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Abstract
The rapid proliferation of fake news across mul-
tiple domains poses significant threats to soci-
ety. Existing multi-domain detection models
typically capture domain-shared semantic fea-
tures to achieve generalized detection. How-
ever, they often fail to generalize well due
to poor adaptability, which limits their abil-
ity to provide complementary features for de-
tection, especially in data-constrained condi-
tions. To address these challenges, we inves-
tigate the propagation-adaptive multi-domain
fake news detection paradigm. We propose a
novel framework, Structure-adaptive Adversar-
ial Contrastive Learning (StruACL), to adap-
tively enable structure knowledge transfer be-
tween multiple domains. Specifically, we first
contrast representations between content-only
and propagation-rich data to preserve structural
patterns in the shared representation space. Ad-
ditionally, we design a propagation-guided ad-
versarial training strategy to enhance the di-
versity of representations. Under the StruACL
objective, we leverage a unified Transformer-
based and graph-based model to jointly learn
transferable semantic and structural features
for detection across multiple domains. Exper-
iments on seven fake news datasets demon-
strate that StruACL-TGN achieves better multi-
domain detection performance on general and
data-constrained scenarios, showing the effec-
tiveness and better generalization of StruACL.

1 Introduction

Nowadays, mainstream social platforms have facili-
tated the news dissemination in a faster and cheaper
way. Nevertheless, the ease has also caused the
wide spread of fake news, which has had detri-
mental effects on individuals and society (Loomba
et al., 2021). Triggered by the negative impact of
fake news, fake news detection has become a press-
ing challenge due to its widespread impact across
diverse platforms and domains.

*Corresponding author.

News content and its corresponding user engage-
ments (i.e., tree-structured propagation) are two
key data types in detecting fake news. Content-
based detection methods (Ma et al., 2016; Ruchan-
sky et al., 2017; Karimi and Tang, 2019) capture
intrinsic semantic or linguistic features of claim
tweets to detect fake news. Propagation-based de-
tection methods (Ma et al., 2018; Kumar and Car-
ley, 2019; Ma and Gao, 2020; Hu et al., 2021; Bian
et al., 2020; Wei et al., 2021; Lin et al., 2021; Wei
et al., 2022a) are designed to integrate structural
features to complement textual content for detec-
tion. Nevertheless, in real-world scenarios, labeled
data for fake news is often scarce, particularly in
specific low-resource domains or emerging topics,
which hinders detection performance. Recently,
multi-domain fake news detection has been widely
studied to leverage and integrate knowledge from
multi-domain data to improve target-domain detec-
tion (Zhu et al., 2023; Liang et al., 2022; Wang
et al., 2018; Zhang et al., 2021; Nan et al., 2021;
Li et al., 2024), alleviating the data limitation chal-
lenge to some extent.

However, the representations learned by most
existing multi-domain detection paradigms fail to
generalize well due to poor adaptability to the prop-
agation structure. Firstly, as shown in Figure 1,
some multi-domain approaches primarily focus on
learning domain-invariant or domain-shared seman-
tic features (Wang et al., 2018; Nan et al., 2021)
on content-only training data. However, seman-
tic features inherently differ from structural pat-
terns, rendering these content-based methods inade-
quate for generalizing to samples that involve prop-
agation. Furthermore, directly extending domain-
specific propagation-based methods struggles to ef-
fectively adapt to detection scenarios lacking prop-
agation structures, resulting in suboptimal detec-
tion performance for content-only samples (Wei
et al., 2024). Therefore, a critical challenge lies in
learning more robust representations by enhancing
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Figure 1: Difference between propagation-adaptive multi-domain fake news detection in this study and existing
multi-domain fake news detection paradigms.

structure adaptability for multi-domain fake news
detection.

In this paper, we study a novel propagation-
adaptive multi-domain fake news detection
paradigm, where the detection model is trained
on both propagation-based data and content-only
data. Our goal is to enhance generalization for both
types of input.

To achieve this, we propose a new propagation
structure-adaptive adversarial contrastive learning
framework (StruACL) to adaptively learn gener-
alized semantic and structural representations for
multi-domain fake news detection. Specifically,
we first design a new structure-aware contrastive
learning (StruCL) objective to facilitate the adap-
tive transfer of structure knowledge during multi-
domain training. With the guidance of structure
label, StruCL leverages contrastive learning to dif-
ferentiate representations between samples with
and without propagation, effectively capturing and
retaining structural knowledge in the shared rep-
resentation space. By integrating this structural
information, the learned representations become
more informative, allowing the model to achieve en-
hanced performance in detecting fake news across
both propagation-based and content-only domains.

Additionally, we design a propagation-guided
adversarial training (PAT) strategy to enhance
the diversity of representations under the data-
constrained condition. PAT adaptively performs
adversarial perturbations on original embeddings
using the Fast Gradient Method (FGM) (Miyato
et al., 2017) to generate worst-case samples for
both content-only and propagation-based inputs.
By jointly contrasting on both original and adver-
sarial samples, the model can further effectively
learn fine-grained semantic and structure knowl-
edge via retaining the propagation-adaptive fea-
ture consistency. For the model architecture, we

adopt a shared Transformer-based and graph-based
network to jointly encode semantic and structural
features from news content and available propaga-
tion across multiple domains, respectively. Under
the proposed objective, our StruACL-TGN general-
izes well across both content-only and propagation-
structured domains.

We conduct experiments on seven fake news
datasets with and without propagation. The experi-
mental results demonstrate that our StruACL-TGN
achieves superior performance in multi-domain
fake news detection. Extensive experiments show
the effectiveness of StruACL objective, particularly
in data-limited application scenarios.

The main contributions are as follows: 1) We
study a novel propagation-adaptive multi-domain
fake news detection paradigm and develop a novel
StruACL-TGN to learn generalized representations
for detection on both domains with propagation
data and content-only domains. 2) We design a
new StruACL framework to learn more informa-
tive multi-domain representations. It contrasts se-
mantic and structural representations to preserve
and transfer structural knowledge, as well as intro-
duces propagation-guided adversarial training to
enhance the diversity of representations. 3) Experi-
ments on seven fake news datasets demonstrate that
StruACL-TGN achieves superior multi-domain de-
tection performance. Extensive experiments further
show that StruACL enhances the model’s general-
ization capabilities in data-constraint applications.

2 Methodology

In this section, we first describe the problem defi-
nition of propagation-adaptive multi-domain fake
news detection. Then, we propose a new StruACL-
TGN to learn generalized representations on both
domains with propagation data and content-only
domains. The overall architecture is shown in
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Figure 2: Overview of the proposed StruACL-TGN.

Figure 2. It adopts a shared Transformer-based
and graph-based network to encode semantic and
structural knowledge across multiple domains. For
model training, we first propose a new StruCL to ef-
fectively utilize structure knowledge. Additionally,
we design propagation-guide adversarial training
(PAT) that generates worst-case samples to enhance
the diversity of representations. Through applying
PAT on original and adversarial samples, our Stru-
ACL can learn more informative multi-domain rep-
resentations from domains with propagation data
and domains with content-only data.

2.1 Problem Definition

Unlike existing multi-domain fake news detec-
tion tasks, propagation-adaptive multi-domain fake
news detection aims to detect fake news across do-
mains with heterogeneous data availability, where
some domains have both propagation structures
and content, while others only have content.

Formally, let K represent the set of all domains.
Define D(k) as the dataset of each domain k ∈ K.
For each domain k that includes propagation data,
D(k) is defined as D(k) = {(x(k)i , G

(k)
i , y

(k)
i )}Nk

i=1,
where x(k)i is the content of the i-th news sample in
domain k. G(k)

i is the propagation structure (e.g., a
tree-like graph) associated with x

(k)
i . y(k)i ∈ {0, 1}

is the label indicating whether the news is fake
or real. Nk is the number of samples in domain
k. For each domain k′ that excludes propagation
data, D(k) is defined as D(k′) = {(x(k

′)
i , y

(k′)
i )}Nk′

i=1.
where x

(k′)
i is the content of the i-th news sample

in domain k′. y(k
′)

i ∈ {0, 1} is the fake news label.
Nk′ is the number of samples in domain k′.

Propagation-adaptive multi-domain fake news
detection aims to utilize both rich propagation struc-
tures and content-only samples to enhance detec-
tion performance across various domains. Fake
news detection can be regarded as a binary clas-
sification task. Specifically, the objective is to
learn a unified detection model f(·) that predicts
the label ŷ (e.g., fake or real) for a news item x
(with or without propagation G across all domains:
ŷ = f(x,G), where G = ∅ for domains without
propagation data.

2.2 Model Architecture
We adopt Transformer-graph network (TGN) as
the model architecture. It consists of a shared
Transformer-based semantic encoder, a graph-
based structure encoder, and a hybrid classifier.

Transformer-based Semantic Encoder Consid-
ering multilingual settings, a pretrained multilin-
gual BERT model (Conneau et al., 2020) on a
monolingual corpus is utilized to facilitate lan-
guage adaptation. Formally, given an input token
sequence xi1, ..., xiT where xij refers to j-th token
in the i-th input sample, and T is the maximum
sequence length, the model learns to generate the
context representation of the input token sequences:

hs
i = BERT([CLS], xi1, ..., xiN , [SEP]), (1)

where [CLS] and [SEP] are special tokens, typi-
cally placed at the beginning and end of each se-
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quence, respectively. hs
i indicates the hidden rep-

resentation of the i-th input sample, computed by
the representation of [CLS] token in the last layer
of the encoder.

Graph-based Structure Encoder Based on the
semantic representations, propagation-based mod-
els integrate structural features to enhance detec-
tion. Graph neural networks are widely applied to
extract structural features through message-passing
across nodes in the propagation graph. Given the
input sample, which includes the textual content
of the source news x and propagation trees G, ex-
isting models utilize various neural networks to
extract high-level textual and structural features for
detection. The formulation is defined as,

hg
i = GNN(xi, Gi; Θ), (2)

where GNN(·) refers to graph-based encoders in
propagation-based models (Bian et al., 2020; Wei
et al., 2022b), and Θ refers to the corresponding
trainable parameters. The input embedding of xi
and context ci in G are initialized with the semantic
embedding hs

i .

Hybrid Fake News Classifier We regard each
domain as a task and employ a multi-task learn-
ing paradigm for multi-domain fake news detec-
tion. The paradigm using features of multiple tasks
has shown promising performance across various
natural language understanding tasks (Liu et al.,
2019; Hu et al., 2025). To address the feature gap
between different domains in distinguishing fake
news, we design a hybrid fake news classifier to
learn domain-specific and domain-shared discrimi-
native features for detection.

Specifically, based on the final representation,
domain-specific fake news classifiers are employed
to predict the veracity label of each news content.
For domain k, the initial prediction distribution is
computed as,

ŷ′(k) = W(k)
c z+ b(k)

c , (3)

where W
(k)
c and b

(k)
c are trainable parameters

of domain k’s classifier. Similarly, we apply a
parameter-shared classifier to predict the veracity
label for all domains, i.e.,

ŷs = Wcz+ bc. (4)

Based on the above prediction, the final prediction
for domain k is defined as,

ŷ(k) = Softmax(
ŷs

2
+

ŷ′(k)

2
). (5)

2.3 Optimization Process
2.3.1 Classification Objective
To achieve fake news detection, the model is trained
by minimizing a joint loss function across all do-
mains, considering both content and propagation
data, i.e.,

LCLS =
∑

k∈KP

1

Nk

Nk∑

i=1

ℓ(f(x
(k)
i , G

(k)
i ), y

(k)
i )

+
∑

k′∈KC

1

Nk′

Nk′∑

i=1

ℓ(f(x
(k′)
i , ∅), y(k

′)
i )

where KP ⊆ K is the set of domains with propaga-
tion data, and KC ⊆ K is the set of domains with-
out propagation data. ℓ(·, ·) is the cross-entropy
classification loss.

2.3.2 Structure-aware Contrastive Learning
Since the propagation-adaptive multi-domain fake
news detection task involves domains with hetero-
geneous input types (i.e., some containing only
news content while others include both content and
propagation data), naively learning shared represen-
tations across domains would cause the model to
converge a suboptimal compromise that fails to op-
timally capture either type’s unique discriminative
patterns for detection. To alleviate this issue, we
design a new structure-aware contrastive learning
(StruCL) objective to facilitate the adaptive transfer
of structure knowledge during multi-domain train-
ing. It contrasts between representations with and
without propagation structures. The objective of
StruCL is defined as,

LStruCL =
∑

k∈KP

L(k)
StruCL

=
∑

k∈KP

− 1

Nk

Nk∑

i=1


log

esim(z
(k)
i ,z

(k)
pos)/τ

esim(z
(k)
i ,z

(k)
pos)/τ +

∑Nk
j=1⊮g

(k)
i ̸=g

(k)
j

esim(z
(k)
i ,z

(k)
j )/τ


 ,

(6)
where gi = 1 refers to the hidden representation
with structure information. The indicator function
⊮gi ̸=gj equals 1 when the propagation structure
label gi and gj are different, indicating a negative
sample. sim(·, ·) is a pairwise similarity function,
i.e., dot product. τ > 0 is a scalar temperature
parameter that controls the separation between the
class with and without propagation structure.

StruCL explicitly encourage the separation be-
tween semantic and structural representations. It
prevents the model from collapsing these funda-
mentally different feature spaces into an undiffer-
entiated shared representation. Second, while main-
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Benchmark Dataset Prop. Resource Lang. Event # Train # Valid # Test # TotalCrossEval CovidEval
✓ × Weibo21 × Weibo CN Hybrid 5,751 1,918 1,923 9,592
× ✓ Covid19 × Hybrid EN COVID19 6,420 2,140 2,140 10,700
✓ × Twitter ✓ Twitter EN Hybrid 3,109 777 3,888 7,774
✓ ✓ WeiboCovid19 ✓ Weibo CN COVID19 163 40 208 411
× ✓ TwitterCovid19 ✓ Twitter EN COVID19 159 39 202 400
× ✓ Arabic ✓ Twitter AR COVID19 136 36 184 356
× ✓ Cantonese ✓ Twitter YUE COVID19 577 143 724 1,444

Table 1: Statistics of 7 datasets for fake news detection. Prop. refers to whether the dataset contains propagation
data. Lang. indicates language used in the dataset where CN, EN, AR, and YUE represent Chinese, English, Arabic,
and Cantonese, respectively. Event summarizes the types of social events collected in the dataset. # Total refers to
the total number of samples in each dataset.

taining this separation, StruCL ensures the coher-
ence among representations of the same type. It
reduces semantic or structural noise in representa-
tions, and forms compact representation of each
type, allowing more effective knowledge transfer
across domains.

2.3.3 Propagation-guided Adversarial
Training

Considering the data-constrained condition, we fur-
ther design a new propagation-guided adversarial
training strategy (PAT) to enhance the diversity
of representations. Different from previous meth-
ods (Hu et al., 2023) on language understanding
applications, we apply an adversarial training strat-
egy (e.g., FGM (Miyato et al., 2017)) to produce
adversarial perturbations under a joint objective,
i.e., structure-aware contrastive learning and multi-
domain classification objectives. Specifically, the
perturbations are put on the embedding layers of
original samples, and then obtain adversarial sam-
ples. We then leverage the joint objective on these
worst-case samples to maximize the consistency of
transferable representations with or without prop-
agation across multiple domains. Under the joint
objective on both original and adversarial samples,
our model can learn propagation-robust transfer-
able features for multi-domain fake news detection.

The optimization objective for corresponding
adversarial samples can be derived by following
the calculation process for the original samples,
denoted as, Lr-adv

CLS +Lr-adv
StruCL. Take the domain with

propagation data as an example, the adversarial
perturbation for content-only samples is defined as,

min
θ

E(x(k),y(k))∼D(k) max
∥radv∥q≤ϵ

(LCLS + LStruCL)

(7)
where radv = −ϵ g

∥g∥q , g = ∇ log p(y(k)|x(k); θ̂).
PAT can generate structure-aware adversarial sam-
ples, which plays key role in fake news detection.

Totally, the overall loss of StruACL is defined
as a sum of joint objective on both original and
adversarial samples, i.e.,

Ltotal = LCLS + LStruCL + Lr-adv
CLS + Lr-adv

StruCL. (8)

3 Experiments

3.1 Experimental Setups

Datasets We conduct experiments on seven
widely-used public datasets for fake news detec-
tion, where two content-based datasets including
Weibo21, and Covid19, and five propagation-based
datasets including Twitter, TwitterCovid19, Weibo-
Covid19, Arabic, and Cantonese. The statistics are
shown in Table 1. Weibo21 (Nan et al., 2021) col-
lects Chinese tweets without propagation data on
Weibo platform ranging from 2010-12-15 to 2021-
03-31. Regarding to the breaking event COVID-
19 pandemic, Covid19 (Patwa et al., 2021) col-
lects English textual tweets related to the topic of
COVID-19 from public fact verification websites
and social media (e.g., Facebook and Twitter1).
TwitterCovid19 (Kar et al., 2021; Lin et al., 2022),
and WeiboCovid19 (Lin et al., 2022) collect rele-
vant textual tweets and propagation data on Twitter
and Weibo, respectively. Arabic and Cantonese,
originally collected by Alam et al. (2021) and Ke
et al. (2020), contain textual claims in Arabic and
Cantonese. Lin et al. (2023) further collect the
propagation thread of each claim on both datasets.

Based on the above seven datasets, we build
two major benchmarks to achieve different multi-
domain fake news detection settings, each involv-
ing at least one content-based and propagation-
based datasets to evaluate potential transferabil-
ity of detection methods between semantic and
propagation structure. We regard each dataset as

1Renamed X in 2023.
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Methods
CrossEval |K| = 3 CovidEval |K| = 5

Avg. Avg. ∆p Avg. Avg. ∆p

Acc F1 F1 Acc F1 F1
XLM-RoBERTa (Conneau et al., 2020) 87.33 87.15 0.00 77.97 74.91 0.00
GCNFN (Monti et al., 2019) 86.03 85.75 -1.59 79.39 76.49 +2.70
BiGCN (Bian et al., 2020) 86.48 86.28 -1.02 71.73 67.40 -9.71
EANN (Wang et al., 2018) 86.48 86.33 -0.93 79.30 77.36 +3.87
MDFEND (Nan et al., 2021) 88.49 88.22 +1.24 79.40 75.97 +1.90
M3FEND (Zhu et al., 2023) 87.87 87.62 +0.57 79.69 76.16 +2.50
FADED (Wei et al., 2025) 87.51 87.29 +0.15 79.56 77.14 +3.85
UCLR-TGN (Lin et al., 2024) 87.87 87.68 -0.40 78.82 76.76 +3.30
SAT-TGN (Wei et al., 2024) 87.60 87.32 +0.19 80.50 77.83 +4.34
StruACL-TGN (ours) 89.44∗ 89.25∗ +2.42 82.95∗ 81.38∗ +10.12

Table 2: Overall results of propagation-adaptive multi-domain fake news detection on CrossEval and CovidEval
benchmarks. We highlight the best performance on each evaluation metric in bold. ∗ refers to statistical significance
over scores of the XLM-RoBERTa baseline under the t-test (p<0.05).

a domain and construct the two benchmarks us-
ing a multi-domain setting. Specifically, CovidE-
val includes five datasets related to the same event
(i.e., COVID-19): Covid19, WeiboCovid19, Twit-
terCovid19, Arabic, and Cantonese. CrossEval
includes three datasets from different social plat-
forms and social events: Weibo21, Twitter, and
WeiboCovid19. For each benchmark, we merge
all domain-specific training/validation/test sets to
form the train/valid/test set of each benchmark.

Evaluation Metrics Since fake news detection
can be regarded as a binary classification, we adopt
widely-used evaluation metrics for classification
task, including accuracy (Acc), macro-averaged
F1 score (F1). Additionally, to provide a more
comprehensive evaluation of the model’s overall
performance across domains, we measure the aver-
age relative improvement (∆p) of F1 scores over
the XLM-RoBERTa baseline on each domain.

Comparison Methods We compare with nine
representative fake news detection methods. XLM-
RoBERTa (Conneau et al., 2020) uses a PLM-
based semantic encoder with a linear classifier for
detection. GCNFN (Monti et al., 2019) uses the
GCN to encode the propagation graph for detection.
BiGCN (Bian et al., 2020) employs two GCNs
to learn structural features from the propagation
graph and dispersion graph. EANN (Wang et al.,
2018) learns domain-invariant representations for
detection. We re-implement by only considering
the textual modality of news content across multi-
ple domains. MDFEND Nan et al. (2021) uses a
domain gate to aggregate multi-domain semantic
representations. M3FEND (Zhu et al., 2023) intro-
duces a domain adapter to extract domain-shared
features from similar domains. SAT (Wei et al.,

2024) learns structure-invariant features from sam-
ples with and without propagation for detection.
We extend this framework for multi-domain de-
tection with the same model architecture of our
method, denoted as SAT-TGN. UCLR (Lin et al.,
2024) uses unified contrastive transfer learning to
enhance feature adaptation from well-resourced
data to that of the low-resourced with only few-
shot annotations. We implement this framework
with the same model architecture of our method,
denoted as UCLR-TGN. FADED (Wei et al., 2025)
designs adversarial training from the perspective of
document-level and entity-level. Here, we imple-
ment it via removing entity-level domain classifier
due to the absence of explicit entity information in
datasets.

Among them, XLM-RoBERTa, EANN, MD-
FEND, M3FEND, and FADED are content-based
methods. BiGCN, GCNFN, SAT-TGN and UCLR-
TGN are propagation-based methods. More details
of the related works are listed in the Appendix.

Implementation Details All experiments are
conducted on a single NVIDIA Tesla A100 80GB
card. We use multilingual pretrained models (i.e.,
xlm-roberta-base) to extract textual features consid-
ering different languages across datasets, and fine-
tune the semantic encoder during training. The
dimension of hidden vectors is set to 64. The
graph layers are set to 2. The Adamax optimizer
is adopted for all methods with the learning rate
initialized to 0.0001 and weight decay as 0. The
temperature parameter is searched from {0.1, 1}.
The perturbation radius is searched from {1, 5} and
the rate is set to 1. We run each model with 3 ran-
dom seeds and report the average results of the test
set for each method.
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Methods
CrossEval

Weibo21♢ Twitter♦ WeiboCovid19♦ Avg. Avg. ∆p

Acc F1 Acc F1 Acc F1 Acc F1 F1
XLM-RoBERTa 88.46 88.33 87.42 87.40 86.11 85.71 87.33 87.15 0.00
MDFEND 90.80 90.75 85.78 85.77 88.89 88.15 88.49 88.22 +1.24
M3FEND 87.83 87.82 85.49 85.48 90.28 89.55 87.87 87.62 +0.57
FADED 89.91 89.90 85.80 85.80 86.81 86.16 87.51 87.29 +0.15
SAT-TGN 90.48 90.48 85.52 85.51 86.81 85.98 87.60 87.32 +0.19
StruACL-TGN (ours) 91.14∗ 91.09∗ 87.35 87.34 89.81 89.31 89.44∗ 89.25∗ +2.42
StruACL-TGN* (ours) 91.78∗ 91.78∗ 88.45∗ 88.45∗ 90.97∗ 90.33∗ 90.40∗ 90.19∗ +3.50

Table 3: Fine-grained experimental results of representative fake news detection methods on CrossEval benchmark,
which involves fake news detection datasets across different social platforms. ♢ refers to content-only datasets
without propagation thread. ♦ indicates datasets with both textual content and propagation data. StruACL-TGN
and StruACL-TGN* indicate the TGN model trained on the full benchmark and pair-wise benchmark under the
proposed StruACL objective, respectively. Detailed results of pair-wise benchmark are listed in Table 5. ∗ refers to
statistical significance over scores of the XLM-RoBERTa baseline under the t-test (p<0.05).

Methods
CovidEval

Covid19♢ WeiboCovid19♦ TwitterCovid19♦ Arabic♦ Cantonese♦ Avg. Avg. ∆p
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 F1

XLM-RoBERTa 96.92 96.90 85.42 84.80 63.37 60.07 77.17 71.52 66.99 61.23 77.97 74.91 0.00
GCNFN 93.93 93.87 84.72 84.12 69.80 63.30 81.52 78.60 66.99 62.56 79.39 76.49 +2.70
EANN 96.40 96.39 86.81 86.40 73.27 66.65 76.09 73.65 63.95 63.73 79.30 77.36 +3.87
MDFEND 96.40 96.39 84.72 84.03 67.82 59.17 75.54 70.67 72.51 69.58 79.4 75.97 +1.90
M3FEND 93.22 93.18 86.81 85.51 71.78 63.77 77.72 70.50 68.92 67.84 79.69 76.16 +2.50
FADED 97.99 97.99 82.64 82.26 76.24 72.07 73.37 70.96 67.54 62.43 79.56 77.14 +3.85
UCLR-TGN 97.38 97.37 78.47 78.39 69.31 63.93 80.98 77.42 67.96 66.67 78.82 76.76 +3.30
SAT-TGN 96.96 96.95 86.11 85.29 68.32 59.56 82.07 79.85 69.06 67.51 80.50 77.83 +4.34
StruACL-TGN (ours) 95.69 95.65 86.81∗ 86.21∗ 75.41∗ 72.21∗ 85.33∗ 83.27∗ 71.50∗ 69.55∗ 82.95∗ 81.38∗ +10.12

Table 4: Fine-grained experimental results of fake news detection on CovidEval benchmark, which involves
fake news detection datasets related to the breaking event COVID-19. ♢ refers to content-only datasets without
propagation thread. ♦ indicates datasets with both textual content and propagation data. ∗ refers to statistical
significance over scores of the XLM-RoBERTa baseline under the t-test (p<0.05).

3.2 Overall Results

Comparison with Fake News Detection using
Multi-domain Data The overall fake news de-
tection results on CrossEval and CovidEval are
listed in Table 2. We further show fine-grained
results of representative methods with overall posi-
tive gains in Table 3 and Table 4. From results,
our StruACL achieve the best overall detection
performance based on all evaluation metrics on
both benchmarks, showing the superiority of Stru-
ACL for multi-domain fake news detection. Specif-
ically, compared with the XLM-RoBERTa, our
StruACL achieves +2.42% and +10.12% ∆p of F1
scores on CrossEval and CovidEval, respectively.
First, directly apply existing propagation-based
methods (e.g., BiGCN) to propagation-adaptive
multi-domain fake news detection would get even
negative performance due to poor generalization
across domains. Additionally, EANN and FADED
attempt to improve semantic feature adaptation;
SAT solely learn structure-invariant features across
multi-domain data; UCLR performs feature trans-
fer in a straightforward hybrid way; MDFEND
and M3FEND model domain-specific and domain-

shared semantics with complex neural networks.
These methods gains a certain but limited improve-
ment since they ignore potential connections be-
tween semantics and structure. StruACL effectively
performs knowledge transfer not only across multi-
ple domains but also between semantics and struc-
tures, achieving the superior multi-domain detec-
tion performance.

Comparison with Fake News Detection using
Pair-wise Domain Data We further evaluate on
two specific domains, where the model is trained
on the combined training sets of two specific do-
mains and then tested on the combined test sets
of the same two domains. This setting allows
us to analyze how well the model generalizes
across different domain combinations. Table 5
shows multi-domain detection results on pair-wise
datasets where (a) and (b) indicate results trained
on two heterogeneous datasets, one with propaga-
tion and another without; (c) and (d) indicates re-
sults trained on two propagation-based datasets and
two content-based datasets with a homogeneous
setting. From results, StruACL-TGN obtains supe-
rior average performance consistently, showing the
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Methods Weibo21♢ WeiboCovid19♦ Avg.
Acc F1 Acc F1 Acc F1

XLM-RoBERTa 86.17 86.12 87.50 86.85 86.83 86.48
EANN 80.56 80.09 90.43 90.43 85.49 85.24
MDFEND 88.92 88.84 89.58 89.00 89.25 88.92
SAT-TGN 87.50 87.08 85.28 85.18 86.39 86.13
StruACL-TGN 89.18 89.15 90.97 90.33 90.08 89.74
w/o StruACL 84.56 84.52 87.73 87.20 86.14 85.86

(a) Detection on Weibo21 and WeiboCovid19.

Methods Weibo21♢ Twitter♦ Avg.
Acc F1 Acc F1 Acc F1

XLM-RoBERTa 90.74 90.71 86.27 86.26 88.50 88.49
EANN 89.08 89.05 86.29 86.29 87.69 87.67
MDFEND 88.66 88.62 83.69 83.69 86.18 86.16
SAT-TGN 88.82 88.82 82.79 82.70 85.81 85.76
StruACL-TGN 91.78 91.78 88.45 88.45 90.12 90.12
w/o StruACL 90.74 90.69 87.27 87.27 89.01 88.98

(b) Detection on Weibo21 and Twitter.

Methods WeiboCovid19♦ TwitterCovid19♦ Avg.
Acc F1 Acc F1 Acc F1

XLM-RoBERTa 86.81 86.16 76.24 73.94 81.52 80.05
EANN 87.50 86.56 74.26 73.51 80.88 80.04
MDFEND 82.64 80.57 71.78 64.60 77.21 72.58
SAT-TGN 88.19 87.54 76.24 73.40 82.22 80.47
StruACL-TGN 88.89 88.38 78.22 76.40 83.55 82.39

w/o StruACL 86.81 85.98 75.74 74.09 81.27 80.03

(c) Detection on TwitterCovid19 and WeiboCovid19.

Methods Weibo21♢ Covid19♢ Avg.
Acc F1 Acc F1 Acc F1

XLM-RoBERTa 90.74 90.73 97.52 97.52 94.13 94.12
EANN 89.24 89.23 97.34 97.33 93.29 93.28
MDFEND 88.46 88.46 97.29 97.28 92.87 92.87
SAT-TGN 90.95 90.95 97.57 97.56 94.26 94.26
StruACL-TGN 92.04 92.01 98.18 98.17 95.11 95.09
w/o StruACL 90.64 90.63 97.48 97.47 94.06 94.05

(d) Detection on Weibo21 and Covid19.

Table 5: Multi-domain detection results on pair-wise fake news datasets.

Methods # Param TwitterCovid19 WeiboCovid19 Arabic
XLM-RoBERTa 265MB×3 65.69 74.62 77.49
TextCNN 266MB×3 52.03 82.35 75.28
GCNFN 265MB×3 66.31 81.91 77.46
BiGCN 265MB×3 43.34 85.64 51.44
StruACL-TGN 265MB 72.21 86.21 83.27

Table 6: Comparison results of StruACL with single-
task learning methods on three lower-resource datasets.

Methods
CrossEval CovidEval

Avg. Avg. ∆p Avg. Avg. ∆p
Acc F1 F1 Acc F1 F1

StruACL 89.44 89.25 +2.42 82.95 81.38 +10.12
w/o Adv 88.13 87.94 +0.91 81.94 80.13 +8.03
w/o StruCL 89.33 89.18 +2.33 81.93 80.41 +8.67
w/o StruACL 86.97 86.79 -0.40 81.49 79.84 +7.66
w/o Hybrid CLS 88.59 88.37 +1.42 81.75 80.11 +8.18
w/o AdvStruCL 89.29 88.98 +2.11 79.86 77.45 +4.04
w/o AdvCLS 87.15 86.95 -0.22 81.85 79.76 +7.23

Table 7: Overall results of the ablation studies on Cros-
sEval and CovidEval. We report fine-grained results on
each domain in Appendix.

effectiveness of StruACL on both heterogeneous
and homogeneous settings. Additionally, by com-
paring Table 5 (a) and (b), which display results
under two settings trained with Weibo21, we ob-
serve that our method shows a more significant
improvement on WeiboCovid19,

Comparison with Fake News Detection on
Lower-resource data Table 6 shows comparison
results of single-task learning detection methods
and our method on three lower-resource datasets
(i.e., TwitterCovid19, WeiboCovid19, and Arabic).
StruACL-TGN achieves better performance com-
pared to detection methods trained on low resource
training data with lighter network.

3.3 Ablation Study

We further ablate the key components to evaluate
the effectiveness of StruACL objective. w/o Adv

refers to removing all adversarial perturbations dur-
ing training. We also remove the perturbation based
on structure-aware contrastive learning and cross-
entropy classification objectives, respectively, de-
noted as w/o AdvStruCL, and w/o AdvCLS. w/o
StruCL indicates removing the structure-aware
contrastive learning, ignoring the transfer learning
between structure and semantic. w/o StruACL is
removing the full StruACL objective. w/o Hybrid
CLS is removing the hybrid classifier and using a
shared classifier for detection.

As shown in Table 7, the full model gains the
best performance on both benchmarks consistently.
The results demonstrate the effectiveness of each
key component for detection. Additionally, for gen-
erating adversarial samples, eliminating the guid-
ance of either structure-aware contrastive learning
or task prediction gains (i.e., w/o AdvStruCL, and
w/o AdvCLS) decreases performance to some ex-
tent, demonstrating the effectiveness of both objec-
tives to generate structure-aware adversarial sam-
ples for boosting fake news detection.

3.4 Generalization Evaluation with
Data-constrained Conditions

We evaluate the generalization under multi-domain
data-constrained conditions. We vary the training
set ratios to evaluate detection performance under
limited data conditions. Specifically, for a prede-
fined ratio (e.g., 20%), we randomly sampled sub-
sets from the original training sets of all domains.
All methods are tested using on the same sampled
training subsets to ensure a fair comparison.

Figure 4 shows results of representative meth-
ods and our StruACL on CrossEval and CovidEval
across various training set sizes. Our proposed Stru-
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(a) Results on CrossEval. (b) Results on CovidEval.

Figure 3: Results against removing domain-specific propagation in the training sets on CrossEval and CovidEval.

Figure 4: Results against different training set sizes. We
report the average F1s of datasets on each benchmark.

ACL consistently achieves superior performance
across all data-constrained settings, regardless of
the training set ratio. This demonstrates the strong
generalization capabilities of StruACL in scenarios
with limited data. The performance improvement
of StruACL is not only attributed to its ability to
effectively learn semantic and structural features
from multi-domain data but also to its capacity
for transferring these learned semantic and struc-
tural representations across tasks. These advan-
tages enable StruACL to efficiently utilize limited
data and achieve generalized performance in data-
constrained scenarios.

3.5 Effect of Training Propagation Structure

We analyze the effect of propagation structures
in the training data during transferring between

semantic and structure. We remove the propagation
structure of the training set on the specific domain.

As shown in Figure 3, after removing propa-
gation structures on Twitter and WeiboCovid19,
the detection performance on all three datasets de-
clined consistently. This indicates that propagation
structures play a critical role in identifying fake
news, as they provide complementary signals that
enhance semantic analysis. Our StruACL can fully
model interactions between semantic and structural
features, thereby boosting multi-domain fake news
detection. Interestingly, when removing the propa-
gation data of WeiboCovid19, the detection perfor-
mance on the Twitter declined more significantly
compared to the performance drop observed for
WeiboCovid19 itself. This may be because that
StruACL leverages latent semantic associations re-
lated to Weibo, which facilitates the detection on
WeiboCovid19 even in the absence of propagation
features. In contrast, the performance gains on
TwitterCovid19 are primarily driven by the transfer
of propagation features from WeiboCovid19. This
underscores the critical role of transferable propa-
gation structure features in multi-domain detection.

4 Conclusion

This paper studies a propagation-adaptive multi-
domain fake news detection paradigm. To
achieve this, we develop a novel StruACL-TGN to
learn generalized representations from propagation-
based and content-only domains. StruACL con-
trasts semantic and structural representations to
preserve and transfer structural knowledge, while
introduces propagation-guided adversarial training
to enhance the diversity of representations. Ex-
periments on seven datasets show that StruACL-
TGN achieves superior multi-domain detection on
general and data-constraint settings, proving the
effectiveness and generalization of StruACL.
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Limitations

The current framework focuses on text-based se-
mantic and propagation data. The study of multi-
modal inputs, such as images and videos will be
left as future work to further enhance the robust-
ness and versatility of fake news detection systems
in increasingly complex and dynamic information
ecosystems.
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Overall of Appendix

In the appendix, we will provide related work on
fake news detection, and fine-grained experimental
results of ablation studies.

A Related Work

A.1 Fake News Detection
Fake news detection aims to automatically identify
a news piece as real or fake.

Early works on content-based fake news detec-
tion rely on feature engineering to capture textual
characteristics, e.g., topic features (Castillo et al.,
2011), writing styles and consistency (Popat, 2017;
Potthast et al., 2018). After the emergence of deep
learning, some works (Ma et al., 2016; Ruchan-
sky et al., 2017; Karimi and Tang, 2019) applied
various neural networks to learn high-level linguis-
tic features from the source news or combing its
retweets.

Generally, users on social media share opinions,
conjectures and evidence for checking fake news.
Through their various interactive behaviors, a prop-
agation tree describing the law of information trans-
mission is formed and plays a significant role in
fake news detection. Vosoughi et al. (2018); Jang
et al. (2018) have empirically shown that com-
pared with the truth, false news has deeper propa-
gation structures, and reaches a wider audience. To
leverage structure properties, propagation-based
fake news detection models (Ma et al., 2016; Shu
et al., 2019; Khoo et al., 2020) learn the sequen-
tial structure features in the propagation trees by
RNN-based or attention-based modules. (Shu et al.,
2019) jointly learned the sequential effect of com-
ments and correlation between source news and
the corresponding comments. To capture structural
propagation patterns, (Ma et al., 2016) constructed
a tree-structured neural network to model the prop-
agation structure. (Khoo et al., 2020) adopted
Transformer (Vaswani et al., 2017) to learn long-
distance interactions. Recently, many researchers
(Bian et al., 2020; Hu et al., 2021; Lin et al., 2021;
Wei et al., 2021, 2022b; Mehta et al., 2022; Yang
et al., 2022) regard the propagation tree as a graph,
and employ various graph-based models (Kipf and
Welling, 2017; Schlichtkrull et al., 2018; Chen
et al., 2020; Velickovic et al., 2018) to capture topo-
logical structure features for detection. applied two
graph convolutional networks (GCNs) (Kipf and
Welling, 2017) to learn structural patterns from two
distinct directed graphs. Hu et al. (2021); Lin et al.

(2021) further learn multi-relational interactions
in the propagation graph. Wei et al. (2024) study
cold-start propagation and learn transferable fea-
tures from samples with propagation for improving
detection of content-only samples.

A.2 Fake News Detection across Multiple
Domains

In real-world scenarios, fake news typically orig-
inates and propagate across various domains or
platforms, due to real-time events, social trends,
and other factors. Thus, multi-domain fake news
detection has draw significant attention.

Most works aims to study domain-shared (Zhu
et al., 2023; Liang et al., 2022) and domain-
invariant semantic features (Wang et al., 2018;
Zhang et al., 2021; Li et al., 2024; Lin et al.,
2024; Wei et al., 2025) for detecting fake news
across multiple domains. For example, Wang
et al. (2018) learn event-invariant representations
for multi-domain detection via considering the ef-
fect of event diversity. Nan et al. (2021) utilize
domain gate to alleviate the domain shift issue for
aggregation of multi-domain representations. Zhu
et al. (2023) further develop a domain adapter to ex-
tract domain-shared features from similar domains.
Liang et al. (2022) design a fuzzy domain label to
capture multi-domain knowledge. Li et al. (2024)
study the unbalanced multi-domain data issue and
leverage two teacher models to mitigate the domain
bias via knowledge distillation. Tong et al. (2024)
design a progressive hierarchical extraction net-
work to achieve domain-adaptive domain-related
knowledge extraction. Lin et al. (2024) employ con-
trastive transfer learning to enhance feature adap-
tation from well-resourced data to that of the low-
resourced with only few-shot annotations. Wei et al.
(2025) perform semantic features adaptation via ad-
versarial training from the perspective of document-
level and entity-level.

However, most of the above methods focus on
the news content across different domains. They
typically fail to utilize propagation structure across
multiple domains that provides positive comple-
mentary efforts on fake news detection. To fill the
gap, we develop a novel StruACL framework to
adaptively learn generalized semantic and struc-
tural representations for multi-domain fake news
detection. StruACL can boost feature adaptation of
structure knowledge across both content-only and
propagation-structured domains.
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Methods Weibo21♢ Twitter♦ WeiboCovid19♦ Avg. Avg. ∆p
Acc F1 Acc F1 Acc F1 Acc F1 F1

StruACL 91.14 91.09 87.35 87.34 89.81 89.31 89.44 89.25 +2.42
w/o Adv 89.93 89.91 86.53 86.50 87.96 87.41 88.13 87.94 +0.91
w/o StruCL 91.21 91.20 87.20 87.20 89.58 89.13 89.33 89.18 +2.33
w/o StruACL 88.30 88.25 85.59 85.57 87.04 86.55 86.97 86.79 -0.40
w/o Hybrid CLS 89.29 89.22 87.60 87.59 88.89 88.31 88.59 88.37 +1.42
w/o AdvStruCL 91.23 91.19 87.02 87.00 89.35 88.77 89.29 88.98 +2.11
w/o AdvCLS 88.96 88.91 84.29 84.28 88.19 87.66 87.15 86.95 -0.22

Table 8: Ablation results on CrossEval benchmark.

Methods Covid19♢ WeiboCovid19♦ TwitterCovid19♦ Arabic♦ Cantonese♦ Avg. Avg. ∆p
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 F1

StruACL 95.69 95.65 86.81 86.21 75.41 72.21 85.33 83.27 71.50 69.55 82.95 81.38 +10.12
w/o Adv 96.21 96.21 88.89 88.31 76.24 72.32 82.61 78.80 65.76 65.00 81.94 80.13 +8.03
w/o StruCL 95.61 95.58 86.11 85.84 73.27 70.68 84.24 81.29 70.44 68.67 81.93 80.41 +8.67
w/o StruACL 95.79 95.78 86.81 86.46 73.27 68.76 83.33 81.06 68.23 67.16 81.49 79.84 +7.66
w/o Hybrid CLS 95.00 94.96 87.50 86.76 73.76 69.57 83.15 80.75 69.34 68.50 81.75 80.11 +8.18
w/o AdvStruCL 97.88 97.88 82.18 81.91 68.32 62.60 80.62 77.22 70.30 67.62 79.86 77.45 +4.04
w/o AdvCLS 96.73 96.72 88.89 88.23 72.28 66.48 83.70 81.12 67.68 66.27 81.85 79.76 +7.23

Table 9: Ablation results on CovidEval benchmark.

B Fine-grained Ablation Results

Table 8 and Table 9 report fine-grained results of
ablation studies on CrossEval and CovidEval, re-
spectively.
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