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Abstract

With the rapid advancement of large language
models (LLMs), recent researchers have in-
creasingly focused on the superior capabilities
of LLMs in text/code understanding and gener-
ation to tackle text-to-SQL tasks. Traditional
approaches adopt schema linking to first elimi-
nate redundant tables and columns and prompt
LLMs for SQL generation. However, they of-
ten struggle with accurately identifying corre-
sponding tables and columns, due to discrep-
ancies in naming conventions between natural
language questions (NL) and database schemas.
Besides, existing methods overlook the chal-
lenge of effectively transforming structure in-
formation from NL into SQL. To address these
limitations, we introduce UCS-SQL, a novel
text-to-SQL framework, uniting both content
and structure pipes to bridge the gap between
NL and SQL. Specifically, the content pipe fo-
cuses on identifying key content within the orig-
inal content, while the structure pipe is dedi-
cated to transforming the linguistic structure
from NL to SQL. Additionally, we strategically
selects few-shot examples by considering both
the SQL Skeleton and Question Expression
(SS-QE selection method), thus providing tar-
geted examples for SQL generation. Experi-
mental results on BIRD and Spider demonstrate
the effectiveness of our UCS-SQL framework.

1 Introduction

Text-to-SQL is the task of translating natural lan-
guage queries into SQL statements, which has gar-
nered extensive research attention and practical
application in database querying (Qin et al., 2022;
Sun et al., 2023). Based on the representations
encoded by BERT-style pre-trained models (Liu
et al., 2023), abstract syntax trees (Wu et al., 2023;
Guo et al., 2019; Wang et al., 2020) and predefined
query sketches (He et al., 2019) are implemented
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Figure 1: Traditional pipelines directly generate SQL
query from NL question. We decompose text-to-SQL
task into content and structure dimensions, enabling key
content extraction and linguistic structure transforma-
tion to collaboratively enhance SQL generation.

for query decoding. Further, some works extract
generalized question-to-SQL patterns by training
encoder-decoder models on text-to-SQL corpora
(Hui et al., 2022; Li et al., 2023a,b; Zheng et al.,
2022; Gao et al., 2024a). Inspired by the pow-
erful capabilities of large language model (LLM)
in handling complex reasoning (Wei et al., 2022;
Yao et al., 2023), the recent studies have achieved
promising results by developing prompt engineer-
ing for LLMs (Dong et al., 2023; Pourreza and
Rafiei, 2023; Gao et al., 2024a). For example, im-
plementing schema linking to eliminate redundant
information, followed by guiding LLMs to generate
SQL queries through in-context learning processes.

The forefront researches adhere to the retrieve-
then-generate paradigm. MCS-SQL (Lee et al.,
2024) exploits LLMs’ extensive sample libraries
for schema linking and employs multiple prompts
to elicit diverse LLM responses. RSL-SQL (Cao
et al., 2024) integrates bidirectional schema link-
ing, contextual information augmentation, binary
selection strategy, and multi-turn self-correction to
achieve state-of-the-art performance. However, the
traditional retrieve-then-generate pipeline in text-
to-SQL tasks still confronts two challenges. (1) Ex-
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Figure 2: The framework of UCS-SQL, which consists of three stages uniting content and structure pipe. In question
stage, LLM extracts content and structure information from the original question. Transitional stage facilitates the
deduction from information to derive the candidate identifiers and functions. In SQL stage, they are combined to

form the final query.

isting methods struggle with precise schema link-
ing and identifier selection (e.g., column and table
names) due to terminological mismatches between
colloquial questions and schema identifiers. (2)
Moreover, they seldom address the extraction and
transformation of structural information from the
natural language (NL) question to the SQL query,
while bridging the gap of different linguistic struc-
tures is crucial for effective query generation. To
address the aforementioned challenges, we plan to
propose a more comprehensive deductive approach
for in-context learning, emphasizing both content
and structural dimensions. Specifically, in the con-
tent dimension, we deduce SQL identifiers step by
step, thereby transforming the original content into
key content. In the structure dimension, we derive
the SQL skeleton from the question, facilitating
the linguistic structure from NL to SQL. Figure 1
demonstrates the integration of question compre-
hension and SQL query generation from content
and structure pipes.

In this paper, we introduce UCS-SQL , a three-
stage text-to-SQL framework that integrates con-
tent and structure pipes to enhance semantic bridg-
ing. The content pipe extracts key information from
the raw question, while the structure pipe converts
NL into SQL syntax. Figure 2 illustrates the UCS-
SQL framework. In the question stage, a LLM
extracts content and structure information from the
raw question. Then in the transitional stage, we
prompt the LLM to transform them into SQL iden-
tifiers and functions. The content pipe integrates
evidence and foreign keys to refine content infor-
mation and performs bi-directional schema link-

ing to identify relevant schema identifiers, while
the structure pipe infers SQL functions based on
the extracted structure information. Finally, in the
SQL stage, we construct a SQL skeleton using
the inferred functions and fill it with the identi-
fied identifiers to generate the final query. Addi-
tionally, we develop an SS-QE algorithm to select
few-shot examples for the LLM, considering simi-
larities in both SQL skeletons and question expres-
sions. Comprehensive evaluations on the BIRD and
Spider datasets demonstrate that UCS-SQL outper-
forms several baselines in terms of Valid Efficiency
Score (VES) and Execution Accuracy (EX) across
different difficulty levels. It achieves top-2 perfor-
mance on all evaluation metrics on BIRD and top-3
performance on Spider.

To summarize, our contributions are as follows:

* We propose UCS-SQL, a three-stage text-to-
SQL framework that unites content and struc-
ture pipes to respectively extract key content
and transform linguistic structure, thereby col-
laboratively enhancing SQL query generation.

* We introduce SS-QE algorithm to select few-
shot examples, which utilizes the structure
information from UCS-SQL and takes into
account the similarities in both SQL structure
and question expression.

* Empirical evaluations indicate that UCS-SQL
framework attains 3™ place in all evaluation
metrics on BIRD and Spider. Ablation exper-
iments demonstrate that all three stages and
both pipes in the UCS-SQL are crucial for
performance enhancement.
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2 Problem Definition

Text-to-SQL is the task of converting a natural lan-
guage question () into a correct SQL query Y. The
database can be represented as D = {11, T5...T,, },
m is the number of tables in the database. For
T = {C1,C,...C,}, C; refers to columns in ta-
ble T, n is the number of columns in the table.
When dealing with complex database values, we
can use external knowledge evidence K to sup-
port our model understand the inner relationship
between question and database. The process could
be formulated as follows:

Y =7(Q,D,K|0) (1
where f(-|0) represent a model with parameters 6.

3 UCS-SQL
3.1 Overview

We introduce UCS-SQL, a parallel text-to-SQL
framework that integrates content and structure
pipes to enhance semantic bridging. As illustrated
in Figure 2, the framework comprises three stages:
question, transitional, and SQL stages. (1) In the
question stage, we prompt an LLM to extract con-
tent information and structure information from the
original question. (2) The transitional stage acts as
a bridge between the question and SQL stages. We
combine the content information with the database
schema to obtain candidate identifiers in the con-
tent pipeline and deduce SQL functions from the
structure information in the structure pipeline. (3)
In the SQL stage, we first generate an SQL skele-
ton based on the inferred SQL functions and the
original question. Then, we fill the skeleton with
the candidate identifiers to produce the final SQL
query. Besides, a novel approach is proposed for se-
lecting few-shot examples, considering similarities
in both SQL structure and question expression. The
following section provides a detailed introduction
to UCS-SQL and the example selection method.

3.2 Stage 1: Question Stage

First, we perform pre-processing on the database
schema prior by decomposing the original database
into smaller sub-databases using the selector (Wang
et al., 2023) to minimize interference from irrele-
vant tables and columns. Additionally, we main-
tain column descriptions for each column in the
pre-filtered schema.

The question stage is designed to extract key
content and structure from the original question.

Pre-filtered Database Schema
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Figure 3: The question stage of UCS-SQL. The original
database is pre-processed to filter out irrelevant tables
and columns. Terms representing content and structure
information are extracted from the raw question.

Specifically, we employ LLMs to identify signif-
icant content information (e.g., table names and
column names) and structure information from the
target question to facilitate SQL generation. In
the subsequent operations, UCS-SQL proceeds via
two parallel pipes, respectively handling SQL gen-
eration at the content and structure levels. Fig-
ure 3 illustrates the process of the question stage.
We prompt the LLM to identify content informa-
tion and structure information based on the origi-
nal phrase of the question, which we highlight in
red and blue colors. These identified elements are
extracted and integrated to advance both parallel
pipelines to the next stage. It is important to note
that the LLM may identify the same word as both
content and structure information, such as the word
“average” shown in Figure 3. This dual identifica-
tion aligns with our objective at the question stage,
retaining sufficient relevant information. Further
reasoning and selection will be conducted in subse-
quent stages.

3.3 Stage 2: Transitional Stage

The transitional stage is designed to transform the
original information extracted from the question
into SQL language elements. Figure 4 illustrates
the process of this stage.

In the content pipe, we first integrate the content
information with evidence to convert colloquial
phrases into schema-compatible identifiers. Sub-
sequently, we perform foreign key expansion to
augment the candidate set of potential identifiers
for SQL generation. Specifically, we prompt the
LLM to identify relevant foreign keys and incorpo-
rate the corresponding identifiers into the candidate
set. Next, we conduct bi-directional schema linking
by combining the schema with the candidate set,
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Figure 4: The transitional stage of UCS-SQL. Candidate
identifiers and functions are obtained in the content
and structure pipes. Bi-directional schema linking is
performed with reference to the identifiers, yielding the
bi-filtered schema.

which both deduces potential identifiers and filters
out irrelevant columns from the schema. We match
the content information with schema identifiers: if
a close match with a table or column name is found,
the corresponding identifier is retained. In cases
where no direct match exists, the LLM searches for
the most similar expression among column descrip-
tions and retains the associated identifiers. Through
careful analysis and deduction, we obtain a refined
set of identifiers. For instance, the final identifiers
reveal that column “A4” is irrelevant to the ques-
tion, so we remove “A4” from the schema to arrive
at the bi-filtered database schema.

In the structure pipe, we use the LLM to induce
SQL functions based on the structure information
extracted during the question stage. As shown in
Figure 4, phrases such as “the youngest” and “the
lowest” suggest the potential use of SQL functions
like “ORDER BY”, “ASC”, and “DESC” while
“average” implies the “AVG” function. In summary,
we distill these insights into a final set of functions.

3.4 Stage 3: SQL Stage

In the SQL stage, we first create the SQL skeleton
by referring to the candidate functions derived from
the structure pipe. Subsequently, we integrate the
identifiers from the content pipe with the bi-filtered
schema to fill the generated skeleton. As a result,
by unifying the structure and content pipes, we
ultimately produce the final SQL query.

In Figure 5, we prompt the LLM to generate
an SQL skeleton based on the constraints, ques-
tion context, and all available structure information,
with particular emphasis on the candidate functions
from the structure pipeline. The LLM selects func-
tions such as “ORDER BY”, “ASC”, and “DESC”

Identifiers Functions :
- Columns: - Functions: i
i
i
i

- Tables:
[cilent],
[district]

[gender], [birth_date] [ORDER BY], [ASC], [DECS], [AVG]
[A11], [district_id]

Bi-filtered Schema SQL skeleton generation \"

i
i

[[account_id [ froquency [ __ Tdata | i SELECT [column_name] FROM [table_name] | |
\ - ORDER BY ... [column_name] ASC, ... b

SQL Query

{

1

: SELECT T1.'gender’ FROM client AS T1
1 INNER JOIN district AS T2 ON T1.district_id" = T2. district_id"
: ORDER BY T2.'A11’ ASC, T1.birth_date’ DESC LIMIT 1

I
'

Figure 5: The SQL stage of UCS-SQL. The SQL skele-
ton is inferred from functions. The final SQL query is
constructed by incorporating the identifiers into the SQL
skeleton. The bi-filtered schema serves as a secondary
reference to address cases where the identifiers are not
correctly extracted.

to form the SQL skeleton. Next, we fill the skeleton
using the identifiers from the content pipeline, fo-
cusing on the recommended identifiers. The LLM
identifies “client” and “district” as table names and
“gender”, “birth_date”, “A11”, and “district_id” as
column names to complete the final SQL query.

3.5 SS-QE Example Selection

We propose a novel SS-QE few-shot example se-
lection approach, which consider the similarities
in both SQL structure and question expression.
We present the detailed algorithm of our selection
method in Algorithm 1. We first extract final identi-
fiers and final functions from all the question ¢; in
our training set () following the process of question
stage and transitional stage. Fj is the set of final
functions, I; is the set of final identifiers, while c;
is the complexity of ¢;, which we define as the sum
of final identifiers and final functions:

¢ = |Li| + |Fi] (2)

First, we evaluate the similarity between ¢; and ¢ in
terms of SQL structure, using F; and c¢; as our basis.
Specifically, samples with a larger intersection in
their final functions and closer complexity values
are considered to have a higher degree of SQL
structure similarity. To filter these samples, we
establish thresholds #; and 0. Subsequently, we
add each sample that satisfies these criteria to the
set Sp, continuing this process until S contains
2k samples. Next, we further utilize LLM to pick
top-k examples from Sy based on their similarity
with ¢ in question expression, Figure 6 shows the
selection prompt in detail. As the result, we obtain
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Algorithm 1: SS-QE Example selection
Input

: All the questions () in training set,
target question ¢, the number of
few-shot &, threshold 61 & 602

Output : Top-k questions .S

1 51 + @;

2 I, F «+ LLMInformationExtraction(Q);

3 e |I|+]|F;

4 foreach g; in () do

5 [Z', Fz —
LLMInformationEa}traction (Qi ) 5

6 Ci%uj|+‘Fi‘;

7 1f(FﬂF1201)/\(]c—cZ| <92) then

8 ‘ Add ¢; in S7;

9 end

10 if |S1| = 2k then

11 ‘ break;

12 end

13 end

14 S«

LLMSimilarQuestionExpression (Qu k7 Sl ) 5
return S,

[y
wm

k-shot examples that have similar SQL structure
and question expression.

4 Experimental Settings

4.1 Datasets

BIRD (Li et al., 2023c¢) represents a cross-domain
dataset that examines the impact of extensive
database contents on text-to-SQL parsing. Spider
(Yu et al., 2018) is a large-scale complex and cross-
domain semantic parsing and text-to-SQL dataset.
We report the statistics of datasets in appendix A.

4.2 Evaluation Metrics

Following BIRD (Li et al., 2023c), we utilize exe-
cution accuracy (EX) and valid efficiency score
(VES) to evaluate text-to-SQL models. EX (Li
et al., 2023c¢) is defined as the proportion of ques-
tions in the evaluation set for which the execution
results of both the predicted and ground-truth in-
quiries are identical. VES (Li et al., 2023c) is
designed to measure the efficiency of valid SQLs
generated by models.

4.3 Baselines

DIN-SQL(Pourreza and Rafiei, 2023) and
MAC-SQL(Wang et al., 2023) breaks down
intricate queries into manageable sub-tasks.

Similar Question Expression Selection Prompt

Select three questions that are closest in question phrasing to the target
question from the source questions and return the list which is contain the
three questions ids. Format of the returned list is as follows:

[3,672, 19]
target question: {question}
source questions: {[source_questions]}

returned list: {result_ids}

Figure 6: The prompt for selecting examples having
similar question expression with target questions.

E-SQL(Caferoglu and Ulusoy, 2024) and
CHESS(Talaei et al., 2024) seek to bridge the
divide between natural language queries and
database architectures. SQL-PaLM(Sun et al.,
2023) and SuperSQL(Li et al.,, 2024a) utilize
distinct prompting and fine-tuning methods
for adapting large language models (LLMs) in
SQL generation. TA-SQL(Qu et al., 2024) and
CodeS(Li et al.,, 2024b) introduce strategies
to reduce hallucinations in LLM-based SQL
generation. DAIL-SQL(Gao et al., 2024a) is
designed to tackle complex database environments.
Additionally, methods based on multi-stage strate-
gies are included, such as DTS-SQL(Pourreza and
Rafiei, 2024) that employs two-stage fine-tuning,
MAG-SQL(Xie et al., 2024) that adopts a multi-
agent generative approach, and MCS-SQL(Lee
et al., 2024) that utilizes multiple prompts and
multiple-choice selection. MSc-SQL(Gorti et al.,
2024) narrows the performance gap of smaller
open-source models by sampling and comparing
multiple SQL query results. RSL-SQL(Cao
et al., 2024) achieve robust schema linking that
maximize the benefits. CHASE-SQL (Pourreza
et al., 2024) propose multiple chain-of-thought
prompting methods and an online synthetic
example generation technique. XiYan-SQL (Gao
et al.,, 2024b) integrates the ICL approach to
maximize the generation of high-quality and
diverse SQL candidates.

S Implementation Details

We use a single Tesla V100 GPU with 32 GiBs of
memory on a server to restore intermediate data
and execute SS-QE example selection algorithm,
the retrieving time is about 3~6 seconds for each
sample. All the experiments utilize GPT-4-Turbo,
the context window is 128000, the temperature is
set to 0.1. We enable five threads to run UCS-SQL
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EX

Method Model VES
simple  moderate challenging total
DIN-SQL GPT-4 - - - 50.72 58.79
DAIL-SQL GPT-4 - - - 54.76 56.08
DTS-SQL DeepSeek-7B - - - 55.80 -
TA-SQL GPT-4 63.14 48.60 36.11 56.19 -
Codes Codes-15B - - - 58.47 59.87
SuperSQL GPT-4 66.90 46.50 43.80 58.50 61.99
MAC-SQL GPT-4 65.73 52.69 40.28 59.39 66.39
MAG-SQL GPT-4 - - - 61.08 -
SQL-Palm PalLM2 68.92 52.07 47.89 61.93 -
MCS-SQL GPT-4 70.40 53.10 51.40 63.36 64.80
CHESS Proprietary - - - 65.00 -
E-SQL GPT-40 - - - 65.58 -
MSc-SQL GPT-40 72.00 58.00 49.00 65.60 -
RSL-SQL GPT-40 74.38 57.11 53.79 67.21 70.32
CHASE-SQL  Gemini 1.5 - - - 73.01 -
XiYan-SQL - - - - 73.34 -
UCS-SQL DeepSeek 71.67 55.59 54.11 65.23 68.49
UCS-SQL GPT-40 75.42 59.52 56.93 68.95 71.10

Table 1: EX and VES on dev set of BIRD. UCS-SQL achieves top two performances in both VES and EX across

datasetes of varying difficulty levels.

Method Model EX (dev) EX (test)
DIN-SQL GPT-4 82.8 85.3
DAIL-SQL GPT-4 84.4 86.6
DTS-SQL DeepSeek-7B 85.5 84.4
TA-SQL GPT-4 85.0 -
MAC-SQL GPT-4 86.8 82.8
MAG-SQL GPT-4 85.3 85.6
MCS-SQL GPT-4 89.5 89.6
CHESS Openllms - 87.2
MSc-SQL GPT-40 - 84.7
RSL-SQL GPT-40 - 87.9
CHASE-SQL  Gemini 1.5 - 87.6
XiYan-SQL - 89.6
UCS-SQL DeepSeek 86.5 87.7
UCS-SQL GPT-40 87.3 88.0

Table 2: UCS-SQL achieves top three performances in
EX on dev and test set of Spider.

(approximately 200~500 samples for each accord-
ing to the size of dataset), it costs about 4~6 hours
to generate all results. The token consumption of
2-shot UCS-SQL on dev set for BIRD and Spider
are approximately 5.29 million and 3.47 million
in input, 0.9 and 0.5 million in output. We use all-
MiniLM-L6-v2 model to get sentence embedding
and calculate cosine similarity in the discussion. In
SS-QE selection method, we set {64, 65} to {2,3}.

6 Results and Analysis
6.1 Opverall Results

The overall results of all the baselines and our pro-
posed UCS-SQL on BIRD and Spider are shown

in Table 1 and Table 2. The experiment results in-
dicate that our proposed UCS-SQL achieves better
performance than several competitive baselines on
the two datasets.

In Table 1, we report the performance of UCS-
SQL and other competitive baselines on develop-
ment set of BIRD. These recent methods have
their own distinct characteristics and utilize dif-
ferent LLM models, such as GPT-4, GPT-40, and
DeepSeek. Experiments show that our proposed
UCS-SQL method almost outperforms the first thir-
teen baselines by at least 3.35% on EX and by
at least 4.71% on VES, only slightly trailing the
concurrent work RSL-SQL. In addition, UCS-SQL
performs better than RSL-SQL on samples of mod-
erate and challenging difficulty, which indicates
that UCS-SQL can address problems more specif-
ically when dealing with samples of higher com-
plexity. On the other hand, Table 2 shows the exe-
cution accuracy of UCS-SQL and other baselines
on Spider. Our proposed UCS-SQL achieves ex-
cellent results of 87.3% and 88.0% on dev and test
sets, surpassing the vast majority of baselines. In
conclusion, UCS-SQL respectively achieves top-3
results in VES and EX across different difficulty
on BIRD and Spider datasets, and ranked first on
high-difficulty data, demonstrating the method’s
high efficiency in handling complex examples and
its generalizability across different scenarios.
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Method

EX

simple

moderate challenging total

Content & Structure Pipes Dimension (fixed 2-shot)

w/o content pipe 69.81 54.98 50.48 63.58(] 1.24)
w/o structure pipe 70.45 54.54 49.77 63.78(4 1.04)
w/ both pipes 70.24 58.25 50.48 64.82
Three Stages Dimension (fixed 2-shot)
w/o question & transitional stage 70.13 53.24 47.66 63.00(] 1.82)
w/o transitional stage 69.59 56.07 49.07 63.65({ 1.17)
w/o SQL stage 69.70 55.42 48.66 63.39(] 1.43)
w/ three stages 70.24 58.25 50.48 64.82
Few-shot Example Selection
0-shot 67.45 53.89 44.14 61.24( 7.71)
2-shot (fixed) 70.24 58.25 50.48 64.82(] 4.13)
2-shot (SS-QE) 71.99 58.81 52.89 66.28(] 2.67)
S-shot (SS-QE) 75.42 59.52 56.93 68.95

Table 3: Ablation study on dev set of BIRD. The three groups of experiments respectively compare the impact of
two pipes, three stages, and different few-shot example selections on UCS-SQL.

6.2 Ablation Study

To evaluate the contributions of different compo-
nents in UCS-SQL, we conducted a series of ab-
lation studies using the BIRD dataset, which is a
large-scale dataset with complex database struc-
tures. The experiments were divided into three
groups: (1) assessing the roles of the content pipe
and structure pipe, (2) analyzing the contributions
of the three stages, and (3) comparing the effective-
ness of the SS-QE example selection method. The
results are summarized in Table 3.

Group 1: Content Pipe vs. Structure Pipe
Removing either the content pipe or the structure
pipe from the framework led to a decrease in execu-
tion accuracy across datasets of varying difficulty,
with respective drops of 1.24% and 1.04%. The
results indicate that integrating both content and
structure information is crucial for guiding LLMs
to generate SQL queries effectively.

Group 2: Contributions of the Three Stages
The ablation studies also examined the necessity of
the three stages in UCS-SQL. Removing the transi-
tional stage or the SQL stage resulted in a decrease
in execution accuracy by 1.17% and 1.43%, respec-
tively. Additionally, removing the question stage
further reduced performance by 0.65%. These find-
ings demonstrate that each stage plays a vital role
in the overall performance of the framework.

Group 3: SS-QE Example Selection Method
The effectiveness of the SS-QE example selection
method was evaluated by comparing the execution
accuracy of 0-shot, fixed 2-shot, SS-QE-selected
2-shot, and SS-QE-selected 5-shot scenarios. The

results showed a progressive improvement in per-
formance, with a 1.46% increase from fixed 2-shot
to SS-QE-selected 2-shot and an additional 2.67%
improvement when increasing the number of shots
from 2 to 5. This indicates that the SS-QE method
effectively selects guiding examples that enhance
the overall performance of the framework.

The ablation studies demonstrate that both pipes
and all three stages in the UCS-SQL framework
are essential for performance enhancement. This
validates the rationality of integrating content and
structure dimensions in a multi-stage framework
for SQL generation. Additionally, the SS-QE ex-
ample selection method further leverages the frame-
work’s capabilities by selecting few-shot examples
that match the target question’s function and com-
plexity, thereby improving the overall performance.

7 Discussion

7.1 Effect of bi-filtered schema

This section examines the impact of bi-filtered
schemas generated through the bi-directional
schema linking process, using the BIRD dataset
due to its large scale and complexity. We define
the schema column count as the total number of
columns across all tables in a schema. Figure 7 il-
lustrates the schema column counts for each sample
in the BIRD dev set. The "Overall column counts”
represent raw database schemas, which consist of
11 distinct databases. The "Gold column counts”
reflect columns used as identifiers in gold SQL
queries, setting the performance limits for schema
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Figure 7: The schema column counts on dev set of
BIRD. The bi-filtered column counts have significantly
decreased compared to the pre-filtered column counts,
and are slightly higher than the gold column counts.

) UCS-SQL
Metric (%) simple moderate challenging total
Pre-filtered Schema
Precision 11.23 15.78 20.56 13.26
Recall 97.33 95.11 96.19 96.42
F1 score 20.14 27.07 33.87 23.31
Bi-filtered Schema
Precision 59.71 73.81 78.90 65.83
Recall 89.14 84.09 85.44 86.93
F1 score 71.51 78.62 82.04 74.92

Table 4: Evaluation of pre-filtered schema and bi-
filtered schema on dev of BIRD.

linking. The "Pre-filtered column counts” denote
schemas filtered using the method described ear-
lier, while the "Bi-filtered column counts” represent
our bi-filtered schemas. The pre-filtered schemas
show inconsistent filtering effectiveness, with a
significant gap compared to gold schemas. In con-
trast, bi-filtered schemas achieve substantial filter-
ing, closely approximating gold schemas in terms
of column counts.

To further evaluate the effectiveness of bi-filtered
schemas, we calculated precision, recall, and F1
score using gold schemas as the standard. Ta-
ble 4 presents the evaluation results. Pre-filtered
schemas have high recall across datasets but poor
precision and F1 score (13.26% and 23.31%, re-
spectively). In contrast, bi-filtered schemas achieve
a recall of 86.93%, slightly lower than pre-filtered
schemas, but with significantly higher precision
(65.83%) and F1 score (74.92%).

Bi-filtered schemas effectively eliminate irrele-
vant columns, closely matching gold schemas in
column counts. The high precision, recall, and
F1 score demonstrate the superior performance of
bi-directional schema linking.
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Figure 8: The evaluation statistics of UCS-SQL using
DIAL or SS-QE selection method on dev of BIRD.

EX
UCS-SQL (5-shoy simple moderate challenging total
w/DAILg 73.74 58.94 51.07 67.21
w/SS — QF 75.42 59.52 56.93 68.95

Table 5: EX results of UCS-SQL with two example
selection method on dev of BIRD.

7.2 Effect of SS-QE method

This study further examines the impact of the SS-
QE selection method using the BIRD dataset. The
DAIL Selection method, as reported in (Gao et al.,
2024a), is a leading selection technique that pre-
generates SQL queries and selects examples based
on high similarity between masked questions and
masked predicted SQL. We conducted experiments
on UCS-SQL using both DAIL and SS-QE meth-
ods in a 5-shot setting. Table 5 shows that the
SS-QE method outperforms DAIL.

To explore the underlying reasons, we analyzed
the selected examples. As shown in Figure 8,
the DAIL method slightly outperforms SS-QE in
average masked question cosine similarity and
masked query cosine similarity. However, the SS-
QE method exhibits significantly higher function
precision and recall. These results indicate that
SS-QE more accurately identifies examples with
analogous functions to the target sample, making
it more suitable for guiding SQL query generation.
Moreover, examples with similar complexity and
consistent functions provide a broader selection
pool compared to those based solely on high SQL
skeleton similarity. Even when the sequence or
placement of functions varies, they still offer guid-
ing significance, which would likely be overlooked
by similarity-based selection alone.

8 Related Work

Large language models (LLMs) have demonstrated
significant advancements in various natural lan-
guage processing (NLP) tasks (Wang et al., 2024a;
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Li et al., 2024c; Touvron et al., 2023; OpenAl,
2023; Yang et al., 2024; Shao and Li, 2024; Wang
et al., 2024b). Some researchers have leveraged
LLMs in text-to-SQL tasks to further enhance per-
formance. A critical aspect of this approach is the
design and utilization of prompts, which directly in-
fluence the accuracy of SQL generation by guiding
LLM:s effectively. For example, some methods (Tai
et al., 2023) try to improve the inference capabili-
ties of LLMs using chain-of-thought prompting, in-
cluding both the original chain-of-thought prompt
and the least-to-most prompt. Further, a compre-
hensive analysis (Chang and Fosler-Lussier, 2023)
of the impact of prompt construction across various
settings in text-to-SQL tasks is studied. DAIL-SQL
(Gao et al., 2024a) considers both questions and
SQL queries to select few-shot examples, adopts
an example organization strategy to balance qual-
ity and quantity, and utilizes code representation
prompting for question representation. Besides,
C3-SQL (Dong et al., 2023) and DIN-SQL (Pour-
reza and Rafiei, 2023) have introduced innovative
frameworks for database simplification, query de-
composition, and prompt engineering.
Researchers introduce schema linking to identify
the database tables and columns associated with
natural language queries and have proposed com-
plex and integrated prompting engineering meth-
ods (Li et al., 2024d; Wu et al., 2025). MAC-
SQL (Wang et al., 2023; Lee et al., 2024) centered
on multi-agent collaboration can be utilized for
more intricate data scenarios and a broader spec-
trum of error types for detection and correction.
TA-SQL (Qu et al., 2024) and CodeS (Li et al.,
2024b) introduce strategies to mitigate hallucina-
tions in LLM-based SQL generation. CHESS (Ta-
laei et al., 2024) enables more accurate schema
linking by retrieving relevant information from
database catalogs and database values. Another
approach, MAG-SQL (Xie et al., 2024) features a
multi-agent generative approach with soft schema
linking and iterative Sub-SQL refinement. MSc-
SQL (Gorti et al., 2024) mitigates the performance
gap of smaller open-source models by sampling
and comparing multiple SQL query results. RSL-
SQL combines bidirectional schema linking, con-
textual information augmentation, binary selection
strategy, and multiturn self-correction to achieve
an efficient framework. But previous works are
difficult to accurately retrieve the correct identifiers
content from the schema and often overlook the un-
derstanding and reasoning of structure hints during

SQL generation.

9 Conclusion

In this paper, we propose UCS-SQL, a three-stage
text-to-SQL framework integrating a content pipe
for key content extraction and a structure pipe for
linguistic structure transformation. Through the
three stages of UCL-SQL, the content and struc-
ture pipes jointly accomplish the generation from
NL question to SQL query. Then, we introduce
the SS-QE example selection method, which se-
lects appropriate few-shot examples for target ques-
tions by taking into account the similarities in both
SQL structure and question expression. The exper-
imental results on the BIRD and Spider datasets
demonstrate that UCS-SQL achieves superior per-
formance in EX and VES, and substantiate the ef-
fectiveness of both the content and structure pipes.
The integration of content and structure pipes will
guide future research to jointly consider the text-to-
SQL generation process from both dimensions.

Limitations

UCS-SQL is a pipeline based approach, it will be
subjected to cascading error effect. An intelligent
bakctracking approach to reflect and correct the
intermediate stage outputs can make the system
more robust, which we will design in the future
work.
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Datasets Train Dev Test DB Table/DB  Row/DB
BIRD 9,428 1,534 1,789 95 7.3 549k
Spider 8,659 1,034 2,147 200 5.1 2k
Table 6: The statistics of BIRD and Spider datasets.
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Figure 9: Detailed prompt design for UCL-SQL. The left column displays the original question and database
information. Content and structure information are extracted from the question to activate the content and structure

pipes. Identifiers and SQL skeletons are generated at the
query.

A Statistics of datasets.

Table 6 shows the statistics of two datasets.

B Case Study

In this section, we elucidate the UCS-SQL frame-
work through a detailed examination of an in-
context learning prompt, as depicted in Figure 9.
The process commences with the extraction of both
content and structural information from the original
question.

Within the content pipe, the LLM discerns that
the natural language phrase “average salary” cor-
responds to the schema identifier “A11”. Conse-
quently, “average salary” is mapped to “A11”. Ad-
ditionally, the mention of “Later birthdate” prompts
its provisional inclusion in the candidate set. Subse-
quently, we engage in the Foreign Keys Combina-
tion phase. Since “A11” is associated with the “dis-

end of each pipe and combined to form the final SQL

trict” table and “gender” with the “client” table, a
foreign key linking these two tables is essential for
SQL query generation. This necessitates the inclu-
sion of “district” and “district_id” from the equiv-
alence “client. ‘district_id‘ = district. ‘district_id‘”
into our candidate set. Advancing to the Bi-
directional schema linking phase, we identify “gen-
der”, “A11”, and “client” within the schema. The
schema’s description of “birth_data” (birth date)
is recognized as the closest match to “Later birth-
date”, leading the LLM to select “birth_data” as
a substitute. Ultimately, the final identifiers con-
sist of the tables “client” and “district”, and the
columns “gender”, “birth_date”, “A11”, and “dis-
trict_id”. Thereafter, the LLM integrates these final
identifiers, refining the pre-filtered schema by elim-
inating the redundant column “A4”, obtaining the
bi-filtered schema.
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In the structure pipe, the LLM initially infers can-
didate functions “ORDER BY”, “ASC”, “DESC”,
and “AVG” from the structure information “the
youngest”, “the lowest” and “average”. Integrat-
ing these with the query and constraints, the LLM
constructs the SQL skeleton. Ultimately, with refer-
ence to the bi-filtered schema, the LLM populates
the SQL skeleton with the candidate table names
and column names from the content pipe, thereby
completing the final SQL query.
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