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Abstract

Efficiently updating multilingual knowledge in
large language models (LLMs), while preserv-
ing consistent factual representations across
languages, remains a long-standing and unre-
solved challenge. While deploying separate
editing systems for each language might seem
viable, this approach incurs substantial costs
due to the need to manage multiple models.
A more efficient solution involves integrating
knowledge updates across all languages into a
unified model. However, performing sequential
edits across languages often leads to destructive
parameter interference, significantly degrading
multilingual generalization and the accuracy of
injected knowledge. To address this challenge,
we propose LangEdit, a novel null-space con-
strained framework designed to precisely iso-
late language-specific knowledge updates. The
core innovation of LangEdit lies in its ability
to project parameter updates for each language
onto the orthogonal complement of previous
updated subspaces. This approach mathemat-
ically guarantees update independence while
preserving multilingual generalization capabil-
ities. We conduct a comprehensive evalua-
tion across three model architectures, six lan-
guages, and four downstream tasks, demon-
strating that LangEdit effectively mitigates pa-
rameter interference and outperforms existing
state-of-the-art editing methods. Our results
highlight its potential for enabling efficient
and accurate multilingual knowledge updates
in LLMs. The code is available at https:
//github.com/VRCMF/LangEdit.git.

1 Introduction

Modern large language models (LLMs) exhibit
strong capabilities in encoding and retrieving fac-
tual knowledge. Knowledge editing has emerged as
an efficient approach to updating knowledge within
LLMs, reducing hallucinations without the need
for resource-intensive retraining (Gu et al., 2024).

* Corresponding author.
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(b) Multilingual Knowledge Editing (only one edited model).

Figure 1: Illustration of Monolingual (a) and Multilin-
gual (b) Sequential Knowledge Editing. fW denote the
pre-edited model. After performing sequential edits,
f∗
W represents the set of monolingual models, where

each model has undergone n edits, and its superscript
indicates the specific language of editing. For multilin-
gual scenarios, fWm×n

represents a single multilingual
model trained on m languages, with each language con-
taining n samples.

However, efficiently updating knowledge in multi-
lingual scenarios remains a significant challenge,
as models must maintain factual consistency across
multiple languages. Although existing monolin-
gual knowledge editing methods (Meng et al., 2023;
Gu et al., 2024; Fang et al., 2025; Ma et al., 2025)
have shown promising results, they lack effective
solutions for managing multiple monolingual mod-
els concurrently, as illustrated in Figure 1a.

To address this challenge, we introduce the
task of multilingual sequential knowledge edit-
ing, which involves updating knowledge across
multiple languages in a sequential manner, as de-
picted in Figure 1b. This task holds particular
significance for applications including knowledge-
informed multilingual information retrieval (Zhang
et al., 2022; Wang et al., 2024c) and factual updates
of multilingual LLMs (Singhal et al., 2024). A criti-
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cal challenge arises from the fact that editing knowl-
edge in one language can negatively impact the
model’s performance in other languages. We term
this phenomenon negative interference, describing
how knowledge editing in a multilingual setting
degrades performance on previously updated lan-
guages and undermines the multilingual general-
ization capabilities of LLMs, as demonstrated in
our experiments.

We propose LangEdit, a multilingual knowledge
editing framework designed to mitigate negative
interference. LangEdit constrains parameter up-
dates for each language to the null space (Greub,
2012) of previous language updated subspaces. For
example, when editing Chinese facts after English
updates, LangEdit projects Chinese updates onto
the null-space of the parameter updates for English,
mathematically ensuring minimal negative interfer-
ence. This approach creates protective "language
safeguards" that prevent parameter conflicts. Com-
pared to existing editing models, LangEdit yields
substantial improvements, achieving up to 5.65 per-
centage points increase in multilingual generaliza-
tion tasks and 2.20 percentage points improvement
in editing accuracy, thereby demonstrating its dual
capacity for precise knowledge editing and effec-
tive multilingual knowledge retention.

We conduct extensive experiments spanning
three model architectures, six languages, four mul-
tilingual generalization evaluation tasks, and two
multilingual knowledge editing datasets. Across
these settings, LangEdit consistently outperforms
strong sequential editing baselines, establishing
state-of-the-art performance. Our contributions
are:

• We introduce the task of multilingual sequen-
tial knowledge editing, which involves se-
quentially updating a multilingual LLM with
knowledge in multiple languages.

• We develop LangEdit, a null-space projection
framework that provably perform language-
specific knowledge updates.

• We show LangEdit’s consistent gains across
diverse languages, model scales and down-
stream tasks commonly used for evaluating
the multilingual generalization ability.

2 Preliminaries

2.1 Multilingual Knowledge Editing in LLMs

An autoregressive LLM iteratively generates the
next token of a sentence based on the previously
generated tokens. Let hl denote the hidden state
of the next token at layer l. The hidden state is
computed as follows (Meng et al., 2022; Fang et al.,
2025): :

hl = hl−1 + al +ml,

ml = Wl
outσ(W

l
inγ(h

l−1 + al)),
(1)

where al represents the output of the attention block
in layer l and ml corresponds to the output of the
multilayer perceptron (MLP) in layer l. Wl

out and
Wl

in are weight matrices of the lth MLP. σ is the
activation function and γ represents layer normal-
ization. Following prior works (Meng et al., 2022,
2023; Fang et al., 2025), we express the attention
block and MLP in parallel.

The MLP layers can be interpreted as linear as-
sociative memory (Geva et al., 2021). Specifically,
the knowledge stored in the model can be formal-
ized as triplets (s, r, o), where s represents the
subject, r the relation, and o the object. For ex-
ample, the triplet (s = Space Needle, r = is in,
o = the center of Seattle) encodes a factual rela-
tionship. In this framework, the output represen-
tation of σ(Wl

inγ(h
l−1 + al)) corresponds to the

key (subject and relation) of the knowledge, while
ml represents the value (object) of the knowledge.
In the multilingual sequential knowledge editing,
our objective is to optimize Wl

out within the neu-
ral network f . For simplicity of notation, in what
follows we leave out these sub- and superscripts of
Wl

out and write W.
Let the stacked keys of new input knowledge

in language j at time step t be Kt = [kt,1 |
kt,2 | . . . | kt,nt ] ∈ Rd0×nt , where nt denotes
the number of keys and d0 is the dimension of the
intermediate layer. Note that the language index
j is omitted in the following equations for sim-
plicity. Similarly, let the corresponding values be
Vt = [vt,1 | vt,2 | . . . | vt,nt ] ∈ Rd1×nt , where
d1 is the dimension of the output layer. Each in-
put data Lt is represented as a set of key-value
pairs {Kt,Vt} with a size of nt. The network is
trained sequentially on a stream of multilingual
data {L1,L2, · · · ,LT } , where each data Lt corre-
sponds to the time step t that introduces knowledge
of a language j. The initial parameters for train-
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ing on Lt are initialized as Wt−1, which are the
optimal parameters obtained after training on the
previous data Lt−1.

2.2 Null-space Projection
Assume that the model f is trained on data Lt

(for t > 1), with the corresponding weight update
denoted as ∆Wt. Let K̄t−1 = [K1; · · · ;Kt−1]
and V̄t−1 = [V1; · · · ;Vt−1] represent the con-
catenated keys and values from all previous update
steps, respectively. To mitigate the caused neg-
ative interference, the updates are constrained to
lie within the null space of the previously injected
knowledge representations. Specifically, the weight
updates ∆Wt are projected into the null space of
K̄t−1 and compute:

(∆Wt +Wt−1)K̄t−1 = V̄t−1, (2)

As the dimensions of K̄t−1 and V̄t−1 grow
with the injection of additional knowledge, com-
puting the null space becomes computationally
expensive. To address this, we replace the con-
catenated key and value matrices with their cor-
responding uncentered covariance matrices, in-
spired by techniques used in continual learn-
ing for computer vision (Wang et al., 2021):
K̄t−1 ≜ 1

n̄t−1
(K̄t−1)

⊤K̄t−1, and V̄ t−1 ≜
1

n̄t−1
(V̄t−1)

⊤V̄t−1, where n̄t−1 is the number of
rows in K̄t−1. Consequently, Equation 2 is refor-
mulated as:

(∆Wt +Wt−1)K̄t−1 = V̄ t−1. (3)

It is straightforward to verify that the null space of
K̄t−1 is equivalent to the null space of the uncen-
tered feature covariance matrix K̄t−1.

3 Method

This section presents LangEdit, a novel model
designed for multilingual sequential knowledge
editing. Our approach utilizes feature covari-
ance matrices, which are incrementally updated
as new language-specific data arrives. Specifi-
cally, given a network trained on prior multilingual
data, LangEdit updates the model parameters cor-
responding to language j at the current time step
t. The key innovation lies in projecting the candi-
date parameter updates into the approximate null
space of the feature covariance matrix of the previ-
ously learned knowledge representation, ensuring
that language-specific knowledge updates remain
decoupled and do not interfere with each other.

After training on data Lt−1, we compute the un-
centered covariance matrix as follows: Kt−1 =

1
nt−1

(Kt−1)
⊤Kt−1, where nt−1 denotes the num-

ber of data points in Lt−1. If the Lt is in language
j, the uncentered feature covariance matrix is then
updated recursively:

K̄t−1 =
n̄t−2

n̄t−1
K̄t−2 +

nt−1

n̄t−1
Kt−1, (4)

where n̄t−1 = n̄t−2 + nt−1 represents the cumu-
lative number of data points observed up to step
t− 1. To preserve previously injected knowledge,
we compute the approximate null space of K̄t−1

(Equation 3).
When training the network with Wt−1 as initial-

ization on data Lt, the parameter update ∆Wt is
obtained by optimizing the following objective:

∆Wt = arg min
˜∆Wt

(∥∥∥( ˜∆Wt +Wt−1)Kt −Vt

∥∥∥
2

+
∥∥∥( ˜∆Wt +Wt−1)K̄t−1 − V̄t−1

∥∥∥
2
)
,

(5)

where ˜∆Wt is the optimization variable.
To ensure that parameter updates reside in the

null space of the uncentered covariance matrix of
previous data, we adopt the methodology described
in (Wang et al., 2021; Fang et al., 2025). Specifi-
cally, we construct an approximate null space by
performing Singular Value Decomposition (SVD)
of K̄t−1:

Ut−1,Σt−1,Vt−1 = SVD(K̄t−1), (6)

We retain only eigenvectors in Ut−1 corresponding
to zero eigenvalues, yielding the matrix U′

t−1. The
null space projection matrix is then defined as:

Pt−1 = U′
t−1(U

′
t−1)

⊤ (7)

The parameter update ˜∆Wt is projected onto
the null space of K̄t−1 using Pt−1, the right hand
side of Equation 5 becomes:

arg min
˜∆Wt

∥∥∥(Pt−1
˜∆Wt +Wt−1)Kt −Vt

∥∥∥
2
,

(8)
because (Pt−1

˜∆Wt + Wt−1)K̄t−1 = V̄t−1,
where Pt−1 is the null space projection matrix.
To stabilize convergence, a regularization term
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Algorithm 1 LangEdit: multilingual sequential
knowledge editing

Require: Initialized weight W0, Data sequence
{L1, . . . ,LT }, Initial covariance K̄0 = K0 =
1
n0
K⊤

0 K0, Data sizes {nt}Tt=1

1: for t = 1 to T do
2: Extract input keys: Kt

3: Extract corresponding values: Vt

4: Obtain previous keys: Kt−1

5: Compute covariance: Kt−1 ←
1

nt−1
(Kt−1)

⊤Kt−1,
6: if t > 1, then update running covariance:

K̄t−1 ← n̄t−2

n̄t−1
K̄t−2 + nt−1

n̄t−1
Kt−1, n̄t−1 =

n̄t−2 + nt−1

7: Perform SVD: (Ut−1,Σt−1,Vt−1) ←
SVD(K̄t−1)

8: Compute projection matrix: Pt−1 ←
U′

t−1U
′⊤
t−1 (Keep eigenvectors in Ut−1

whose eigenvalues are zero, to obtain U′
t−1).

9: Solve optimization:

∆Wt = argmin ˜∆Wt

(
∥Pt−1

˜∆Wt∥2+
∥(Pt−1

˜∆Wt +Wt−1)Kt −Vt∥2
)

10: Update model: Wt ←Wt−1 +∆Wt

11: end for
Ensure: Updated model WT

Pt−1
˜∆Wt is added, leading to the final optimiza-

tion objective:

∆Wt = arg min
˜∆Wt

(∥∥∥Pt−1
˜∆Wt

∥∥∥
2

+
∥∥∥(Pt−1

˜∆Wt +Wt−1)Kt −Vt

∥∥∥
2
)
,

(9)

The closed solution for the final objective is:

∆Wt = RtK
⊤
t Pt−1(KtK

⊤
t Pt−1 + I)−1. (10)

where Rt = (Vt −Wt−1Kt). A critical step
in this process is computing the stacked keys K0,
which represent the old knowledge stored in the
LLM. Following the approach in (Meng et al.,
2022), K0 ∈ Rd0×100,000 is computed using ran-
domly sampled triplets from Wikipedia. This pro-
cedure is consistently applied across all models and
baselines. The LangEdit method is summarized in
Algorithm 1.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

Since multilingual sequential knowledge editing
is a novel task, we constructed a benchmark us-
ing two multilingual datasets(Wang et al., 2024a,b).
We evaluated all models and baselines on these
datasets. bzsre: The Bi-ZsRE(Bilingual Zero-Shot
Relation Extraction) dataset (Wang et al., 2024a)
is designed to assess the impact of knowledge edit-
ing in multilingual LLMs. It comprises question-
answer pairs in two languages: English and Chi-
nese. From this dataset, we randomly selected
800 samples per language to create a bilingual se-
quential knowledge editing dataset (bzsre). The
total number of edits is 1600. mzsre: The Multi-
lingual Zero-Shot Relation Extraction (M-ZsRE)
dataset (Wang et al., 2024b) contains question-
answer pairs in twelve languages. Due to con-
straints of the downstream task, we focused on
six languages: English, German, Dutch, Spanish,
French, and Chinese. For each language, we ex-
tracted 400 samples to construct a multilingual se-
quential knowledge editing dataset (mzsre). The to-
tal number of edits is 2400. We put the description
for MLaKE dataset (Wei et al., 2025) and experi-
mental results on this dataset to the Appendix A.6.

To evaluate the multilingual generalization ca-
pabilities of the edited LLMs, we employed four
tasks from the Cross-lingual TRansfer Evalua-
tion of Multilingual Encoders (XTREME) bench-
mark (Hu et al., 2020): XNLI A cross-lingual nat-
ural language inference (NLI) benchmark extend-
ing MultiNLI (Gururangan et al., 2018) to 15 lan-
guages. It evaluates multilingual generalization in
NLI tasks through textual entailment classification.
PAWS-X (Yang et al., 2019) A cross-lingual para-
phrase identification dataset featuring adversarial
examples generated via word-order perturbations.
It tests model robustness against structural ambi-
guities in multilingual contexts. MLQA (Lewis
et al., 2020) A multilingual question answering
benchmark derived from Wikipedia articles. It mea-
sures extractive question-answering (QA) perfor-
mance across 7 languages. Wikiann (Pan et al.,
2017) A multilingual named entity recognition re-
source with consistent PER/ORG/LOC annotations,
providing standardized evaluation for multilingual
named-entity recognition (NER) model adaptation.

8799



4.1.2 Metrics
Following prior works (Meng et al., 2022, 2023;
Fang et al., 2025), we define each editing metric
given a LLM f , a knowledge fact prompt (si, ri),
the target output of the edited model oi, and the
output of the original model oci as follows:
Efficacy: Efficacy quantifies the model’s ability to
produce the target object oi when prompted with
(si, ri). It is computed as the average top-1 accu-
racy over all edited samples:

Ei

{
oi = argmax

o
Pf (o | (si, ri))

}
. (11)

Generality: Generality evaluates the performance
of the model on equivalent prompts of (si, ri),
such as rephrased statements N((si, ri)). This is
evaluated by the average top-1 accuracy on these
N((si, ri)):

Ei

{
oi = argmax

o
Pf (o | N((si, ri)))

}
. (12)

Specificity: Specificity ensures that the editing
does not affect samples O(si, ri) which are un-
related to the edit cases. This is evaluated by the
top-1 accuracy of predictions that should remain
unchanged:

Ei

{
oci = argmax

o
Pf (o | O((si, ri)))

}
. (13)

To evaluate multilingual generalization in edited
LLMs, we report F1 Scores across four NLP tasks
in the XTREME benchmark. F1 (avg.) denotes the
average F1 Score across these tasks.

4.1.3 Implementation Details
We perform multilingual sequential knowledge
editing with 100 samples per edit time step t. We
conducted all experiments on a single A100 GPU
(80GB) and repeated three times with different
seeds to ensure reliability. Results are reported
as the mean and standard deviation. We evaluate
the computational cost of different editing meth-
ods in the Appendix A.4. Following (Meng et al.,
2023; Fang et al., 2025), we configure each model
as follows: (1) For the GPT-J-6B model, we target
critical layers [3, 4, 5, 6, 7, 8] for editing inspired
by monolingual editing. When computing the hid-
den representations of a critical layer, we perform
25 optimization steps with a learning rate of 0.5.
(2) For the Llama3-8B model, we target critical
layers [4, 5, 6, 7, 8] for editing. When computing
the hidden representations of a critical layer, we

perform 25 steps with a learning rate of 0.1. (3)
For the Qwen2.5-7B model, we target critical lay-
ers [4, 5, 6, 7, 8] for editing. When computing
the hidden representations of a critical layer, we
perform 25 steps with a learning rate of 0.1. The
selection of critical layers is guided by the causal
tracing technique, with detailed results provided in
Appendix A.1. For the package versions, we report
them in the Appendix A.3.

4.1.4 Baselines
This work establishes the first benchmark for mul-
tilingual sequential knowledge editing. As no ex-
isting methods specifically address this emerging
challenge, we establish baseline performance by
adapting state-of-the-art approaches from mono-
lingual sequential editing research. We faithfully
re-implemented these models based on their origi-
nal codebases.
FT (Fine-Tuning) updates a subset of the model
parameters via gradient descent using the training
examples from the multilingual knowledge editing
dataset. While effective for adapting models to
new distributions, FT risks catastrophic forgetting
of pre-trained knowledge and demands substantial
computational resources.
ROME (Rank-One Model Editing) (Meng et al.,
2022) localizes factual associations to middle-layer
feed-forward modules and updates their weights
through rank-one adjustments. By identifying criti-
cal neuron activations tied to specific knowledge,
ROME demonstrates that direct manipulation of
feed-forward layers can edit factual predictions
without requiring full retraining.
MEMIT (Mass-Editing Memory in Trans-
former) (Meng et al., 2023) extends ROME
by propagating edits across multiple layers. It
identifies critical neuron activations in parallelized
weight matrices during knowledge editing,
enabling the insertion of thousands of new
associations.
PRUNE (Perturbation Restraint on Upper bouNd
for Editing) (Ma et al., 2025) mitigates perfor-
mance degradation during sequential editing by
optimizing the condition number (Smith, 1967) of
edited weights, which limits catastrophic interfer-
ence with unrelated knowledge as the number of
edits accumulates.
RECT (RElative Change in weighT) (Gu et al.,
2024) mitigates the side effects of editing on gen-
eral reasoning abilities by controlling weight up-
dates. Specifically, the top-k% parameters that
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Model Methods mzsre XTREME‡ bzsre XTREME†
Efficacy↑ Generality↑ Specificity↑ F1 (avg.)↑ Efficacy↑ Generality↑ Specificity↑ F1 (avg.)↑

L
la

m
a3

-8
B

Pre-edited 31.15±0.13 31.01±0.22 31.93±0.17 69.3±0.21 31.55±0.11 31.17±0.15 30.5±0.19 69.38±0.25

FT 30.76±0.12 29.48±0.19 9.53±0.11 10.57±0.03 31.41±0.15 29.97±0.17 15.29±0.21 44.38±0.33

ROME 0.39±0.16 0.35±0.18 0.32±0.22 4.51±0.01 2.54±0.42 2.46±0.44 0.39±0.49 4.66±0.19

MEMIT 1.45±1.03 1.46±0.99 0.67±0.03 4.54±0.00 4.58±0.27 4.03±0.09 2.84±0.42 15.64±2.41

PRUNE 0.43±0.23 0.36±0.02 0.02±0.01 4.48±0.00 4.92±1.53 4.22±1.23 1.90±0.80 9.32±2.14

RECT 2.91±0.38 2.79±0.36 0.64±0.18 7.71±2.49 41.01±2.47 38.58±1.95 20.80±0.76 55.97±3.44

AlphaEdit 80.34±0.58 75.84±0.73 30.91±0.49 60.59±0.38 71.88±0.81 66.55±0.33 30.47±0.20 71.25±0.70

LangEdit 82.54±0.14* 77.53±0.43* 31.90±0.14* 66.24±0.28* 73.18±0.35* 66.95±0.17* 31.11±0.18* 73.14±0.83*

Q
w

en
2.

5-
7B

Pre-edited 33.52±0.09 33.11±0.13 38.76±0.08 71.9±0.15 33.77±0.07 33.24±0.20 38.81±0.15 73.91±0.14

FT 32.46±0.13 30.28±0.47 28.76±0.20 45.20±0.40 35.6±0.15 33.06±0.23 33.48±0.17 59.51±0.43

ROME 12.44±0.47 11.35±0.73 2.25±0.71 4.70±0.15 16.36±0.77 15.27±0.53 1.60±0.29 4.70±0.17

MEMIT 1.36±0.36 1.24±0.29 0.13±0.05 4.55±0.01 75.75±0.06 70.03±0.02 40.04±0.47 73.43±0.86

PRUNE 24.99±2.43 24.45±2.34 18.02±1.69 40.57±1.61 37.24±2.20 35.95±1.59 27.91±0.17 60.35±0.89

RECT 79.98±1.03 74.50±0.88 42.69±0.17 72.43±0.73 75.73±0.20 68.80±0.55 41.52±1.11 73.69±0.82

AlphaEdit 93.50±0.18 87.18±0.50 42.58±0.29 73.01±0.74 82.41±1.86 73.57±0.53 40.08±0.48 73.56±0.62

LangEdit 93.90±0.04* 87.02±0.41 42.64±0.32 74.06±1.33* 83.47±0.91* 74.32±0.19* 40.55±0.41 75.70±0.36*

G
PT

-J
-6

B

Pre-edited 24.05±0.12 23.71±0.23 26.07±0.13 37.5±0.20 14.51±0.10 13.92±0.17 15.08±0.09 33.66±0.23

FT 23.58±0.10 21.16±0.13 1.64±0.07 4.67±0.09 20.86±0.10 19.55±0.13 4.04±0.17 5.06±0.11

ROME 19.66±0.10 18.37±0.38 1.36±0.10 4.93±0.15 14.41±0.37 13.08±0.30 0.78±0.15 6.52±1.78

MEMIT 48.25±4.25 46.07±4.14 22.63±1.08 36.85±0.76 44.98±0.22 41.75±0.36 14.47±0.16 31.53±0.76

PRUNE 3.10±0.83 2.93±0.86 2.40±0.62 8.26±1.88 2.41±0.38 2.42±0.44 2.37±0.39 5.77±3.44

RECT 71.10±1.78 67.05±1.99 26.2636 37.17±0.95 48.30±0.30 43.33±0.56 14.48±0.17 32.67±1.29

AlphaEdit 83.59±0.26 78.34±0.05 26.55±0.33 36.74±1.19 54.36±0.11 47.52±0.15 15.13±0.20 33.28±1.21

LangEdit 84.27±0.27* 79.74±0.36* 27.23±0.04* 38.59±1.35* 54.86±0.21* 48.40±0.44* 15.31±0.05 35.75±0.94*

Table 1: We assess the performance of various model editing methods using three LLMs (GPT-J-6B, Llama3-8B,
and Qwen2.5-7B) on the mzsre and bzsre datasets. The best results are highlighted in bold, while the second-best
results are underlined. Statistical significance (*) is determined using a paired t-test with p=0.05. XTREME‡
represents average F1 Scores on XTREME tasks after training on the mzsre dataset; XTREME† denotes the average
F1 Scores after training on the bzsre dataset. All baselines are adapted for multilingual sequential knowledge
editing.

change the most according to relative changes in pa-
rameters are considered as the principal editing in-
formation and their obtained values are kept, while
the remaining parameters are kept unchanged.

AlphaEdit (Fang et al., 2025) is designed for mono-
lingual knowledge editing and decouples knowl-
edge updates from preservation objectives by null-
space projection. Parameter perturbations in Al-
phaEdit are projected onto a static null space of key
matrices, whereas LangEdit leverages a dynamic
null space, where the projection of the key matri-
ces varies at each update step t. The difference
between the original AlphaEdit and our method is
two-fold. The first difference is that the original
AlphaEdit and our method leverage the null-space
projection to resolve a different task. The origi-
nal AlphaEdit focuses on monolingual sequential
knowledge editing and our work solves the task
of multilingual sequential knowledge editing. The

second difference is the usage of null space pro-
jection. Parameter perturbations in AlphaEdit are
projected onto a static null space of key matrices,
while LangEdit leverages a dynamic null space,
where the projection of the key matrices is differ-
ent for any update step.

Baseline models (e.g., MEMIT, AlphaEdit) are
designed to support batch editing (i.e., 100 sam-
ples per time-step). As ROME does not support
batch-editing, we run ROME 100 times iteratively
to adapt the multilingual sequential knowledge edit-
ing task.

Moreover, we propose several baseline meth-
ods derived from our model architecture, with
comprehensive comparison results provided in Ap-
pendix A.2. We also evaluate the pre-edited model
— the original LLMs without any editing.
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(a) MLQA (b) Wikiann (c) PAWSX (d) XNLI

Figure 2: F1 Scores of the edited Llama3-8B on XTREME benchmark evaluating multilingual generalization.

(a) EN (mzsre)) (b) DE (mzsre) (c) NL (mzsre) (d) ES (mzsre)

(e) FR (mzsre) (f) ZH (mzsre) (g) EN (bzsre) (h) ZH (bzsre)

Figure 3: Radar chart of editing performance and multilingual downstream task performance when editing Llama3-
8B with different languages. We use , and to represent LangEdit, AlphaEdit and RECT, respectively.

4.2 Experimental Results

Table 1 demonstrates that LangEdit significantly
outperforms the state-of-the-art model AlphaEdit
in terms of Efficacy Score across three model ar-
chitectures (Llama3-8B, Qwen2.5-7B, GPT-J-6B)
and two knowledge editing datasets (mzsre, bzsre).
When using Llama3-8B as the backbone, LangEdit
achieves average improvements of +2.20 and +1.30
percentage points 1 on the mzsre and bzsre datasets,
respectively. Similar enhancements are observed
with Qwen2.5-7B (+0.40 on mzsre, +1.06 on bzsre)
and GPT-J-6B (+0.68 on mzsre, +0.60 on bzsre).
These results underscore the robustness of our
method across diverse architectures and its effec-
tiveness in knowledge injection for LLMs.

Furthermore, Table 1 reveals that LangEdit sur-
passes the best baseline (AlphaEdit in a multilin-
gual setting) by an average margin of +2.85 F1
Score and +2.17 F1 Score on XTREME bench-
mark when evaluated across three backbone ar-
chitectures (GPT-J-6B, Qwen2.5-7B, Llama3-8B)
after training on mzsre and bzsre datasets, respec-
tively. The averaged F1 Score reflects the perfor-

1All increases or decreases are given in percentage points.

mance across four tasks designed to assess multi-
lingual generalization. Notably, the improvement
is most pronounced for Llama3-8B, which exhibits
a +5.65 F1 Score gain on the XTREME bench-
mark after training on the mzsre dataset. This high-
lights LangEdit’s ability to preserve and enhance
multilingual generalization across diverse model
architectures during sequential knowledge editing.

Our findings indicate that multilingual knowl-
edge editing significantly improves multilingual
generalization capabilities. For GPT-J-6B and
Qwen2.5-7B, LangEdit consistently outperforms
their pre-edit counterparts on both datasets. While
Llama3-8B shows a 3.06 F1 Score decrease on
XTREME benchmark after training on the mzsre
dataset, it achieves a 3.76 F1 Score improvement
on the XTREME benchmark after training on the
bzsre dataset. We hypothesize that this discrep-
ancy arises because the injected multilingual knowl-
edge benefits languages structurally aligned with
the editing corpus. This observation aligns with
prior work (Chua et al., 2024), which suggests that
even minimal multilingual exposure can enhance
generalization ability.
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Figure 2 illustrates editing performance and mul-
tilingual generalization performance trends under
varying edits. A key pattern is: LangEdit consis-
tently outperforms baselines across all edit scales
in tasks evaluating multilingual generalization.

4.3 Per-Language Evaluation of Editing and
Generalization

To evaluate editing efficiency and multilingual gen-
eralization capabilities, we conducted comprehen-
sive experiments using Llama3-8B as the backbone
architecture across six languages.

Figure 3 presents radar charts illustrating the
language-specific performance characteristics of
LangEdit, AlphaEdit, and RECT. Our analysis
reveals two key findings: (1) Our model consis-
tently outperforms baselines across all evaluated
languages, achieving state-of-the-art results in mul-
tilingual sequential knowledge editing. Specifi-
cally, it demonstrates improvements in editing ac-
curacy (average +1.13) and F1 Scores on down-
stream tasks (average +3.32). (2) We observe a
notable disparity in performance gains between En-
glish and Spanish knowledge updates. While En-
glish updates show modest improvements (editing:
+0.61, F1 Scores on downstream: average +3.39),
Spanish updates yield significantly higher gains
(editing: average +1.29, F1 Scores on downstream:
average +9.00). We attribute this discrepancy to the
pretraining data imbalance in Llama3-8B, where
the model’s strong English generalization capac-
ity leaves limited room for improvement through
knowledge editing. This finding aligns with recent
studies on multilingual capacity scaling (Conneau
et al., 2020; Fernandes et al., 2023), suggesting that
editing effectiveness is inversely correlated with the
pretraining data volume of the target language.

We further conduct in-depth analysis of knowl-
edge sharing to explore whether a fact update in
one language is accessible to other languages. The
results is illustrated in the Appendix A.5.

4.4 Negative Interference in Multilingual
Knowledge Editing

To analyze negative interference, we evaluate
Llama3-8B edited with knowledge in six languages
using two editing datasets. Editing efficacy is mea-
sured through the Efficacy Score, while the mul-
tilingual generalization ability is assessed by the
averaged F1 Score. We formalize the magnitude
of negative interference as the performance gap
between the original AlphaEdit model - AlphaEdit

(mono), designed for monolingual knowledge up-
dates and a model designed for multilingual knowl-
edge editing (AlphaEdit (multi) and LangEdit).

Our experiments reveal significant negative in-
terference in AlphaEdit (multi). As shown in Fig-
ure 4, AlphaEdit (multi) exhibits substantial per-
formance degradation in both Efficacy Score (∆
= +0.10 ∼ +3.27) and F1 Score (∆ = +3.20 ∼
+15.19) across all language pairs compared to the
AlphaEdit (mono). In contrast, our model demon-
strates remarkable robustness to negative interfer-
ence: (1) It reduces the F1 Score disparity to (∆
= +0.20 ∼ +9.29) across languages, significantly
lower than the (∆ = +3.20 ∼ +15.19) obtained by
AlphaEdit. (2) It surpasses AlphaEdit (mono) in Ef-
ficacy Score for English (+1.10), German (+3.01),
Dutch (+2.58), and French (+3.95).

Without the proposed parameter updates the per-
formance of multilingual sequential knowledge
editing is lower than that of monolingual editing,
confirming the effectiveness of the proposed null-
space projection. Even for related languages (e.g.,
English-Dutch-German, French-Spanish), not inte-
grating the null-space still degrades performance,
reinforcing the effectiveness of our approach.

5 Related Work

Knowledge editing approaches for large lan-
guage models (LLMs) can be broadly catego-
rized into two paradigms: parameter-modifying
and parameter-preserving, depending on whether
the model weights are updated. We focus on
the parameter-modifying paradigm. Prior re-
search (Geva et al., 2021) has demonstrated that
the MLP layers in Transformer models function
as knowledge repositories, with specific neurons
encoding editable factual associations.

Building on this insight, Meng et al. (2022) in-
troduced ROME (Rank-One Model Editing), a pi-
oneering two-stage framework that first identifies
the MLP layer storing the target knowledge and
then injects a single knowledge edit through rank-
one weight perturbations. This approach was later
extended by MEMIT (Mass-Editing Memory in
Transformer) (Meng et al., 2023), which enhances
scalability by enabling updates across multiple
MLP layers to inject numerous knowledge edits.

Subsequent works identified a critical challenge
in sequential editing: (Gu et al., 2024) attributed
degradation of general abilities to parameter pertur-
bations and introduced RECT, a regularization tech-
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(a) EN (mzsre)) (b) DE (mzsre) (c) NL (mzsre) (d) ES (mzsre) (e) FR (mzsre) (f) ZH (mzsre) (g) EN (bzsre) (h) ZH (bzsre)

Figure 4: Performance comparison for all languages between multilingual knowledge editing model and the state-
of-the-art monolingual model. : LangEdit, : AlphaEdit (Multi), : AlphaEdit (Mono).

nique constraining weight updates. Concurrently,
Ma et al. (2025) established a mathematical connec-
tion between model degradation and the condition
number (Smith, 1967) of the edited weights, intro-
ducing PRUNE to impose condition number-based
constraints on weight updates. The monolingual
AlphaEdit (Fang et al., 2025) projected the param-
eter perturbation of the MLP weights into the null
space of knowledge preserved in the LLMs.

The above methods have shown success in mono-
lingual knowledge editing but are limited to one
language. To the best of our knowledge, we are the
first work studying multilingual sequential knowl-
edge editing, where the knowledge in different lan-
guages may interfere with each other.

Prior works (Wang et al., 2024a,b; Zhang et al.,
2025) focus on single knowledge editing (Gu et al.,
2024) instead of sequential knowledge editing. Sin-
gle knowledge editing tests how well a model
adapts to a single modification, while sequential
knowledge editing checks whether the model can
retain all previous edits and maintain overall per-
formance after multiple consecutive changes.

6 Conclusion

We introduced the multilingual sequential knowl-
edge editing task and identified the negative in-
terference arising from parameter changes during
sequential updates across languages. To address
this, we proposed LangEdit, a novel framework
employing null-space constrained optimization to
isolate language-specific parameter updates while
preserving the model’s multilingual generalization
capabilities. LangEdit achieves this by construct-
ing "language safeguards", which prevent edits in
one language-specific knowledge from adversely
affecting performance in another, without the need
for additional language-specific modules. LangEdit
offers a technically sound method based on null-

space projection, specifically adapted for the mul-
tilingual sequential setting with dynamic projec-
tions. Extensive experiments conducted across six
languages and three large language models archi-
tectures demonstrate the effectiveness of LangEdit,
establishing state-of-the-art performance in multi-
lingual sequential knowledge editing.

Limitations

While our study provides insight into multilingual
sequential knowledge editing, three key limitations
warrant further investigation: (1) Our experiments
are conducted on 6 to 8B parameter LLMs. Ex-
tending this analysis to larger architectures (e.g.,
70B-scale models) could reveal scaling effects in
multilingual knowledge editing. Large models usu-
ally have more parameters, more complex struc-
tures, and have stronger multilingual capabilities.
However, knowledge editing may face challenges,
such as more parameters making it more difficult
to locate specific knowledge areas, or more dis-
persed knowledge representation within the model.
(2) The current evaluation focuses on constrained
editing scenarios. Future work should explore a
broader range of downstream applications to assess
real-world deployment viability. (3) Our multilin-
gual experiments are limited to 6 languages. De-
veloping comprehensive multilingual benchmarks
covering hundreds of languages would better test
the boundaries of LangEdit and baselines.
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A Appendix

A.1 The analysis of factual knowledge storage

Assume that the factual knowledge stored in LLMs
is represented in the (s, r, o) format where s de-
notes subjects, o represents objects and r is the
relation between subjects and objects. (Meng et al.,
2022) show that the MLP modules in the mid-layer
encode subjects of the text in English and then
generate outputs that retrieve updated knowledge
from these layers. However, it remains uncertain
whether knowledge in other languages follows the
same pattern as described in (Meng et al., 2022),
necessitating further investigation.

Firstly, we apply the causal tracing technique
used in (Meng et al., 2022) to determine which

hidden states have a causal impact on factual pre-
dictions by running the model multiple times, intro-
ducing interventions, and restoring specific states.
The specific steps are as follows: Clean Run: The
model processes the input without any interference,
and the activation values of all hidden states are
recorded. Corrupted Run: Noise (random pertur-
bations) is introduced into the embeddings of the
subject tokens to potentially cause the model to out-
put incorrect factual predictions. Corrupted-with-
Restoration Run: Based on the corrupted run, spe-
cific hidden states are restored to observe whether
these states can restore the model’s correct predic-
tion. To quantify the causal contribution of each
hidden state to factual predictions, we use average
indirect effect (AIE) to measure the importance
of specific states. Indirect Effect is the difference
in predictions between the corrupted run and the
corrupted-with-restoration run. The first column
of Figure 5 shows that strong causal states appear
in early layers at the last token of the subject for
all six languages. The second and third columns of
Figure 5 suggest that the MLP contributes stronger
causality in early layers compared to the attention
module. The opinion obtained by (Meng et al.,
2022) is consistent with our finding, which is that
the MLP modules in the mid-layers encode the
subjects of knowledge in six languages and then
generate the output of recalling memory objects.

A.2 Experimental results of variant models
for multilingual editing of the LLM

We develop three variants and analyze their per-
formance in Table 5: AlphaEdit (Translation):
This variant edits only the English knowledge in
the model using AlphaEdit and then translates the
edited knowledge to other languages using Google
Translate. While it underperforms AlphaEdit in
direct editing evaluation (likely due to translation
errors), it achieves stronger performance on multi-
lingual generalization tasks. We assume that this
is because focusing solely on English knowledge
injection avoids interference from multilingual up-
dates. AlphaEdit (Multilingual): We train the
LLMs on multiple languages by first calculating
knowledge updates for each language individually.
Then, we combine all these updates by adding them
together, forming unified updates that construct
multilingual knowledge representations. Finally,
we conduct knowledge editing by applying this
representations to the weights of selected MLP lay-
ers in LLMs. This approach underperforms com-
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(a) AIE of hidden states in EN (b) AIE of MLPs in EN (c) AIE of Attns in EN

(d) AIE of hidden states in DE (e) AIE of MLPs in De (f) AIE of Attns in DE

(g) AIE of hidden states in NL (h) AIE of MLPs in NL (i) AIE of Attns in NL

(j) AIE of hidden states in ES (k) AIE of MLPs in ES (l) AIE of Attns in ES

(m) AIE of hidden states in FR (n) AIE of MLPs in FR (o) AIE of Attns in FR

(p) AIE of hidden states in ZH (q) AIE of MLPs in ZH (r) AIE of Attns in ZH

Figure 5: Average Indirect Effects of all model components (Llama3-8B) of 100 factual knowledge in six languages.
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pared to LangEdit across both editing accuracy and
multilingual generalization, reinforcing the impor-
tance of multilingual sequential knowledge edit-
ing. LangEdit with shuffled language order of
the knowledge): By randomizing the editing se-
quence for three times while preserving the content
of the knowledge, we observe comparable perfor-
mance to using the knowledge sequence without
this shuffling. This suggests that while sequential
editing is crucial, the specific ordering of languages
carries minimal importance.

A.3 Package Version
Pytorch version is 2.3.0 and transformer is 3.9.1.

A.4 Computational Analysis
To evaluate the computational cost, we leverage the
time per batch (100 edits) and memory cost. We
conduct multilingual sequential knowledge editing
on an NVIDIA A100-SXM4-80GB GPU. When
we edit Llama3-8B on the MzsRE dataset, Time
per Batch (s) and Memory (GB) for all models are
shown in Table 2. When editing Qwen-7B on the
MzsRE dataset, Time per Batch (s) and Memory
(GB) for all models are shown in Table 4. When
editing GPT-J-6B on the MzsRE dataset, Time per
Batch (s) and Memory (GB) for all models are
shown in Table 3.

Method Time per Batch (s) Memory (GB)

FT 69 36.8
ROME 1804 36.7
MEMIT 974 35.8
PRUNE 1073 35.8
RECT 991 35.8
AlphaEdit 1277 37.9
LangEdit 1549 41.5

Table 2: Computational cost of knowledge methods
when editing the Llama3-8B.

A.5 The Analysis on Knowledge Sharing
To explore whether a fact expressed in one lan-
guage remains consistent across other languages,
we conduct the following experiment, illustrated
with the example below. Imagine injecting new
facts into an English-Spanish bilingual model:

• We edit the LLM with English data (e.g., "Carl
Sagan → worked at BBC").

• We keep the original Spanish data unchanged.

Method Time per Batch (s) Memory (GB)

FT 68 28.1
ROME 1509 30.9
MEMIT 792 35.6
PRUNE 809 35.6
RECT 845 35.6
AlphaEdit 963 34.7
LangEdit 1098 37.9

Table 3: Computational cost of knowledge methods
when editing the GPT-J-6B.

Method Time per Batch (s) Memory (GB)

FT 69 32.6
ROME 1183 36.5
MEMIT 450 35.7
PRUNE 479 35.7
RECT 485 35.7
AlphaEdit 524 34.4
LangEdit 793 38.3

Table 4: Computational cost of knowledge methods
when editing the Qwen-7B.

• If the model correctly answers the Spanish
query ’Dónde trabajó Carl Sagan?’ (’Where
did Carl Sagan work?’)—despite never hav-
ing seen this edit in Spanish—it demonstrates
successful cross-lingual transfer enabled by
LangEdit’s architecture.

The experimental results for exploring cross-
lingual knowledge transfer with queries in the test
language that have never been seen in the edits are
shown in Table 6 and Table 7. From Table 6, we
can observe that the evaluation scores of LangEdit
(Spanish) and LangEdit (French) are higher than
the Llama3 (Spanish) and Llama3 (French). The
same phenomenon appears in Table 7. This in-
dicates that the edited knowledge in a certain lan-
guage can propagate to other languages when using
LangEdit.

A.6 Experimental Results on the MLaKE
Dataset

MLaKE is a multilingual benchmark designed to
evaluate the performance of knowledge editing
methods in large language models across differ-
ent languages and reasoning complexities. It con-
tains 4072 multi-hop and 5360 single-hop question-
answer pairs in five languages: English, Chinese,
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Methods mzsre XTREME ‡ bzsre XTREME †
Efficacy↑ Generality↑ Specificity↑ F1↑ Efficacy↑ Generality↑ Specificity↑ F1↑

AlphaEdit (translation) 63.01 55.57 24.24 75.53 53.91 47.74 24.66 74.51
AlphaEdit (multilingual) 45.35 37.53 11.23 14.53 39.15 22.21 9.98 4.66
LangEdit (shuffle order) 81.69 76.75 32.77 65.37 72.97 67.11 30.09 73.01
LangEdit 82.54 77.53 31.90 66.24 73.18 66.95 31.11 73.14

Table 5: Performance of variant models for multilingual editing using Llama3-8B and evaluated on the mzsre
and bzsre datasets. XTREME‡ represents average F1 Scores on XTREME tasks after training on the mzsre
dataset; XTREME† denotes the average F1 Scores after training on the bzsre dataset. All baselines are adapted for
multilingual sequential knowledge editing.

Models Test language Efficacy Generality Specificity

LangEdit French 56.41 53.91 30.54
Llama3 (unedited) French 31.51 30.90 30.21
LangEdit Spanish 55.89 53.84 31.54
Llama3 (unedited) Spanish 31.71 31.62 31.33

Table 6: Experimental results of cross-lingual knowledge transfer when editing Llama3-8B in French and Spanish.

Models Test language Efficacy Generality Specificity

LangEdit English 59.02 57.37 31.14
Llama3 (unedited) English 31.03 30.92 30.97
LangEdit German 58.12 56.30 30.16
Llama3 (unedited) German 30.15 29.71 29.95
LangEdit Dutch 56.33 53.31 30.82
Llama3 (unedited) Dutch 30.62 30.14 30.37

Table 7: Experimental results of cross-lingual knowledge transfer when editing Llama3-8B in English, German and
Dutch.

Japanese, French, and German. Each instance is
based on fact chains aligned from Wikipedia, cov-
ering both shallow and complex reasoning paths.
MLaKE enables systematic evaluation of cross-
lingual transferability, multi-hop reasoning, and the
limitations of current multilingual knowledge edit-
ing approaches. The MLaKE dataset does not pro-
vide subject items for the knowledge triplets. We
conduct multilingual sequential knowledge editing
on the MLaKE dataset in three languages (English,
German and French), where we have manually an-
notated the subject items for a small subset (100
examples for each language). Experimental results
on the MLaKE dataset are shown in the Table 8.
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Models Single-hop Multi-hop
Efficacy XTREME (F1) Efficacy XTREME (F1)

AlphaEdit (adapted) 90.62 69.96 88.48 68.17
LangEdit 91.44 70.89 90.05 69.09

Table 8: Comparison of models on Single-hop and Multi-hop tasks using Efficacy and XTREME (F1) metrics.
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