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Abstract
Recent success in large multimodal models
(LMMs) has sparked promising applications
of agents capable of autonomously complet-
ing complex web tasks. While open-source
LMM agents have made significant advances
in offline evaluation benchmarks, their perfor-
mance still falls substantially short of human-
level capabilities in more realistic online set-
tings. A key bottleneck is the lack of diverse
and large-scale trajectory-level datasets across
various domains, which are expensive to col-
lect. In this paper, we address this challenge
by developing a scalable recipe to synthesize
the largest and most diverse trajectory-level
dataset to date, containing over 94K success-
ful multimodal web trajectories, spanning 49K
unique URLs, 720K screenshots, and 33M web
elements. In particular, we leverage extensive
web exploration and refinement to obtain di-
verse task intents. The average cost is 28 cents
per successful trajectory, making it affordable
to a wide range of users in the community.
Leveraging this dataset, we train Explorer, a
multimodal web agent, and demonstrate strong
performance on both offline and online web
agent benchmarks such as Mind2Web-Live,
Multimodal-Mind2Web, and MiniWob++. Ad-
ditionally, our experiments highlight data scal-
ing as a key driver for improving web agent
capabilities. We hope this study makes state-of-
the-art LMM-based agent research at a larger
scale more accessible.1

1 Introduction

Graphical User Interfaces (GUIs) serve as the pri-
mary medium for user interaction across digital
environments. Within the GUI environment, LLM-
based agents (Su et al., 2024) have shown great
potential in automating complex workflows for hu-
man users. These agents are designed to operate

*Equal Contribution. † Work partly done during internship
at Microsoft Research. ¶ Project Lead.

1Project website: https://osu-nlp-group.github.io/
Explorer/

across diverse interfaces, including the web (Deng
et al., 2023; Zhou et al., 2024; Zheng et al., 2024,
2025), desktop (Xie et al., 2024; Wu et al., 2024),
and mobile platforms (Rawles et al., 2023; Yan
et al., 2023). Navigating modern GUI interfaces,
which integrate textual, graphical, and interactive
components, typically requires agents to possess
visual grounding, long-term planning, and memory
management capabilities.

Recent work (Cheng et al., 2024; Gou et al.,
2025) has demonstrated the effectiveness of syn-
thetic data for enhancing visual grounding (Gou
et al., 2025; Chen et al., 2024a; Kapoor et al.,
2024; Chen et al., 2024b) and planning (Xu et al.,
2025b; Zhang et al., 2024). Developing end-to-end
GUI agents with long-term planning and grounding
capabilities requires training on multi-step trajec-
tory data (Xu et al., 2025a,b; Qin et al., 2025).
However, existing trajectory datasets are primar-
ily human-annotated (Deng et al., 2023; Li et al.,
2024; Lu et al., 2024) or leverage synthetic data just
for task proposal curation (Lai et al., 2024; Chen
et al., 2024a). And human annotation is expensive
to scale for collecting large and diverse training
datasets. Therefore, synthetic data has emerged
as a promising alternative to human-annotated
data (Hartvigsen et al., 2022; Sahu et al., 2022;
Ye et al., 2022; Tang et al., 2023; Mukherjee et al.,
2023; Mitra et al., 2024). Collecting trajectory-
level datasets presents unique challenges: 1) cu-
rating a diverse set of task intents at scale, 2) de-
ploying an agent capable of interacting with a real-
world environment to complete these tasks through
a series of actions, and 3) verifying whether the task
is accomplished by the executed action sequence.

Data diversity is essential for equipping gener-
alist web agents with a broad range of skills. Ex-
isting work on synthetic web trajectory generation
employs self-instruct for task proposal generation
(He et al., 2024b). It formulates task proposals
from homepages or parametric LLM knowledge,
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Task Proposal: Find 
today's deals on 
Amazon.
Action: Click on the 
'Today's Deals' link.

Task Refinement: Find and 
purchase a Lightning deal 
item with at least 30% off.
Action: Click on the '36% 
off Limited time deal 
Amazon eero Pro 6E mesh 
Wi-Fi router' link.

Overall Task: Buy the Amazon 
eero Pro 6E mesh Wi-Fi router on 

Amazon.

Task Refinement: Proceed to 
checkout for the Amazon eero 
Pro 6E mesh Wi-Fi router with 
36% off.
Action: Click on the 'Buy Now' 
button for the Amazon eero 
Pro 6E mesh Wi-Fi router.

Task Proposer Task Refiner Task Refiner Task Summarizer

(a) Proposal Stage (b) Refinement Stage (c) Summarization Stage

(d) Verification Stage

Overall Task: Buy the Amazon 
eero Pro 6E mesh Wi-Fi router on 

Amazon.
Success

Task Verifier

Thoughts: The user intended to purchase the Amazon eero 
Pro 6E mesh Wi-Fi router on Amazon. The agent successfully 

navigated to the product page, added the item to the cart, 
and initiated the checkout process by clicking "Buy Now."

Figure 1: Data Generation Pipeline. The task proposer agent generates an abstract task proposal and the first
action based on the website homepage. The task is then iteratively refined in subsequent steps by the refiner agent.
Finally, the task summarizer agent constructs an overall task description from the action sequence, followed by task
verification to assess correctness.

overlooking the richer content available in deeper
web pages, which is essential for achieving broader
task diversity. Another line of work leverages web
tutorials as a form of supervision for generating
web trajectories (Ou et al., 2024; Xu et al., 2025a).
While web tutorials effectively cover common daily
user tasks, the resulting trajectory data exhibits lim-
ited domain diversity in terms of website and do-
main coverage (Table 1). Additionally, information-
seeking tasks remain underrepresented. Due to
these limitations, web agents trained on existing
synthetic trajectory datasets have not seen much
success in more realistic online evaluation settings.
To enhance web agents’ performance in real-world
settings, it is essential to incorporate greater diver-
sity in their training trajectories.

In this work, we develop a scalable and diverse
web trajectory data synthesis recipe for training
GUI agent models. Inspired by how humans learn
to use the internet, we leverage exploration as a
key mechanism for achieving diversity in task in-
tents. We introduce Explorer, a framework for sys-
tematic web exploration to generate diverse, high-
quality trajectory datasets. Unlike prior work that
relies on static task proposals, Explorer dynami-
cally explores web environments to curate diverse,
real-world tasks. This exploration-based approach
ensures broader task coverage and better gener-
alization to real-world scenarios. We instantiate
this framework using popular URLs from several

sources, such as Tranco (Pochat et al., 2019) and
similarweb.com as seeds. Our dataset comprises
94K diverse web trajectories spanning 49K unique
URLs, making it the largest web trajectory dataset
to date. Each trajectory is richly annotated with
artifacts such as screenshots, raw and set-of-mark
(Yang et al., 2023) annotated versions, HTML, and
the accessibility tree, enabling comprehensive web
agent training. To construct this dataset, we de-
velop a multi-agent pipeline that starts with an ab-
stract task proposal and iteratively refines it into a
more specific task through web exploration (Fig-
ure 1). Unlike previous approaches, our pipeline
generates tasks better grounded in real-world web-
sites, improving task relevance and diversity. To
demonstrate the effectiveness of our dataset, we
train small language models using just the synthetic
data and outperform existing web agent baselines
by a significant margin. The main contributions of
this work are as follows:

• We develop a scalable and easily customizable
multi-agent pipeline for web agent trajectory
synthesis. This pipeline leverages exploration
as a core mechanism to generate diverse tra-
jectory data, ensuring broad domain coverage
and skill diversity in the resulting dataset.

• We leverage this pipeline to generate a diverse
and high-quality GUI trajectory dataset con-
sisting of 94K trajectories, spanning 49K
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# Trajectories # Websites Modality

RUSS (Xu et al., 2021) 80 22 HTML
Mind2Web (Deng et al., 2023) 2350 137 HTML + Screenshot
WebLINX (Lu et al., 2024) 2337 155 HTML + Screenshot
GUIAct (Chen et al., 2024a) 5696 121 Screenshot
OpenWebVoyager (He et al., 2024b) 1165 48 A11y tree + Screenshot
NNetnav (Murty et al., 2024) 6K 4 A11y tree + Screenshot
AgentTrek (Xu et al., 2025a) 10.4K 127 A11y tree + HTML + Screenshot

Explorer 94K 49K A11y tree + Screenshot (raw + SoM) + HTML

Table 1: Comparison to existing web agent benchmarks.

unique URLs with 720K screenshots and
33M web elements, making it the largest web
trajectory dataset of this scale.

• We demonstrate the effectiveness of our
dataset by training small language models,
which achieve strong performance on both
online and offline benchmarks, significantly
surpassing existing web agent baselines, in-
cluding those with larger parameter counts.

2 Related Work

Recent advances in multimodal language models
have facilitated the development of web agents —
autonomous systems designed to interact with real-
world websites to perform everyday tasks (Deng
et al., 2023; Hong et al., 2024; Cheng et al., 2024;
Zheng et al., 2024, 2025; Xue et al., 2025). Early
efforts to acquire trajectory data for training web
agents primarily relied on crowd-sourcing (Deng
et al., 2023; Lu et al., 2024). However, due to
the high cost of human annotation, recent work
has adopted synthetic data generation for large-
scale collection. AutoWebGLM (Lai et al., 2024)
and GUIAct (Chen et al., 2024a) utilize LLMs
to generate task proposals, which human experts
subsequently annotate. OpenWebVoyager (He
et al., 2024b) employs a web agent to execute auto-
generated task descriptions. However, since these
task descriptions are generated using LLMs with-
out exploring a website, they fail to capture the
full diversity of possible tasks on that website. An-
other line of work, including Synatra (Ou et al.,
2024) and AgentTrek (Xu et al., 2025a), leverages
web tutorials to guide web trajectory generation.
Meanwhile, concurrent effort (Murty et al., 2024)
employs an exploration-based trajectory generation
in WebArena’s sandbox, while our work focuses
on more realistic web agent evaluation on live web-
sites. To address diversity limitations in prior tra-
jectory synthesis work, we design a bottom-up web

trajectory synthesis pipeline that explores websites
dynamically while maintaining a coherent high-
level task intent. We refer readers to Appendix F
for further discussion.

3 Data Recipe

We design an automatic web trajectory synthesis
pipeline that explores websites to generate diverse
web trajectories. It utilizes Playwright2 to execute
actions and collect metadata from real-world web-
sites, starting from an initial URL.3 The metadata
includes screenshots, HTML, A11y tree, and ac-
tions in grounded and natural language forms.

3.1 Website Selection
We use a combination of URL sources to generate
the synthetic web trajectories. We obtain the top
100 URLs from similarweb.com corresponding
to the high-traffic portion of the web with transac-
tional tasks like booking flights, restaurant reserva-
tions, government services, sports, entertainment,
etc. The Tranco (Pochat et al., 2019) URLs include
49K URLs representing the head portion of the
web, which is less trafficked but popular nonethe-
less. We filter out harmful websites containing
violent or explicit content to ensure safety compli-
ance. Overall, we generate 94K trajectories across
both sources. The complete data generation takes
50 hours, utilizing 60 parallel processes. The view-
port resolution is up to 1980× 1080.

3.2 Data Generation Pipeline
We aim to develop a generalized pipeline for web
exploration to collect diverse web trajectory data.
To enhance diversity, we adopt a bottom-up ap-
proach, starting with low-level actions and progres-
sively shaping them into high-level task descrip-

2https://playwright.dev/
3For a 4K subset of trajectories, we instruct GPT-4o to

navigate to the target website by formulating a Google search
query based on the task description.
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Information
View the detailed 7-day weather forecast for Toronto, ON on The Weather Network website.
Convert 100 US Dollars to Euros using the XE currency converter.
Find directions from Seattle, WA to Bellevue, WA using Bing Maps.
Service
Research the French Bulldog breed on the American Kennel Club website, including its popularity and family life traits.
Find the nearest Penske truck rental location in Anaheim, California, and start the reservation process for a truck.
Explore and purchase a subscription for the UpToDate Pro Suite on the Wolters Kluwer website.
Entertainment
Find the Basscon presents: Darren Styles EDM event on Eventbrite, save it, and share it on Twitter.
View the details of the Photography Competition Winners - Season X and share the article on Twitter.
Shopping
Browse through the fall home decor section on the Target website to explore a variety of fall-themed home decor items.
Purchase a three-seat fabric sofa, specifically the UPPLAND Sofa, from IKEA’s website.
Travel
Search for flights from Seattle to New York, select travel dates, and explore various flight options.
Find the weight of baggage allowance for economy class on qatarairways.

Table 2: Example task descriptions from Explorer.

Metric Value

# Total trajectories 175K
# Success trajectories 94K
# Unique URLs 49K
Average steps per trajectory 7.7
Average elements per image 46.3

# Tokens 830M
# Elements 33.3M
# Images 720K

Cost per trajectory $0.15
Cost per successful trajectory $0.28

Table 3: Dataset statistics for Explorer. The number
of unique URLs, average steps per trajectory, average
elements per image, and number of tokens, elements,
and images correspond to the successful trajectories.

tions while maintaining a coherent task intent. In
the first step, the proposer agent generates an ab-
stract task, which is refined to a more specific task
through a refinement process (Figure 1). Since
the agents execute actions alongside the refinement
process, the generated tasks respect real-world con-
straints, such as product availability, available color
options, and other specifications, ensuring practical
applicability. Our pipeline consists of the following
LLM-powered agents4:

Task Proposer. Given a website homepage, in-
cluding its screenshot and accessibility tree, the
task proposer agent generates diverse initial tasks
that could be performed on that website. The task
descriptions at this stage are instructed to be high-
level and abstract versions of the real-world tasks,
which will be refined into more specific tasks in

4We use GPT-4o as the agent backbone throughout the data
generation process.

later stages. Along with generating the task pro-
posal, the agent proposes and executes the first
action toward completing that task. Furthermore,
the agent is instructed to halt upon encountering
robot detection such as CAPTCHA verification,
login prompts, or payment requests.

Task Refiner. The task refiner agent receives the
initial task proposal or the refined task description
from the previous step, along with the correspond-
ing action history as input. It then predicts the next
action consistent with the input task description and
the updated, refined task description while incorpo-
rating the complete action history. By iteratively
refining the task description after each action, the
agent ensures that the updated task remains aligned
with the action history.

Task Summarizer. This module processes the
entire action and screenshot history to predict an
overall task description that aligns with the trajec-
tory. The task summary is expected to be high level,
i.e., it should describe what the task entails while
omitting how it is accomplished.

Task Verifier. Inspired by Pan et al. (2024a), the
task verifier agent receives the task description
and action history, serving as a critic to evaluate
whether the trajectory successfully completes the
specified task. In addition to the screenshots of the
trajectory, it also receives a markdown representa-
tion of the last page. This ensures the verifier has
the full context of the website’s final state, even
when the viewport cannot capture all the content.
To ensure data quality, trajectories that are inco-
herent or misaligned with the high-level intent are
discarded during this stage. Such automatic evalu-
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Figure 2: Data composition for Explorer. Its extensive diversity showcases its potential to train end-to-end generalist
web agents.

ation of web trajectories has been widely adopted
in prior work (Xu et al., 2025a; He et al., 2024a;
Koh et al., 2024). Figure 1 illustrates the above
pipeline. The prompts for the above agents are
given in Appendix D.

3.3 Dataset Analysis

Explorer comprises web trajectories spanning di-
verse domains, including services, entertainment,
shopping, travel, and information, ensuring broad
task diversity. Sample tasks from Explorer are
presented in Table 2. Figure 2 visualizes the do-
main and subdomain distribution, highlighting the
dataset’s rich diversity. To the best of our knowl-
edge, Explorer with 94K trajectories is the largest
web trajectory dataset of this scale. Table 1 shows a
comparison with existing web agent datasets from
the literature. The detailed statistics are given in
Table 3. Beyond diversity, Explorer is also highly
scalable and cost-efficient. Our approach achieves
a cost of $0.28 per successful trajectory, making it
approximately 2× more cost-effective than Agent-
Trek (Xu et al., 2025a) (which incurs $0.55 per tra-
jectory) and significantly cheaper than human anno-
tation (Table 4). Unlike human annotation, which
requires training crowd workers and continuous
quality monitoring, Explorer’s automated genera-
tion pipeline eliminates these bottlenecks, ensuring
scalability with minimal overhead. By combining
diversity, scalability, and cost efficiency, Explorer
sets a new benchmark for generating large-scale
web trajectory datasets, making it an invaluable
resource for training generalist GUI agents.

Model Cost per trajectory

Mind2Web (Deng et al., 2023) $0.85
AgentTrek (Xu et al., 2025a) $0.55
Explorer $0.28

Table 4: Cost comparison with other approaches.

4 Experiments

We use the synthetic trajectories generated by our
pipeline to train small multimodal language mod-
els (SLMs) for web agent tasks. To ensure com-
putational efficiency, we select 40K trajectories
from the full set for training. We further refine
this subset by filtering out trajectories that contain
more than two scroll actions to mitigate potential
model bias toward excessive scrolling behavior. Fi-
nally, we use ~30K trajectories obtained after filter-
ing to fine-tune multimodal language models like
Phi-3.5V (Abdin et al., 2024) and Qwen2-VL-7B
(Wang et al., 2024a). For brevity, we denote the
models trained on Phi-3.5V and Qwen2-VL-7B as
Explorer-4B and Explorer-7B, respectively. To test
the effectiveness of our data for web-based agentic
tasks, we evaluate Explorer-4B and Explorer-7B on
Mind2Web-Live (Pan et al., 2024b), Multimodal-
Mind2Web (Deng et al., 2023; Zheng et al., 2024),
and MiniWob++ (Liu et al., 2018).

Multimodal-Mind2Web. Multimodal-
Mind2Web is an offline web agent benchmark
comprising 2K open-ended tasks spanning 137
websites across 31 domains. Each task comprises
a sequence of actions with screenshots, action type,
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Model Avg. Step SR (%) Completion Rate (%) Task SR (1) (%) Full Task SR (%)

API-based Models

GPT-4o 58.5 52.8 44.6 25.3
GPT-3.5 – 36.5 – 15.4

Open-source Instructed Models

Mistral-7B-Instr. (Jiang et al., 2023) 32.8 29.5 24.1 9.6
Qwen2-72B-Instr. (Bai et al., 2023) – 40.9 – 15.4
Qwen2-VL-7B (Wang et al., 2024a) 40.2 35.4 34.9 14.5
Phi-3.5V (Abdin et al., 2024) 28.5 23.5 20.5 2.4

Supervised Fine-Tuning

Explorer-4B 44.0 39.4 31.3 18.1
Explorer-7B 45.3 40.2 34.9 19.3

Table 5: Results on Mind2Web-Live benchmark. Missing values are denoted by –. The results for GPT-4 and
Mistral-7B-Instruct have been reproduced on our Linux servers. The results for GPT-3.5 and Qwen2-72B-Instruct
have been taken from Pan et al. (2024b). The full task success rate represents the successful completion of all
key nodes for a given task. The average step success rate represents the proportion of completed key nodes,
macro-averaged across tasks. The completion rate represents the proportion of completed key nodes, micro-averaged
across tasks. Task SR (1) represents task SR with a tolerance of up to one error/key node.

and HTML. We follow the setting in Zheng et al.
(2024) and report element accuracy, operation F1,
and step success rate (SR) as evaluation metrics.

Mind2Web-Live. Mind2Web-Live is a bench-
mark modified from Mind2Web to test web agents
on live websites rather than static trajectories. The
benchmark evaluates performance using a key-
node-based evaluation approach rather than using
a golden action sequence, requiring valid trajec-
tories to reach annotated “key nodes” across 104
test tasks in Mind2Web. Since Mind2Web-Live
relies on real-world dynamic websites, it encoun-
ters robot detection such as reCAPTCHA, which
hinders testing (Xu et al., 2025b). To address this,
we select a subset of 83 test set tasks that remain
consistently accessible throughout our tests. Fol-
lowing Pan et al. (2024b), we report the average
step success rate, completion rate, and full task
success rate on the test set.

MiniWob++. This benchmark consists of low-
level tasks on a single webpage. Typical examples
include clicking a sequence of buttons, selecting
items from a drop-down list, and filling out a form.
We use the subset of 46 tasks used for evaluation
in prior work (Zeng et al., 2024; Ou et al., 2024).
The final score is obtained by averaging the results
of four runs per task. We use the zero-shot evalua-
tion setting, which does not use any environment-
specific trajectories for training.

5 Results

5.1 In-domain Evaluation

As an intrinsic evaluation of the trajectory collec-
tion pipeline, we generate 100 test tasks using Ex-
plorer, disjoint from the train set. The SLM agents
are tasked with executing the given tasks on live
websites while an LLM-as-a-judge verifier (§ 3.2)
evaluates the correctness of their actions at the tra-
jectory level. Table 7 shows the results. We ob-
serve that the fine-tuned agents significantly out-
perform their pre-trained counterparts. Thus, using
in-domain web trajectory data training helps, which
is a valuable sanity check.

5.2 Mind2Web-Live Results

We evaluate Explorer-4B and Explorer-7B trained
on the synthetic trajectory dataset (Table 5). We
make the following observations from the results:

Improvement over base pre-trained models.
We observe that Explorer-7B yields improvements
of 5.1% and 4.8% in average step success rate
(SR) and key node completion rate, respectively,
compared to the pre-trained Qwen2-VL-7B model.
Similarly, Explorer-4B obtains gains of 15.5%
and 15.9% in average step SR and key node
completion rate, respectively, over its pre-trained
counterpart. In terms of full task success rate,
Phi-3.5V improves significantly from 2.4% to
18.1%, while Qwen2-VL-7B improves from
14.5% to 19.3%. To the best of our knowledge,
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Model Train Data Cross-Task Cross-Website Cross-Domain Avg.
Ele. Acc Op. F1 Step SR Ele. Acc Op. F1 Step SR Ele. Acc Op. F1 Step SR

In-Context Learning

GPT-3.5 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1 18.3
GPT-4 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7 29.7
SeeAct (Zheng et al., 2024) 46.4 73.4 40.2 38 67.8 32.4 42.4 69.3 36.8 36.5

Supervised Fine-Tuning

SeeClick-9.6B (Cheng et al., 2024) Syn. + M2W 26.3 86.2 23.7 21.9 82.9 18.8 22.1 84.1 20.2 20.9
EDGE-9.6B (Chen et al., 2024b) Syn. + M2W – – 30.0 – – 21.1 – – 22.4 24.5
MiniCPM-3.1B (Chen et al., 2024a) Syn. + M2W 23.8 86.8 20.8 20.3 81.7 17.3 17.9 74.5 14.6 17.6
ScribeAgent-32B (Shen et al., 2024) Syn. traj. 38.0 52.9 35.6 34.1 52.7 32.5 39.4 54.7 37.3 35.1
AgentTrek-7B (Xu et al., 2025a) Syn. + M2W 60.8 88.9 55.7 57.6 88.1 51.4 56.0 87.5 52.6 53.2

Explorer-4B Syn. traj. 36.5 82.9 33.2 44.1 87.7 39.3 42.5 86.3 39.8 37.4
Explorer-4B M2W 48.1 88.0 44.8 49.1 87.2 45.0 46.9 87.7 44.6 44.8
Explorer-4B Syn. + M2W 53.4 88.1 50.7 55.6 89.5 51.4 49.8 88.8 47.2 49.8

Explorer-7B Syn. traj. 43.6 86.6 39.6 48.7 87.7 44.5 47.6 87.2 44.7 43.0
Explorer-7B M2W 51.8 88.0 48.3 56.3 89.7 52.0 50.9 88.9 48.1 49.5
Explorer-7B Syn. + M2W 56.5 90.3 53.2 60.5 90.7 56.7 55.7 90.4 53.0 54.3

Table 6: Multimodal-Mind2Web evaluation results. The baseline numbers have been taken from Zheng et al. (2024);
Cheng et al. (2024); Chen et al. (2024b,a); Shen et al. (2024). The last column denotes the average step success
rates over the three test splits. Explorer significantly outperforms existing GUI agent baselines.

this represents the state-of-the-art performance on
Mind2Web-Live for models of this size trained
exclusively on synthetic data.

Model Full Task SR (%)

GPT-4o 16.0

Phi-3.5V 1.0
Explorer-4B 17.0

Qwen2-VL-7B 6.0
Explorer-7B 18.0

Table 7: In-domain evaluation results. The fine-tuned
Explorer models achieve significant improvements over
their pre-trained counterparts and surpass closed-source
LLMs, including GPT-4o.

Improvement over higher capacity pre-trained
models. Despite having much fewer parame-
ters, we observe that Explorer-4B outperforms
strong baselines such as Mistral-7B-Instruct-0.3
and Qwen2-72B-Instruct in full task SR by mar-
gins of 8.5% and 2.7%, respectively. The Phi-
3.5V model obtains an 18.1% full task success
rate, which is better than GPT-3.5 (15.4%), despite
using orders of magnitude fewer parameters. The
corresponding results for the entire set of 104 tasks,
including unreachable websites, are given in Ap-
pendix A.1. We provide the ablation studies in Ap-
pendix A.3 and the error analysis in Appendix A.4.

5.3 Multimodal-Mind2Web Results
Following Deng et al. (2023), we obtain the top-50
elements from a pre-trained DeBERTa (He et al.,

2021) candidate generation model, which are then
used to construct the accessibility tree and SoM
image inputs. The results are shown in Table 6.

Among baselines, we include API-based mod-
els for in-context learning – GPT-3.5, GPT-4, and
SeeAct (Zheng et al., 2024). SeeAct is a web agent
that performs web tasks using a two-step procedure
of action generation and grounding using GPT-4V.
Additionally, we include baselines that fine-tune
small language models using synthetic data, fol-
lowed by further fine-tuning on the Mind2Web
training set. SeeClick (Cheng et al., 2024) intro-
duces a visual grounding model (Qwen-VL) trained
on synthetically-generated grounding data. EDGE
(Chen et al., 2024b) synthesizes QA data on web-
pages to improve the grounded GUI understand-
ing capabilities of MLLMs. ScribeAgent-Large
(Shen et al., 2024) and MiniCPM-GUI (Chen et al.,
2024a) use human-annotated trajectory data to train
web agents. AgentTrek (Xu et al., 2025a) is a GUI
agent baseline that also utilizes synthetic trajectory
data to fine-tune SLMs for Mind2Web, similar to
our setting. It synthesizes web trajectory data by
guided replay from web tutorials. We observe that
Explorer-7B fine-tuned on synthetic data from Ex-
plorer plus Mind2Web outperforms all baselines
in average step success rate. Notably, it surpasses
AgentTrek, which uses the same Qwen2-VL-7B
MLLM backbone, highlighting the superior quality
of our dataset. The broad domain coverage and
task diversity in Explorer contribute to its superior
generalization across environments.
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Figure 3: Experiments with data scaling using Explorer-4B on Mind2Web-Live. We experiment with using 100%,
50%, and 25% of the trajectory data. All results are averaged over three runs. All metrics exhibit improvement with
an increase in data scale.

Model Accuracy (%)

API-based Models

GPT-3.5 39.57
GPT-4 53.04

Open-source Instructed Models

Phi-3.5V 35.87
Qwen2-VL-7B 36.96
Llama3-chat-8B 31.74
Llama3-chat-70B 48.70

Open-source Interactive Data Finetuned Models

AgentLM-7B (Zeng et al., 2024) 15.65
CodeActAgent-7B (Wang et al., 2024b) 9.78
AgentFlan-7B (Chen et al., 2024c) 20.87
Lemur-chat-70B (Xu et al., 2024) 21.30
AgentLM-70B (Zeng et al., 2024) 36.52
Synatra-CodeLlama-7B (Ou et al., 2024) 38.20
AgentTrek-7B (Xu et al., 2025a) 45.28

Explorer-4B 46.74
Explorer-7B 53.26

Table 8: Results on MiniWob++ benchmark (Liu et al.,
2018) in zero-shot evaluation setting. The baseline num-
bers correspond to Ou et al. (2024). Explorer outper-
forms much larger models by a significant margin.

Statistic Count

# Unique task proposals 53K
# Unique final task descriptions 81K
# Final task descriptions 94K

Table 9: Task diversity statistics at different stages of the
data synthesis pipeline. Abstract task proposals evolve
into diverse, fine-grained task descriptions as the agent
explores the environment.

5.4 MiniWob++ Results

Table 8 shows the results on the MiniWob++ bench-
mark in the zero-shot evaluation setting. Among
baselines, we have API-based models, in-context
learning using open-source LMs, and agentic mod-
els like AgentLM (Zeng et al., 2024), CodeActA-
gent (Wang et al., 2024b), Lemur-Chat (Xu et al.,
2024) and AgentFlan (Chen et al., 2024c) which in-
clude web-based demonstrations in their instruction
tuning dataset. Synatra-CodeLlama-7B (Ou et al.,
2024) and AgentTrek (Xu et al., 2025a) also synthe-
size web-agent trajectories automatically. We ob-
serve that Explorer outperforms GPT-4 and general-
purpose agent baselines. Explorer-4B surpasses
Synatra-CodeLlama-7B and AgentTrek-7B despite
using a much smaller model with 4.2B params,
highlighting our synthetic data’s superior quality
and strong potential for generalization to new web
environments.

5.5 Data Scaling Experiments

We conduct experiments with different data scales
for Explorer-4B to analyze the impact of training
data size. Specifically, we subsample the original
trajectory dataset to utilize 50% and 25% of its
original size. Figure 3 presents the resulting perfor-
mance curves. Our results show that, even with just
25% of the training data, the model exhibits rapid
performance gains over the base pre-trained model.
Increasing the dataset size further leads to gradual
improvements across all reported metrics. How-
ever, the increase in the overall task success rate is
more gradual compared to the stepwise metrics, as
it is a more coarse-grained metric.
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6 Analyses

Diversity Analysis. We analyze the diversity of
task descriptions across different stages of the data
generation pipeline. At the initial proposal stage,
the task proposer generates approximately 53K
unique high-level goals. As the agent explores the
web environment, these proposals evolve into a to-
tal of 94K final task descriptions, of which 81K are
unique. This progression shows that abstract task
proposals can evolve into unique, fine-grained tasks
with different constraints, shaped by the agent’s
specific exploration path. Moreover, multiple tra-
jectories corresponding to the same task descrip-
tion expose the agent to alternative solution paths,
enhancing generalization.

Pred = Success Pred = Failure

GT = Success 0.39 0.05
GT = Failure 0.14 0.42

Table 10: Confusion matrix of the task verifier evaluated
on a subset of 100 Explorer-generated trajectories. We
observe 81% agreement with human judgment.

Analysis of Verifier Accuracy. We did a human
evaluation of the task verifier on a random set of
100 trajectories generated using Explorer. We ob-
tain 81% agreement with human judgement for the
task verifier, which is comparable to prior work
(Pan et al., 2024b; Xu et al., 2025a).

Failure Modes of Trajectory Generation. To
better understand failure cases in our pipeline, we
perform a qualitative analysis of trajectories that
were marked as unsuccessful by human annotators
(Figure 4). The observed failure modes can be
categorized as follows:

• Grounding error during refinement: This
error happens when the grounded action does
not align with the natural language form of
the agent’s action during the task refinement
phase. This misalignment propagates to the
summarizer, resulting in an inaccurate final
task description.

• Unresponsive website: The grounded action
is correct and aligns with the task objective,
but the website interaction fails due to non-
responsive web elements during execution or
dynamic content changes.

• Summarization hallucination: The sum-
marizer introduces extraneous constraints or

Figure 4: Error type distribution in synthetic trajectory
synthesis. Grounding errors in the refinement phase and
summarization hallucinations are the most dominant
error types.

goals to the task description that are not
present in the underlying trajectory, causing
misalignment.

• Technical issues: The agent fails to complete
the task due to external technical issues such
as login requirements, media playback issues,
or automated bot detection mechanisms.

• Task incomplete: The agent reaches the step
limit before completing all required actions,
resulting in an incomplete trajectory.

7 Conclusion

In this work, we introduce Explorer, a scalable
framework for synthesizing web trajectories on a
large scale. By leveraging thorough web explo-
ration, Explorer ensures diversity in both domains
and the skills acquired by web agents. Unlike pre-
vious approaches, our framework generates con-
textually grounded trajectories that adapt to real-
world constraints, improving both task relevance
and generalization. We instantiate this framework
using URLs collected from diverse sources. Ex-
plorer outperforms existing web agent baselines
by a significant margin on both online and offline
web agent benchmarks. Furthermore, our results
highlight the critical role of data scale in enhanc-
ing web agents’ performance. Future work will
focus on extending this framework to encompass a
broader range of GUI environments, such as operat-
ing systems with diverse applications. GUI agents
require specialized skills for different tasks, includ-
ing information-seeking, operational, and naviga-
tion skills. Efficient exploration of the environment
to acquire these skills presents another promising
avenue for future research.
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Limitations

Explorer explores the web environment au-
tonomously, which may occasionally result in inco-
herent tasks. Synthetic data collection using closed-
source LLMs can be costly due to associated API
expenses. While this work serves as a proof of
concept, future research will focus on developing
tailor-made open-source LLMs for this task. Addi-
tionally, some website content remains inaccessible
due to login requirements, leading to insufficient
data for those websites.

Ethical Considerations

The synthetic data collection pipeline proposed in
this paper is intended solely for academic research
on GUI agents, with strict ethical safeguards to pre-
vent unauthorized website interactions. To ensure
ethical compliance and mitigate risks, we prompt
our agents to automatically terminate upon encoun-
tering CAPTCHA verifications, login prompts, or
payment requests, ensuring that no actual transac-
tions or bookings occur. Additionally, we filter
out websites containing violent or explicit content
and strictly adhere to privacy regulations, ensuring
that no personal information is used during action
execution. To enforce responsible data collection,
we monitor a subset of automatically generated tra-
jectories to ensure compliance with website access
policies. Moreover, we distribute the workload
across websites to prevent excessive requests and
minimize the impact on any single domain.
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Appendices

In this supplementary material, we provide further
details as follows:

• Appendix A: Mind2Web Training and Evalua-
tion Details

• Appendix B: Cost Analysis

• Appendix C: Task Complexity Analysis

• Appendix D: System Prompts

• Appendix E: Trajectory Examples

• Appendix F: More Related Work

A Mind2Web Training and Evaluation
Details

Table A.2 shows the hyperparameters and train-
ing time for experiments on Mind2Web-Live and
Multimodal-Mind2Web. All experiments use
Nvidia H100 GPUs.

A.1 Mind2Web-Live

We exclude the following websites - https:
//www.kbb.com, https://www.sixflags.com,
https://www.viator.com, https://www.
menards.com, https://www.amctheatres.com,
https://www.cargurus.com, https://www.
gamestop.com, https://www.cabelas.com,
https://www.rei.com due to denial of access
faced during our tests. Table 5 shows the results
on Mind2Web-Live for 83 out of 104 tasks across
the remaining 37 websites. The results on the
whole Mind2Web-Live evaluation set are given
in Table A.1. The results in Table 5 are reported
as the maximum over three runs, accounting for
intermittent website access issues that may affect
evaluation consistency. For Mind2Web-Live,
the dataloader first samples training instances at
the trajectory level and then randomly samples
a step from the trajectory to construct the final
training instance. Thus, the number of epochs
is calculated at the trajectory level. We use a
viewport resolution of 1280×720 during inference.
The Mind2Web-Live dataset is released under the
MIT license, which permits its use in academic
research.

A.2 Multimodal-Mind2Web

Following Deng et al. (2023), we obtain the top-50
elements from a pre-trained DeBERTa (He et al.,
2021) candidate generation model, which are then
used to construct the accessibility tree and SoM im-
age inputs. Following Ou et al. (2024), we always
include the ground truth element in the input. We
use a viewport resolution of 1280× 720 which in-
cludes the GT element during inference. We follow
the setting in Zheng et al. (2024) and report ele-
ment accuracy, operation F1, and step SR as eval-
uation metrics. All experiments on Multimodal-
Mind2Web use a single training and evaluation
run. The dataloader uniformly samples training
instances from the set of action steps across all tra-
jectories. The Multimodal-Mind2Web dataset is
released under the Responsible AI license, which
permits its use in academic research.

A.3 Ablation Studies

We conduct ablation studies to assess the impact
of various design choices on overall performance
(Table A.3). To evaluate the importance of visual
modality, we experiment with using just the textual
modality for the Phi-3.5V model, replacing it with
the text-only Phi-3-mini (Abdin et al., 2024). In ad-
dition to Qwen2-VL-7B and Phi-3.5V, we also eval-
uate LLaVA-Mistral-7B (Liu et al., 2023), a strong
MLLM baseline. Our results show that omitting the
visual modality leads to a sharp 4.8% drop in per-
formance for Phi-3.5V, underscoring its importance
for effective GUI grounding. Furthermore, LLaVA-
Mistral-7B significantly underperforms compared
to both Qwen2-VL-7B and Phi-3.5V, highlighting
the necessity of a stronger MLLM backbone for
better GUI agent performance.

A.4 Case Studies for Mind2Web-Live

We randomly sample 20 error cases for Explorer
on Mind2Web-Live to gain insights for future im-
provement. These errors fall into the following
categories:

• Task deviation: The agent executes actions
unrelated to the given task, thus failing to com-
plete it.

• Missing key steps: The agent retrieves results
that partially satisfy the required constraints,
e.g., the agent finds women’s clothes of the
correct size but incorrect type or color.
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Figure A.1: Statistics for different error cases in Mind2Web-Live evaluation. Task deviation is the most prevalent
error type.

Model Avg. Step SR (%) Completion Rate (%) Task SR (1) (%) Full Task SR (%)

API-based Models

GPT-4o 56.4 50.4 44.2 22.1
GPT-3.5 – 36.5 – 15.4

Open-source Instructed Models

Mistral-7B-Instr. (Jiang et al., 2023) 33.0 28.6 25.0 11.5
Qwen2-72B-Instr. (Bai et al., 2023) – 40.9 – 15.4
Qwen2-VL-7B (Wang et al., 2024a) 37.9 33.3 31.7 12.5
Phi-3.5V (Abdin et al., 2024) 27.0 22.3 21.2 1.9

Supervised Fine-Tuning

Explorer-4B 41.6 36.7 30.8 16.4
Explorer-7B 42.0 36.9 32.7 16.4

Table A.1: Results on Mind2Web-Live benchmark. The results for GPT-4, GPT-3.5, and Mistral-7B have been
reproduced on our Linux servers. The full task success rate (SR) represents the successful completion of all key
nodes for a given task. The average step success rate represents the proportion of completed key nodes, macro-
averaged across tasks. The completion rate represents the proportion of completed key nodes, micro-averaged
across tasks. Task SR (1) represents task SR with a tolerance of up to one error/key node. Our Phi-3.5V model,
finetuned on synthetic trajectory data from Explorer, outperforms much larger models, including Mistral-7B and
Qwen2-72B-Instruct, by a significant margin and is comparable to GPT-3.5.

Dataset Model Train Data Hyperparamerters Train time (hours)

M2W-Live
Qwen2-VL-7B Syn. batch_size:64, epoch:2, learning_rate:1× 10−5 15
Qwen2-VL-7B M2W batch_size:64, epoch:2, learning_rate:1× 10−5 1.5
Qwen2-VL-7B Syn. + M2W batch_size:64, epoch:2, learning_rate:1× 10−5 15.5

M2W-Live
Phi-3.5V Syn. batch_size:64, epoch:2, learning_rate:4× 10−5 12.5
Phi-3.5V M2W batch_size:64, epoch:2, learning_rate:1× 10−5 1
Phi-3.5V Syn. + M2W batch_size:64, epoch:2, learning_rate:4× 10−5 12.5

Multi.-M2W Qwen2-VL-7B Syn. batch_size:64, epoch:10, learning_rate:4× 10−5 17
Phi-3.5V Syn. batch_size:64, epoch:10, learning_rate:4× 10−5 12

Table A.2: Hyperparameters used in our experiments.

Model Avg. Step SR (%) Completion Rate (%) Full Task SR (%)

LLaVA-Mistral-7B 32.0 30.3 4.8
Phi-3-mini (text-only) 36.6 34.0 13.3
Phi-3.5V 44.0 39.4 18.1
Qwen2-VL-7B 45.3 40.2 19.3

Table A.3: Ablation studies on language models used for fine-tuning (Mind2Web-Live).
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• Grounding error: The agent fails to interact
with a valid element on the page.

• Website unresponsive: The agent executes
the correct action, but the website does not
respond.

• Failure to reach the correct website: This
happens when the agent fails to output the
correct website URL or use the search engine
to arrive at the correct website.

Figure A.1 presents the statistics for these error
types.

B Cost Analysis

We use GPT-4o-turbo, which costs $2.5 per 1M
tokens for our trajectory synthesis. Each proposal
or refinement stage uses 3.6K textual tokens on
average. Each input image costs $0.0028. The
calculation assumes an average of 7.7 steps per
trajectory, including the proposal stage. Table B.4
shows the breakdown for the different stages of
trajectory generation.

Total cost = $0.0128 ∗ 7.7 + $0.02581

+ $0.02381 = $0.148

The average cost per raw trajectory is $0.15. The
success rate is estimated as 53.1%. Thus, the aver-
age cost per successful trajectory is estimated to be
$0.28.

Phase Cost per step Total cost

Proposal $0.0128 $0.0128
Refinement $0.0128 $0.0856
Verification $0.02381 $0.02381
Summarization $0.02581 $0.02581

Table B.4: Cost breakdown for different modules in the
pipeline.

Complexity level Count

Easy 8.2K
Medium 44.3K
Hard 41.2K

Table B.5: Task complexity statistics. Most tasks fall
within the medium to high complexity range.

C Task Complexity Analysis

Explorer contains web trajectories spanning mul-
tiple steps with an average of 7.7 steps per trajec-
tory (Table 3). Following prior work (Zheng et al.,

2024), we use the number of action steps in a tra-
jectory as a proxy for task complexity, categorizing
tasks as easy (2–4 steps), medium (5–7 steps), and
hard (8–12 steps) in Table B.5. We observe that the
majority of tasks fall within the medium to high dif-
ficulty range, indicating a high level of complexity
in the dataset.

D System Prompts

The prompts for the task proposer agent, task re-
finer agent, task summarizer agent, task verifier
agent, and captcha detection agent are given in Ta-
ble D.7, Table D.9, Table D.10, Table D.11, and
Table D.12, respectively. The training prompt for
Explorer is given in Table D.13.
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System Role What does this webpage show? Imagine you are a real user on this webpage. Given the webpage
screenshot and parsed HTML/accessibility tree, please provide a single task that a user might
perform on this page and the corresponding first action towards completing that task.
Do the following step by step:
1. Generate a single task that a user might perform on this webpage. Be creative and come up
with diverse tasks.
2. Given the webpage screenshot and parsed HTML/accessibility tree, generate the first action
towards completing that task (in natural language form).
3. Given the webpage screenshot, parsed HTML/accessibility tree, and the natural language
action, generate the grounded version of that action.

ACTION SPACE: Your action space is: [‘click [element ID]’, ‘type [element ID] [content]’,
‘select [element ID] [content of option to select]’, ‘scroll [up]’, ‘scroll [down]’, and ‘stop’].
Action output should follow the syntax as given below:
‘click [element ID]’: This action clicks on an element with a specific ID on the webpage.
‘type [element ID] [content]’: Use this to type the content into the field with id. By default, the
"Enter" key is pressed after typing. Both the content and the ID should be within square braces
as per the syntax.
‘select [element ID] [content of option to select]’: Select an option from a dropdown menu. The
content of the option to select should be within square braces. When you get (select an option)
tags from the accessibility tree, you need to select the serial number (element_id) corresponding
to the select tag, not the option, and select the most likely content corresponding to the option as
input.
‘scroll [down]’: Scroll the page down.
‘scroll [up]’: Scroll the page up.

IMPORTANT: To be successful, it is important to STRICTLY follow the below rules:

Action generation rules:
1. You should generate a single atomic action at each step.
2. The action should be an atomic action from the given vocabulary - click, type, select, scroll
(up or down), or stop.
3. The arguments to each action should be within square braces. For example, "click [127]",
"type [43] [content to type]", "scroll [up]", "scroll [down]".
4. The natural language form of action (corresponding to the field "action_in_natural_language")
should be consistent with the grounded version of the action (corresponding to the field "grounded
_action"). Do NOT add any additional information in the grounded action. For example, if a
particular element ID is specified in the grounded action, a description of that element must be
present in the natural language action.
5. If the type action is selected, the natural language form of action ("ac-
tion_in_natural_language") should always specify the actual text to be typed.
6. You should issue a “stop” action if the current webpage asks to log in or for credit card
information.
7. To input text, there is NO need to click the textbox first, directly type content. After typing,
the system automatically hits the ‘ENTER’ key.
8. STRICTLY Avoid repeating the same action (click/type) if the webpage remains unchanged.
You may have selected the wrong web element.
9. Do NOT use quotation marks in the action generation.

Task proposal rules:
1. You should propose tasks that are relevant to the website and can be completed using the
website.
2. You should only propose tasks that do not require login to execute the task.
3. You should propose tasks that are clear and specific.
4. For each task, provide concrete information or constraints, and use mock-up information
(identifier, number, personal information, name, attributes, etc.) to make the task more specific
and realistic.
5. The task description should provide all the necessary information to complete the task.
6. The task should be feasible to complete by a real user and should not require any additional
information that is not available on the website.

The output should be in below format:
Continued on next page
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Continued from previous page
OUTPUT FORMAT: Please give a short analysis of the screenshot, parsed
HTML/accessibility tree, then put your answer within ``` ```, for example,
"In summary, the proposed task and the corresponding action is: ```{"task":
<TASK>:str, "action_in_natural_language":<ACTION_IN_NATURAL_LANGUAGE>:str,
"grounded_action": <ACTION>:str}"```

User Role Website URL: {INIT_URL}
Parsed HTML/Accessibility Tree: {A11Y_TREE}
{SCREENSHOT}

Table D.7: Prompt for Task Proposer Agent.
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System Role What does this webpage show? Imagine you are a real user on this webpage, and your overall
task is {OVERALL_TASK}. This is the list of actions you have performed that lead to the current
page {PREV_ACTION_LIST}. You are also given the webpage screenshot and parsed HTML/ac-
cessibility tree.
Do the following step by step:
1. Please predict what action the user might perform next that is consistent with the previous
action list in natural language.
2. Then based on the parsed HTML/accessibility tree of the webpage and the natural language
action, generate the grounded action.
3. Update the overall task aligned with this set of actions.

ACTION SPACE: Your action space is: [‘click [element ID]’, ‘type [element ID] [content]’,
‘select [element ID] [content of option to select]’, ‘scroll [up]’, ‘scroll [down]’, and ‘stop’].
Action output should follow the syntax as given below:
‘click [element ID]’: This action clicks on an element with a specific id on the webpage.
‘type [element ID] [content]’: Use this to type the content into the field with id. By default, the
"Enter" key is pressed after typing. Both the content and the id should be within square braces as
per the syntax.
‘select [element ID] [content of option to select]’: Select an option from a dropdown menu. The
content of the option to select should be within square braces. When you get (select an option)
tags from the accessibility tree, you need to select the serial number (element_id) corresponding
to the select tag, not the option, and select the most likely content corresponding to the option as
input.
‘scroll [down]’: Scroll the page down.
‘scroll [up]’: Scroll the page up.

IMPORTANT: To be successful, it is important to STRICTLY follow the below rules:

Action generation rules:
1. You should generate a single atomic action at each step.
2. The action should be an atomic action from the given vocabulary - click, type, select, scroll
(up or down), or stop.
3. The arguments to each action should be within square braces. For example, "click [127]",
"type [43] [content to type]", "scroll [up]", "scroll [down]".
4. The natural language form of action (corresponding to the field "action_in_natural_language")
should be consistent with the grounded version of the action (corresponding to the field "grounded
_action"). Do NOT add any additional information in the grounded action. For example, if a
particular element ID is specified in the grounded action, a description of that element must be
present in the natural language action.
5. If the type action is selected, the natural language form of action ("ac-
tion_in_natural_language") should always specify the actual text to be typed.
6. You should issue the “stop” action when the given list of input actions is sufficient for a web
task.
7. You should issue a “stop” action if the current webpage asks to log in or for credit card
information.
8. To input text, there is NO need to click the textbox first, directly type content. After typing,
the system automatically hits the ‘ENTER’ key.
9. STRICTLY Avoid repeating the same action (click/type) if the webpage remains unchanged.
You may have selected the wrong web element.
10. Do NOT use quotation marks in the action generation.

Task proposal rules:
1. You should propose tasks that are relevant to the website and can be completed using the
website itself.
2. The overall task should be well-aligned to the entire set of actions in history plus the current
generated action. It should not be focused just on the current action.
3. You should only propose tasks that do not require login to execute the task.
4. You should propose tasks that are clear and specific.
5. For each task, provide concrete information or constraints, and use mock-up information
(identifier, number, personal information, name, attributes, etc.) to make the task more specific
and realistic.
6. The task description should provide all the necessary information to complete the task.
7. The task should be feasible to complete by a real user and should not require any additional
information that is not available on the website.

The output should be in below format:
Continued on next page
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Continued from previous page
OUTPUT FORMAT: Please give a short analysis of the screenshot, parsed HTM-
L/accessibility tree, and history, then put your answer within ``` ```, for exam-
ple, "In summary, the proposed task and the corresponding action is: ```{"task":
<TASK>:str, "action_in_natural_language":<ACTION_IN_NATURAL_LANGUAGE>:str,
"grounded_action": <ACTION>:str}"```

User Role Website URL: {INIT_URL}
Parsed HTML/Accessibility Tree: {A11Y_TREE}
{SCREENSHOT}

Table D.9: Prompt for Task Refiner Agent.
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System Role Given a list of actions performed on the website {WEBSITE_URL} and the corresponding screen-
shots
List of actions: {ACTION_LIST}
Your task is to come up with a single task description that will be accomplished by performing
these actions in the given sequence on the website.

IMPORTANT:
1. The task must contain some actions: “Buy, Book, Find, Check, Choose, show me, search,
browse, get, compare, view, give me, add to cart, ...”, ideally involving transactions/finding
information on a specific product or service.
2. You should propose tasks that are clear and specific.
3. The task description should provide all the necessary information to complete the task.
4. The task description must indicate the domain of the website at the end of the task with
the format: “... on task website”, for instance, “Purchase a laptop on Amazon”, “Book a hair
appointment on Yelp”, etc.
5. The task should be feasible to complete by a real user and should not require any additional
information that is not specified in this input.
6. The task description should specify constraints like given budget, product features, and other
specifications that can narrow down the search to a particular item/product.
7. Do NOT use any quotation marks (either single or double) in the task description.

The output should be in the below format:
OUTPUT FORMAT: Please first give some analysis of the actions and screenshots and then
output the overall task description. put your answer within ``` ```, for example, “In summary,
the answer is: ```<TASK_DESCRIPTION>:str```”.

User Role {SCREENSHOT_LIST}

Table D.10: Prompt for Task Summarizer Agent.
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System Role You are an expert in evaluating the performance of a web navigation agent. The agent is designed
to help a human user navigate a website to complete a task. Given the user’s intent, the agent’s
action history, and the final state of the webpage, your goal is to decide whether the agent’s
execution is successful or not.
There are four types of tasks:

1. Transaction: The user wants to perform a transaction on the webpage, such as booking a
ticket, ordering a product, etc. The bot should at least initiate the add-to-cart or checkout process.
It is still a success if the bot has done actions of ‘add to cart’ or checkout and encounters the
login page. If the bot fails to do so, the task is considered a failure.

2. Information seeking: The user wants to obtain certain information from the webpage,
such as information of a product, reviews, map info, comparison of map routes, etc. The bot’s
response must contain the information the user wants, or explicitly state that the information
is not available. Otherwise, e.g. the bot encounters an exception and responds with the error
content, the task is considered a failure. Besides, be careful about the sufficiency of the agent’s
actions. For example, when asked to list the top-searched items in a shop, the agent should order
the items by the number of searches, and then return the top items. If the ordering action is
missing, the task is likely to fail.

3. Site navigation: The user wants to navigate to a specific page. Carefully examine the bot’s
action history and the final state of the webpage to determine whether the bot successfully
completes the task. No need to consider the bot’s response.

4. Content modification: The user wants to modify the content of a webpage or configuration.
Carefully examine the bot’s action history and the final state of the webpage to determine whether
the bot successfully completes the task. No need to consider the bot’s response.

IMPORTANT
- If a product has been added to the bag/cart in the action list but just the purchase is pending, it
should be counted as a success.
- If you see the checkout page for the product you want to purchase, it should be counted as a
success.
- Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>
Status: "success" or "failure"

User Role User Intent: {TASK_DESCRIPTION}
Action History: {ACTION_HISTORY}
The content of the last webpage in markdown format is given below: {LAST_PAGE_MARKDOWN}
The snapshots of all webpages corresponding to the actions are shown in the images:
{SCREENSHOT_LIST}

Table D.11: Prompt for Task Verifier Agent (adapted from Pan et al. (2024a)).

System Role You are an expert in evaluating whether the given webpage screenshot contains a captcha or not.
Given the last snapshot of the web page, your goal is to decide whether the webpage contains a
captcha or not.
Output “Yes” if the given webpage shows a captcha, otherwise “No”.

IMPORTANT:
Format your response into a line as shown below:
Answer: “Yes” or “No”

User Role The screenshot of the web page is shown in the image.
{SCREENSHOT}

Table D.12: Prompt for Captcha Detection Agent.
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System Role You are an expert at completing instructions on webpage screens.
You will be presented with a screenshot image with some numeric tags.
If you decide to click somewhere, you should choose the numeric element index closest to the
location you want to click.
You should decide the action to continue this instruction. You will be given the accessibility tree
of the current screen in the format: [element_idx] [role] [alt text or button name].
Here are the available actions:
{"action": "goto", "action_natural_language": str, "value": <the URL to go
to>}
{"action": "google_search", "action_natural_language": str, "value": <search
query for google>}
{"action": "click", "action_natural_language": str, "idx": <element_idx>}
{"action": "type", "action_natural_language": str, "idx": <element_idx>,
"value": <the text to enter>}
{"action": "select", "action_natural_language": str, "idx": <element_idx>,
"value": <the option to select>}
{"action": "scroll [up]", "action_natural_language": str}
{"action": "scroll [down]", "action_natural_language": str}
Your final answer must be in the above format.

User Role The instruction is to {TASK_DESCRIPTION}.
History actions: {PREVIOUS_ACTION_LIST}
Here is the screen information: {A11Y_TREE}
Think about what you need to do with the current screen, and output the action in the required
format in the end.

Table D.13: Prompt for web agent training.
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E Trajectory Examples

Figure E.2 shows a sample trajectory executed on
the IKEA website. Figure E.3 shows the set-of-
mark annotations and accessibility tree inputs of
the model during trajectory generation, training,
and inference. The action space for our trajectory
synthesis pipeline is given in Table E.14.

F More Related Work

F.1 LLM-based Web Agents
Recent advances in multimodal language models
have facilitated the development of web agents —
autonomous systems designed to interact with real-
world websites to perform everyday tasks (Deng
et al., 2023; Hong et al., 2024; Cheng et al., 2024;
Zheng et al., 2024). Web agents have made sig-
nificant progress, evolving from simulated envi-
ronments (Liu et al., 2018) to complex real-world
applications (Deng et al., 2023; Yao et al., 2022;
Zhou et al., 2024). Key challenges for web agents
include long-term planning, visual grounding, and
memory management. To improve long-context
understanding, WebAgent (Gur et al., 2024) uti-
lizes multiple LLMs - one for planning, summa-
rization, and grounded program synthesis. SeeAct
(Zheng et al., 2024) adopts a two-step procedure of
planning followed by grounding at each step using
GPT-4 to accomplish web agent tasks. SkillWeaver
(Zheng et al., 2025) introduces a self-improving
agent framework that autonomously synthesizes
reusable skills as APIs through iterative exploration.
Another line of work employs a vision-only ap-
proach to train a GUI grounding model that directly
predicts pixel coordinates for executing GUI agent
tasks (Cheng et al., 2024; Kapoor et al., 2024; Gou
et al., 2025). However, a significant bottleneck re-
mains — the lack of large-scale, high-quality web
trajectory data for training robust agents. Our work
presents a new framework for synthesizing large-
scale web trajectory data to train end-to-end web
agents.

F.2 Web Agent Benchmarks and Datasets
Early benchmarks for web tasks such as Mini-
Wob++ (Liu et al., 2018) focused on testing low-
level actions on simulated websites. However,
these simulated websites fail to capture the com-
plexity of the real-world web. Mind2Web (Deng
et al., 2023) introduces a trajectory-level dataset
with 2K tasks across 137 real-world websites and
31 domains. However, it employs a static evalu-

ation method that penalizes alternative valid exe-
cution paths. To overcome this limitation, follow-
up work has explored alternative evaluation ap-
proaches, including functional correctness-based
evaluation in WebArena (Zhou et al., 2024) and
key-node-based evaluation in Mind2Web-Live (Pan
et al., 2024b). Most recently, Online-Mind2Web
(Xue et al., 2025) addresses challenges in online
evaluation, such as sensitivity to website updates,
and demonstrates improved agreement with hu-
man judgments, providing a more reliable bench-
mark for real-world web agent evaluation. Towards
the goal of making web agents more capable of
performing realistic tasks, GAIA (Mialon et al.,
2024) and AssistantBench (Yoran et al., 2024) in-
troduce benchmarks that include time-consuming
information-seeking tasks. In this work, we de-
velop Explorer, a multimodal web agent trained on
our synthetic dataset, and showcase its strong per-
formance across online and offline benchmarks, in-
cluding Mind2Web-Live, Multimodal-Mind2Web,
and MiniWob++.
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Action Type Description Count

click [elem] Click on elem. 415K
type [elem] [text] Type text 62K
select [elem] [text] Select text from dropdown list. 5K
goto [url] Go to url. 26K
search_google [query] Search for query on Google. 4K
scroll [up/down] Scroll up or down. 213K

Table E.14: Action space for web navigation in Explorer.

Click on the 'Go shopping' button to start 
shopping on the IKEA US website (click [161])

Click on the 'Furniture' category to browse 
furniture items (click [86])

Click on the 'Sofas & sectionals' link to 
explore sofas and sectionals (click [435])

Click on the 'Fabric sofas' category to view 
fabric sofas (click [89])

Click on the 'Three-seat sofas' category to 
view three-seat fabric sofas (click [94])

(stop)

Task description: Navigate to the IKEA US website and browse to find three-seat fabric sofas 

1

6

2 3

4 5

Figure E.2: Example synthetic trajectory from Explorer. Each step shows the set-of-mark annotated screenshot
along with the grounded action taken by the GPT-4 agent.

[17] [A] [Amazon]
[18] [A] [Delivering to Redmond 98073 Update location]
[24] [INPUT, TYPE=TEXT] [Search Amazon]
[25] [INPUT, TYPE=SUBMIT] []
[26] [A] [Choose a language for shopping.]
[27] [A] [Hello, sign in Account & Lists]
[28] [A] [Returns & Orders]
[29] [A] [0 items in cart]
[50] [A] [Open Menu]
[52] [A] [Medical Care]
[53] [A] [Best Sellers]
[54] [A] [Amazon Basics]
[55] [A] [Prime]
[56] [A] [New Releases]
…
[289] [A] [36% off Limited time deal  Amazon eero Pro 6E 
mesh Wi-Fi router | 2.5 Gbps Ethernet | Coverage up to 
6,000 sq. ft | Connect 100+ devices | Ideal for streaming, 
working, and gaming | 3-Pack | 2022 release Amazon eero 
Pro 6E mesh Wi-Fi router | 2.5 Gbps Et\u2026]
…
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[409] [DIV] [Customer Reviews]
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(a) Set-of-mark annotated screenshot of webpage (b) Corresponding A11y tree

Figure E.3: Visualization of the model inputs during trajectory generation, model training, and inference. The
example corresponds to step 2 of the trajectory in Figure 1.
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