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Abstract

The generative capabilities of the large lan-
guage models (LLMs) are deployed for domain-
specific question answering systems. However,
their ability to answer climate adaptation ques-
tions remains unclear. In particular, can they be
used by agronomists and climate scientists to
answer questions on the best climate adaptation
strategies? Answering questions in this domain
requires knowledge of climate data and its un-
certainties, and the ability to link them to the
broader climate literature while accommodat-
ing the unique constraints of users and experts.
We investigate the generative and evaluative
capabilities of several state-of-the-art LLMs,
open-source and proprietary, on climate adapta-
tion for agriculture questions posed by domain
experts using evaluation criteria designed by
the experts.

We propose an iterative exploration framework
that enables LLMs to dynamically aggregate in-
formation from heterogeneous sources, such as
text from climate literature and structured tabu-
lar climate data from climate model projections
and historical observations. Our experiments
demonstrate that LLMs can aggregate hetero-
geneous data to (1) answer questions, but at
a trade-off between presentation quality and
epistemological accuracy; and, (2) evaluate an-
swers, but are not as competent at identifying
high-quality answers and erroneous informa-
tion compared to domain experts.

1 Introduction

Domain-specific question answering (QA) has been
studied for decades (Green et al., 1961; Woods,
1973). With the increase in generative capabili-
ties of large language models, generative QA has
advanced considerably in various domains such
as the medical (Singhal et al., 2023), finance (Li
et al., 2023), education (Wen et al., 2024) and cli-
mate mitigation (Vaghefi et al., 2023). Yet a crucial
domain left under-explored is climate adaptation—
the process of adjusting to current and projected

Based on climate literature and climate projections ... to remain profitable in wheat 
production some key strategies are: Flexible sowing dates such as ... variety selection 
such as ... investment in precise agriculture technology ... [1140 tokens omitted].

How do I ensure wheat production remains profitable in Southeast Australia in 2050?

 ← Search (Sq1, C1, C2)

 ← Search (Sq2, C1, C2)

Reason (Q,      , 1) → 2

Reason (Q,     ,     ,     , 1+2+3) →  4

Let me search for climate literature for 
relevant regions and climate factors 
using query, Sq1, from corpora C1, C2

From the literature, the relevant 
regions (R1, R2) have climate factors, 
rainfall variability and temperature. 
Let me first examine rainfall for the 
2036 - 2065 projection window (W).

Projections show an increase in 
rainfall variability. Let me examine 
temperature next.

Both temperature and rainfall 
variability will increase. Let me 
search climate literature for suitable 
adaptation advice (Sq2) from C3.

← Projections (R1, R2, W,      )  

Reason (Q,      ,       ,      ,      ,1+2+3+4) →  A

← Projections (R1, R2, W,    
)  

Reason (Q,      ,       , 1+2) →  3

Figure 1: Our framework for generating responses to
expert climate questions using scientific literature, re-
ports, climate projections, and observational data.

climate change impacts to safeguard people and
ecosystems (Runhaar et al., 2018; Lee et al., 2023).

Climate adaptation, however, poses unique chal-
lenges when developing question answering sys-
tems. It requires integrating three different cat-
egories of information to help shape decision-
making and adaptation strategies: (1) climate pro-
jections (Sansom et al., 2021; Jagannathan et al.,
2023); (2) scientific literature (De La Calzada et al.,
2024) and climate adaptation reports (Lemos and
Rood, 2010); and, (3) location-specific historical
data (Guo et al., 2015; Keenan, 2015). For instance,
consider the question “How do I ensure wheat pro-
duction remains profitable in Southeast Australia
in 2050?” Answering this requires not only ex-
pert knowledge of the relevant climate factors (e.g.,
rainfall variability and average temperature) but
also contemporary knowledge of viable adaptation
strategies specific to wheat production drawn from
specialised literature.

To advance the climate adaptation QA, we pro-
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pose a novel dual-purpose framework that enables
exploring and aggregating large quantities of cli-
mate information from various sources, allowing us
to probe the generative and evaluative capabilities
of current LLMs. This framework can be adapted
to other domains that require domain expertise and
different information types and modalities. Our
contributions are:

1. A domain-specific framework that allows
state-of-the-art (SOTA) models to explore, re-
fine and aggregate climate data and climate
literature for QA and evaluation.

2. The first study of its kind on climate adapta-
tion for agriculture QA and evaluation, inves-
tigating the capabilities of current SOTA mod-
els using our novel expert-created annotation
criteria containing presentational and episte-
mological standards from research and indus-
try. In this study, we investigate the models’
baseline domain knowledge, their proficiency
in using climate data and climate literature,
common errors and hallucinations, and their
alignment with human expert evaluations.

3. An analysis of the difficulties in climate adap-
tation QA encountered by both experts and
LLMs.

4. A novel alignment method for domain-
specific automatic QA evaluation that im-
proves automatic evaluation by integrating ex-
pert feedback directly in few-shot learning
exemplars.

2 Methodology

Domain-specific QA often requires specialised
knowledge and climate adaptation QA is no ex-
ception. Climate adaptation QA requires integrat-
ing heterogeneous information sources—including
large-scale tabular climate projections, nation-
specific historical data, and diverse climate liter-
ature such as scientific literature, adaptation re-
ports, and books—to help shape decision-making
and adaptation strategies (Lemos and Rood, 2010;
Keenan, 2015). We propose a two-step approach to
measure the capabilities of LLMs in climate adapta-
tion QA by: (1) constructing the datasets and tools
to access heterogeneous climate resources; and, (2)
creating a framework for probing the climate adap-
tation QA and automatic evaluation capabilities of
LLMs.

Climate Literature # Documents # Chunks

Climate Science 2.36M 27.1M
Environmental Science 144k 163k
Regional Literature 28 1293

Table 1: Statistics on indexed Climate Literature (CL).
The chunk size is 512 tokens.

2.1 Constructing Datasets and Resources

Climate Adaptation Questions Human experts
created a set of 50 climate adaptation questions
that capture some of their information needs and
require domain knowledge to answer.

Climate Literature Climate adaptation QA re-
quires domain knowledge regarding noteworthy
regional or commodity climate factors, relevant
and up-to-date adaptation strategies, and general
climate science knowledge. To satisfy this require-
ment, we curated a corpus that covers literature
in general climate science, environmental science,
and regional adaptation (Table 1). The literature
is sourced from Semantic Scholar, Elsevier, and
expert-sourced reports (see Appendix A.1 for de-
tails). We created a hybrid retrieval index contain-
ing an inverted index and a vector database with
their respective embeddings (Nguyen et al., 2022).
Following previous work (Nguyen et al., 2024), re-
trieval from the index uses a hybrid scorer, a linear
combination between the BM25 (Robertson et al.,
1995) and embedding cosine similarity between
question and document embeddings.

Climate Data Climate data, such as climate pro-
jections, are typically sourced from large-scale
global studies such as CMIP (World Climate Re-
search Programme, 2025), whereas historical obser-
vations are restricted to countries. To satisfy both
requirements, we source climate data from MyCli-
mateView (Webb et al., 2023), which provides API
access to both downscaled CMIP 5 (Taylor et al.,
2012) and observational data. We create climate
data access tools that connect to all 89 climate
API endpoints (see Appendix A.6) from MyCli-
mateView. Most climate-related questions specify
locations by name (e.g., Young Town) or amor-
phously (e.g., Southwest Asia), whereas Climate
data is generally organised by coordinates (latitude
and longitude). Therefore, we create a tool that re-
solves locations to coordinates. This allows access
to historical data and projections for climate factors
such as temperature, rainfall, and soil moisture.
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2.2 Generation and Evaluation Framework

One major challenge in using climate data is ambi-
guity on which climate factor or metric is relevant
to a given question (Jagannathan et al., 2023). Fur-
thermore, climate data is very large in volume. For
example, CMIP 5 can reach up to 119 TB (Navarro-
Racines et al., 2020). Therefore, it is essential to
measure the effectiveness of LLMs in exploring
and identifying the correct climate data for a given
question. Similarly, for climate literature, a subset
of the relevant literature is needed to answer adap-
tation questions. Another challenge is that LLMs
may lack the domain knowledge to accurately find
relevant information for adaptation questions. An
LLM may need to integrate the missing expert
knowledge before being able to determine what
climate information or literature is needed. There-
fore, LLMs must dynamically reason, explore, and
identify key climate factors from large datasets
while retrieving relevant literature for missing do-
main knowledge. To achieve this, we propose a
framework for iterative exploration of climate data
and literature, called Generation and Evaluation
Framework or GEF, which allows unconstrained
exploration of climate knowledge.

Specifically, we prompt LLMs using a function-
calling template to: (1) decide the appropriate cli-
mate data sources1 or climate literature corpora for
a given question via a reasoning step; (2) perform
structured generation of one function parameters
such as literature search parameters (query, corpora
selection, and the number of documents to retrieve)
or climate access tool parameters (climate factor,
projection window, location, and other specific cli-
mate factor parameters), discarding any additional
generated parameters for other functions; (3) ob-
serve the output of the resulting data from the se-
lected tool called with the generated parameters;
and, (4) decide whether to continue exploring ad-
ditional literature or climate data via a reasoning
step (back to step 1) or to aggregate available in-
formation to answer the question (see Figure 1 for
a general overview). This exploration framework
forces the LLM to consider one function call at
a time (discarding additional calls) and observe
the returned information before continuing; the
LLM must integrate the current knowledge it has
received to refine its search. Using this framework,
we probe LLM models by generating answers to
the expert questions (see prompt in Appendix B.1).

1Accessing through the MyClimateView API endpoints.

Domain Expert Metrics To measure the quality
of generated answers, a set of bespoke criteria was
created by our in-house domain experts to reflect
the presentation and epistemological (Bulian et al.,
2024) expectations of experts in the climate adap-
tation field. These metrics are defined below, with
the full definitions listed in Appendix A.4:

• Context: The response provides context to
the question and answer.

• Structure: The response is formatted well
and can be easily read.

• Use of Language: The language is appropri-
ate and consistent with industry expert termi-
nology.

• Comprehensiveness: The response is com-
plete, the depth of knowledge is appropriate,
and of proper length.

• Specificity: Provides information specific to
the commodity and/or location.

• Use of Citations: Citations are appropriate,
ample, and do not impede readability.

• Scientific Accuracy: The system is faithful
to the given source material, and there were
no apparent hallucinations.

For each criterion, three sub-questions, rated with
yes, no, or N/A, are used. The score for the criterion
is calculated by counting the yes responses to the
sub-questions and ranges from 0 to 3.

2.3 Aligning LLMs with Domain Experts
Expert evaluation within climate science NLP can
be challenging and often has low agreement (Leip-
pold and Diggelmann, 2020), given the task dif-
ficulty (Varini et al., 2020; Mallick et al., 2025),
domain language ambiguity (Varini et al., 2020; Bu-
lian et al., 2024), and the time required to validate
answers (Chattopadhyay et al., 2020). Therefore,
given the time constraints of experts and low agree-
ment, automatic evaluation with external resources
may be a feasible alternative. Using the GEF frame-
work, we probe LLMs’ baseline zero-shot and few-
shot evaluation capabilities by providing the anno-
tation guidelines and question-generated answer
pairs to LLMs (prompt in Appendix B.2). For
few-shot, we randomly sampled five exemplars2,

2Number of exemplars was chosen using a small, separate
validation set.
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provided that they were not from the same question,
for in-context learning (ICL). Given the often low
agreement in the domain, we also propose a novel
few-shot learning method that can align (Liu et al.,
2023b; Hwang et al., 2023) LLMs towards expert
evaluation preference by directly embedding expert
feedback (ExF) within the exemplars. This feed-
back approach differs from prior approaches such
as ICL with explanations (Ye and Durrett, 2022) or
chain-of-thought (Wei et al., 2022). Generally, an
explanation would contain factual reasoning (simi-
lar to a chain of thought) or rationale for the annota-
tions provided. On the other hand, feedback differs
from explanations, as the expert’s feedback may
not explain the annotation scores they chose but
instead proposes how a response can be improved.
Given the time constraints of experts, an added ben-
efit of using feedback over explanations is that they
are easier to obtain as it requires a lower mental
load.

We use Kendall’s Tau (Kendall, 1938) as our
primary metric for correlation between automatic
and expert evaluations, as well as expert annota-
tor agreement. However, while Kendall’s Tau can
consider the strength of association between an-
notations, it assigns an equal weighting to each
ranking position for annotations. Therefore, we
use a secondary metric, Ranked Biased Ordering
(RBO) (Webber et al., 2010), which considers both
the association between annotations and their posi-
tions. We use the same hyperparameters from the
original work, which attribute 86% of the weight
to the top-10 ranked items.

3 Experimental Setup

Embeddings To encode document and query em-
beddings, we used Stella 1.5b v53, which was ob-
served to perform best on a validation set of human
judgments of query-document pairs (more details
in Appendix A.3).

LLMs We evaluated three open and closed-
weight SOTA LLMs4—Claude Sonnet 3.5 v2
(2024-10-22), OpenAI GPT-4o (2024-02-15), and
Qwen 2.5-72b Instruct (Qwen 72b for short)—for
both answer generation and automatic evaluation
(Appendix A.2 for more details). Using a greedy
sampling approach, we generated responses to 50
climate adaptation questions under two conditions:

3https://huggingface.co/NovaSearch/stella_en_
1.5B_v5 (Accessed: 12/20/2024)

4SOTA in function calling and structured generation.

with our GEF framework and without, as a baseline.
In total, 300 question-answer pairs were generated.

Human expert annotation Thirteen climate ex-
perts annotated these question-generated answer
pairs using the seven criteria outlined in Sec-
tion 2.2. When deemed necessary, experts also
provided feedback to highlight specific problems
in responses. Different experts re-annotated a fifth
of the annotations to measure agreement. For
half of the responses generated with GEF, ex-
perts annotated the correctness of the LLM’s use
of the climate data access and literature search
tools. We publicly release the annotations from
the experts through CSIRO’s data access portal:
https://doi.org/10.25919/x5wq-n705.

Annotator Details All annotators were experts
in climate science, including agronomists and cli-
mate change scientists. Ethics approval was given
by CSIRO’s ethics committee, which covered all
user studies, annotation, and feedback collection.
All annotators were volunteers and could choose to
withdraw from the study at any point. A brief one-
hour introductory session was held to provide con-
text for the annotation process. Initially, 26 climate
experts filled out an expression of interest form.
However, only thirteen performed the annotations
as the others withdrew from the study. Annota-
tions were anonymised during evaluation and error
analysis. Overall, the annotation process took four
months from ethics approval, expression of interest,
annotation briefing and guidelines, and annotation
time. To ensure anonymity, annotators were given
individual sets of annotations via a unique link. An-
notations were collated, and annotator details were
not retained.

Automatic evaluation We investigated the cli-
mate adaptation QA evaluation performance of the
LLMs using: (1) zero-shot and few-shot learning
with and without expert feedback; and, (2) with
GEF and without as our baseline.

4 Results and Analysis

RQ1: How well-presented and epistemologically
accurate are LLM-generated answers? Our re-
sults indicate that the experimented LLMs were bet-
ter at presentational aspects (context, structure, lan-
guage) than epistemological ones (citations, speci-
ficity, scientific accuracy) (Table 2); this finding
aligns with prior research in climate NLP (Bulian
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Context Structure Language Compreh-
ensiveness Specificity Citations Accuracy AVG

Qwen 72b 1.864 2.525 2.966 2.339 1.881 0.000 1.441 1.860
+GEF 1.690 ↓ 2.034* ↓ 2.707* ↓ 1.828* ↓ 1.707 ↓ 1.069* ↑ 1.483 ↑ 1.788 ↓

GPT-4o 1.839 2.411 2.946 1.946 1.732 0.018 1.286 1.740
+GEF 1.689 ↓ 2.066* ↓ 2.852 ↓ 1.803 ↓ 1.721 ↓ 0.672* ↑ 1.410 ↑ 1.745 ↑

Sonnet 3.5 1.600 2.750 2.883 2.117 2.033 0.000 1.233 1.802
+GEF 2.063* ↑ 2.190* ↓ 2.794 ↓ 2.349* ↑ 2.063 ↑ 0.778* ↑ 1.587* ↑ 1.975* ↑

Table 2: Climate-Augmented Question Answering evaluation using human experts. Overall, the experts agreed
that the use of climate data and literature improves the quality of responses, with large increases in citations and
scientific accuracy. However, this came at the expense of structure and language. A perfect score would be 3.0 for a
given criterion. ↑ indicates improvement over the baseline while ↓ indicates a reduction. * indicates a statistically
significant difference (p < 0.05; sign test) from the baseline model. We present an unweighted average (AVG) for
ease of reading, but note that the metrics should not be considered equally important.

et al., 2024; Nguyen et al., 2024). Although includ-
ing external resources via GEF generally improved
epistemological qualities, it came at the expense
of presentation quality. A common theme is that
the structure of responses worsened as climate data
was difficult to represent as text without hindering
readability. Two of the three models improved with
GEF, while Qwen performed worse. Overall, Son-
net 3.5 with GEF performed best, improving over
the baseline in most criteria aside from structure
and language.

Furthermore, of the 300 QA pairs annotated by
experts, only two were given perfect scores (an ex-
ample is shown in Appendix Figure 6), and eight
of which were one-off from a perfect score. This
highlights that current LLMs are far from being
able to provide accurate, well-presented answers
reliably. Given the scepticism and confusion sur-
rounding climate science (Oreskes and Conway,
2011), a higher standard must be applied here. The
trade-off between epistemological and presentation
quality can be detrimental in real-world settings
as presentation quality is just as important as the
epistemological quality (Hsu et al., 2024; Zanartu
et al., 2024). From these findings, we conclude that
the current LLMs cannot yet provide answers to
climate adaptation questions at the standards set
by experts, even with the inclusion of external re-
sources. Future work should aim to improve the
epistemology without a significant loss in presenta-
tion quality.

RQ2: How does proficiency in using climate
data and literature affect generated answer
quality? We find that different models have vary-
ing capabilities in utilising external resources (Ta-
ble 3), and that proficiency in external data explo-

Model Avg. CD Use Avg. CL Use Overall
Correctness

Qwen 72b 4.04 (65%) 0.44 (92%) 0.68
GPT-4o 2.86 (78%) 0.08 (100%) 0.79
Sonnet 3.5 2.76 (92%) 1.16 (100%) 0.96

Table 3: Climate data (CD) and climate literature (CL)
usage per question for Climate Question Answering. A
subset of the generated responses is manually inspected
for CD+CL exploration correctness. In brackets is the
percentage of correctly explored climate data or climate
literature. For example, out of all the climate data tools
used Sonnet, 92% of those were considered correct use.

ration and generated answer quality is correlated
(lower correctness in Table 3 correlates to lower
scores in Table 2). For instance, Qwen+GEF had
the highest climate data (CD) use with moderate
literature (CL) use, leading to higher scores in cita-
tions and accuracy. However, most of these were
used incorrectly (68% overall correctness) as the
generated responses contained irrelevant informa-
tion, lowering specificity and comprehensiveness
and leading to a lower score than the baseline.

A similar trend occurred with GPT-4o, where
incorrectly used CD (78% overall correctness) also
lowered specificity. Furthermore, as CL usage was
also low, we found that GPT-4o missed the appro-
priate literature needed to answer questions, re-
ducing the context and comprehensiveness scores.
However, given that the overall correctness was
higher than Qwen, the improvements in epistemo-
logical criteria outweighed performance drops from
the answer presentation.

Sonnet 3.5 was the only model that saw overall
significant (p < 0.05) performance gains, as it used
both CD and CL with high correctness (0.96). We
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Figure 2: Percentage of error types made by baseline
and GEF-based methods.

observe that CL use was higher than other models,
leading to improvements in the context and com-
prehensiveness criteria because relevant domain
knowledge could be incorporated into the response.
Additionally, correct CD use led to significant im-
provements in accuracy and specificity. All models
had significantly (p < 0.05; sign test) lowered struc-
ture scores when using GEF. From expert feed-
back, we find that this primarily results from (1)
the difficulty of representing climate data textually,
which often makes responses challenging to read
and follow (see Appendix Figure 7); and, (2) the
position of summaries varied within the response,
even from the same model, and often they were
after the references or within the references.

RQ3: What are common errors that LLMs
make in climate adaptation QA? From expert
feedback (Figure 2), we find that the baseline meth-
ods tend to (1) be too generic to be useful; for
example, Sonnet 3.5 stated the temperature would
be warmer for a region but did not say by how
much or how it would affect specific commodities;
(2) have hallucinations; for example, GPT-4o pro-
vided references which did not exist, while Sonnet
3.5 hallucinated almond pollination temperature
thresholds; and, (3) lack the domain knowledge to
describe appropriate and relevant climate risks. For
example, Sonnet 3.5 stated that temperature was
the only factor to consider for apple sunburn risk,
but sunlight intensity and canopy density were also
important to consider. On the other hand, we find
that GEF methods tend to draw scepticism from
experts, resulting in 43% more critical feedback
than baseline methods. Common errors with LLMs
using GEF we find are:

Unclear or incomplete answers When given ac-
cess to external resources, LLMs over-rely on cli-
mate data for general knowledge questions, which

leads to irrelevant answers (lowering specificity
and context). For example, the question “How ac-
curate are climate projections”, GPT-4o responded
with examples of climate projections for differ-
ent regions it had explored, but did not answer
the question. Moreover, complex jargon such as
‘air drainage’, specific carbon emission scenarios
(RCP), or climate factors was used without pro-
viding the appropriate context or reasoning. Many
responses also did not provide reference points for
climate factors, leading to incomplete answers. For
example, Sonnet 3.5 claimed that the number of
hot days was expected to be 25-30 in the 2050 pro-
jection window but did not provide the current year
for context.

Missing references As responses became more
specific, models provided highly specific advice
without citations; this contrasts with the baselines,
where the responses were too generic to warrant
citation.

Presentation Presentation quality tended to
worsen (GPT-4o was most impacted) as the struc-
ture of responses became more challenging to read
due to inconsistency in referencing format or cli-
mate data presentation.

Lack of domain knowledge Although the use of
domain knowledge improves with GEF, there are
numerous misinterpretations of climate data. For
example, all models represented individual years
as representative averages of climate projection
windows—a practice which is frowned upon in
climate science (Nissan et al., 2019). We also ob-
serve that LLMs tend to be more confident, making
claims without considering the potential ramifica-
tions. One such example was when Qwen 72b rec-
ommended large-scale intensive farming systems
to improve climate resilience, which was faithful to
the source documents but did not consider potential
water or welfare challenges.

Hallucination Although the number of extrinsic
hallucinations (Dziri et al., 2021) lowered when us-
ing GEF, intrinsic hallucinations (Cao et al., 2022)
became more common. For example: (1) Sonnet
3.5 interpreted literature mentioned a 79% reduc-
tion in exports as a 79% reduction in production;
(2) Qwen 72b stated a reduction in cold days for
lambing which contradicted the input climate data
and literature; and, (3) GPT-4o used maximum tem-
perature as the climate factor when accessing cli-
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Context Structure Language Compreh-
ensiveness Specificity Citations Accuracy AVG

τ ↑
AVG
rbo ↑

Expert 0.217 0.192 0.303 -0.054 0.063 0.307 -0.114 0.131 0.430

LLM Zero-shot

Qwen 72b 0.126 0.163 - 0.125 0.122 0.511 0.080 0.193 0.235
+GEF 0.114 0.240 - 0.073 0.153 0.513 0.080 0.205 0.312

GPT-4o 0.043 0.323 - 0.195 0.106 0.525 0.094 0.217 0.268
+GEF 0.100 0.367 - 0.128 0.125 0.536 0.025 0.215 0.246

Sonnet 3.5 0.178 0.352 - 0.172 0.063 0.513 0.118 0.235 0.247
+GEF 0.113 0.370 - 0.237 0.082 0.460 0.052 0.224 0.249

Few-shot

Qwen 72b 0.066 0.099 - 0.052 0.155 0.512 0.095 0.163 0.254
+GEF 0.107 0.188 - -0.030 0.152 0.523 0.025 0.161 0.282
+ExF 0.094 0.132 - 0.111 0.208 0.518 0.013 0.180 0.277
+GEF+ExF 0.123 0.215 - 0.038 0.185 0.534 0.044 0.190 0.324

GPT-4o 0.040 0.126 - 0.183 0.209 0.563 -0.003 0.186 0.204
+GEF 0.077 0.286 - 0.161 0.184 0.536 0.061 0.217 0.268
+ExF 0.022 0.154 - 0.203 0.229 0.527 -0.021 0.186 0.235
+GEF+ExF 0.062 0.274 - 0.179 0.229 0.536 0.055 0.223 0.295

Sonnet 3.5 0.092 0.374 - 0.252 0.169 0.535 0.148 0.262 0.235
+GEF 0.057 0.386 - 0.276 0.197 0.509 0.191 0.269 0.248
+ExF 0.110 0.395 - 0.287 0.157 0.551 0.084 0.264 0.266
+GEF+ExF 0.121 0.364 - 0.252 0.185 0.539 0.181 0.274 0.273

Table 4: Comparison between human annotators and LLM annotators using Kendall’s Tau (τ ) and rank-biased
overlap (rbo), detailed results with rbo are shown in Table 7. The language criterion agreement could not be
measured as each method predicted yes for each sub-question, meaning the answers could not be ranked. We
experimented with different sampling methods in Table 5 to remedy this. Expert feedback (ExF) is used in the
few-shot setting but not in zero-shot, as this is part of the ICL examples.

mate data but reported the average temperature in
the response. Furthermore, extrinsic hallucinations,
although lowered, were still present. For example,
experts found an attribution error (Yue et al., 2023)
where Sonnet 3.5 cited literature about apple sun-
burn impacts and used this to make claims about
sunburn management practices not present in the
literature.

RQ4: How effective are experts at evaluating
climate QA responses? From Table 4, we find
that inner-annotator agreement between human ex-
perts was generally weak, τ = 0.131, highlight-
ing the difficulty of annotation within the domain.
By contrast, rbo was much higher, indicating that
human experts tended to agree on high-quality re-
sponses. When reversing the ordering, we observe
that rbo = 0.301, meaning human experts also
agree on lower-quality examples. We can conclude
that experts can decide on the high and low-quality
responses but have difficulty evaluating medium-
quality ones. For individual criteria, experts tended
to agree better on presentational criteria than epis-
temological ones. Interestingly, agreement on lan-

guage was not as high as expected, even though
the average scores of generated answers were close
to 3.0; there may be a few but very sparse dis-
agreements. Comprehensiveness (τ = −0.054)
and accuracy (τ = −0.114) were particularly divi-
sive as these were subjective and expertise-based.
Overall, this finding is not surprising as established
literature in climate science NLP shows agreement
is generally poor (Leippold and Diggelmann, 2020;
Zanartu et al., 2024) but does establish climate
adaptation QA evaluation as a difficult task.

RQ5: How effective are LLMs at evaluating
climate QA responses compared to experts?
From Table 4, we observe that zero-shot evaluation
methods had better agreement with experts than
one another regarding avg τ . Using GEF did not
substantially change the correlation with experts
across all models. This can be partly explained
by the fact that climate data and literature explo-
ration for GPT-4o and Qwen 72b are much lower
when compared to generation (Figure 3). There-
fore, there should not be much difference between
the methods. On the other hand, Sonnet remains
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Context Structure Language Comprehensiveness Specificity Citations Accuracy AVG
τ ↑

AVG
rbo ↑

Question 0.122 0.358 - 0.312 0.235 0.448 0.117 0.265 0.270
Model 0.073 0.406 - 0.296 0.127 0.491 0.157 0.258 0.245
Random 0.121 0.364 - 0.252 0.185 0.539 0.181 0.274 0.273

Table 5: Effect of different sampling strategies on the Sonnet 3.5 model with GEF and ExF. Question sampling
means we use the other five annotations of the question as exemplars (each question had six annotations), while for
model sampling, we sample exemplars from the same model. Even under different sampling strategies, the language
criteria agreement is still undefined.

Sonnet 3.5 GPT-4o Qwen 72b
0

1

2

3

4

Av
g.

 U
se

variable = Climate Data

Sonnet 3.5 GPT-4o Qwen 72b

variable = Climate Literature

Generation
Evaluation

Figure 3: Average climate data and scientific literature
usage in zero-shot LLMs.

consistent with external data exploration, which
likely implies that GEF does not directly improve
alignment with experts.

This does change when few-shot learning is used,
as using GEF generally leads to improved correla-
tion. Adding expert feedback (ExF) in exemplars
also improved alignment, although external data ex-
ploration was an overall richer signal. Interestingly,
few-shot Qwen 72b and GPT-4o performed worse
than their zero-shot counterparts, which can likely
be attributed to problems with reasoning over long
sequences, given that Sonnet 3.5 improved with
few-shot learning. Another explanation is that the
number of exemplars was not well-tuned for the
models, even though we had tuned this parame-
ter with a validation set. GPT-4o improved over
its zero-shot baseline with GEF and ExF as it ex-
plored more climate data and literature than Qwen.
The best automatic evaluation method was Son-
net+GEF+ExF, which consistently aligned with
humans across criteria.

Generally, expert agreement tended to be higher
for presentational criteria such as context, language,
and structure. At the same time, automatic mea-
sures had a higher agreement on epistemological
qualities such as specificity, citations, and speci-
ficity. Interestingly, no automatic method could
correctly predict the language criteria, as all meth-

Expert
Qwen 72b

GPT-4o
Sonnet 3.5

Qwen 72b (best)

Sonnet 3.5 (best)

GPT-4o (best)

1.6

1.8

2.0

2.2

2.4

2.6

AV
G

Baseline
GEF

Figure 4: The AVG represents the average across all
seven metrics for GEF-based methods (Qwen 72b+GEF,
GPT-4o+GEF, Sonnet 3.5+GEF) and baseline methods
(Qwen 72b, GPT-4o, Sonnet 3.5). Best indicates the
method with the highest correlation with experts from
Table 4 for that model (e.g., Qwen 72b (best) is Qwen
7b + GEF (Zero Shot)).

ods predicted perfect scores for each QA pair. A
possible reason may be that the random selection
of the few-shot exemplars did not contain samples
with varied language annotation scores. To rule
this out, we conducted an experiment where we
changed the sampling strategies used to select the
few-shot exemplars (Table 5) that would contain
samples of varied language annotations. However,
even with different sampling strategies, the lan-
guage criteria still could not be predicted.

Given that all automatic evaluation methods had
higher agreement than human annotators, it can be
inferred that LLMs are somewhat an average of
expert preference; that is, LLMs can correlate with
different experts even though expert agreement is
low. However, experts were still better at picking
out high-quality examples as rbo was always higher
than automatic methods. Importantly, given the
correlation between correct external data use and
improved performance (RQ2), experts are sensitive
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Figure 5: Distribution of scores from human experts,
and baseline LLM evaluations and their few-shot coun-
terparts with GEF and ExF counterparts.

to responses that appear high-quality (answers that
cited literature and climate data for evidence) but
use erroneous data. LLMs do not have this capa-
bility, evidenced by Figure 4 (and Appendix 8),
where LLMs consistently reported GEF models
well above the baselines. Experts place GEF-based
methods slightly higher than the baselines, whereas
LLMs place GEF-based models 0.5 points higher
on average. While overestimation shifts with few-
shot learning and expert feedback (Figure 5), LLMs
still overestimate the performance of GEF-based
methods over baselines and are not yet reasonable
evaluators for climate adaptation QA.

5 Related Work

Climate Science in NLP In the climate NLP
space, there has been a shift from pre-trained lan-
guage models like BERT (Prasse et al., 2023;
Pupneja et al., 2023; Greenwell and Johnson,
2023; Toetzke et al., 2023; Visalli et al., 2023)
towards LLMs. Arabic mini-ClimateGPT (Mul-
lappilly et al., 2023) creates an English instruc-
tion fine-tuning dataset from ChatGPT before
translating it to Arabic and fine-tuning a Vi-
cuna (Zheng et al., 2023) model. The simi-
larly named ClimateGPT (Thulke et al., 2024) in-
troduced domain-specific foundation models for
climate science, which have been trained from
scratch on the Llama2 (Touvron et al., 2023) ar-
chitecture and instruction fine-tuned using domain-
specific datasets. ClimateGPT was evaluated on cli-
mate science-specific benchmarks (Spokoyny et al.,
2023). For climate science question answering,
ChatClimate (Vaghefi et al., 2023) integrated infor-

mation from IPCC reports or internal LLM knowl-
edge to provide traceable answers to general cli-
mate science questions. Climate science question
answering is similar to evidence-based QA Schi-
manski et al. (2024), which corroborates evidence
from various sources to provide accurate answers.

Evaluation with LLMs As question answering
moves from extractive to generative, using stan-
dard gold standard evaluation (Kamalloo et al.,
2023) is increasingly more difficult. Given that
LLMs are now the de facto standard for QA, it is
important to evaluate their responses due to their
propensity for hallucination (Chang et al., 2024).
A growing trend is to use the LLMs themselves as
evaluators (Lin and Chen, 2023; Chiang and Lee,
2023; Zheng et al., 2023) in a reference-free setting
such as G-EVAL (Liu et al., 2023a), C-Eval for
Chinese texts (Huang et al., 2023) and L-Eval for
long-form text (An et al., 2024). These methods
show that LLMs can correlate well with human an-
notators over traditional lexical metrics (Lin, 2004;
Banerjee and Lavie, 2005), but there is a potential
bias towards LLM-generated text and positional
bias (Wang et al., 2024).

6 Conclusions

We systematically analyse the climate adaptation
question answering capabilities of LLMs and find
that their baseline answer generation capabilities
fall below the expectations of climate experts. Al-
though grounding LLMs with external resources,
such as climate data and climate literature, im-
proves epistemological accuracy, it degrades an-
swer presentation and introduces new sources of
errors, such as intrinsic hallucination and misinter-
preting data. Additionally, our study shows that
LLMs cannot yet serve as reasonable evaluators
of climate adaptation responses, achieving moder-
ate agreement with experts. Even when equipped
with external data, LLMs lacked the ability to prop-
erly validate erroneous answers and identify higher-
quality examples while being too lenient in scoring
compared to experts. Overall, our work measures
the capabilities of current LLMs in answering cli-
mate adaptation questions and the challenges of
working with external resources in domain-specific
question answering. It also provides a foundation
for the field of climate adaptation question answer-
ing, which could be expanded to other similar sci-
entific areas.
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Limitations

Our study is not without limitations, such as (1)
the use of single-turn/single-response question an-
swering; (2) the evaluation of answers and tool
parameters and not the climate data/scientific lit-
erature; (3) having two or fewer annotations per
sample rather than having three experts deciding on
majority labels; (4) a limited number of questions
and answers; (5) the use of three LLMs for gen-
erating and evaluation; (6) study design; (7) lack
of more advanced prompting strategies; (8) unable
to measure the language evaluation capability of
LLMs; and, (9) the metrics were not weighted.
While we could not explore these limitations fur-
ther in this paper, we highlight these as a potential
starting point for researchers who want to explore
this domain further and also provide the rationale
below.

A major limiting factor was that the climate ex-
perts were volunteers, so asking for more of their
time remained impractical. Further, many vol-
unteers withdrew from the study due to the lack
of time, lowering the annotation workload that
could be reasonably given to the remaining ex-
perts. Therefore, a multi-turn QA setup or climate
data/scientific literature evaluation would exceed
this workload (Limitations 1 and 2). The limited
annotation budget also lowered the number of ques-
tions that could be made, as these require careful
consideration from experts and also the number of
answers that could be evaluated for each question
(Limitations 3 and 4).

Although stronger LLMs existed, we opted to
use three LLMs (Limitation 5) for generation and
evaluation for the following reasons: (1) many of
the stronger LLMs were not capable of function
calling and structured generation (e.g., OpenAI
o1); (2) the cost of running these models would be
prohibitively expensive in terms of monetary costs
for proprietary models and computational costs for
open-source models, lowering the number of tested
models; and, (3) hardware limitations, we did not
have resources to run very large open-source mod-
els (e.g., Mistral-Large 123b and Llama3 405b).

The study design introduced distrust from some
climate scientists as the responses became highly
specific. The study was designed to be single-
blind; participants were not told which method
or model they annotated. However, scepticism in-
creased with GEF-based approaches because an-
notators could not see the data that models used

to generate the answer (Limitation 6). Although
the overall findings seem unaffected, as experts
could still determine low-quality and high-quality
responses, this could lower expert agreement. Ap-
plying more advanced prompting techniques (Limi-
tation 7) would likely improve the quality of the re-
sponses and lower scepticism at the risk of making
it easy to distinguish our system from the baselines.

We find that automatic LLM evaluators predicted
perfect or close to perfect scores for the language
criterion in responses, irrespective of method (Lim-
itation 8). This limited the ability of our agreement
metrics to capture the LLM’s evaluation perfor-
mance (the responses could not be ranked as they
were all tied) to the language criterion, so we chose
to exclude these from our automatic evaluation
analysis. We did try to rectify this in Appendix 5,
but to no avail. We hypothesise that this problem is
likely a result of the annotation criteria for language
being simplistic, as baseline results for language
are almost a perfect score for most methods. Al-
though this is a negative result, we highlight it as
an interesting insight for researchers working in
automatic LLM evaluation.

Finally, we did not investigate the importance
weightings of the metrics and instead opted for
looking at trends based on the category of met-
ric (presentation or epistemological) or individual
metrics (Limitation 9). This is because the im-
portance of the metrics is dependent on the user.
For example, a scientist may value presentation
less than a layperson. This importance weighting
and the inclusion of an uncertainty metric (Bulian
et al., 2024), which could be an important dimen-
sion, given the overconfidence of LLMs providing
responses, may serve as a foundation for future
work.
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A Appendix

A.1 Climate Literature Corpus Collection
Details

Climate literature was collected from the
S2ORC (Lo et al., 2020) corpus from Semantic
Scholar, high-impact climate adaptation literature

from Elsevier, and expert-sourced reports. For
S2ORC, documents (spanning the years 1802
to 2024) were filtered from the larger corpus
based on the field of study tag (Agricultural
Science, Environmental Science). For Elsevier,
we selected the top 100 high-impact journals
(spanning the years 1982 to 2024) based on expert
guidance. Using Elsevier’s API5 we downloaded
the open-access articles from these top journals.
For reports, experts sourced relevant gray literature
(spanning years 2009 to 2023) for the key growing
regions and commodities.

A.2 Additional Experimental Details

Open-source generation We ran the open-
source model, Qwen 2.5-72b (Yang et al., 2024),
at 16-bit precision with Flash Attention (v2) using
the llama.cpp6 library on three H100 Nvidia 80GB
GPUs. We used the maximum prompt context win-
dow of 128,000 tokens, which required roughly
200GB of GPU VRAM. Each conversation turn for
generation took 1 minute, with roughly five turns
per question. This approximately amounts to 4
hours for each setting in the question answering
task (8 hours total) and 25 hours for each setting in
the evaluation task (150 hours total).

Proprietary model generation For Claude, we
used Bedrock’s Converse API, and for OpenAI
(through Azure and Qwen (hosted via Ollama) we
used OpenAI’s chat completion API. We supplied
tools and their descriptions to the system prompt
and used the official APIs to detect the function
calls and rationale text from the model. We treated
each function call as a separate conversation turn
by supplying the tool result as a user turn (one at a
time), even if the model made several calls in one
turn. Then the LLM would either continue to call
another function with reasoning text or stop and
answer the user’s question. We also added a limit
of 15 conversation turns before requiring the model
to answer the question.

Generation costs For proprietary models, we
used the APIs with data privacy agreements,
namely Azure API7 for interacting with GPT-4o

5https://dev.elsevier.com/ Last accessed:
12/20/2024

6https://github.com/ggerganov/llama.cpp (Last Accessed:
1/17/2025)

7https://azure.microsoft.com/en-us/products/
ai-services/openai-service) (Last Accessed:
1/17/2025)
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and Amazon Bedrock8 for Claude Sonnet 3.5 v2.
The cost of question answering generation was ap-
proximately 58 USD for GPT-4o and 55 USD for
Claude Sonnet 3.5. For evaluation, it was 402 USD
for GPT-4o and 294 USD for Claude Sonnet 3.5.

A.3 Embedding Model Selection

Human judgments We selected our embedding
model using a small set of human judgments
(query-document-relevance triples). This set was
created by first running a hybrid scorer with BM25
and JinaBERT (Günther et al., 2023) against the
climate corpora index using the first fifteen climate
expert questions. A climate expert was asked to
annotate the top 20 documents from each query for
relevance (300 total), creating human judgments.

Model ID nDCG@10

NovaSearch/stella_en_1.5B_v5 0.7688
Alibaba-NLP/gte-Qwen2-7B-instruct 0.7630
Salesforce/SFR-Embedding-2_R 0.7562
NovaSearch/stella_en_400M_v5 0.6999
jinaai/jina-embeddings-v2-base-en 0.6621
nvidia/NV-Embed-v2 0.4026

Table 6: Embedding model selection experiments.
We experimented against the top five models from
the MTEB leaderboard (10-30-2024). URLs for
the model can be generated by prepending https:
//huggingface.co/ to the model ID. For exam-
ple https://huggingface.co/NovaSearch/stella_
en_1.5B_v5.

Model Selection Using these human judgments,
we empirically evaluated (Table 6) the top em-
bedding models from MTEB (Muennighoff et al.,
2023) and selected the best model, Stella 1.5b
v5, using nDCG10 (Craswell, 2009). All docu-
ments in our corpus were chunked with a context
window of 512, as this was the window size the
model was trained with. For the query prompt, we
use Instruct: Given a web search query,
retrieve relevant passages that answer
the query. Query: {query}.

A.4 Annotation Criteria

We provide the expanded criteria created and used
by climate experts for climate science QA. In addi-
tion to the annotation guidelines, annotators were
provided with a brief introduction session (1 hour)
regarding the annotation process.

8https://aws.amazon.com/bedrock/ (Last Accessed:
1/17/2025)

Instructions This activity has been designed to
gather feedback on each of the responses provided
by 3 LLMs (we refer to all as systems). This al-
lows us to understand how the responses/outputs
compare to other systems.

It should be noted that all systems selected for
testing will be anonymised to avoid bias.

1. Context

1.a. Attempts to give some broader context
to explain the issue

• Rating: Yes/No
1.b. Provides an introductory paragraph to

introduce the topic
• Rating: Yes/No

1.c. Provides a summary paragraph at the end
• Rating: Yes/No

2. Structure

2.a. Overall response is well structured, easy
to read

• Rating: Yes/No
2.b. Headings and subheadings are well struc-

tured and logical, and with appropriate
categories

• Rating: Yes/No
2.c. Dot points are used appropriately

• Rating: Yes/No

3. Use of Language

3.a. Phrasing is appropriate (easy to read, flu-
ent) and not awkward or incorrect

• Rating: Yes/No
• Explanation:

3.b. Correct use of grammar
• Rating: Yes/No

3.c. Consistent with language used within in-
dustry

• Rating: Yes/No

4. Use of Citations (where used)

4.a. Citations are used appropriately
• Rating: Yes/No/N/A
• Explanation:

4.b. The number of citations used is appropri-
ate

• Rating: Yes/No/N/A
4.c. Citations are easy to read
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• Rating: Yes/No/N/A

5. Specificity

5.a. Gives information which is specific to a
commodity, if appropriate

• Rating: Yes/No
5.b. Gives information which is specific to

the location/region in question, where
applicable

• Rating: Yes/No
5.c. Where there is no information specific to

a location, the system admits this
• Rating: Yes/No

6. Comprehensiveness

6.a. The system’s response is comprehensive
and does not just give a partial, incom-
plete answer

• Rating: Yes/No
6.b. Shows depth of knowl-

edge/understanding regarding topic
• Rating: Yes/No

6.c. Answers beyond the question’s scope to
provide context

• Rating: Yes/No

7. Scientific Accuracy

7.a. Is the information scientifically robust?
Answer to the best of your knowledge

• Rating: Yes/No/N/A
• Explanation:

7.b. Does the response meet scientific expec-
tations? (consider own knowledge or
through supported literature)

• Rating: Yes/No/N/A
7.c. Does the response have any errors? An-

swer to the best of your knowledge
• Rating: Yes/No/N/A

A.5 Questions
We provide the question set that was used for cli-
mate science QA generation below:

1. What are the ideal pollination conditions for
growing almonds?

2. What can I do to prevent sunburn risk in ap-
ples?

3. What varieties of apples are more tolerant to
sunburn?

4. What regions will support growing cotton in
2070?

5. How does the climate in South West Western
Australia compare from 1970 to now?

6. What will be the greatest climate risk for grow-
ing wheat in the wheatbelt in 2050?

7. Will my rainfall continue to increase in vari-
ability in Northern NSW?

8. In north-east SA, how many days will I likely
experience over 45 degrees?

9. How accurate are climate projections?

10. What is the difference between a heatwave
and a hot day?

11. Will we likely see less cold risk days over the
lambing season in central Tasmania?

12. How will climate change impact cherry pro-
duction in Young?

13. What is the production cycle of potatoes?

14. Are there regions in Australia where agricul-
ture will not be viable in 2050?

15. Will commodity distribution in Australia
change under a future climate?

16. What are the 6 main climatic drivers of chick-
pea growth in Australia?

17. What happens to chickpea crops when there is
a deficit of soil moisture at the time of sowing?

18. What is the likelihood of the incidence of
extreme heat increasing in the future during
the reproductive phase of my chickpea crops
(grown in Biloela in central Qld)?

19. What is the extreme heat threshold of Kabuli
chickpeas and does it differ from Desi?

20. What is the extreme heat threshold of Kabuli
chickpeas and does it differ from Desi? Which
type of chickpea is more heat-resistant?

21. What is the critical temperature below which
chickpea crops are non-viable?

22. Where in Australia might chickpeas become
viable in 2040 where they are not viable now?
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23. How cool does the temperature have to be,
and for how long, to induce flowering in Av-
ocados? Are these periods of cool weather
going to become rarer in the Northern Rivers
region by 2030?

24. How cool does the temperature have to be,
and for how long, to induce flowering in Av-
ocados? Are these periods of cool weather
going to become rarer in the Northern Rivers
region by 2040?

25. What is the most heat resistent cultivar of avo-
cado available?

26. What are the main climate change risk factors
for chickpeas in Australia?

27. What are the main climate change risk factors
for mangos in Australia?

28. What are the main climate change risk factors
for apples in Australia?

29. What temperature is considered the threshold
for increased risk of sunburn in apples?

30. What are the main ways climate change can
impact farmers trying to grow avocados?

31. When growing avocados, what temperature is
the threshold for a ‘cool day’ during flower
induction?

32. What are the main ways climate change will
impact farmers trying to grow field tomatoes?

33. What are the main ways climate change will
impact farmers trying to grow chickpeas?

34. What are the main ways climate change will
impact farmers trying to grow cherries?

35. What is the threshold for a hot day during the
flowering season when growing avocados?

36. In the context of growing avocados in Shep-
parton VIC, what is meant by a pollination
event?

37. Are there existing Australian agricultural re-
gions that could become unviable in the fu-
ture?

38. What is the date range within which flower-
ing occurs in the northern avocado growing
region?

39. If a minimum temperature threshold for wheat
is crossed, does this always mean there will
be a frost event?

40. What does heat stress during the flowering and
grain-filling periods do to a wheat crop?

41. How can wine grapes be managed to reduce
the risk of frost?

42. What factors influence soil moisture?

43. Will bananas be able to be grown in Northern
NSW in 2050?

44. Will sugarcane still be a viable crop for North-
ern NSW in 2040?

45. Given their chill requirements, will cherries,
almonds and apples still be able to be grown
in Australia by 2100?

46. What are the most important climate change
risks of for cherry production and how are
these likely to change by 2050?

47. How will the increased severity and duration
of heatwaves affect fresh field tomato produc-
tion in the coming decades?

48. What will the impact of increased rainfall ex-
tremes be on tomatoes, and especially during
the time from flowering to harvest?

49. What factors influence climate risk for tem-
perate perennial tree crops?

50. What are the areas in Australia where wine
grapes are currently grown, that might strug-
gle to grow wine grapes in 2050?
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What are the main ways climate change can impact farmers trying to grow avocados?

Main Ways Climate Change Can Impact Avocado Farmers in Australia
Climate change can significantly impact avocado farmers in several ways, affecting both the suitability of growing
regions and the overall productivity of avocado orchards. Here are the main impacts:

1. Temperature Changes:

• Increasing Minimum Temperatures: Higher minimum temperatures during the coldest months can
positively affect avocado growth by reducing frost damage and improving pollination conditions. However,
excessively high temperatures can also cause heat stress, particularly during critical periods such as
pollination and fruit set.

• Heat Stress: Avocados are sensitive to high temperatures, which can lead to reduced yields and poor fruit
quality. Heat stress can also affect the tree’s overall health and resilience.

2. Precipitation Patterns:

• Drier Conditions: Reduced rainfall in some regions can lead to water stress, making it necessary for
farmers to invest in irrigation systems or other water management practices. Drought conditions can
significantly reduce avocado yields.

• Wetter Conditions: Excessive rainfall can increase the risk of diseases such as root rot and fungal infections,
which can be detrimental to avocado trees.

3. Shift in Suitable Growing Regions:

• Expansion of Suitable Areas: Climate change may make some previously unsuitable areas more favourable
for avocado cultivation due to increasing temperatures. For example, regions that were too cold or dry
might become suitable with the right management practices.

• Contraction of Suitable Areas: Conversely, some current growing regions may become less suitable due
to changes in temperature and precipitation patterns. This could lead to a decrease in highly suitable (S1)
areas by up to 41% under the RCP 8.5 scenario by 2050.

4. Soil and Land Suitability:

• Soil Moisture: Changes in soil moisture levels due to altered precipitation patterns can affect root health
and nutrient uptake, impacting overall tree growth and fruit production.

• Land Degradation: Increased temperatures and changes in rainfall can exacerbate land degradation issues
such as salinity and erosion, further challenging avocado cultivation.

5. Pest and Disease Management:

• New Pests and Diseases: Climate change can alter the distribution and prevalence of pests and diseases,
introducing new challenges for farmers. For example, warmer temperatures can lead to increased pest
populations.

• Disease Susceptibility: Changes in temperature and humidity can affect the susceptibility of avocado trees
to various diseases, requiring more intensive management practices.

6. Economic Impacts:

• Increased Costs: Farmers may face higher costs for irrigation, disease control, and other management
practices necessary to adapt to changing conditions.

• Market Dynamics: Changes in global avocado production due to climate change can affect market prices
and demand, impacting the economic viability of avocado farming.

Scientific References:
• Grütter, R., Trachsel, T., Laube, P., & Jaisli, I. (2022). Expected global suitability of coffee, cashew and avocado

due to climate change. PLoS ONE.

• Melo, O., & Foster, W. (2021). Agricultural and Forestry Land and Labor Use under Long-Term Climate Change
in Chile. Atmosphere.

• Chung, S., Rho, H., Lim, C., Jeon, M., Kim, S., Jang, Y., & An, H. (2022). Photosynthetic response and
antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Scientific Reports.

These impacts highlight the need for adaptive strategies and management practices to ensure the sustainability of
avocado farming in Australia under changing climatic conditions.

Figure 6: An example of a perfect response from Qwen 72b.
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Are there regions in Australia where agriculture will not be viable in 2050?

Based on climate projections and scientific literature, there are regions in Australia where agriculture may become less viable by 2050 due to significant changes in temperature and
precipitation patterns. Here is a summary of the findings:

Temperature Projections (RCP8.5 Scenario)
1. Perth, WA:

• Average annual temperatures are projected to increase from approximately 20.6°C to around 21.4°C by 2050.

2. Adelaide, SA:

• Average annual temperatures are projected to increase from approximately 18.7°C to around 19.3°C by 2050.

3. Melbourne, VIC:

• Average annual temperatures are projected to increase from approximately 16.8°C to around 17.4°C by 2050.

4. Sydney, NSW:

• Average annual temperatures are projected to increase from approximately 20.3°C to around 21.1°C by 2050.

5. Brisbane, QLD:

• Average annual temperatures are projected to increase from approximately 23.2°C to around 24.0°C by 2050.

6. Hobart, TAS:

• Average annual temperatures are projected to increase from approximately 14.0°C to around 14.7°C by 2050.

Precipitation Projections (RCP8.5 Scenario)
1. Perth, WA:

• Annual precipitation is projected to decrease from approximately 630 mm to around 550 mm by 2050.

2. Adelaide, SA:

• Annual precipitation is projected to decrease from approximately 300 mm to around 280 mm by 2050.

3. Melbourne, VIC:

• Annual precipitation is projected to decrease from approximately 710 mm to around 690 mm by 2050.

4. Sydney, NSW:

• Annual precipitation is projected to increase from approximately 1080 mm to around 1300 mm by 2050.

5. Brisbane, QLD:

• Annual precipitation is projected to decrease from approximately 1020 mm to around 900 mm by 2050.

6. Hobart, TAS:

• Annual precipitation is projected to decrease from approximately 780 mm to around 740 mm by 2050.

Key Findings and Implications
1. Temperature Increase: All regions are expected to experience a significant increase in average annual temperatures, which can lead to increased heat stress for crops and

livestock.

2. Precipitation Changes:

• Decrease in Southern Regions: Perth, Adelaide, Melbourne, Brisbane, and Hobart are projected to see decreases in annual precipitation, which could exacerbate
water scarcity issues and reduce crop yields.

• Increase in Sydney: Sydney is projected to see an increase in annual precipitation, but this may come with more frequent extreme weather events like heavy
rainfall and flooding.

Scientific Literature
• Climate Change Impact on Agriculture:

– Climate change is expected to significantly affect the productive potential of many important agricultural regions in Australia (Hochman et al., 2013).
– Southern regions, particularly those dependent on winter and spring rainfall, are projected to experience more severe declines in precipitation, leading to reduced

stream flows and water availability for irrigation (CSIRO, 2007).
– Increased heat extremes and a continued decrease in cool season rainfall across southern and eastern Australia will lead to more time in drought and more intense

heavy rainfall events (CSIRO, 2020).

Conclusion
• Southern Regions: Perth, Adelaide, Melbourne, Brisbane, and Hobart are at higher risk of becoming less viable for agriculture due to projected decreases in precipitation

and increases in temperature.

• Northern Regions: Sydney increase in precipitation, but this could come with more frequent extreme weather events, which also pose challenges.

Recommendations
1. Adaptation Strategies:

• Implement water-saving technologies and practices.
• Develop drought-resistant crop varieties.
• Improve soil management to enhance water retention.

2. Policy Support:

• Government policies should support research and development in climate-resilient agricultural practices.
• Provide financial incentives for farmers to adopt sustainable farming methods.

By taking proactive steps, Australian agriculture can adapt to the changing climate and maintain productivity levels.

Figure 7: An example of a poorly structured response from Qwen 72b when GEF is used.
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A.6 Toolbox: list of available tools to the
model

We detail the climate data access tools (namely
tools #1 - #90), as well as the literature search tool
(#91). We included a Python tool (#92) that LLMs
had access to, however, this was rarely used, if at
all.

1. • Name: get observations
• Description: Get daily or monthly cli-

mate observation data
• Parameters: lon, lat, variable, fre-

quency, startYear, endYear

2. • Name: get annual observations
• Description: Get annual climate obser-

vation data for a specific location and
variable.

• Parameters: lon, lat, variable,
start_year, end_year

3. • Name: get month range observations
• Description: Get climate observation

data for specified month or month range.
• Parameters: lon, lat, variable,

month_range, start_year, end_year

4. • Name: get seasonal observations
• Description: Get seasonal climate obser-

vation data
• Parameters: lon, lat, variable, season,

start_year, end_year

5. • Name: get date range observations
• Description: Get climate observation

data for the specified date range
• Parameters: lon, lat, variable, startYear,

endYear, startDate, endDate

6. • Name: get month range threshold obser-
vations

• Description: Get historical climate
threshold data for specified month or
month range, e.g., number of January
days above 35.

• Parameters: lon, lat, variable,
month_range, start_year, end_year,
threshold, operator

7. • Name: get date range threshold observa-
tions

• Description: Get historical climate
threshold data for specified date range,
e.g., number of days above 35 between
March 15 and July 10.

• Parameters: lon, lat, variable,
start_year, end_year, start_date,
end_date, threshold, operator

8. • Name: get annual threshold observations

• Description: Get historical annual cli-
mate threshold data, e.g., annual number
of days above 35.

• Parameters: lon, lat, variable,
start_year, end_year, threshold, operator

9. • Name: get seasonal threshold observa-
tions

• Description: Get seasonal historical cli-
mate threshold data, e.g., number of win-
ter days below 2 degrees.

• Parameters: lon, lat, variable, season,
start_year, end_year, threshold, operator

10. • Name: get combined threshold observa-
tions

• Description: Get historical climate com-
bined threshold data for specified date
range, e.g., number of 5 Apr - 25 Aug
days tmin < 12 and tmax < 20.

• Parameters: lon, lat, startYear, endYear,
startDate, endDate, logicalOp, variable1,
threshold1, operator1, variable2, thresh-
old2, operator2

11. • Name: get annual combined threshold
observations

• Description: Get historical annual cli-
mate threshold data for a combination
of two variables, e.g., annual number of
days where tmin < 12 & tmax < 20.

• Parameters: lon, lat, startYear, endYear,
logicalOp, variable1, threshold1, opera-
tor1, variable2, threshold2, operator2

12. • Name: get month range combined
threshold observations

• Description: Get historical climate com-
bined threshold data for specified month
or month range, e.g., number of Apr-Aug
days tmin < 12 and tmax < 20.
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• Parameters: lon, lat, monthRange, star-
tYear, endYear, variable1, threshold1, op-
erator1, variable2, threshold2, operator2,
logicalOp

13. • Name: get seasonal extreme observa-
tions

• Description: Get seasonal historical ex-
treme climate data, e.g., hottest day tmax
for winter.

• Parameters: lon, lat, variable, season,
startYear, endYear

14. • Name: get annual extreme observations
• Description: Get historical an-

nual extreme climate data (e.g.,
wettest/hottest/coldest recorded daily
values)

• Parameters: lon, lat, variable,
start_year, end_year

15. • Name: get month range extreme obser-
vations

• Description: Get historical climate ex-
tremes for specified month or month
range, e.g., wettest day precip for April
to August.

• Parameters: lon, lat, variable,
month_range, start_year, end_year

16. • Name: get date range extreme observa-
tions

• Description: Get historical extreme cli-
mate data for specified date range, e.g.,
wettest day rainfall between March 15
and July 10.

• Parameters: lon, lat, variable, startYear,
endYear, startDate, endDate

17. • Name: get month range ffdi
• Description: Get historical FFDI data

for selected month or month range.
• Parameters: lon, lat, month_range,

start_year, end_year, threshold

18. • Name: get ffdi
• Description: Get monthly FFDI obser-

vation data, e.g., get number of days per
month where FFDI > 25

• Parameters: lon, lat, frequency, star-
tYear, endYear, threshold

19. • Name: get annual ffdi

• Description: Get historical annual FFDI
data, e.g., get the number of days per
year where FFDI > 25

• Parameters: lon, lat, start_year,
end_year, threshold

20. • Name: get seasonal ffdi
• Description: Get historical seasonal

FFDI data, e.g. get the yearly number
of summer days where FFDI > 25

• Parameters: lon, lat, season, start_year,
end_year, threshold

21. • Name: get month range heatwaves
• Description: Get historical heatwave

data for selected month or month range.
• Parameters: lon, lat, monthRange, star-

tYear, endYear, days, tmax, tmin, overlap

22. • Name: get annual heatwaves
• Description: Get historical annual heat-

wave data based on specified parameters.
• Parameters: lon, lat, startYear, endYear,

days, tmax, tmin, overlap

23. • Name: get date range heatwaves
• Description: Get historical heatwave

data for selected date range
• Parameters: lon, lat, startYear, endYear,

startDate, endDate, days, tmax, tmin,
overlap

24. • Name: get seasonal heatwaves
• Description: Get historical seasonal

heatwave data
• Parameters: lon, lat, season, startYear,

endYear, days, tmax, tmin, overlap

25. • Name: get month range cold exposure
observations

• Description: Get historical climate cold
exposure data for specified month or
month range.

• Parameters: lon, lat, month_range,
start_year, end_year, tmin, precip

26. • Name: get date range cold exposure
• Description: Get historical cold expo-

sure data for specified date range.
• Parameters: lon, lat, startYear, endYear,

startDate, endDate, tmin, precip

27. • Name: get seasonal cold exposure
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• Description: Get historical seasonal cli-
mate cold exposure data

• Parameters: lon, lat, season, start_year,
end_year, tmin, precip

28. • Name: get annual cold exposure
• Description: Get historical annual cold

exposure data based on specified param-
eters.

• Parameters: lon, lat, start_year,
end_year, tmin, precip

29. • Name: get seasonal soil moisture
• Description: Get historical seasonal av-

erage soil moisture data
• Parameters: lon, lat, season, start_year,

end_year

30. • Name: get date range soil moisture
• Description: Get historical average soil

moisture data for specified date range
• Parameters: lon, lat, startYear, endYear,

startDate, endDate

31. • Name: get annual soil moisture data
• Description: Get historical annual aver-

age soil moisture observation data
• Parameters: lon, lat, start_year,

end_year

32. • Name: get soil moisture
• Description: Get daily or monthly soil

moisture observation data
• Parameters: lon, lat, frequency, star-

tYear, endYear

33. • Name: get month range soil moisture
• Description: Get historical average soil

moisture data for selected month or
month range.

• Parameters: lon, lat, month_range,
start_year, end_year

34. • Name: get month range evapotranspira-
tion

• Description: Get historical potential
evapotranspiration data for selected
month or month range.

• Parameters: lon, lat, month_range,
start_year, end_year

35. • Name: get date range evapotranspiration

• Description: Get historical potential
evapotranspiration data for specified date
range

• Parameters: lon, lat, startYear, endYear,
startDate, endDate

36. • Name: get seasonal evapotranspiration
• Description: Get historical seasonal po-

tential evapotranspiration data
• Parameters: lon, lat, season, start_year,

end_year

37. • Name: get evapotranspiration
• Description: Get daily or monthly poten-

tial evapotranspiration observation data
• Parameters: lon, lat, frequency, star-

tYear, endYear

38. • Name: get annual evapotranspiration
data

• Description: Get historical annual po-
tential evapotranspiration data

• Parameters: lon, lat, start_year,
end_year

39. • Name: get annual chill portions
• Description: Get historical annual chill

portion data
• Parameters: lon, lat, variable, startYear,

endYear

40. • Name: get growing degree days
• Description: Get observed growing de-

gree days for selected date range
• Parameters: lon, lat, startYear, endYear,

startDate, endDate, baseTemp

41. • Name: get annual growing degree days
• Description: Get observed annual grow-

ing degree days
• Parameters: lon, lat, start_year,

end_year, base_temp

42. • Name: get month range growing degree
days

• Description: Get observed growing de-
gree days for selected month or month
range

• Parameters: lon, lat, monthRange, star-
tYear, endYear, baseTemp

43. • Name: get seasonal growing degree days
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• Description: Get observed seasonal
growing degree days

• Parameters: lon, lat, season, start_year,
end_year, base_temp

44. • Name: get seasonal thi data
• Description: Get historical seasonal

number of days where THI >= thresh-
old

• Parameters: lon, lat, index, threshold,
season, start_year, end_year

45. • Name: get date range thi data
• Description: Get historical number of

days where THI >= threshold during
specified date range.

• Parameters: lon, lat, index, threshold,
startYear, endYear, startDate, endDate

46. • Name: get annual thi data
• Description: Get historical annual num-

ber of days where THI >= threshold
• Parameters: lon, lat, index, threshold,

start_year, end_year

47. • Name: get month range thi data
• Description: Get historical number of

days where THI >= threshold during
specified month range.

• Parameters: lon, lat, index, threshold,
month_range, start_year, end_year

48. • Name: get projections
• Description: Get climate projections

data
• Parameters: lon, lat, variable, fre-

quency, years, emission

49. • Name: get month range projections
• Description: Get climate projections for

selected month or month range.
• Parameters: lon, lat, variable,

month_range, years, emission

50. • Name: get seasonal projections
• Description: Get seasonal climate pro-

jections for a given location and parame-
ters.

• Parameters: lon, lat, variable, season,
years, emission

51. • Name: get annual projections

• Description: Get annual climate projec-
tions for a given location and variable.

• Parameters: lon, lat, variable, years,
emission

52. • Name: get date range projections
• Description: Get climate projections for

selected date range
• Parameters: lon, lat, variable, years,

emission, start_date, end_date

53. • Name: get date range threshold projec-
tions

• Description: Get projected climate
threshold data for specified date range,
e.g., number of days with at least 5mm
precip between March 15 and July 10.

• Parameters: lon, lat, variable, years,
emission, start_date, end_date, threshold,
operator

54. • Name: get annual threshold projections
• Description: Get annual projected cli-

mate threshold data, e.g., annual number
of days above 35.

• Parameters: lon, lat, variable, years,
emission, threshold, operator

55. • Name: get seasonal threshold projec-
tions

• Description: Get projected climate
threshold data for specified season, e.g.,
number of summer days above 35.

• Parameters: lon, lat, variable, season,
years, emission, threshold, operator

56. • Name: get month range threshold pro-
jections

• Description: Get projected climate
threshold data for selected month or
month range, e.g., number of days be-
low 2 degrees from start of May to end
of September.

• Parameters: lon, lat, variable,
month_range, years, emission, threshold,
operator

57. • Name: get combined threshold projec-
tions

• Description: Get projected climate com-
bined threshold data for selected date
range, e.g., number of days with tmin
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< 12 and tmax < 20 from 15 Apr to 30
Aug.

• Parameters: lon, lat, years, emission,
startDate, endDate, logicalOp, variable1,
threshold1, operator1, variable2, thresh-
old2, operator2

58. • Name: get month range combined
threshold projections

• Description: Get projected climate com-
bined threshold data for selected month
or month range, e.g., number of days
with tmin < 12 and tmax < 20 from Apr
to Aug.

• Parameters: logicalOp

59. • Name: get annual combined threshold
projections

• Description: Get annual projected cli-
mate combined threshold data for a given
location and parameters.

• Parameters: lon, lat, years, emission,
variable1, threshold1, operator1, vari-
able2, threshold2, operator2

60. • Name: get month range ffdi projections
• Description: Get projected FFDI data

for selected month or month range.
• Parameters: lon, lat, month_range,

years, emission, threshold

61. • Name: get ffdi projections
• Description: Get monthly FFDI projec-

tion data, e.g., get number of days per
month where FFDI > 25

• Parameters: lon, lat, frequency, years,
emission, threshold

62. • Name: get annual ffdi projections
• Description: Get projected annual FFDI

data, e.g., get the number of days per
year where FFDI > 25

• Parameters: lon, lat, years, emission,
threshold

63. • Name: get seasonal ffdi projections
• Description: Get projected seasonal

FFDI data, e.g., get the yearly number of
summer days where FFDI > 25

• Parameters: lon, lat, season, years,
emission, threshold

64. • Name: get month range heatwaves pro-
jections

• Description: Get projected heatwave
data for selected month or month range.

• Parameters: lon, lat, monthRange,
years, emission, days, tmax, tmin, over-
lap

65. • Name: get annual heatwaves projections
• Description: Get projected annual heat-

wave data based on specified parameters.
• Parameters: lon, lat, years, emission,

days, tmax, tmin, overlap

66. • Name: get date range heatwaves projec-
tions

• Description: Get projected heatwave
data for selected date range

• Parameters: lon, lat, years, emission,
startDate, endDate, days, tmax, tmin,
overlap

67. • Name: get seasonal heatwaves projec-
tions

• Description: Get projected seasonal
heatwave data

• Parameters: lon, lat, season, years,
emission, days, tmax, tmin, overlap

68. • Name: get month range cold exposure
projections

• Description: Get projected climate cold
exposure data for specified month or
month range.

• Parameters: lon, lat, month_range,
years, emission, tmin, precip

69. • Name: get date range cold exposure pro-
jections

• Description: Get projected cold expo-
sure data for specified date range.

• Parameters: lon, lat, years, emission,
startDate, endDate, tmin, precip

70. • Name: get seasonal cold exposure pro-
jections

• Description: Get projected seasonal cli-
mate cold exposure data

• Parameters: lon, lat, season, years,
emission, tmin, precip

71. • Name: get annual cold exposure projec-
tions
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• Description: Get projected annual cold
exposure data based on specified param-
eters.

• Parameters: lon, lat, years, emission,
tmin, precip

72. • Name: get seasonal soil moisture projec-
tions

• Description: Get projected seasonal av-
erage soil moisture data

• Parameters: lon, lat, season, years,
emission

73. • Name: get date range soil moisture pro-
jections

• Description: Get projected average soil
moisture data for specified date range

• Parameters: lon, lat, years, emission,
startDate, endDate

74. • Name: get annual soil moisture projec-
tions

• Description: Get projected annual aver-
age soil moisture data

• Parameters: lon, lat, years, emission

75. • Name: get soil moisture projections
• Description: Get projected daily or

monthly soil moisture data
• Parameters: lon, lat, frequency, years,

emission

76. • Name: get month range soil moisture
projections

• Description: Get projected average soil
moisture data for selected month or
month range.

• Parameters: lon, lat, month_range,
years, emission

77. • Name: get month range evapotranspira-
tion projections

• Description: Get projected potential
evapotranspiration data for selected
month or month range.

• Parameters: lon, lat, month_range,
years, emission

78. • Name: get date range evapotranspiration
projections

• Description: Get projected potential
evapotranspiration data for specified date
range

• Parameters: lon, lat, years, emission,
startDate, endDate

79. • Name: get seasonal evapotranspiration
projections

• Description: Get projected seasonal po-
tential evapotranspiration data

• Parameters: lon, lat, season, years,
emission

80. • Name: get annual evapotranspiration
projections

• Description: Get projected annual po-
tential evapotranspiration data

• Parameters: lon, lat, years, emission

81. • Name: get annual chill portion projec-
tions

• Description: Get projected annual chill
portion data based on provided parame-
ters.

• Parameters: lon, lat, variable, years,
emission

82. • Name: get annual growing degree days
projections

• Description: Get projected annual grow-
ing degree days

• Parameters: lon, lat, years, emission,
baseTemp

83. • Name: get seasonal growing degree days
projections

• Description: Get projected seasonal
growing degree days

• Parameters: lon, lat, season, years,
emission, baseTemp

84. • Name: get date range growing degree
days projections

• Description: Get projected growing de-
gree days for specified date range

• Parameters: lon, lat, years, emission,
startDate, endDate, baseTemp

85. • Name: get month range growing degree
days projections

• Description: Get projected growing de-
gree days for specified month or month
range.

• Parameters: lon, lat, month_range,
years, emission, base_temp
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86. • Name: get seasonal thi projection data
• Description: Get projected seasonal

number of days where THI >= thresh-
old

• Parameters: lon, lat, index, threshold,
season, years, emission

87. • Name: get thi projection data
• Description: Get projected number of

days where THI >= threshold during
specified date range.

• Parameters: lon, lat, index, threshold,
years, emission, start_date, end_date

88. • Name: get annual thi projection data
• Description: Get projected annual num-

ber of days where THI >= threshold
• Parameters: lon, lat, index, threshold,

years, emission

89. • Name: get month range thi projection
data

• Description: Get projected number of
days where THI >= threshold during
specified month range.

• Parameters: lon, lat, index, threshold,
month_range, years, emission

90. • Name: location to coordinates
• Description: Get the longitude and lati-

tude geological coordinates of a location
in Australia.

• Parameters: suburb, state

91. • Name: search literature
• Description: Retrieve relevant liter-

ature from an Elasticsearch instance
containing Australian-specific and non-
Australian-specific literature.

• Parameters: query, index, size

92. • Name: execute python code
• Description: Executes Python code us-

ing anaconda3. Data from previous out-
puts is stored in a cache variable.

• Parameters: code
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B Climate adaptation question answering
prompts

We provide the prompts that we used for our exper-
iments:

B.1 Generation prompts
• Baseline prompt for QA (Figure 8).

• GEF prompt for QA (Figure 10).

B.2 Evaluation prompts
• Baseline prompt for QA evaluation (Figure 9).

• GEF prompt for QA evaluation (Figure 11).
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Baseline QA Prompt

You are a knowledgeable and helpful farm advisor for Australian users. Your goal is to provide
accurate and relevant advice using your internal knowledge.
Instructions:

1. Contextual Relevance: Tailor advice to the specific needs and conditions of Australian
farming.

2. Proactive Assistance: Additional relevant information or resources might benefit the user.

3. Single-Turn Clarity: Ensure your response is straightforward and comprehensive, as there
will be no user feedback or clarification opportunity. Do not ask follow-up questions. Instead,
state your assumptions and answer the user’s question, however vague.

Figure 8: Baseline generation prompt for Climate Science QA.

Baseline Evaluation Prompt

You are a farm advisor tasked with evaluating the quality of responses to questions based on a
specific set of criteria. Below is a rubric that you should use to assess the responses. For each
criterion, provide a rating (Yes/No/N/A) and a brief explanation for your rating.
Criteria:
<Annotator Criteria>

Please return the evaluation in the following JSON format:
<JSON format>

Figure 9: Baseline prompt for climate science QA evaluation.
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GEF QA Generation Prompt

You are a knowledgeable and helpful farm advisor for Australian users. Your goal is to provide accurate and relevant advice using the supplied tools, including climate historical
and projection information, Python for calculations, and scientific literature for credible references.
Instructions:

1. User Location: If the user provides a region instead of a specific location, choose a location that best represents that region.

2. Tool Usage:

• Climate Data: Utilize historical climate data and projections to provide contextually relevant advice.
• Python: This is used to interact with climate data and verify mathematical calculations.
• Scientific Literature: Reference credible scientific literature to ensure accuracy.

3. Climate Information: Utilize historical climate data and projections to provide contextually relevant advice.

4. Mathematical Accuracy: Verify all calculations using the Python tool.

5. Scientific Literature:

• Reference credible scientific literature to ensure accuracy.
• Verify all answers against scientific literature to ensure accuracy and credibility.
• Focus on including only the most relevant literature in your answers to keep them clear and helpful.
• Include scientific references used in responses in a way that does not impede reading.

6. Contextual Relevance: Tailor advice to the specific needs and conditions of Australian farming using climate data and projections.

7. Proactive Assistance: Additional relevant information or resources might benefit the user.

8. Tool Utilization: Run the necessary tools before responding to the user’s query.

9. Single-Turn Clarity: Ensure your response is straightforward and comprehensive, as there will be no user feedback or clarification opportunity. Do not ask follow-up
questions. Instead, state your assumptions and answer the user’s question, however vague.

JSON Schema for Climate Data
The climate data is also stored in the CACHE variable and is accessible via the Python tool and the index provided. The schema of the JSON data is as follows:

{
"data": [

{
"yearRange": "string",
"model": "List[string]",
"rcp": "string",
"averageYearValue": [

{
"year": "integer",
"averageValue": "float"

}
]

}
]

}

Explanation:

• data: An array of objects, each representing a dataset.

– yearRange: A string indicating the range of years (e.g., "2056-2085").
– model: A list of strings representing the models used (e.g., "ACCESS1-0").
– rcp: A string indicating the Representative Concentration Pathway (e.g., "rcp85").
– yearValue: An array of objects, each containing:

* year: An integer representing the year.

* value: A float representing the value for that year.

Figure 10: GEF prompt for Climate Science Question Answering. We did not explicitly include tool descriptions as
these were handled by the official libraries from OpenAPI (GPT-4o and Qwen) or Amazon Bedrock (Claude).
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GEF Evaluation Prompt

You are a farm advisor tasked with evaluating the quality of responses to climate adaptation questions based on a
specific set of criteria. Below is a rubric that you should use to assess the responses. For each criterion, provide a
rating (Yes/No/N/A) and a brief explanation for your rating. You must use the provided tools to help assess the validity
of scientific claims, climate projections and observations in the responses. The tools provided include climate and
projection information, Python for calculations and scientific literature search.
JSON Schema for Climate Data
The climate data is also stored in the CACHE variable and is accessible via the Python tool and the index provided. The
schema of the JSON data is as follows:

{
"data": [
{

"yearRange": "string",
"model": "List[string]",
"rcp": "string",
"averageYearValue": [
{
"year": "integer",
"averageValue": "float"

}
]

}
]

}

Explanation:

• data: An array of objects, each representing a dataset.

– yearRange: A string indicating the range of years (e.g., "2056-2085").
– model: A list of strings representing the models used (e.g., "ACCESS1-0").
– rcp: A string indicating the Representative Concentration Pathway (e.g., "rcp85").
– yearValue: An array of objects, each containing:

* year: An integer representing the year.
* value: A float representing the value for that year.

Criteria:
<Annotator Criteria>

Here are a few examples of climate scientists’ judgments, ensure you use the same format:
###Question
What are the main ways climate change will impact farmers trying to grow chickpeas?

###Response
<Generated Response>

###Judgment
{"context_a": 0, "context_b": 0, "context_c": 1,
"structure_a": 1, "structure_b": 1, "structure_c": 1,
"language_a": 1, "language_b": 1, "language_c": 1, ... }

###Feedback
<When using ExF, feedback is added here>

<4 additional few-shot examples>

Please return the evaluation in the following JSON format:
<JSON format>

Figure 11: The GEF prompt for climate science answer QA evaluation. Few-shot examples (Question, Response,
Judgment) were included in few-shot runs, but not for zero-shot. For few-shot runs, expert feedback is given only
for ExF runs. We did not explicitly include tool descriptions as these were handled by the official libraries from
OpenAPI (GPT-4o and Qwen) or Amazon Bedrock (Claude).
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Context Structure Language Compreh-
ensiveness Specificity Citations Accuracy AVG

τ rbo τ rbo τ rbo τ rbo τ rbo τ rbo τ rbo τ rbo

Expert 0.217 0.438 0.192 0.926 0.303 0.910 0.307 0.165 0.063 0.164 -0.054 0.319 -0.114 0.087 0.131 0.430

Zero-shot

Qwen 72b 0.126 0.344 0.163 0.547 - - 0.125 0.057 0.122 0.051 0.511 0.045 0.080 0.013 0.193 0.235
+GEF 0.114 0.291 0.240 0.712 - - 0.073 0.021 0.153 0.072 0.513 0.046 0.080 0.013 0.205 0.312

GPT-4o 0.043 0.324 0.323 0.706 - - 0.195 0.013 0.106 0.085 0.525 0.047 0.094 0.012 0.217 0.268
+GEF 0.100 0.298 0.367 0.708 - - 0.128 0.013 0.125 0.012 0.536 0.046 0.025 0.013 0.215 0.246

Sonnet 3.5 0.178 0.290 0.352 0.713 - - 0.172 0.014 0.063 0.001 0.513 0.053 0.118 0.094 0.235 0.247
+GEF 0.113 0.178 0.370 0.713 - - 0.237 0.017 0.082 0.002 0.460 0.053 0.052 0.053 0.224 0.249

Few-shot

Qwen 72b 0.066 0.325 0.099 0.716 - - 0.052 0.114 0.155 0.197 0.512 0.161 0.095 0.014 0.163 0.254
+GEF 0.107 0.320 0.188 0.690 - - -0.030 0.123 0.152 0.326 0.523 0.221 0.025 0.013 0.161 0.282
+ExF 0.094 0.341 0.132 0.718 - - 0.111 0.213 0.208 0.212 0.518 0.169 0.013 0.011 0.180 0.277
+GEF+ExF 0.123 0.323 0.215 0.690 - - 0.038 0.184 0.185 0.500 0.534 0.213 0.044 0.034 0.190 0.324

GPT-4o 0.040 0.355 0.126 0.499 - - 0.183 0.099 0.209 0.092 0.563 0.169 -0.003 0.012 0.186 0.204
+GEF 0.077 0.326 0.286 0.702 - - 0.161 0.094 0.184 0.310 0.536 0.164 0.061 0.012 0.217 0.268
+ExF 0.022 0.359 0.154 0.606 - - 0.203 0.113 0.229 0.104 0.527 0.216 -0.021 0.014 0.186 0.235
+GEF+ExF 0.062 0.331 0.274 0.702 - - 0.179 0.094 0.229 0.456 0.536 0.175 0.055 0.011 0.223 0.295

Sonnet 3.5 0.092 0.108 0.374 0.716 - - 0.252 0.109 0.169 0.208 0.535 0.235 0.148 0.037 0.262 0.235
+GEF 0.057 0.196 0.386 0.716 - - 0.276 0.108 0.197 0.202 0.509 0.179 0.191 0.086 0.269 0.248
+ExF 0.110 0.048 0.395 0.716 - - 0.287 0.119 0.157 0.269 0.551 0.424 0.084 0.021 0.264 0.266
+GEF+ExF 0.121 0.218 0.364 0.716 - - 0.252 0.129 0.185 0.199 0.539 0.249 0.181 0.128 0.274 0.273

Table 7: Comparison between expert and LLM annotators using Kendall’s Tau and rank-biased overlap. Language
field could not be measured as each method predicted perfect language for every prediction.

Context Structure Compre-
hensiveness Specificity Citations Accuracy AVG

GPT-4o 1.743 2.317 0.018 1.957 2.148 1.913 1.683
+GEF 2.312 ↑ 2.747 ↑ 1.773 ↑ 1.998 ↑ 2.385 ↑ 1.925 ↑ 2.190 ↑

Qwen 72b 1.977 2.687 0.077 2.030 2.405 1.940 1.853
+GEF 2.402 ↑ 2.753 ↑ 2.423 ↑ 2.078 ↑ 2.542 ↑ 1.943 ↑ 2.357 ↑

Sonnet 3.5 1.702 2.647 0.022 2.362 2.550 1.975 1.876
+GEF 2.253 ↑ 2.887 ↑ 1.960 ↑ 2.435 ↑ 2.795 ↑ 2.093 ↑ 2.404 ↑

Table 8: Climate-Augmented Question Answering evaluation using LLM annotators. Table 4 gives the mean scores
of all methods. Overall, the LLMs gave higher scores to responses and universally agreed that using climate data
and literature improves the quality of responses, with large increases in both presentation and epistemological
quality; this means that LLMs could be fooled by the inclusion of climate data and climate literature regardless of
its correctness. Furthermore, a baseline model has beaten no method with GEF. A perfect score would be 3.0 for a
given criteria. ↑ indicates improvement over the baseline while ↓ indicates a reduction.
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