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Abstract

Analysing the differences in how events are
represented across texts, or verifying whether
the language model generations hallucinate, re-
quires the ability to systematically compare
their content. To support such comparison,
structured representation that captures fine-
grained information plays a vital role. In par-
ticular, identifying distinct atomic facts and the
discourse relations connecting them enables
deeper semantic comparison. Our proposed ap-
proach combines structured discourse informa-
tion extraction with a classifier, FDSpotter, for
factual consistency verification. We show that
adversarial discourse relations pose challenges
for language models, but fine-tuning on our an-
notated data, DiscInfer, achieves competitive
performance. Our proposed approach advances
factual consistency verification by grounding
in linguistic structure and decomposing it into
interpretable components. We demonstrate the
effectiveness of our method on the evaluation
of two tasks: data-to-text generation and text
summarisation. Our code and dataset will be
publicly available on GitHub.

1 Introduction

The analysis of public discourse plays a vital role in
social sciences, in particular for sociology (Wodak
and Meyer, 2015), history (Rule et al., 2015), and
computational journalism (Cazalens et al., 2018).
A key task in this context is to quantify whether
two texts convey the same information through
their expressed content. Such comparisons enable
the detection of media bias: for instance, the outlets
with different political orientations usually tend to
selectively report different subsets of information
units, which has been a phenomenon known as
omission bias (Baker et al., 1994). More recently,
similar techniques have been utilised to assess the
factual consistency of text generation, verifying
whether the content in the output can be grounded
in the reference or source text (Tang et al., 2024).

Extracting RDF-style triples from two texts and
then assessing their overlap appears to be a straight-
forward strategy for comparing texts. However,
prior works that extract structured contents for
factual consistency verification (Joty et al., 2017;
Goodrich et al., 2019; Goyal and Durrett, 2020) ex-
hibit a performance gap compared with state-of-the-
art approaches based on sentence-level entailment
(Scirè et al., 2024) or large language model prompt-
ing (Luo et al., 2023). The gap is primarily due to
natural language expresses meaning in more rich
and subtle ways than RDF triples. Firstly, the con-
tents in adverbials and complements are difficult
to encode in the standard subject–predicate–object
format. For example, in the text “Barack Obama
was elected in 2008 as the President of the USA”,
“in 2008” conveys crucial temporal information,
yet it is hard to incorporate into a triple structure.
Secondly, triple-based representations fail to en-
code discourse-level semantics, such as contrastive
or causal relations. For instance, the causal link in
“Lu Xun realised that being a doctor could not save
Chinese people’s minds, so he gave up his medical
career and became a writer” cannot be captured
through RDF triples. Beyond the limitations of the
triple format, both large language models (Dubey
et al., 2024) and smaller classifiers (He et al., 2021)
often fail to detect contradictions introduced by ad-
versarial discourse connectives (Miao et al., 2024).

Our contributions in the paper are as follows:

• We propose a structured representation of
textual information that extends RDF-style
triples by incorporating complements and ad-
verbials into the atomic facts, and by pre-
serving the discourse relations between them.
We show that few-shot LLMs can extract this
structure with high quality.

• We introduce a novel method for evaluating
cross-textual factual consistency. A classifier,
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FDSpotter, is trained to verify the presence
of atomic facts and discourse relations across
texts. We show that detecting whether dis-
course relations are preserved is challenging,
but we achieve strong performance after fine-
tuning on our annotated DiscInfer dataset.

• Empirical results demonstrate the effective-
ness of our approach in evaluating data-to-text
generation and text summarisation.

2 Related Work

Open Information Extraction (OIE) Open in-
formation extraction (Etzioni et al., 2008; Upad-
hyay et al., 2023; Pai et al., 2024) tools extract
triples of the form ⟨subject, predicate, object⟩
from unstructured texts. In OIE, the predicates
are not known beforehand, and the subjects and
objects are not necessary to be named entities.
While the triple format is one of the most common
used, n-tuples have also been proposed (Niklaus
et al., 2018). In some approaches (Del Corro and
Gemulla, 2013), the elements of the tuples are de-
fined as syntax elements, such such as subject, verb,
object, complement, etc. In other works (Dong
et al., 2023) the elements of the tuples are phrases.
Open information extraction can be performed by
semantic role labelling (Chen et al., 2025a), se-
quence tagging (Stanovsky et al., 2018), and large
language models (Xu et al., 2023).

Meaning Representation and Parsing Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013) is a semantic representation framework de-
signed to abstract away from surface syntax and
encode the meaning of the text in the form of rooted,
directed, acyclic graphs (DAGs) that capture the
relation between the elements of the text. One key
challenge of AMR parsing lies in the annotation
process, which requires high linguistic expertise.
A well-trained annotator typically spends around
10 minutes to produce a single AMR graph (Saded-
dine et al., 2024). AMR parsers also struggles with
out-of-distribution inputs and new domains (Lee
et al., 2022). Discourse parsing (Braud et al., 2023)
identifies the structure of texts by linking spans
of discourses through semantic and pragmatic dis-
course relations. can be explicitly or implicitly ex-
pressed. State-of-the-art parsing methods achieve
strong performance in discourse unit segmentation
(Metheniti et al., 2023), but Liu et al. (2023a) re-
ports discourse connective detection remains chal-

lenging. Shallow discourse parsing identifies dis-
course argument spans and the corresponding dis-
course connectives jointly (Wang and Lan, 2015;
Oepen et al., 2016), but state-of-the-art models on
the task still exhibit room for improvement (Xue
et al., 2015, 2016; Knaebel, 2021).

Faithfulness Evaluation Metrics. Metrics for
comparing two texts have been used to evaluate
text generation tasks, such as summarisation, data-
to-text generation, and machine translation. Well
known metrics include BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), BERTScore (Zhang et al., 2019),
MoverScore (Zhao et al., 2019), and BLEURT (Sel-
lam et al., 2020). Overlap measures based on n-
grams, such as BLEU, ROUGE, and METEOR,
have been widely used in the literature, however
word embeddings metrics, such as BERTScore,
BLEURT, MoverScore are becoming standard, as
they correlate better with human evaluation than
the surface based metrics. Recently, explain-
able metrics have been developed, for example,
FActScore (Min et al., 2023), FactSpotter (Zhang
et al., 2023), and FENICE (Scirè et al., 2024),
which allow a more fine-grained understanding of
differences between texts. FactSpotter propose a
metric for factual faithfulness evaluation on data-to-
text generation, which gives a score for how well
each triple from the structured data is represented in
the textual generation. Similarly, FActScore (Min
et al., 2023) metric allows detecting hallucinations
in text generation. This metric has two building
blocks: decomposing the first text into atomic facts,
and testing if each atomic fact is present in the
second text. In Nawrath et al. (2024), the authors
propose splitting the text into sub-sentences using
AMR, however, the authors do not deal with main-
taining the connection between these sub-sentences.
A recent approach that achieves state-of-art results
on measuring factual faitfulness in textual summa-
rization FENICE (Scirè et al., 2024) proposes to
split a text in atomic facts and then use natural lan-
guage inference to decide if the facts are expressed
in a new text. LLMs, such as ChatGPT, have been
also proposed as factually evaluators in zero shot or
chain-of-thought setting (Luo et al., 2023). By the
time of paper submission, we saw no metric that
account explicitly for the discourse relation. How-
ever, by the time of paper acceptance, we have seen
a concurrent work on discourse-level evaluation for
summarisation (Zhong and Litman, 2025)
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3 Problem statement

To evaluate the quality of the text generation task,
a common method is to calculate the similarity be-
tween the generated text and the ground-truth text.
Taking graph-to-text generation and text summary
as examples, we aim to quantify the similarity of
two texts from two perspectives:

1. Do the two texts state the same atomic facts?

2. Are the discourse relations between the atomic
facts the same in both texts?

To achieve this goal, we firstly focus on how
to represent the atomic facts and the discourse
relations between them. Inspired by ClausIE
(Del Corro and Gemulla, 2013) and previous re-
search in discourse relation recognition (Prasad
et al., 2019), we propose a format for representing
text information in Section 4. Then we introduce
our method for estimating whether an atomic fact
or a discourse relation is preserved in two texts in
Section 5 with the model trained in Section 6.

4 Structured Information Representation

Given a text T, our goal is to extract the atomic
facts A = {A1, ..., Am} and discourse relations
between the atomic facts D = {D1, ..., Dp}. The
combination of the two structured representations
captures rich information in the text, as an example
illustrated in Table 1.

4.1 Atomic Fact Representation

A clause is the smallest grammatical unit in English
for expressing a complete proposition1. We con-
sider an atomic fact to be a clause, structured as a tu-
ple: ⟨subject, predicate, direct object, indirect

object, short adverbial, short complement⟩. Note
that simpler triples of the form ⟨subject, predicate,

object⟩ have been found insufficient to represent
varied atomic facts (Suchanek, 2020; Nawrath et al.,
2024; Sadeddine et al., 2024); the short adverbial
and the short complement bring important infor-
mation about the current atomic fact. The short
adverbial describes how, when and where about the
predicate, while the short complement has extra
information about the subject or the object. Each
atomic fact should at least have a predicate, and
usually has a subject. The object, adverbial, or

1https://dictionary.cambridge.org/grammar/
british-grammar/clauses-and-sentences

complement may be absent, and we leave them
blank in the extractions for such cases.

If an element of the atomic fact tuple contains
another fact in its non-finite verb, relative clause, or
appositive 2), we model this as an extra atomic fact.
For instance, the text "Amy gave a gift to her best
friend, Kate" should be represented as two atomic
facts: ⟨Amy, gave, a gift, to Amy’s best friend

Kate⟩ and ⟨Kate, is the best friend of, Amy⟩.

4.2 Discourse Relation Representation
Discourse relations connecting atomic facts en-
capsulate an important part of the text informa-
tion. The discourse connectives are syntactically
expressed by conjunctives, relative adverbs or other
transitional phrases. The detailed examples are il-
lustrated in the Appendix A. We model a discourse
relation Dj with format ⟨fact1, connective, fact2⟩.

We focus on the following groups of discourse
relations, as defined in the PDTB dataset (Prasad
et al., 2019), and their respective connectives:

• temporal : precedence (e.g., before, till),
succession (e.g., after, subsequently), syn-
chronous (e.g., when, at the same time);

• comparison : concession (e.g., although,
even if), contrast (e.g., in contrast, however),
similarity (e.g., similarly, in the same way);

• contingency : reason (e.g., due to, because),
result (e.g., consequently, therefore), condi-
tion (e.g., provided that, in case), negative
condition (e.g., unless).

We did not include expansion connectives: sim-
ple conjunction (e.g., and); restatement (e.g., in
other words); specification (e.g., especially); in-
stantiation (e.g., for example); generalisation (e.g.,
in summary). The reason is that their presence
does not affect important textual information. Thus,
when comparing two texts for factual consistency,
we can ignore the presence of these connectives.

4.3 Implementation of Extraction
The state-of-the-art methods have achieved high
performance in discourse unit segmentation

2Non-finite verbs are verbs that do not show tense, person,
or number, e.g., "running" in "I saw a dog running". Relative
clauses are introduced by relative pronouns to describe the
antecedents (e.g., in "Paris is a city which is the capital of
France", "which" introduces a relative clause). An appositive
is a noun phrase (NP) after another NP to provide additional
information about it (e.g., in "Paris, the capital of France, is a
good city", "the capital of France" is the appositive of "Paris".

822

https://dictionary.cambridge.org/grammar/british-grammar/clauses-and-sentences
https://dictionary.cambridge.org/grammar/british-grammar/clauses-and-sentences


Subject Predicate Object Direct Object Indirect Short Adverbial and Complement
Amy gave a gift to Amy’s best friend, Kate last week
Amy was thankful about the exam’s results - -
Kate is best friend of Amy - -
Kate said Amy did not need to give a gift - -
Kate helped Amy - to revise all the course materials
Amy and Kate held a party - until midnight
Amy and Kate didn’t get up - - early on the next day

(a) Atomic facts extracted from the given text.
Fact 1 Connective Fact 2
Amy gave a gift to Amy’s best friend, Kate last week because of being thankful about the exam’s results
Kate said Amy did not need to give a gift to Kate even if Kate helped Amy revise all the course materials
Amy would have failed the exam if Kate were not helping
Amy and Kate held a party until midnight As a result Amy and Kate didn’t get up early on the next day

(b) Discourse relations extracted from the given text.

Table 1: Atomic facts and discourse relations representation, given the text: "Being thankful about the exam’s results,
Amy gave a gift to her best friend, Kate, last week. Kate said that Amy did not need to do this, even if Kate helped
Amy revise all the course materials. Amy would have failed the exam if Kate were not helping. They held a party
until midnight. As a result, they didn’t get up early on the next day."

Atomic Fact
Strict LCS SBERT Elem SBERT Full

P R F1 P R F1 P R F1 P R F1
Human 77.21 69.17 72.97 81.45 72.97 76.98 86.20 77.22 81.46 90.15 80.76 85.20

GPT4-Turbo 68.47 52.78 59.61 73.84 56.92 64.29 79.36 61.17 69.09 88.76 68.42 77.27
GPT4o 68.54 49.03 57.17 75.89 54.28 63.29 82.68 59.14 68.95 92.61 66.24 77.24

Llama3.1 8B 49.54 22.36 30.81 57.32 25.87 35.65 68.79 31.05 42.79 76.40 34.49 47.52
Llama3.1 70B 57.08 51.53 54.16 63.17 57.03 59.94 69.59 62.83 66.04 80.49 72.67 76.38

Discourse Relation
Human 81.94 81.94 81.94 84.93 84.93 84.93 88.10 88.10 88.10 90.32 90.32 90.32

GPT4-Turbo 75.00 76.60 75.79 77.45 79.09 78.26 79.33 81.02 80.17 80.26 81.97 81.11
GPT4o 61.81 70.63 65.93 71.60 81.82 76.37 79.83 91.23 85.15 86.06 98.35 91.80

Llama3.1 8B 92.93 60.13 73.02 94.41 61.09 74.18 95.56 61.83 75.08 96.71 62.58 75.99
Llama3.1 70B 59.85 64.23 61.96 66.57 71.44 68.92 72.08 77.36 74.63 75.50 81.02 78.16

Table 2: Quality of extraction for different large language models.

(Metheniti et al., 2023), so combining discourse
unit segmentation with semantic role labelling
(Zhao and Penn, 2024; Chen et al., 2025b) is an
effective approach for obtaining structured atomic
facts. However, the task of discourse connective
detection (Braud et al., 2023) remains challenging,
and the state-of-the-art work on shallow discourse
parsing (Knaebel, 2021) which jointly identifies
argument spans and their corresponding discourse
connectives has not been advancing recently.

Based on the status quo of the research, in this
work, we use large language models with few-shot
prompting for jointly extracting atomic facts and
discourse relations. We also evaluate the quality of
the extractions on a test set of 50 samples from the
Causal News Corpus (Tan et al., 2022). Two human
annotators provided the gold extractions. We call
any one of the fields of an atomic fact ⟨subject,
predicate, direct object, indirect object, short

adverbial and complement⟩ or a discourse relation
⟨fact1, connective, fact2⟩ as an element.

Given an input text T, we have the golden
atomic facts Ag and discourse relations Dg. The
outputs of the atomic fact and discourse relation
extraction are Am and Dm. Similar to Castro Fer-
reira et al. (2020), we compare both atomic fact and
discourse relation extractions with the ground-truth
annotations. For each pair of corresponding tuples
in the extraction and the ground truth, we compute
several metrics to assess the extraction quality:

• Strict match: Compute whether all the tokens
in each element of the extracted tuple strictly
match with ground truth, e.g., whether the
subjects of the atomic facts are the same.

• LCS ratio: Find the longest common sub-
sequence (LCS) (Wagner and Fischer, 1974)
between each element in the extraction and
the corresponding element in the ground-truth.
Compute the average (over all elements in the
extracted atomic fact or discourse relation) of
the LCS length divided by the length of the
corresponding ground truth element.
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• SBERT element: Compute the average
(over all elements) of SBERT (Reimers and
Gurevych, 2019) similarity for each element
between the extractions and the annotations;

• SBERT full: Concatenate all the elements in
each tuple for both of the extractions and the
ground-truth annotations, then use SBERT to
compute the similarity.

To compute the metrics, we assign each ex-
tracted atomic fact Am

j or discourse relation Dm
j ,

to exactly one atomic fact Ag
i or discourse relation

Dg
i using Hungarian Algorithm, similarly as Yang

et al. (2023). We evaluate the performance of
Llama3.1 (Dubey et al., 2024), GPT4o and GPT4-
Turbo (OpenAI et al., 2024) in Table 2 for both
extractions. We observe that two humans achieve
the highest annotation agreement. For open-source
models, Llama3.1 8B is good on discourse relation
extraction, but struggles on atomic fact extraction.
Llama3.1 70B is competitive on both extractions.
GPT4 models perform best across all metrics. We
present more complete results in Appendix E.

5 Factual Inclusion and Factual Overlap

Given two texts T1 and T2, which are composed of
the atomic fact sets A1 = {A1

1, . . . , A
1
m}, A2 =

{A2
1, . . . , A

2
n} and discourse relation sets D1 =

{D1
1, . . . , D

1
o}, D2 = {D2

1, . . . , D
2
p}. m,n are

the numbers of the atomic facts, and o, p are the
numbers of the discourse relations in the texts. The
Factual Inclusion (FI) and Factual Overlap (FO)
scores between the texts are computed as follows
to verify the factual consistency between the texts.

5.1 Intrinsic Confidence of Extraction
Let FD be a model computing the probability of a
structured atomic fact Ai or a discourse relation Dj

to be expressed in the given text T. In practice, FD
is a Transformer-based classifier that estimates how
well the atomic facts A and discourse relations D
represent the information in the text, and the output
is referred to as the intrinsic confidence. The
intrinsic confidence C of each atomic fact Ai and
discourse relation Dj for text T is computed as:

C(Ai|T ) =FD(Ai,T),

C(Dj |T ) =FD(Dj ,T).

The intrinsic confidence can serve two key pur-
poses in dealing with the uncertainty inherent in
the extraction. First, the intrinsic confidence can

be used for selecting the most faithful extraction
candidate on top of beam search. Second, within
each extraction, the intrinsic confidence provides a
principled mechanism to filter out the hallucinated
atomic facts and discourse relations that are not
sufficiently supported by the text.

5.2 Cross-Textual Fact Corroboration
To compute the content overlap between T1 and
T2, the second step is to verify whether each
atomic fact and discourse relation from one text
is also expressed in the other text; We call this ex-
trinsic confidence computation. We use the same
model FD as for intrinsic confidence computation,
but the atomic facts and the discourse relations are
extracted from another text for comparison. The
extrinsic confidence of the atomic fact A1

i from T1

being expressed in T2 is computed as:

C(A1
i |T2) = FD(A1

i ,T
2),

and similarly, the extrinsic confidence of the dis-
course relation D1

j from T1 expressed in T2 is:

C(D1
j |T2) = FD(D1

j ,T
2).

We also compute the extrinsic confidence of each
atomic fact A2

i and discourse relation D2
j from

T2 represented in the text T1, i.e., C(A2
i |T1) =

FD(A2
i ,T

1) and C(D2
j |T1) = FD(D2

j ,T
1).

5.3 Factual Inclusion Score
We define a score to assess whether all atomic facts
A1 and discourse relations D1 extracted from T1

are included in T2. The Factual Inclusion Score
(FI) is computed based on two components: the
inclusion of atomic facts (FIA) and the inclusion
of discourse relations (FID).

To mitigate the effect of potential hallucinated
extractions, we apply the threshold θ = 0.5 to the
intrinsic confidence, i.e., only the atomic facts and
discourse relations with their intrinsic confidence
above θ in T1 are considered for Factual Inclusion.
We define the filtering function as:

δθ(x) =

{
1, if x > θ,

0, otherwise.

We then score the inclusion of the atomic facts
from T1 into T2 as follows:

FIA(T
1 ⊂ T2) =

m∑

i=1

δθ(C(A1
i |T1))C(A1

i |T2).
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Similarly, the inclusion of the discourse relations
from T1 within T2 is:

FID(T
1 ⊂ T2) =

o∑

j=1

δθ(C(D1
j |T1))C(D1

j |T2).

The overall Factual Inclusion Score (FI) com-
bines the inclusion score of atomic facts (FIA) and
discourse relations (FID), i.e.,

FI(T1 ⊂ T2) =
1

ZI
(FIA(T

1 ⊂ T2)

+FID(T
1 ⊂ T2)).

ZI is a normalisation factor that scales the score
according to the number of faithfully extracted
atomic facts and discourse relations from T1, i.e.,

ZI =

m∑

i=1

δθ(C(A1
i |T1))+

o∑

k=1

δθ(C(D1
k|T1)).

5.4 Factual Overlap Score

To symmetrically evaluate if two texts contain the
same contents, we compute the Factual Overlap
Score (FO) between T1 and T2, as follows:

FO(T1,T2) =
1

ZD
(FIA(T

1 ⊂ T2) + FID(T
1 ⊂ T2)

+ FIA(T
2 ⊂ T1) + FID(T

2 ⊂ T1))

ZD is a normalisation factor that scales the result
based on the total number of faithful atomic fact
and discourse relation extractions from both texts:

ZD =

m∑

i=1

δθ(C(A1
i |T1)) +

n∑

j=1

δθ(C(A2
j |T2))

+

o∑

k=1

δθ(C(D1
k|T1)) +

p∑

l=1

δθ(C(D2
l |T2)).

6 FDSpotter: Atomic Fact and Discourse
Relation Entailment from the Text

To obtain the Factual Inclusion and Factual Overlap
scores in Section 5, we train an entailment model,
FDSpotter, to compute the probability of whether
a structured atomic fact Ai or a discourse relation
Dj is expressed in the text T. We collect atomic
fact entailment and discourse relation entailment
data for training and testing.

6.1 Atomic Fact Entailment Data
To compute the probability of a structured atomic
fact Ai being present in a given text T, the model
is trained on two groups of datasets.

1. Derived from FactSpotter: FactSpotter (Zhang
et al., 2023) is a model for evaluating if an
atomic fact from a knowledge graph (KG)
is stated in a text generated from the KG.
Its training data were generated using a self-
supervised method. The positive samples
were taken directly from datasets with pairs of
atomic facts and their corresponding ground-
truth texts, such as WebNLG (Castro Ferreira
et al., 2020) or GrailQA (Gu et al., 2021).
The negative samples were generated by per-
turbing the atomic facts or the corresponding
descriptive texts, such that the atomic fact can
no longer be entailed from the text. We use
the same method to generate the training and
testing samples from the WebNLG dataset.

2. Derived from Text Entailment Data: Text en-
tailment corpus contain hypothesis-premise
pairs and aim to determine if each hypothesis
is entailed, contradictory, or neutral for the
given premise text. The task is also known as
Natural Language Inference (NLI). The use of
NLI data is to introduce a degree of semantic
flexibility in the training signal and to miti-
gate false negatives, cases where atomic facts
are inferable across longer or more implicit
spans of text but are not explicitly stated. We
used the spaCy (Honnibal and Montani, 2017)
model to extract the subject, predicate, object,
adverbial and complement from a hypothesis,
and add delimiters between them to structure
the text into an atomic fact.
We generate pairs (natural language premises,
hypotheses represented as structured atomic
facts) from the following datasets: SNLI
(MacCartney and Manning, 2008), MNLI
(Williams et al., 2018), FEVER (Thorne et al.,
2018), ANLI (Nie et al., 2020), LingNLI (Par-
rish et al., 2021), WANLI (Liu et al., 2022),
and CNC (Tan et al., 2022).

6.2 Discourse Relation Entailment Data
The models trained on the existing entailment
datasets are good at identifying whether an atomic
fact in the discourse relation is stated in the premise
text. However, when classifying whether a dis-
course relation as a hypothesis is represented in the
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premise, the accuracy decreases, especially when
the discourse connective is adversarial.

For instance, consider the text: "Germany can be
the birthplace of Heidegger, Hegel, Leibniz, Bach,
Beethoven, Brecht, and Martin Luther, but they
started one world war". The discourse relation
⟨⟨Germany, is the birthplace of, many great minds⟩,
so, ⟨Germany, started, the world war⟩⟩ is not en-
tailed from this text: both atomic facts are in the
text, but the its connective "so" means the opposite
to the connective "but" in the text. However, the
models trained without adversarial samples con-
sider this relation to be entailed from the premise.

To enable the classification of adversarial dis-
course relations from the premise, the model
needs to be trained on data with pairs of texts
and discourse relations, but especially include dis-
course connectives contradicting the ones from
the premise. To the best of our knowledge, no
such dataset exists. We leverage the NLI datasets
(MNLI, ANLI, LingNLI, and WANLI) with large
quantity of discourse connectives in the hypotheses
to generate our DiscInfer (i.e., Discourse Relation
Inference) dataset by the following steps.

1. Sample Selection. Automatically select pairs
of hypotheses and premises from NLI data.
Each hypothesis should contain at least one
type of discourse connective in Section 5.4.

2. Connective Replacing. Replace one discourse
connective in the hypothesis of the selected
sample with another discourse connective that
would make the hypothesis potentially con-
tradict the premise, e.g., replacing "if" with
"unless". Potential contradictory discourse
connective pairs are listed in the Appendix B.

3. Human Verification. Human annotators
check whether the relation between each new
hypothesis-premise pair is entailing, neutral,
or contradicting. The annotators correct the
labels and add the created pairs to the dataset.
The verification is due to changing the dis-
course connective in the hypothesis does not
necessarily contradict the premise3 and the
new hypothesis is sometimes not coherent.

The training split and the test split of DiscInfer are
both created from the training and testing splits of

3For example, the meaning of the discourse relation
⟨⟨He, did not finish, homework⟩, when, ⟨the
class, started⟩⟩ is equivalent to ⟨⟨He, did not finish,
homework⟩, before, ⟨the class, started⟩⟩ after replac-
ing the discourse connective from "when" to be "before".

MNLI, LingNLI, ANLI, and WANLI. The dataset
has 920 annotated (hypothesis, premise) pairs.

6.3 Training and Evaluation

We fine-tune 304M DeBERTa V3 Large (He et al.,
2021), pretrained on the tasksource dataset (Sileo,
2024). The model is finetuned on three parts of
data: (1) original text entailment; (2) synthetic
atomic fact entailment; (3) DiscInfer. The model
is finetuned on NVIDIA Tesla V100 with learning
rate 1e-5, batch size 16, and AdamW Optimiser
(Loshchilov and Hutter, 2019) for 3 epochs.

Model/Split Temp. Cont. Comp.
DeBERTa w/o DiscInfer 58.2 48.3 23.1
DeBERTa w DiscInfer 76.4 84.3 59.6

GPT4 zero-shot 73.0 53.8 48.1

Table 3: Accuracy of DeBERTa and GPT4 on DiscInfer.

In Table 3, we present the results on the test set of
DiscInfer of DeBERTa and GPT4. For DeBERTa,
we have one checkpoint that did not see the training
split of DiscInfer, and another checkpoint finetuned
along with DiscInfer. We observe that DeBERTa
trained without DiscInfer does not perform well
on the test split of discourse relation entailment,
and there is a remarkable improvement after fine-
tuning on DiscInfer. We have also tested zero-shot
GPT4 performance on DiscInfer, with the prompt
asking whether the hypotheses are entailed, neutral,
or contradictory to the premises. GPT4 performs
better than (much smaller) DeBERTa trained with-
out DiscInfer, but underperforms compared with
DeBERTa finetuned on DiscInfer.

7 Applications on Generation Evaluation

As explained in Section 5.4, the Factual Overlap
Score is a symmetric metric to measure the content
alignments between two texts, such as the ground-
truth reference and the generated output. It sym-
metrically aggregates the Factual Inclusion Scores
in both directions, evaluating whether both texts
exactly contain the same atomic facts and discourse
relations. This makes it suitable for the general text
generation evaluation, e.g., graph-to-text, where
bidirectional content equivalence is expected.

Reference-free faithfulness evaluation of some
tasks requires an asymmetric approach, for which
the Factual Inclusion in Section 5.3 can be applied
in a single direction. For example, for graph-to-
text generation faithfulness, we can use Factual
Inclusion to determine whether all the triples F =
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{F1, . . . , Fm}, which can be considered as atomic
facts, are correctly verbalised in the text T, i.e.,

FIA(F ⊂ T) =

m∑

i=1

C(Fi|T).

For text summary faithfulness classification, the
generated summaries should be faithful to the input,
but do not need to cover all of the input document.
It is reflected in the consistency measurement of
text summary benchmarks. To classify whether
all the atomic facts and discourse relations in the
generated summary S are included by the input
document I, we modify Factual Inclusion with the
sum of log probabilities, i.e.,

FIA(S ⊂ I) =
m∑

i=1

δθ(C(Ai|S)) logC(Ai|I)

FID(S ⊂ I) =
o∑

j=1

δθ(C(Dj |S)) logC(Dj |I)

To compare with existing metrics, we compute
system-level and sample-level correlations between
the automatic metrics and human judgements. We
report three correlation coefficients: Spearman ρ,
Pearson r, and Kendall’s Tau τ .

7.1 Natural Language Generation
WebNLG (Castro Ferreira et al., 2020) is a graph-
to-text generation benchmark (i.e. triples or sets
of triples of the form ⟨subject, predicate, object⟩
are paired with their equivalent texts) on which 16
systems have been evaluated by humans on data
coverage (whether the text includes descriptions of
all predicates in the data), correctness (whether the
predicates in the data are correctly mentioned with
the subject and object), and relevance (whether the
text describes only the predicates in the data with
related subjects and objects). Fluency and grammar
evaluations were also reported by annotators, but
they are not related to factual consistency. We re-
port the performance of existing and our proposed
metrics in Table 4, where the Factual Overlap and
Factual Inclusion have the highest correlations on
the dimensions related to factual consistency.

7.2 Text Summarisation
SummEval (Fabbri et al., 2020) benchmark has
summaries from CNN and Daily Mail generated by
23 models with human judgements. We evaluate
on the dimension of consistency, which reflects the
factual alignment between the summary and the

input, where the hallucinations are penalised by
annotators. We compute the correlations of Factual
Inclusion with human annotated consistency, and
compare against BERTScore, BARTScore, as well
as state-of-the-art methods such as FENICE (Scirè
et al., 2024), ChatGPT-DA (Wan et al., 2023) and
G-EVAL-4 (Liu et al., 2023b). We observe in Ta-
ble 5 that Factual Inclusion has a strong perfor-
mance.

AggreFact (Tang et al., 2023) contains
summaries from CNN, Daily Mail and
XSUM (Narayan et al., 2018). It focuses
on factual errors in text summarisation and gives
summaries a binary label: factual or non-factual. It
evaluated three groups of models and pairs them
with human evaluations: FTSOTA, EXFORMER,
and OLD. FTSOTA has more recent models on
which factuality metrics struggle. We compare
with the following competitors: DAE (Goyal and
Durrett, 2020), QuestEval (Scialom et al., 2021),
SummaC (Laban et al., 2022), QAFactEval (Fabbri
et al., 2022), TrueTeacher (Gekhman et al., 2023),
MENLI (Chen and Eger, 2023), AlignScore (Zha
et al., 2023), ChatGPT-ZS, ChatGPT-CoT (Luo
et al., 2023), ChatGPT-DA, ChatGPT-Star, and
FENICE. These metrics have been proposed as
competitors in Scirè et al. (2024). We present in
Table 6 the balanced accuracy on FTSOTA, and in
the Appendix C on all the splits. We observe that
our proposed Factual Inclusion method performs
on par with the top-performing methods.

To evaluate the performance on diverse long-
form summarisation faithfulness classification, we
conduct experiments on DiverSumm (Zhang et al.,
2024), a comprehensive benchmark that incorpo-
rates faithfulness annotations across five distinct
domains: ChemSumm (CSM), QMSUM (QMS),
ArXiv (AXV), GovReport (GOV), and MultiNews
(MNW). DiverSumm presents unique challenges
for faithfulness evaluation as it contains longer doc-
uments and summaries. We compare our proposed
Factual Inclusion against several state-of-the-art
faithfulness evaluation methods, including Full-
Doc, SummaC, SentLI (Schuster et al., 2022), and
INFUSE (Zhang et al., 2024). Following Laban
et al. (2022) and Zhang et al. (2024), we report
ROC-AUC (Bradley, 1997) scores for faithfulness
classification across all DiverSumm subsets. As
shown in Table 7, Factual Inclusion achieves the
highest average performance, substantially outper-
forming the previous state-of-the-art methods with
consistent improvements across most domains.
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Text-level System-level
Correctness D. Coverage Relevance Correctness D. Coverage Relevance

Metric r ρ τ r ρ τ r ρ τ r ρ τ r ρ τ r ρ τ

Human 67.2 57.3 45.3 68.3 61.2 48.6 65.1 50.2 40.8 96.0 80.0 65.0 93.0 83.0 68.0 96.0 74.0 59.0
BLEU 60.8 57.1 42.5 56.9 60.0 44.5 58.1 48.2 35.4 59.6 64.4 48.5 54.0 53.6 40.5 57.0 60.0 45.2
METEOR 65.2 59.5 42.9 66.2 57.1 43.3 68.1 55.2 41.8 72.8 75.7 60.3 65.7 58.3 45.0 70.5 64.7 50.0
BERTScore 65.3 60.8 46.6 67.1 61.4 46.5 66.1 58.0 43.7 83.1 77.7 60.5 74.8 58.3 43.7 81.0 65.9 50.8
BARTScore 71.5 59.6 45.4 69.6 61.9 46.9 70.4 61.8 47.1 90.6 83.2 67.6 87.0 71.5 53.4 88.7 71.7 56.8
BLEURT 72.0 63.3 48.0 68.8 60.5 46.0 71.7 63.3 47.6 93.1 82.9 67.6 87.0 65.6 50.6 91.1 70.0 55.8
FactSpotter 68.9 59.0 45.0 71.2 64.0 48.8 69.8 59.4 45.8 94.7 80.2 64.2 91.4 87.1 71.5 96.2 80.0 64.9
FactInclusion 70.7 63.1 48.7 72.3 63.6 49.0 74.3 61.1 46.9 97.3 81.6 67.4 96.8 92.8 81.1 96.6 79.5 64.7
FactOverlap 74.2 65.1 50.3 72.9 62.7 48.5 73.9 60.1 46.2 96.9 78.6 64.0 97.2 92.8 81.6 95.4 74.3 59.2

Table 4: Text-level and System-level correlations between metrics and human annotations of factuality dimensions
on WebNLG2020. We highlight the best result and underline the other top 3 values in tables here and below.

System-level Sample-level
r ρ τ r ρ τ

BERTScore 17.9 -7.6 -3.3 10.9 15.2 9.0
BARTScore 81.0 77.4 60.0 40.1 48.7 33.2
G-EVAL-4 92.3 76.5 60.0 50.1 59.1 42.0
ChatGPT-DA 95.0 81.2 68.3 41.9 51.7 38.9
FENICE-GPT 91.8 82.4 68.3 43.5 65.9 36.0
FactInclusion 96.5 85.9 70.0 40.8 64.5 34.0

Table 5: System-level and sample-level correlations
between metrics and human annotations of consistency
on SummEval benchmark.

Metric CNN/DM XSUM Average
DAE 65.4±4.4 70.2±2.3 67.8
QuestEval 70.2±3.2 59.5±2.7 64.9
SummaC-ZS 64.0±3.8 56.4±1.2 60.2
SummaC-Conv 61.0±3.9 65.0±2.2 63.0
QAFactEval 67.8±4.1 63.9±2.4 65.9
TrueTeacher 62.0±1.3 74.9±1.2 68.5
MENLI 65.0±2.8 57.0±1.8 61.0
AlignScore 67.0±3.1 60.3±1.9 63.7
ChatGPT-ZS 56.3±2.9 62.7±1.7 59.5
ChatGPT-CoT 52.5±3.3 55.9±2.1 54.2
ChatGPT-DA 53.7±3.5 54.9±1.9 54.3
ChatGPT-Star 56.3±3.1 57.8±0.2 57.1
FENICE-GPT 70.5±1.6 72.8±0.3 71.6
FactInclusion 69.6±3.4 73.8±1.7 71.7

Table 6: Balanced accuracy of on FTSOTA split of
AggreFact, with single-threshold setting.

8 Conclusion

We explore a novel method for computing factual
consistency in this work. The work is based on
the literature of structured discourse information
representation and we propose to incorporate dis-
course relations between atomic facts in structured
information representation for factual consistency
verification. We validate this approach on data-to-
text generation and text summarisation evaluation
benchmarks, and our method achieved competitive
performance when compared with a variety of other
approaches. We also introduced a text entailment
dataset with adversarial discourse connectives, i.e.,

System CSM QMS AXV GOV MNW AVG
FullDoc 50.15 37.12 62.78 79.19 44.76 54.80
SummaC-Conv 53.14 51.13 61.22 65.34 53.05 56.78
SummaC-ZS 54.41 48.21 69.44 79.37 50.17 60.32
SentLI 50.13 47.56 64.49 79.68 46.61 57.69
INFUSE 54.11 52.16 71.38 80.45 53.16 62.25
FactInclusion 56.79 70.30 70.56 83.44 44.88 65.20

Table 7: ROC-AUC scores on DiverSumm benchmark
for long form summary faithfulness evaluation.

DiscInfer, which is challenging for the language
models trained with existing data. While factual
consistency verification is a rapidly evolving field,
we believe it is important to leverage fundamental
linguistic knowledge so that the advances remain
explainable and hence more trustworthy.
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9 Limitations

Our work has the following limitations:

• We have tested our method only on English
text, and in particular the structured sentence
representation is based on English syntax. We
believe it is very important to address this task
in other language. However, due to time and
knowledge limitations we could not include it
in our work.

• We took advantage of NLI data to train the
classifier. However, the hypotheses of NLI
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may include facts which are semantically
plausible but not explicitly grounded in the
premise. There exists a conceptual gap be-
tween entailment and strict fact inclusion.
Training with such data is a trade-off between
minimising false negatives, where legitimate
facts are mistakenly excluded due to the lack
of exact match, and avoiding false positives,
where inferred but unstated facts are accepted.

• While our metric is explainable in the sense
we can obtain very fine-grained information
on how a factuality score was given, nowa-
days explanations in textual format given by
LLMs have gained a lot of attention; we be-
lieve that this is a future step that is attainable
with current techniques.

• We are currently completing a comprehensive
error analysis for our technique and for com-
petitors. Understanding to what type of errors
each method is sensitive can be useful for fur-
ther improving the SOTA. Another question
that previous work have tried to answer us-
ing automated techniques and human annota-
tion (Zhang et al., 2023) is if the benchmarks
are still challenging or if the remaining model
errors are actually due to human errors in an-
notations or divergence of annotations.
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A Grammatical form of Discourse
Connectives

Syntactically, the discourse connectives are fre-
quently expressed by conjunctives, relative adverbs

or other transitional phrases. Below are several
representative grammatical forms and their corre-
sponding structured representation.

• Two clauses connected by a conjunction. For
example, the text "Amy and Kate were both in
good mood, so they went to celebrate happily"
is structured to be ⟨⟨Amy and Kate, were both,

in good mood⟩, so, ⟨Amy and Kate, went to

celebrate, happily⟩⟩.

• Two clauses in different sentences connected
by a transitional word or phrase. For instance,
the text "Amy and Kate celebrated until mid-
night. As a result, they got up late on the
next day" is represented as ⟨⟨Amy and Kate,

celebrated, until midnight⟩, as a result, ⟨Amy
and Kate, got up, late on the next day⟩⟩.

• Relative adverbs (e.g., when, why) leading
adverbial clauses. For example, the text "The
company built a new school where there was
a park" is represented as ⟨⟨the company, built,

a new school⟩, where, ⟨there, was, a park⟩⟩.

• Complex phrases connecting adverbial
clauses. For instance, "Despite the fact that
he cheated on the exam, he was not dismissed
by the university" is represented as ⟨⟨he, was

not dismissed, by the university⟩, despite

the fact that, ⟨he, cheated, on the exam⟩⟩.

B Creation of the DiscInfer Dataset

To facilitate the construction of the DiscInfer
dataset for training and evaluating models on iden-
tifying contradictions induced by adversarial dis-
course connectives, we automatically generated
adversarial examples by replacing one discourse
connective in the selected hypothesis with another
discourse connective that could potentially render
the hypothesis contradictory to the premise. The
groups of potentially conflicting discourse relations
are listed in Table 8.

To ensure grammatical plausibility, a discourse
connective is replaced only if the original and re-
placed connectives belong to the same grammatical
category, such as subordinating conjunctions or
adverbial phrases, to preserve syntactic coherence.

The annotators were trained on the linguistic
concepts related to discourse connectives (e.g., con-
junctions, transitional phrases, adverbial clauses,
etc.). They were also provided with a reference

833

https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
https://aclanthology.org/2024.eacl-long.102/
https://aclanthology.org/2024.eacl-long.102/
https://aclanthology.org/2024.eacl-long.102/
https://hal.science/hal-04257838
https://hal.science/hal-04257838
https://doi.org/10.18653/v1/2024.findings-emnlp.39
https://doi.org/10.18653/v1/2024.findings-emnlp.39
https://doi.org/10.18653/v1/2024.findings-emnlp.39
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://aclanthology.org/2025.naacl-long.103/
https://aclanthology.org/2025.naacl-long.103/
https://aclanthology.org/2025.naacl-long.103/


Original connective Potential conflicting connectives
concession condition; reason; result.
contrast reason; result; similarity.
similarity concession; contrast.
negative condition condition; reason; result.
condition concession; negative condition;

result.
reason concession; negative condition;

precedence; result.
result concession; condition; contrast;

reason; succession.
succession precedence; result; synchronous.
synchronous precedence; succession.
precedence concession; reason; succession;

synchronous.

Table 8: Potential conflicting discourse relation groups.

list of connective groups and examples of poten-
tially conflicting discourse relations. All annotators
have completed postgraduate-level education and
possess at least a C1 level of English proficiency.

For completeness, we also list examples of dis-
course connectives of each relation category as
follows. These examples are primarily drawn from
the Penn Discourse Treebank (Prasad et al., 2019).

• alternative: alternatively, as an alternative, in-
stead of.

• concession: although, in spite of, even though,
though, despite, even if, albeit, regardless of.

• condition: depending on, depending upon, if,
provided that, in case.

• contrast: by/in contrast, conversely, however,
on the contrary, on the other hand, rather than,
whereas, by/in comparison, but.

• disjunctive: otherwise, unless, except.

• precedence: thereafter, later, then, before, sub-
sequently, afterwards, afterward.

• reason: as a result of, because, because of,
due to, as a consequence of.

• result: consequently, therefore, thus, hence,
thereby, so, so that, for the purpose of, with
the purpose of, in order to, as a result, as a
consequence, for this/that reason.

• similarity: similarly, in a similar way, in the
same way, likewise.

• succession: earlier, previously, until, till, after.

• synchronous: when, during, at the same time,
meanwhile, simultaneously, meantime.

To ensure balanced coverage across discourse
relation categories, we aimed to include at least
100 training examples and 50 test examples per
high-level group (comparison, contingency, tem-
poral). However, due to differences in connective
frequency in NLI datasets, the final distribution in
the dataset varied. Table 10 illustrates the category
distribution of Discinfer training and test samples.

C Detailed result on AggreFact

Table 9 reports balanced accuracy on AggreFact,
with threshold-per-split settings. The accuracy is
computed with the same method as Tang et al., and
we report 95% confidence intervals for our method
and the baselines with publicly available outputs.
Following Scirè et al., the performance of DAE is
excluded on the EXF (Exformer) and OLD splits of
XSum because its training data (Goyal and Durrett,
2021) covers these splits.

We compare the effectiveness of structured rep-
resentations for factual consistency verification.
Open Information Extraction (Open IE) systems
typically extract subject-predicate-object (SPO)
triples. However, the triple representations have
semantic incompleteness, as they omit adverbials
and complements. We propose to enhance atomic
facts by including adverbials and complements,
and to incorporate discourse relations to represent
connections between facts. As shown in Table 11,
using atomic facts outperforms the triple format
by including more complete content units. Also,
incorporating discourse relations further improves
the classification performance. We further assess
the effect of training with DiscInfer dataset, which
introduces adversarial discourse connectives. As is
shown in Table 12, DiscInfer improves the ability
of models for factual consistency verification.

D Complexity Comparison for Factual
Consistency Verification Methods

We compare the computational complexity of the
approaches for factual consistency verification. We
categorize existing methods into three groups.

1. Simple Text Entailment. These methods use
a classification model (e.g., DeBERTa (He et al.,
2021) for NLI) once per instance, taking one text
(e.g. text summarisation output) as the hypothesis
and another text (e.g., the input document of text
summarisation) as the premise.

834



AggreFact-CNN AggreFact-XSum
FTS EXF OLD AVG FTS EXF OLD AVG

DAE 59.4±3.1 67.9±3.1 69.7±1.1 65.6 73.1±1.8 - - -
QuestEval 63.7±3.2 64.3±3.1 65.2±1.1 64.4 61.6±1.9 60.1±4.5 59.7±3.4 60.5
SummaC-ZS 63.3±3.0 76.5±2.8 76.3±1.0 72.0 56.1±2.0 51.4±4.6 53.3±3.8 53.6
SummaC-Conv 70.3±2.5 69.8±3.2 78.9±1.1 73.0 67.0±2.0 64.6±4.3 67.5±4.1 66.4
QAFactEval 61.6±3.6 69.1±3.0 80.3±1.0 70.3 65.9±2.0 59.6±4.7 60.5±5.4 62.0
TrueTeacher-11B 65.7 57.7 81.9 68.4 75.2 68.4 52.8 65.5
MENLI 51.7 52.8 68.4 57.6 58.3 59.7 73.9 64.0
AlignScore 53.5 73.9 78.0 68.5 80.2 79.9 63.7 74.6
ChatGPT-ZS 66.2 64.5 74.3 68.3 62.6 69.2 60.1 64.0
ChatGPT-CoT 49.7 60.4 66.7 59.0 56.0 60.9 50.1 55.7
ChatGPT-DA 48.0 63.6 71.0 60.9 53.6 65.6 61.5 60.2
ChatGPT-Star 55.8 65.8 71.2 64.3 57.7 70.6 53.8 60.7
FENICEgpt 68.2 68.8 82.1 73.0 73.9 73.5 69.9 72.4
FactOverlapgpt 63.7±3.3 69.6±3.0 79.0±1.0 70.7 74.7±1.8 73.4±3.7 73.0±3.6 73.7

Table 9: Balanced accuracy on the test splits of AggreFact, with threshold-per-split settings.

Category Size Details
Train

Temporal 186 Succession: 55, Precedence: 72,
Synchronous: 59

Contingency 237 Condition: 100, Reason: 68,
Result: 69

Comparison 117 Concession: 62, Contrast: 55
Test

Temporal 123 Succession: 49, Precedence: 37,
Synchronous: 37

Contingency 248 Condition: 136, Reason: 85,
Result: 19

Comparison 52 Concession: 34, Contrast: 18

Table 10: Distribution of DiscInfer training and test sets.

Extraction Format/Split CNN/DM XSUM
Subject-Predicate-Object Only 65.4 69.6
Atomic Facts Only 66.4 72.4
Atomic Facts + Discourse Relation 69.6 73.8

Table 11: Balanced accuracy of different extraction
formats on AggreFact.

2. Question Answering. Methods such as such
as QAFactEval (Fabbri et al., 2022)) and QuestEval
(Scialom et al., 2021) generate multiple questions
about the text. They require one model to propose
questions and another to answer the questions. The
total time cost for evaluating a single text is:

TQA = Tpropose +Nquestions × Tanswering.

Some LLM-based methods (Wan et al., 2023) re-
quest a single factual consistency score from the
LLM, involving only one sequence-to-sequence
model invocation. However, the models based on
Chain-of-Thoughts (Luo et al., 2023) still require

Checkpoint CNN-DM XSUM
w/o DiscInfer 62.6 72.0
w/ DiscInfer 69.6 73.8

Table 12: Effect of DiscInfer on performance.

question answering of multiple rounds.

3. Information Extraction + Entailment These
methods first extract content units from the input
by semantic parsing (Goyal and Durrett, 2020),
sentence tokenisers (Chen and Eger, 2023), or LLM
atomic fact extractors (Scirè et al., 2024), and then
they check the factual consistency of the extracted
content units. Their computational complexity is:

TIE+E = Textraction +Ncontent units × Tentailment.

The complexity of the content unit extractors
varies: sentence tokenisers and semantic parsers
are lightweight, while both FENICE (Scirè et al.,
2024) and our method use LLMs. Moreover, the
number of extracted units also varies, typically,

Nsentences ≤ Natomic facts.

If a classification model is introduced to score all
top extractions for selecting the most faithful ex-
traction, this would incur additional overhead:

Nextractions × (Ncontent units)× Tentailment.

Our proposed Factual Inclusion Score (FI) be-
longs to the third category, which combines atomic
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facts with discourse relations as the content units.
Therefore, the number of the content unit becomes:

Ncontent_units = (Natomic facts +Ndiscourse relations).

Then the overall complexity changes according to
the number of atomic facts and discourse relations.
Given the number of discourse relations is usually
smaller than the atomic facts, the runtime overhead
of our method is marginally higher in this step.

E Extraction evaluation

We present the prompt we used for the few shot
extraction of atomic facts and discourse relations
in Figure 1. In Tables 13 and 14 we present the
results of the extraction using different models and
temperatures. We use a 16 bit quantified Llama
3.1 8B model and 4 bit quantified 70B model. We
observe that when we change the temperature, there
is a fluctuation of two to three percent between the
results, with no temperature being generally better
across all models. For Llama 3.1 7B model with
temperature 0.2 and 0.3 we observe a significant
drop in the recall for atomic fact extraction. We
verified the extraction results, and Llama 3.1 8B
indeed extracts less atomic facts under these two
temperatures, while the extraction of the discourse
connectives is not affected. This highlights the
complex problem of finding the best parameters.
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Figure 1: The prompt for atomic fact and discourse relation extraction.
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Strict LCS SBERT Elem SBERT Full
P R F1 P R F1 P R F1 P R F1

Human 77.21 69.17 72.97 81.45 72.97 76.98 86.20 77.22 81.46 90.15 80.76 85.20
GPT4-Turbo t=0 69.45 53.06 60.16 75.05 57.33 65.00 49.85 38.08 43.18 89.29 68.21 77.34

GPT4-Turbo t=0.1 69.11 53.75 60.47 75.41 58.65 65.99 80.89 62.91 70.78 88.71 69.00 77.63
GPT4-Turbo t=0.2 66.49 51.25 57.88 72.66 56.01 63.26 79.23 61.07 68.97 90.35 69.65 78.66
GPT4-Turbo t=0.3 68.47 52.78 59.61 73.84 56.92 64.29 79.36 61.17 69.09 88.76 68.42 77.27

GPT4o t=0 70.00 53.47 60.63 75.87 57.96 65.71 81.32 62.12 70.44 91.00 69.52 78.82
GPT4o t=0.1 68.99 52.22 59.45 75.22 56.94 64.81 81.41 61.62 70.15 88.57 67.04 76.32
GPT4o t=0.2 69.64 53.19 60.31 75.87 57.96 65.71 82.13 62.74 71.14 89.11 68.07 77.19
GPT4o t=0.3 68.54 49.03 57.17 75.89 54.28 63.29 82.68 59.14 68.95 92.61 66.24 77.24

LLAMA3 8B t=0 49.61 43.75 46.49 57.72 50.91 54.10 65.99 58.20 61.85 75.05 66.19 70.34
LLAMA3 8B t=0.1 50.81 43.75 47.01 58.79 50.62 54.40 67.60 58.21 62.56 77.48 66.72 71.69
LLAMA3 8B t=0.2 52.94 25.00 33.96 59.44 28.07 38.13 68.56 32.37 43.98 73.34 34.63 47.05
LLAMA3 8B t=0.3 49.54 22.36 30.81 57.32 25.87 35.65 68.79 31.05 42.79 76.40 34.49 47.52
LLAMA3 70B t=0 57.80 50.97 54.17 63.41 55.92 59.43 70.21 61.92 65.81 82.71 72.94 77.52

LLAMA3 70B t=0.1 55.85 50.42 52.99 62.07 56.03 58.90 69.35 62.61 65.81 80.24 72.44 76.14
LLAMA3 70B t=0.2 58.14 52.08 54.95 63.86 57.20 60.35 71.03 63.63 67.13 83.59 74.88 78.99
LLAMA3 70B t=0.3 57.08 51.53 54.16 63.17 57.03 59.94 69.59 62.83 66.04 80.49 72.67 76.38

Table 13: Quality of atomic fact extraction on annotated samples.

Strict LCS SBERT Elem SBERT Full
Model P R F1 P R F1 P R F1 P R F1
Human 81.94 81.94 81.94 84.93 84.93 84.93 88.10 88.10 88.10 90.32 90.32 90.32

GPT4-Turbo t=0 74.67 82.96 78.60 78.88 87.64 83.03 83.06 92.29 87.43 85.30 94.78 89.79
GPT4-Turbo t=0.1 73.61 78.52 75.99 78.17 83.38 80.69 82.70 88.21 85.37 84.37 89.99 87.09
GPT4-Turbo t=0.2 66.67 71.32 68.91 70.74 75.68 73.13 74.50 79.70 77.01 75.05 80.29 77.58
GPT4-Turbo t=0.3 75.00 76.60 75.79 77.45 79.09 78.26 79.33 81.02 80.17 80.26 81.97 81.11

GPT4o t=0 61.81 68.99 65.20 70.02 78.16 73.87 77.62 86.65 81.89 83.38 93.07 87.96
GPT4o t=0.1 60.28 67.46 63.67 68.72 76.90 72.58 77.50 86.72 81.85 84.84 94.94 89.61
GPT4o t=0.2 59.86 71.54 65.19 67.32 80.46 73.31 74.75 89.33 81.39 79.92 95.51 87.02
GPT4o t=0.3 61.81 70.63 65.93 71.60 81.82 76.37 79.83 91.23 85.15 86.06 98.35 91.80

LLAMA3 8B t=0 91.92 59.48 72.22 93.78 60.68 73.69 95.37 61.71 74.93 96.43 62.40 75.77
LLAMA3 8B t=0.1 94.79 59.48 73.09 96.23 60.38 74.20 97.91 61.43 75.49 99.40 62.37 76.60
LLAMA3 8B t=0.2 93.94 60.78 73.81 95.58 61.85 75.10 97.87 63.33 76.90 99.34 64.28 78.05
LLAMA3 8B t=0.3 92.93 60.13 73.02 94.41 61.09 74.18 95.56 61.83 75.08 96.71 62.58 75.99
LLAMA3 70B t=0 45.65 60.00 51.85 53.14 69.84 60.35 60.54 79.56 68.76 63.44 83.38 72.06

LLAMA3 70B t=0.1 47.83 59.46 53.01 56.00 69.63 62.08 63.57 79.03 70.46 67.37 83.75 74.67
LLAMA3 70B t=0.2 48.89 57.89 53.01 55.73 65.99 60.43 62.32 73.80 67.57 68.35 80.94 74.12
LLAMA3 70B t=0.3 59.85 64.23 61.96 66.57 71.44 68.92 72.08 77.36 74.63 75.50 81.02 78.16

Table 14: Quality of discourse extraction on annotated samples.
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