sourcing the dataset itself.

Systems. We use the speech section of the 2M-
BELEBELE dataset to evaluate the speech com-
prehension task with a cascaded system consist-
ing of first speech recognition (ASR) using the
WHISPER-LARGE-V3 model (Radford et al., 2022)
(hereinafter, WHISPER) and SEAMLESSM4T (cor-
responding to SEAMLESSM4T-LARGE V2) model
(SEAMLESSCommunicationTeam, 2025) feeding
into LLAMA-3!. We also provide results with a
unified system SPIRITLM (Nguyen et al., 2024),
which is a multimodal language model that freely
mixes text and speech. Since the size of this model
is 7B and is based on LLAMA-2, we also add a
comparison to the LLAMA-2 model. We compare
these results with LLAMA-3 and LLAMA-3-CHAT

"https://ai.meta.com/blog/meta-1lama-3/
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Dataset Model Size  Vocab  #Lang AVG | % >50 | % >70 Eng | non-Eng AVG

5-Shot In-Context Learning (examples in English)

BELEBELE LLAMA-3 70B 128K 59 85.4 96.6 94.9 94.8 85.2
2M-BELEBELE WHISPER + LLAMA-3 70B 128K 59 774 88.1 72.9 944 77.1

BELEBELE LLAMA-3 70B 128K 39 84.9 97.4 94.9 94.8 84.7
2M-BELEBELE WHISPER + LLAMA-3 70B 128K 39 717.1 89.7 71.8 94.4 76.6
2M-BELEBELE SEAMLESSMA4T + LLAMA-3 70B 128K 39 81.7 94.9 92.7 93.5 81.4
2M-BELEBELE WHISPER + LLAMA-2 7B 32K 1 - - - 49.9 -
2M-BELEBELE SPIRITLM 7B 37K 1 - - - 259
Zero-Shot

BELEBELE LLAMA-3-CHAT 70B 128K 59 87.5 98.3 96.6 95.8 87.3
2M-BELEBELE WHISPER + LLAMA-3-CHAT 70B 128K 59 79.4 93.2 78.0 95.7 79.2

BELEBELE LLAMA-3-CHAT 70B 128K 39 87.0 97.4 94.9 95.8 86.7
2M-BELEBELE WHISPER + LLAMA-3-CHAT 70B 128K 39 79.1 92.3 76.9 95.7 78.7
2M-BELEBELE ~ SEAMLESSMA4T + LLAMA-3-CHAT  70B 128K 39 84.8 94.9 94.9 95.5 84.5

Table 2: Summary of accuracy results on 2M-BELEBELE compared to BELEBELE across models and evaluation
settings. AVG and non-Eng AVG refers to QA accuracy; and > 50/70 refers to the proportion of languages for
which a given model performs above 50/70% for question and answer in text and passage in speech.

using the BELEBELE text passage as input.

Languages For the mentioned systems, we report
the results in 5-shot in-context learning and zero-
shot on 59 languages at the intersection of language
coverage between WHISPER and 2M-BELEBELE
and 39 languages at the intersection of WHISPER,
SEAMLESSMA4T and 2M-BELEBELE (see Table 3
in Appendix A with the detailed list of languages
per system).

Zero-shot Evaluation. We use the same evalua-
tion strategy as in (Bandarkar et al., 2023). SPIR-
ITLM is not available in chat mode.

5-shot In-Context Learning. The few-shot ex-
amples are taken randomly from the English train-
ing set and they are prompted as fext format to the
model. Different from (Bandarkar et al., 2023), we
do not pick the answer with the highest probability
but directly assess the predicted letter of the answer.
For 5-shot and zero-shot settings, our instruction
prompt is as follows “Given the following passage,
query, and answer choices, output the letter corre-
sponding to the correct answer. Do not write any
explanation. Only output the letter within A, B, C,
or D that corresponds to the correct answer.” and

we report the averaged accuracy over 3 runs-.

Results. Table 2 reports the summary of the re-
sults at the intersection of languages between sys-
tem availability (either 59 or 39 as reported in
detail in Table 3). The English drop from direct
text to speech task does not vary much between 5-
shot and zero-shot strategies, being slightly higher
in the zero-shot setting (coherently with previous

2Random seeds: 0, 1, 2.

LLAMA-3 results that show better performance in
zero-shot in other tasks®). When comparing speech
and text comprehension, we observe that speech
decreases performance in about 10% when compar-
ing for 59 languages (using WHISPER for ASR).
However, this decrease shortens (to about 2-3%
average) when comparing for 39 languages (using
SEAMLESSMA4T for ASR). 2M-BELEBELE accu-
racy results per language compared to BELEBELE
are shown in Figure 3 in the 59 languages at the
intersection of WHISPER and 2M-BELEBELE lan-
guages for LLAMA-3 (reading comprehension) and
WHISPER + LLAMA-3 (speech comprehension).

Differences in speech and text vary slightly de-
pending on the languages. Low-resource languages
have a greater variation between text and speech
BELEBELE. The ten languages with the largest
gap are: Burmese, Maltese, Assamese, Mongolian,
Southern Pashto, Sindhi, Telugu, Javanese, Tajik,
Georgian.

Additionally, Table 2 reports English results for
SPIRITLM, a direct multimodal model. One of the
reasons SPIRITLM may be performing worse is that
5-shot examples are in text, while the passage on
the asked question is in speech. Best results in
average for speech comprehension are achieved
with the SEAMLESSM4T + LLAMA-3 cascade.

ASL  We know from previous large-scale trans-
lation attempts (Albanie et al., 2021; Miiller et al.,
2022) that models struggle to generalize over both
individuals/appearance and large domain of dis-
course. Compared to speech and text models, sign

3https://ai.meta.com/blog/meta—llama—3—1/ and
https://ai.meta.com/blog/meta-1lama-3/
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Figure 3: Speech and Text BELEBELE accuracy results in 59 languages. We compare text performance with
LLAMA-3-CHAT (zero-shot) and speech performance with WHISPER +LLAMA-3-CHAT (asr+zero-shot).

language models suffer from having to learn gen-
eralized representations from high-dimensional in-
puts, i.e. videos, without overfitting to limited train-
ing dataset. Previous attempts have been made to
create a more generalizable abstraction layer in the
form of subunits (Camgoz et al., 2020), similar to
phonemes for speech, which achieved promising
results on a translation task with a small discourse
domain. However, this work is yet to be applied to
large discourse domain translation tasks. The best
results in the FLORES domain have been achieved
with close models that are not available (Zhang
et al., 2024). Trying (Rust et al., 2024) as an open
model did not perform above chance in the final
reading comprehension dataset. However, we be-
lieve that the release of this new dataset with the
additional gloss annotation will help in training
models that generalize over individuals better and
improve large-scale sign language translation.

5 Conclusions

The 2M-BELEBELE data set* allow evaluating nat-
ural language comprehension in a large number
of languages, including ASL. 2M-BELEBELE is
purely human-made and covers BELEBELE pas-
sages, questions, and answers for 91 languages in
the speech modality and ASL. As a by-product,
2M-FLORES extends FLEURS by 20% °.

*2M-BELEBELE dataset is freely available in Github
https://github.com/facebookresearch/belebele and
in HuggingFace https://huggingface.co/datasets/
facebook/2M-Belebele

52M-FLORES is freely available in HuggingFace https:
//huggingface.co/datasets/facebook/2M-Flores-ASL

Limitations and ethical considerations

Our speech annotations do not have the entire set
completed with two annotators. Due to the high
volume of the dataset, not every recording has been
thoroughly verified. Some of the languages in
2M-BELEBELE are low-resource languages, which
pose a challenge in sourcing professionals to record.
Therefore, some of the audios were recorded in
home settings and may contain minor background
noise, static noise, echoes, and, occasionally, the
speech could be slightly muffled or soft. All an-
notators are native speakers of the target language,
but they may have regional accents in their speech,
and their personal speech styles may be present in
the audio as well. However, these are minor limi-
tations since the mentioned imperfections should
not affect intelligibility; all the recordings can be
clearly understood by human standards. Regarding
regional accents, from a linguistic perspective, they
do not imply “incorrectness.” We have collected
data from several speakers to ensure that the dataset
reflects the diversity present in the languages.

We can group the ASL limitations under two
categories, namely visual and linguistic. For visual
limitations, ASL sequences are recorded in what
can be considered laboratory environments with
few signer variance. This makes it harder for mod-
els trained on them to generalize to unseen environ-
ments and signers. However, it is a justified and
minor limitation. Using controlled environments
allows us to break down the task into two parts:
translating sign language from videos and gener-
alizing to new environments and signers. Since
sign language translation is a low-resource task,
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we prioritize improving translation from controlled
videos, while acknowledging the need for future
work on generalizing to new settings. For linguis-
tic limitations, ASL sequences are collected one
sentence at a time. Although this enables pairwise
training and evaluation, such as classical text-based
NMT, the generated sequences may not be fully re-
alistic in terms of real-world signing. An example
would be the use of placement. In sentence-per-
sentence sequence generation, a signer would refer
to an entity with their sign each sentence, whereas
in long-form conversation, a signer would place the
entity in their signing space after first reference and
refer them in via use of placement in the following
sentences.

Our benchmarking is limited compared to the
potential capabilities of the dataset. For example,
since we have spoken questions, passages and re-
sponses, instead of just using a fix modality (spoken
passages, text questions and responses), we could
explore the performance when using all combina-
tions among modalities (e.g., question in speech,
answer in speech, passage in speech; or question
in speech, answer in text, passage in speech; or
question in speech, answer in speech and passage
in text.)

In terms of compute budget, we estimate it as
47K Nvidia A100 hours by taking into account the
product of following factors: number of languages
(59 / 39), number of random seeds (3), number of
GPUs required by model (8), number of experi-
ment setups (5) and estimated number of hours per
experiment (10).

Speakers and signers were paid a fair rate. Our
recorded data reports self-identified gender by par-
ticipant. Each of the speakers and signers signed a
consent form agreeing on the dataset and its usage
that they were participating in.
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Language Code Script Family FLEURS SeamlessM4T  Whisper 2M-BELEBELE
Mesopotamian Arabic acm_Arab  Arab Afro-Asiatic

Afrikaans afr_Latn Latn Indo-European v~ v’ v (1)
Tosk Albanian als_Latn Latn Indo-European

Ambharic amh_Ethi Ethi Afro-Asiatic v’ v (2)
North Levantine Arabic apc_Arab  Arab Afro-Asiatic

Modern Standard Arabic  arb_Arab Arab Afro-Asiatic

Modern Standard Arabic  arb_Latn Latn Afro-Asiatic

Najdi Arabic ars_Arab Arab Afro-Asiatic

Moroccan Arabic ary_Arab Arab Afro-Asiatic

Egyptian Arabic arz_Arab Arab Afro-Asiatic v’ v’ v (2)
Assamese asm_Beng Beng  Indo-European v/ v’ v’ v (2)
North Azerbaijani azj_Latn Latn Turkic v’ v (1)
Bambara bam_Latn  Latn Niger-Congo

Bengali ben_Beng Beng  Indo-European v~ v’ v’ v (2)
Bengali ben_Latn Latn Indo-European

Standard Tibetan bod_Tibt Tibt Sino-Tibetan

Bulgarian bul_Cyrl Cytl Indo-European v~ v’ v’ v (2)
Catalan cat_Latn Latn Indo-European v~ v’ v’ v (2)
Cebuano ceb_Latn Latn Austronesian v’ v (1)
Czech ces.Latn  Latn Indo-European v~ v’ v (2)
Central Kurdish ckb_Arab  Arab Indo-European v~ v (2)
Danish dan_Latn  Latn Indo-European v~ v’ v (2)
German deu_Latn Latn Indo-European v~ v’ v’ v (2)
Greek ell_Grek Grek  Indo-European v~ v’ v’ v (2)
English eng_Latn Latn Indo-European v~ v’ v’ v (2)
Estonian est_Latn Latn Uralic v’ v’ v (1)
Basque eus_Latn Latn Basque

Finnish fin_Latn Latn Uralic v’ v’ v’ v (2)
French fra_Latn Latn Indo-European v’ v’ v’ v (2)
Fulfulde (Nigerian) fuv_Latn Latn Atlantic-Congo v (2)
Oromo (West Central) gaz_Latn Latn Afro-Asiatic ~) v (2)
Guarani grn_Latn Latn Tupian

Gujarati guj_Gujr Gujr Indo-European v~ v’ v’ v (1)
Haitian Creole hat_Latn Latn Indo-European

Hausa hau_Latn Latn Afro-Asiatic v’ ) v (2)
Hebrew heb_Hebr Hebr  Afro-Asiatic v’ v’ v’ v ()
Hindi hinDeva Deva  Indo-European v~ v’ v’ v (2)
Hindi hin_Latn Latn Indo-European

Croatian hrv_Latn  Latn Indo-European v~ v (2)
Hungarian hun_Latn  Latn Uralic v’ v’ v’ v (2)
Armenian hye.Armn Armn  Indo-European v~ v’ v (1)
Igbo ibo_Latn Latn Atlantic-Congo v~ V(1)
Ilocano ilo_Latn Latn Austronesian

Indonesian ind_Latn Latn Austronesian v’ v’ v’ v (2)
Icelandic isl_Latn Latn Indo-European v~ v’ v’ v (1)
Italian ita_Latn Latn Indo-European v~ v’ v (2)
Javanese jav_Latn Latn Austronesian v’ v’ v’ v (1)
Japanese jpn_Jpan Jpan Japonic v’ v’ v (2)
Jingpho kac_Latn Latn Sino-Tibetan

Kannada kan_Knda Knda Dravidian v’ v (2)
Georgian kat_.Geor  Geor Kartvelian v’ v’ v (2)
Kazakh kaz_Cyrl Cyrl Turkic v’ v’ v’ V(1)
Kabuverdianu kea_Latn Latn Indo-European v~ v (1)
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Language Code Script Family FLEURS SeamlessM4T  Whisper 2M-BELEBELE

Mongolian khk_Cyrl Cyrl Mongolic ~) v’ v (2)
Khmer khm_Khmr Khmr  Austroasiatic v’ v (1)
Kinyarwanda kin_Latn Latn Atlantic-Congo

Kyrgyz kir_Cyrl Cyrl Turkic v’ v (2)
Korean kor_Hang Hang Koreanic v’ v’ v’ v (1)
Lao lao_Laoo Laoo Kra-Dai v’ v (2)
Lingala lin_Latn Latn Niger-Congo v’ v ()
Lithuanian lit_Latn Latn Indo-European v~ v’ v (2)
Ganda lug_Latn Latn  Atlantic-Congo v v (1)
Luo luo_Latn Latn Atlantic-Congo v’ v (2)
Standard Latvian lvs_Latn Latn Indo-European (V") v’ v (2)
Malayam mal Mlym  Mlym  Dravidian v’ v’ v’ v(2)
Marathi mar_Deva Deva Indo-European v~ v (2)
Macedonian mkd_Cyrl Cyrl Indo-European v~ v’ v (2)
Maltese mlt_Latn Latn Afro-Asiatic v’ v (2)
Maori mri_Latn Latn Austronesian v’ v (2)
Burmese mya_Mymr Mymr  Sino-Tibetan v’ v’ v’ v (2)
Dutch nld_Latn Latn Indo-European v v’ v’ v ()
Norwegian Bokmal — nob_Latn Latn Indo-European v~ v (2)
Nepali npi_Deva Deva  Indo-European Vv~ v’ v (2)
Nepali npi_Latn Latn Indo-European

Northern Sotho nso_Latn Latn Atlantic-Congo v/ v (2)
Nyanja nya_Latn Latn Afro-Asiatic v’ v (2)
Odia ory_Orya Orya  Indo-European v~ v (1)
Eastern Panjabi pan_Guru Guru  Indo-European v~ v’ v’ v (2)
Southern Pashto pbt_Arab Arab  Indo-European  (v") v’ v'(1)
Western Persian pes_-Arab Arab Indo-European ~) v’ v (1)
Plateau Malagasy plt_Latn Latn Austronesian

Polish pol_Latn Latn Indo-European v~ v’ v’ v (2)
Portuguese por_Latn Latn Indo-European v~ v’ v’ v (2)
Romanian ron_Latn Latn Indo-European v’ v’ v’ v (2)
Russian rus_Cyrl Cyrl Indo-European v~ v’ v’ v (2)
Shan shn Mymr  Mymr  Tai-Kadai

Sinhala sin_Latn Latn Indo-European

Sinhala sin_Sinh Sinh Indo-European

Slovak slk_Latn Latn Indo-European v~ v’ v (1)
Slovenian slv_Latn Latn Indo-European v~ v’ v ()
Shona sna_Latn Latn Atlantic-Congo v~ v’ v’ v (2)
Sindhi snd_Arab Arab Indo-European v v’ v ()
Somali som_Latn Latn Afro-Asiatic v’ v (2)
Southern Sotho sot_Latn Latn Atlantic-Congo

Spanish spa_Latn Latn Indo-European v~ v’ v’ v (2)
Serbian srp-Cyrl Cyrl Indo-European v~ v’ v (2)
Swati ssw_Latn Latn Atlantic-Congo

Sundanese sun_Latn Latn Austronesian

Swedish swe_Latn Latn Indo-European v~ v’ v’ v (2)
Swahili swh_Latn Latn Atlantic-Congo v~ v’ v’ v (1)
Tamil tam_Taml Taml Dravidian v’ v’ v’ v (2)
Telugu tel_Telu Telu Dravidian v’ v’ v’ v (2)
Tajik tgk_Cyrl Cyrl Indo-European v~ v’ v’ v (1)
Tagalog tgl_Latn Latn Austronesian ~) v’ v’ v (2)
Thai tha_Thai Thai Tai-Kadai v’ v’ v’ v (2)
Tigrinya tir_Ethi Ethi Afro-Asiatic

Tswana tsn_Latn Latn Atlantic-Congo
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Language Code Script Family FLEURS SeamlessM4T  Whisper 2M-BELEBELE
Tsonga tso_Latn Latn Afro-Asiatic

Tsonga tso_Latn Latn Afro-Asiatic

Turkish tur_Latn  Latn Turkic v’ v’ v’ v (1)
Ukranian ukr Cyrl  Cyrl Indo-European v~ v (2)
Urdu urd_Arab  Arab Indo-European v~ v’ v’ v (2)
Urdu urd_Latn  Latn Indo-European

Northen Uzbek uzn_Latn  Latn Turkic v’ v (2)
Vietnamese vieLatn  Latn Austroasiatic v’ v’ v’ v ()
Waray war_Latn  Latn Austronesian

Wolof wol Latn  Latn Atlantic-Congo v~ v (1)
Xhosa xho_Latn  Latn Atlantic-Congo v~ v (1)
Yoruba yor Latn  Latn Atlantic-Congo v~ v’ v’ v (2)
Chinese zho_Hans Hans  Sino-Tibetan v’ v'(2)
Chinese zho_Hant  Hant Sino-Tibetan ~)

Standard Malay zsm_Latn  Latn Austronesian ~) v (2)
Zulu zul_Latn Latn Atlantic-Congo v~ v (2)
American Sign Language ase - Sign Language v (2)

Table 3: Languages details. Column FLEURS reports the languages covered by Speech BELEBELE v1. Column
ASR shows the languages reported in the experiment section, note that Hausa is covered by WHISPER-LARGE-V3
but not for SEAMLESSM4T. The number in brackets shows the number of annotations per language.

B Annotation Guidelines

Recording process. Find a quiet place free from
distractions and noises, and choose a headphone
that is comfortable to wear and a good quality mi-
crophone that will not distort or break your voice.
Read aloud and record the scripts in a pleasant tone
and at a constant and even pace, as if you were
reading a formal document. Try not to speak too
quickly or slowly and aim for a natural pace that
is easy to follow. The audio files below provide
examples of paces that are expected, too fast, or
too slow, for the sentence. The hearing also marks
the date for the suspect’s right to a rapid trial.

To achieve the best sound quality when record-
ing, position the microphone close to your mouth
so that the voice will sound clear and present, but
not too close that it sounds muddy or you can hear
a puff of air. Clearly enunciate the words and avoid
mumbling. Be sure to provide a 2-second pause be-
tween sentences to add clarity and keep the overall
pace down. When dealing with long, complicated
sentences that contain multiple clauses or phrases,
there are several approaches to ensure clarity and
a natural flow as follows. Break it down: Separate
the sentence into smaller parts or clauses. Prac-
tice reading aloud several times before starting the
recording. This can help you get a feel for the
rhythm and pacing of the sentence. Pace yourself:
Try to maintain a steady, even pace. If the sentence
is particularly long, it is possible to take a brief
pause at a natural breakpoint to catch your breath.

You should read the provided passages aloud with-
out repairs (a repair is the repetition of a word that
was incorrectly pronounced to correct its pronunci-
ation).

To achieve this, familiarize yourself beforehand
with the correct pronunciation of difficult words,
proper nouns, and transliterated words, as well
as signs and symbols, dates and times, numbers,
abbreviations, and punctuation marks. Some ele-
ments may have more than one correct pronuncia-
tion. In this case, use the one that comes the more
naturally to you, as long as it is an accepted pronun-
ciation (i.e., it is acknowledged in your language’s
dictionaries). Practice reading the passages aloud
several times to become more comfortable with
the material. Please pay particular attention to the
following items:

Numbers. Number formats can vary from lan-
guage to language; it is important to follow the
pronunciation rules in your language. Here are
some general guidelines and examples: Decimal
numbers: Read the whole part of the number as
a whole number and then individually read every
number after the decimal point. For example, in
English, the decimal number 3.14 should be read
as ’three point one four.” Different languages may
have different rules, and you should follow the rules
that are appropriate for your language. Cardinal
numbers represent quantities or amounts. Ordinal
numbers represent positions or ranks in sequential
order and should be read with the appropriate suffix.
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For example, in English, the ordinal number 1st
is read “first” (not “onest”) and 5th is read “fifth”
(not "fiveth”). Different languages may have dif-
ferent rules, and you should follow the rule that is
appropriate for your language.

Roman numerals are a collection of seven sym-
bols that each represent a value: =1,V =5, X
=10, L =50, C =100, D = 500, and M = 1,000.
The can be pronounced in slightly different ways
depending on the context, but they are never pro-
nounced as individual letters. For example, in En-
glish, VIII in Henry VIII is pronounced “Henry the
eighth”, while Superbowl LVIII is pronounced ~’Su-
perbowl fifty-eight”, but they are never pronounced
“Henry v iii” or ”Superbowl 1 v iii”. Different
languages may have different rules, and you should
follow the rules that are appropriate for your lan-
guage. Punctuation marks: As a general rule, punc-
tuation marks should not be pronounced, except
quotation marks.

For example, in English, punctuation marks such
as periods, commas, colons, semicolons, question
marks, and exclamation points are typically not
pronounced. For example, the sentence. As a result
of this, a big scandal arose. will be pronounced
”As a result of this a big scandal arose” - not ”As
a result of this comma a big scandal arose period”.
However, in formal-register English (in the news,
for example), a difference is made between content
created by the news team and content that should
be attributed to someone else by explicitly pro-
nouncing quotation marks. For example, the news
transcript The fighter said: I am here to try to win
this.” will be pronounced: “The fighter said, quote,
I am here to try to win this. End of quote.” In this
case, different languages may have different rules,
and you should follow the rules that are appropriate
for your language. Signs and symbols. Signs and
symbols need to be pronounced as they would be
heard in a speech-only setting. Attention should be
paid: (a) to potential number or gender agreement
(for example, in English, ”40%” should be read
as “forty percent” — not “forty percents”) (b) to
potential differences between the place of the sign
or symbol in writing and in speech (for example,
in English, the ”$” sign should be read as “’dollar”
and should be read after the number it precedes;
i.e. ”$22” should be read as “twenty-two dollars”
— not “dollars twenty-two”) (c) to the way the sign
or symbol gets expanded in speech (for example,
in English, “Platform 9 34” should be read “plat-
form nine and three quarters” — not ”platform nine

three quarters”). Similarly, 50 km/h would be pro-
nounced “fifty kilometers per hour” — not “fifty
kilometers hour”). Different languages may have
different rules, and you should follow the rules that
are appropriate for your language.

Proper nouns and foreign expressions. Even
the same language may have at least 2 different
ways to pronounce foreign expressions of proper
nouns: (a) one way is to try to approach the way
they would sound in the foreign language from
which they come (for example, in English, Louis
in Louis XIV is pronounced “lewee” as it would be
in French); (b) the other way is to pronounce them
according to the rules of the adopting language (for
example, in English, Louis in the City of St Louis is
pronounced as in the English proper noun “Lewis”)

Abbreviations. Abbreviations should be ex-
panded as much as possible. However, it is sug-
gested to refrain from expanding them if their ex-
pansion results in unnatural speech. For example,
in English, abbreviations such as Dr. or etc. are
pronounced “doctor” and et cetera”, respectively
(not ’d r”” nor e t ¢”’). However, abbreviations such
as AM or PhD are pronounced as a sequence of
letters without being expanded ("a m” and ”p h
d”, respectively - not "ante meridiem” nor “philos-
ophy doctorate”). Different languages may have
different conventions, and you should follow the
conventions that are appropriate for your language.

C Ablation study: Synthetic extension in
speech evaluation datasets

In this part of our work, we aim to analyze the feasi-
bility of synthetically extending text benchmarks to
speech using TTS systems, thereby creating multi-
modal datasets. Our goal is to understand if it
would have been feasible to obtain the speech ver-
sion of BELEBELE by using state of the art TTS
systems, instead of human recordings.

For this study we use FLEURS dataset, that
contains ASR data in the same domain as BELE-
BELE. We chose to perform this study in the ASR
task because it is simpler compared to other speech
tasks, due to its monotonic alignment process and
minimal need for reasoning. This ensures that the
overall model performance and the complexity of
the task are less likely to influence the results.

For our experiments, we generate a synthetic
copy of the FLEURS dataset using the MMS TTS
(Pratap et al., 2024) system on the FLEURS tran-
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scripts. Then, we benchmark state-of-the-art mod-
els (WHISPER, SEAMLESSM4T and MMS ASR)
on both the original and synthetic datasets and an-
alyze whether the conclusions remain consistent
across both datasets. ’

It is important to note that a decrease in sys-
tem performance is expected when using synthetic
data. However, if this decrease occurs proportion-
ally across all models, the synthetic data could still
be useful to benchmark models. Conversely, if
the model performance ranking changes, we can
conclude that synthetic data is not reliable when
benchmarking models.

To measure the variability in model rankings be-
tween the original and the synthetic data, we track
the inversions that occur in the order of the models
in the two settings. We define an inversion as a
swap between two models that appear in adjacent
positions on the list. We count how many swaps
are needed in the ranking obtained using synthetic
data to match the ranking from the original dataset.

In Table 4 we see that in the ASR setting, con-
clusions regarding model performance can vary
depending on whether human or synthetic data is
used. Although these conclusions are specific to
the evaluated tasks and datasets, we demonstrate
that even with the outstanding performance of cur-
rent TTS methods, this does not guarantee the re-
liability of the data they generate when it comes
to evaluation purposes. This is true not only for
low-resource languages, but also for high-resource
languages such as French or Spanish. These find-
ings show that speech benchmarks might not be
reliable if synthetically generated even in widely
researched areas, further supporting the creation of
evaluation datasets by humans.

SEAMLESSMA4T WHISPER ‘ MMS

Hum Syn Hum Syn Hum Syn Inv
Bengali 14.1 21.1 114.7 105.8 14.6 25.0
Catalan 8.2 13.2 6.7 16.4 10.3 21.8 v’
Dutch 9.9 20.0 8.5 19.7 12.4 28.3
English 6.0 11.7 4.5 9.8 12.3 19.2
Finnish 20.1 20.8 12.5 18.9 13.1 184 | V7
French 9.5 10.8 6.7 11.3 12.4 166 | v~
German 8.5 13.9 52 12.3 10.5 20.8
Hindi 11.9 13.4 335 28.7 11.1 183 | v
Indonesian 12.1 12.8 8.7 14.2 13.2 21.9 v’
Korean 25.7 40.3 15.4 29.9 47.8 61.2
Polish 13.0 14.7 8.1 13.3 11.6 18.1 v’
Portuguese | 9.0 8.0 4.1 6.9 87 104 | v
Romanian 12.6 11.7 13.5 25.4 12.0 15.4 \/
Russian 10.2 18.6 5.6 17.4 18.8 343
Spanish 6.3 9.1 3.4 10.0 6.4 108 | v~
Swahili 19.5 19.0 64.2 58.4 14.2 190 | v~
Swedish 15.4 20.1 113 19.1 21.0 27.8
Telugu 27.4 28.0 1322 1339 242 27.8
Thai 127.8 135.5 1040 1213 99.8 99.9
Turkish 18.6 23.0 8.4 16.5 19.2 303
Ukrainian 15.0 23.5 9.8 21.8 18.1 34.7
Vietnamese 16.0 20.1 10.2 14.2 25.8 253

Table 4: WER(|) results on the ASR task. Last column
marks if the language has at least 1 inversion in ASR
performance ranking comparing human vs TTS inputs.

"Note that we perform the study on the FLEURS lan-
guages that are covered by all MMS, WHISPER and SEAM-
LESSMA4T.
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