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Abstract

Large language model (LLM) based agents
have shown great potential in following hu-
man instructions and automatically complet-
ing various tasks; to do this, the agent needs to
decompose it into easily executed steps by plan-
ning. Existing LLM-based approaches to plan-
ning mostly proceed by inferring what steps
should be inserted into the plan next by start-
ing from the agent’s initial state. However,
this forward reasoning paradigm does not work
well for complex tasks. We study this issue
in Minecraft, a virtual environment that simu-
lates complex tasks based on real-world scenar-
ios. The failure of forward reasoning is often
caused by the large perception gap between the
agent’s initial state and task goal. To alleviate
this, we leverage backward reasoning and make
the planning start from the terminal (or goal)
state, by first considering which actions could
directly achieve the task goal in one step, before
proceeding to consider how the preconditions
of those actions can in turn be achieved. Our
BAckward Reasoning based agent (BAR) is
equipped with a recursive goal decomposition
module, a state consistency maintaining mod-
ule and a stage memory module. Experimen-
tal results demonstrate the superiority of BAR
over existing methods and the effectiveness of
proposed modules. The code and dataset are
available in https://github.com/SCUNLP/BAR.

1 Introduction

Large language model (LLM) based agents are a
powerful tool to support human-machine intelli-
gence because of their potential to follow human
instructions. However, it is not possible to com-
plete one complex task in a single step. The key lies
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in how to decompose the task into easily executed
steps. Existing LLM-based approaches mostly fo-
cus on forward reasoning based planning (Huang
et al., 2024; Koh et al., 2024; Yu et al., 2024a; Chen
et al., 2024). They infer what steps should be ex-
ecuted next starting from the agent’s initial state,
where no steps have yet been executed. However,
we observe this reasoning paradigm doesn’t work
well for complex tasks. Let us take a close look at
a complex task (obtain a diamond pickaxe) in an
open-world environment, Minecraft, which simu-
lates numerous complex tasks based on real-world
scenarios. As shown in the upper part of Figure 1,
the forward reasoning agent fails to infer the correct
next step after the step “Craft 8 (stick)”. This is
because there is a huge perception gap between the
agent’s initial state and the task goal.

To tackle this issue, we propose to use backward
reasoning (Yu et al., 2024b), another powerful rea-
soning paradigm1. As shown in the lower part of
Figure 1, by backward reasoning, the agent infers
the steps to be executed starting from the termi-
nal state. In the terminal state, the task goal has
been achieved and the agent has already obtained
1 (diamond pickaxe). To achieve this goal, it is
easy to infer that the last step should be “Craft 1

” because after executing this step the agent can
obtain 1 diamond pickaxe. Furthermore, to success-
fully execute the step “Craft 1 ”, the agent needs
to prepare the materials for it. So the second to last
step should be “Mine 3 (diamond)” as is the

1In fact, planning by reasoning backwards has a long his-
tory outside of the LLM community, dating back to Newell
et al. (1959), who articulated their “principle of subgoal re-
duction” in their General Problem Solver (GPS); subsequently
”regression planning” became a major focus in the symbolic
planning community (e.g. (McDermott, 1991)).
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Figure 1: A toy example showing the essential advantage of backward reasoning over forward reasoning for task
planning. In Minecraft, most tasks are started by “Mine (log)”. Best viewed in color.

Figure 2: The conflict of the agent’s physical states during planning. In Minecraft, (stone) can only be obtained
below the ground, so it is necessary to reach below the ground first and then mine (stone). Best viewed on screen.

key material for crafting a diamond pickaxe. Sub-
sequently, the agent can continue to infer the third
to last step to support the execution of step “Mine
3 ”, repeating until the entire plan is generated.

Despite this advantage, backward reasoning is
not a perfect solution — the agent only considers
the current goal to be achieved, ignoring the cur-
rent world state. As shown in Figure 2, the agent
infers the step “Mine (stone)” immediately after
inserting the step “Craft 1 (wooden pickaxe)”.
However, this step cannot be executed successfully
because (stone) can only be obtained below the
ground but the agent was above the ground before
executing this step. At last, this conflict results in a
failing planning for the task.

To this end, we propose BAR, a BAckward
Reasoning based agent for complex Minecraft
tasks, which is equipped with three carefully-
designed modules. (1) Inspired by the dynamic
programming algorithm (Bellman, 1954), we de-
sign the recursive goal decomposition module to
support robust backward planning starting from the
terminal state. (2) We develop the state consistency
maintaining module to monitor the agent’s states
and handle any state conflicts during planning. (3)
We introduce the stage memory module to make
the best of existing interactions and promote more
efficient planning. Experimental results show that

the BAR agent outperforms other SOTA methods
by a large margin. We hope our exploration and
discoveries can promote the development of more
efficient LLM-based planning agents. In summary,
our contributions are three-fold:

• We emphasize backward reasoning over forward
reasoning for complex tasks, as it can avoid the
issue caused by the perception gap between the
agent’s initial state and the task goal.

• We propose BAR and make robust, consistent,
and efficient planning from the recursive goal
decomposition, state consistency maintaining,
and stage memory modules.

• Experimental results in Minecraft demonstrate
the superiority of BAR and the effectiveness of
the proposed modules.

2 Related Work

2.1 Task Planning by Agent

Task planning aims at decomposing tasks into steps
which can be directly executed. Current LLM-
based approaches mostly focus on forward reason-
ing based planning. Some studies conduct iterative
forward reasoning to generate the steps to be exe-
cuted starting from the agent’s initial state (Sanyal
et al., 2022; Huang et al., 2022; Xue et al., 2023;
Jiang et al., 2024; Koh et al., 2024; Yu et al., 2024a).
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However, these studies fail to generate correct plans
due to the big perception gap between the agent’s
initial state and task goal. To reduce the diffi-
culty of planning, some studies choose the best
steps from a set of pre-defined steps and organize
them to form the plans for the tasks (Dalvi et al.,
2021; Creswell and Shanahan, 2022; Qu et al.,
2022; Hong et al., 2022; Creswell et al., 2022;
Kazemi et al., 2023; Zhang et al., 2024). How-
ever, these studies are limited by the pre-defined
steps set and customized for specific tasks, result-
ing in poor generalization ability. Although some
studies have made initial attempts to conduct plan-
ning from back to front (Li et al., 2024; BAAI,
2023; Wang et al., 2023a), they require a signif-
icant amount of trial and error before acquiring
sufficient knowledge for planning retrieval (e.g.,
Optimus-1 (Li et al., 2024) accumulates histori-
cal experience through iterative interaction with
the environment to support plan retrieval from the
knowledge graph).

To alleviate the above defects, we design a back-
ward reasoning based agent that is free from the im-
pact of the big perception gap between the agent’s
initial state and task goal, and enable it to handle
various tasks by decomposing the task goals into
natural language steps and sub-goals with LLM.
Moreover, our agent supports direct static planning
for any complex task by recursive goal decomposi-
tion, achieving good results even without interact-
ing with the environment.

2.2 Agent for Minecraft

Minecraft provides a simulation environment with
a high degree of freedom and a wide range of tasks
that can be decomposed and executed, making it
an ideal resource for exploring the planning ability
of LLM-based agents. Some studies rely on exten-
sive interaction with the environment to gradually
piece together the proper plans (Wang et al., 2023a;
Zhu et al., 2023; Wang et al., 2023d; Liu et al.,
2024). Other studies rely on a pre-designed capa-
bilities library to generate the plans using human-
written rules (Yuan et al., 2023; Wang et al., 2023c;
Zhao et al., 2023). However, these studies require
a significant amount of effort to trial and error and
only support limited tasks with specific customiza-
tion. Thus the trained models have high coupling
with specific tasks and cannot generalize to other
tasks. To address these defects, we first enable our
agent to support static planning with LLMs that

do not require extra customization for particular
tasks, and then equip it with the ability to improve
the efficiency of planning by utilizing the agent’s
interaction with the environment.

3 Method

Our agent BAR consists of three key modules: (a)
recursive goal decomposition module; (b) state con-
sistency maintaining module; (c) stage memory
module. The first two modules are designed to pro-
vide robust and consistent planning, and the third
module is designed to further improve planning
efficiency by interacting with the environment.

3.1 Recursive Goal Decomposition

To tackle the challenge brought by the big percep-
tion gap between the agent’s initial state and task
goal, we propose to conduct the planning start-
ing from the terminal state (or goal state). More-
over, since decomposing one task into steps in a
single iteration is extremely challenging, we pro-
pose to decompose each task through multiple itera-
tions. Drawing inspiration from dynamic program-
ming (Bellman, 1954), we introduce sub-goals as
the transition between the task goal and the final
generated plan to alleviate this planning difficulty
in a recursive manner.

In the dynamic programming algorithm (Bell-
man, 1954), the solution to the current problem in
each iteration is composed of two parts —— (1) the
immediately obtainable result and (2) the remain-
ing results that need further solving in subsequent
iterations. Inspired by this, we design a recursive
goal decomposition module to split each task goal
into one step and some sub-goals that need further
decomposition. As shown in Figure 3 (a), given
the task goal “Obtain 1 (diamond pickaxe)”, in
the first iteration we decompose the goal into two
parts: (1) a step needs to be executed to achieve the
goal (“Craft 1 ”) and (2) sub-goals that are nec-
essary to support the execution of the decomposed
step (“Collect 3 ”, “Obtain 2 ”, and “Obtain 1

”).

After finishing one iteration of such a decompo-
sition, the decomposed step is pushed into a “Step
Stack” that stores all the steps to form the final
plan, and the decomposed sub-goals are sequen-
tially queued into a “Goal Queue” that stores the
remaining goals that need to be decomposed in sub-
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Figure 3: Our proposed backward reasoning based agent. The agent consists of three key modules. Module (a)
is used to generate robust plans through recursive goals decomposition. Module (b) is used to eliminate the state
conflicts in different steps by integrating forward and backward reasoning. Module (c) is used to further improve
the efficiency of planning by interacting with the environment. Best viewed on screen.

sequent iterations. In the next iteration, we fetch
a new goal from the head of the Goal Queue and
repeat the above decomposition process to the new
goal. We continuously perform such decomposi-
tions until the Goal Queue is empty. Finally, we
sequentially pop the steps from the Step Stack to
obtain the final plan for the given task. Since there
may be multiple steps of the same type, we fuse
them into a single step by adding up the numbers of
the items in these steps, for example, fuse “Obtain
3 ” and “Obtain 2 ” into “Obtain 5 ”. The
pseudocode of the recursive goal decomposition
module is shown in Algorithm 1.

Through this module, we avoid the big percep-
tion gap between the agent’s initial state and task
goal by decomposing the task goal starting from the
terminal state. And we reduce the difficulty of plan-
ning through multiple iterations of decomposition.
Moreover, the decomposed steps and sub-goals ex-
ist in the form of natural language, without relying
on external predefined steps set or customization
for specific tasks. This enables our agent to handle
the planning of arbitrary tasks.

3.2 State Consistency Maintenance

Although recursive goal decomposition is not hin-
dered by the big perception gap between the agent’s
initial state and task goal, the state conflicts in dif-

Algorithm 1 Recursive Goal Decomposition

Input: Task goal G
1: Initialization: goal_queue GQ = [G],

step_stack SS = [], plan P = []
2: repeat
3: top_goal← GQ.get_top_goal()
4: decomposed_step, sub_goals ← Decom-

pose(top_goal)
5: SS.push(decomposed_step)
6: for i in range (len(sub_goals)) do
7: GQ.push(sub_goals[i])
8: end for
9: until GQ is empty

10: repeat
11: top_step← SS.pop()
12: P .append(top_step)
13: until SS is empty
Output: P

ferent steps during planning makes it not yet a
perfect solution. In fact, by forward reasoning,
the agent can clearly understand its physical states
before and after executing each step. Inspired by
this, we propose to maintain state consistency dur-
ing planning by integrating forward and backward
reasoning.

To achieve this, after generating the initial plan
by module (a), we choose pairs of start and end
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anchor steps from the initial plan, between which
an incorrect plan may be generated due to the state
conflicts between different steps. Then we adopt
forward reasoning based planning to generate the
partial plan between the chosen start and end an-
chor steps. Finally, we integrate the initial plan and
the complementary partial plan to correct possible
mistakes in the initial plan. We design two methods
to choose the proper start and end anchor steps: (I)
step scoring: we rate all the steps in the initial plan
on a scale of 1 to 10, with 1 indicating the next few
steps starting from this step are likely to be wrong
and 10 indicating the next few steps starting from
this step are completely accurate. Then we choose
the steps with a rating below the threshold t as the
start anchor steps and choose the k-th step after
each start anchor step as the end anchor steps. (II)
sliding window: we randomly select the start and
end anchor steps with an interval of k steps from
the initial plan.

As shown in Figure 3 (b), given the initial plan of
task “Obtain 1 ”, by the step scoring method, we
first rate all the steps and find that the rating of step
“Craft 1 (crafting table)” is below the threshold
t. So we choose it as the start anchor step and
choose the k-th step after it (“Craft 1 (furnace)”)
as the end anchor step. Then we adopt forward
reasoning based planning to generate a partial plan
between them. After integrating the initial plan and
the generated partial plan, the agent realizes that
the initial plan ignores one important step: before
mining (stone), it should reach below ground by
digging down where exist. Therefore, the agent
adds the missing step and obtains a refined plan.

Through this module, we force the agent to un-
derstand its physical states before and after exe-
cuting each step and eliminate state conflicts that
might occur between different steps during plan-
ning.

3.3 Stage Memory

In addition to utilizing the reasoning ability of
LLMs, taking advantage of the interaction with
the environment can further improve the planning
efficiency of our agent. Current studies utilize the
execution records of generated plans to support the
planning of other more complex tasks (Zhu et al.,
2023; Wang et al., 2023d; Lin et al., 2023). How-
ever, these studies record the execution results of
entire plans that are not applicable to new tasks

with different task goals, resulting in inefficient
memory utilization.

We solve this problem by designing a stage mem-
ory module. As our agent decomposes the task goal
in multiple iterations, the decomposition result of
each iteration can be used to guide subsequent goal
decomposition for new tasks. To pick out accurate
decomposition results, we execute the plans gen-
erated by modules (a) and (b) in the environment.
The higher the execution success rate, the more ac-
curate the decomposition result of the correspond-
ing plan is. After executing the generated plans, we
record each plan’s execution success rate and cor-
responding goal decomposition results during the
planning, called stage memory. When planning for
new tasks, we retrieve the decomposition results
of the same goals from stage memory with a high
execution success rate and assist in decomposing
the goals in new tasks.

As shown in Figure 3 (c), after executing gener-
ated plans of task “Obtain 1 (fence)”, “Collect 1

(gold ingot)” and so on, we record each plan’s
goal decomposition results and execution success
rate into the stage memory. When planning for a
new task “Collect 1 (redstone)”, we can retrieve
the decomposition result of the same goal “Ob-
tain 1 (iron pickaxe)” from stage memory and
assist in decomposing the goal for this new task.
Therefore, our agent can continuously improve the
efficiency of goal decomposition with the help of
stage memory. See appendix C for more details of
our agent.

Figure 4: Collected tasks on the technology tree in
Minecraft. As the depth increases, the length of the
plans for the tasks gradually increases.
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4 Experiments

To evaluate the effectiveness of our proposed agent
BAR, we conduct extensive experiments to com-
pare the planning performance of BAR with cur-
rent SOTA baselines, on both static and dynamic
planning settings.

4.1 Experimental Setup

Static Planning Setting: To compare the perfor-
mance of different methods, we first conduct static
planning experiments with textual metrics. We con-
structed a dataset consisting of various tasks on the
inherent technology tree in Minecraft. In total, we
collect 53 tasks across 5 distinct groups, ranging
from stone group to gold group with varying plan
lengths, as shown in Figure 4. We hired three ex-
perts with extensive experience in Minecraft to an-
notate the unique decomposed steps for each task
as the ground truth, and all annotations were re-
quired to have been agreed by all three experts. We
only compare the plans generated by modules (a)
and (b) of our agent with other methods for static
planning setting, without interacting with the envi-
ronment. For choosing anchor steps in section 3.2,
we set t to 5 and k to 3, and discuss their perfor-
mances in section 4.4. Each task was performed 10
times by each model and the average results were
recorded. The temperatures of all the LLMs used
are set to 0 for reproducibility. Finally, we report
the mean performance for each group’s tasks.

Dynamic Planning Setting: To further evaluate
the potential of our agent utilizing the interaction
with the environment, we conduct dynamic plan-
ning experiments. We first execute the plans gener-
ated by modules (a) and (b) in section 3 10 times
and record their average execution success rates
into stage memory. Then we conduct planning
again for all tasks with the help of the decomposi-
tion results corresponding to the plans with success
rate ⩾ 0.3 in stage memory. We report the average
results of each group’s tasks. See appendix B for
more detailed experimental settings.

4.2 Static Planning

Baselines: (1) Chain-of-thought (Wei et al.,
2022): utilize forward reasoning based thought
chains to generate the plans step by step. (2) Re-
verse Chain (Zhang et al., 2024): utilize back-
ward reasoning based thought chains to generate

the plans. (3) Self-Refine (Madaan et al., 2024):
utilize feedback from the model itself to refine
the generated plans. (4) Tree-of-thought (Yao
et al., 2024): enable the exploration of multiple
forward reasoning paths and choose the best one.
(5) DEPS (Wang et al., 2023c): enhance the ac-
curacy of planning by integrating the description
and explanation of the plans given by LLM. (6)
Plan-and-Solve (Wang et al., 2023b): utilize in-
context learning to rehearse generated plans and
improve the logical correctness of the plans. (7)
Openai-o1 (OpenAI, 2024): perform a lot of rea-
soning and reflection before outputting the final
results to improve the accuracy of generated plans.
See appendix D for implementation details of the
baselines.

Metrics: We design three textual metrics based
on overlap computation to evaluate the quality of
generated plans: (1) Accuracy: Evaluate whether
each step in the generated plan matches exactly
with the corresponding step in the ground truth at
the same index. (2) F1-Score: Take into account
both the precision and recall of generated plans.
A step is considered correctly generated only if
the pair it forms with its previous step can match
the ground truth. (3) Edit Distance: Evaluate the
minimum number of editing operations needed to
transform the generated plan into the ground truth.
Editing operations involve replacing, inserting, or
deleting a single step in the generated plan. See
appendix B.2 for detailed demonstration.

Results: As shown in Table 1, our agent achieves
SOTA performance on all 5 groups under all three
metrics. This demonstrates that our agent can pro-
vide robust and consistent planning for various
tasks. In addition, we have the following findings:

(1) In addition to the powerful closed-source
model GPT4 (Achiam et al., 2023), with the open-
source Llama-3 model (Dubey et al., 2024) as back-
bone, our agent can still significantly outperform
other baselines that also adopt Llama-3 as back-
bone model. This shows the robustness of our
agent for planning with both closed-source and
open-source LLMs.

(2) Chain-of-thought fails to achieve good per-
formance due to the inherent challenge brought
by the big perception gap between the agent’s ini-
tial state and task goal. This makes it difficult for
an LLM to infer correct steps, and the situation
becomes worse on tasks with longer plans.
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Method
stone iron diamond redstone gold

Acc ↑ F1 ↑ ED ↓ Acc ↑ F1 ↑ ED ↓ Acc ↑ F1 ↑ ED ↓ Acc ↑ F1 ↑ ED ↓ Acc ↑ F1 ↑ ED ↓
Chain-of-thought

- Llama-3-8B 68.97 68.13 2.91 74.73 74.95 3.29 55.21 51.47 8.29 43.69 48.45 8.57 41.28 52.75 9.00
- GPT4 75.82 75.00 2.09 77.26 78.12 2.86 68.47 71.94 4.29 47.66 54.88 7.29 52.54 73.64 5.86

Reverse Chain
- Llama-3-8B 22.50 44.18 5.36 53.28 65.01 4.67 29.47 35.62 9.57 13.64 20.84 12.43 23.81 21.23 12.86
- GPT4 73.33 74.03 2.18 80.87 81.77 2.43 86.49 86.49 2.14 77.88 77.88 3.57 52.17 74.56 5.43

Self-Refine
- Llama-3-8B 65.85 63.70 3.18 69.23 69.58 4.05 40.62 48.40 10.29 40.57 47.70 8.57 37.27 48.92 9.57
- GPT4 75.82 75.00 2.09 74.01 77.80 3.10 74.77 79.18 3.29 56.88 66.64 5.71 52.54 74.09 5.71

Tree-of-thought 46.91 43.92 4.27 33.96 44.46 6.81 38.64 28.43 10.00 20.43 22.23 12.14 35.71 30.95 10.14
DEPS 49.45 46.20 3.73 61.01 50.35 5.24 49.55 41.32 7.86 26.44 25.95 11.00 48.65 39.42 8.14
Plan-and-Solve 45.45 58.29 3.45 76.17 80.29 2.71 66.67 77.02 4.14 42.06 50.67 8.43 63.00 59.93 6.43
Openai-o1 74.73 74.86 2.09 77.98 82.34 2.67 63.96 79.55 3.57 57.52 76.44 3.86 75.42 83.97 3.14
Ours

- Llama-3-8B 78.02 78.02 1.82 74.44 76.00 3.33 72.97 79.67 3.29 59.22 59.10 7.00 60.71 66.38 5.86
- GPT4 87.91 87.91 1.00 82.67 85.02 2.19 87.39 88.23 1.86 80.53 82.22 2.86 85.59 87.34 2.14

Table 1: Results of the static planning experiments. Best results are highlighted in bold, and the second best results
are highlighted with underline. For the adopted metrics, “Acc” refers to Accuracy, “F1” refers to F1-Score, and
“ED” refers to Edit Distance. Larger Accuracy and F1-Score and smaller Edit Distance represent better performance.

(3) Backward reasoning shows its superiority by
comparing the performance of Chain-of-thought
and Reverse Chain. Contrary to Chain-of-thought,
Reverse Chain infers the steps to be executed start-
ing from the terminal state, free from the big per-
ception gap between the agent’s initial state and
task goal. However, simply changing the reasoning
paradigm cannot solve the defects brought by the
state conflicts in different steps during planning,
resulting in a decline in performance.

(4) Self-Refine and DEPS can improve the plans
by obtaining feedback from the LLM. However,
as the initial plans are generated based on forward
reasoning, they face the same challenge as Chain-
of-thought. Moreover, severe error propagation
during multiple turns of refinement may introduce
irrelevant noise to the generated plans, and the un-
stable feedback from the LLM can mislead the
agent’s reasoning to the wrong direction.

(5) Although Tree-of-thought can explore mul-
tiple paths during planning, evaluating the quality
of incomplete plans by LLM is unreliable. More-
over, due to the interference of a large number of
candidate steps, the generated plans are mixed with
unnecessary noisy steps, resulting in poor perfor-
mance.

(6) Plan-and-Solve and Openai-o1 can improve
the plans by previewing the decomposed partial
plans and repeatedly considering more possible
solutions. However, even with more exploration of
different paths and reflection on generated plans,
it is still difficult for an LLM to infer correct steps
that are far from the task goal.

4.3 Dynamic Planning

To further evaluate the potential of our agent uti-
lizing the interaction with the environment, with
the help of our designed stage memory described
in section 3.3, we compare our agent with other
baselines that also utilize the interaction with the
environment for planning.

Baselines: (1) React (Yao et al., 2023): com-
bine reasoning and acting to conduct planning. (2)
Jarvis-1 (Wang et al., 2023d): conduct planning
in Minecraft with both pre-trained knowledge in
LLMs and the game experiences given by the en-
vironment. (3) Ours-Static: our agent with only
modules (a) and (b) in static planning setting, GPT4
as the backbone model. (4) React + Ours-Static:
execute the generated plans by Ours-Static, but
under the reasoning and acting framework of Re-
act.

Metrics: In addition to the textual metrics used in
the static planning experiments, we further record
the success rates and computation time for exe-
cuting the generated plans in the environment (
execution metrics). For a fair comparison, we exe-
cute all evaluated tasks 10 times for and report the
average execution success rates and computation
time for tasks in each group.

Results: As shown in Table 2 and Figure 5, with
the support of the stage memory module, our agent
beats the SOTA performance by utilizing the in-
teraction with the environment, both in terms of
textual metrics and execution metrics. Additionally,
we have the following observations:
(1) Based on our designed stage memory module,
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stone iron diamond redstone gold
Method

Acc ↑ F1 ↑ ED ↓ Acc ↑ F1 ↑ ED ↓ Acc ↑ F1 ↑ ED ↓ Acc ↑ F1 ↑ ED ↓ Acc ↑ F1 ↑ ED ↓
React 70.33 72.53 2.18 89.17 89.17 1.43 71.17 74.77 4.57 57.01 57.49 7.00 57.63 79.75 4.43
Jarvis-1 75.82 75.00 2.09 73.61 76.56 3.38 81.98 81.98 2.86 70.09 71.70 5.00 52.54 74.09 5.71
Ours

- static 87.91 87.91 1.00 82.67 85.02 2.19 87.39 88.23 1.86 80.53 82.22 2.86 85.59 87.34 2.14
- dynamic 92.31 92.31 0.64 96.58 96.92 0.45 88.29 89.23 1.71 86.73 86.73 2.14 86.44 94.93 0.86

Table 2: Results of the dynamic planning experiments by textual metrics. Best results are highlighted in bold.
For the adopted metrics, “Acc” refers to Accuracy, “F1” refers to F1-Score, and “ED” refers to Edit Distance.
“Ours-static” refers to our agent with only modules (a) and (b) in static planning setting, GPT4 as the backbone
model. “Ours-dynamic” refers to our complete agent, including the stage memory module, GPT4 as the backbone
model.

our agent can obtain the feedback of generated
plans by interacting with the environment, thereby
improving the efficiency of subsequent goals de-
composition. With just one round of interaction,
the quality of the generated plans can be signifi-
cantly improved. (2) React and Jarvis-1 can achieve
good performance by interacting with the environ-
ment. However, they cannot solve the big percep-
tion gap between the agent’s initial state and task
goal during planning. Even if the feedback from the
environment can indicate the execution results of
generated plans, no effective information is given
to refine the incorrect plans. (3) Taking the plans
generated by our agent as the reference, React can
significantly improve the execution success rates
of plans. This indicates that high-quality plans are
key in helping agents successfully complete tasks
in the environment. Therefore, relying solely on
environmental feedback to correct the generated
plans is not the most effective solution. A better
approach is to focus on improving the quality of the
generated initial plans by LLM. (4) Environmental
feedback can indeed help improve the quality and
execution success rate of plans. But compared with
React and Jarvis-1, our agent can more effectively
utilize the interaction with the environment through
stage memory, as we can efficiently take advantage
of every piece of decomposition results in all tasks.

4.4 Ablation Study

The effectiveness of our proposed stage memory
module has been verified in section 4.3. Now we
conduct an ablation study to verify the effectiveness
of the state consistency maintaining module and
compare the two methods to choose anchor steps
described in section 3.2. As shown in Figure 6
and 7, our proposed state consistency maintaining
module can significantly improve the quality of
generated plans. Whether using GPT4 or Llama-3
as the backbone model, it can effectively eliminate

Figure 5: Results of the dynamic planning experiments
by execution metrics. The bars represent the average
execution success rates of tasks in different groups, and
the lines represent the average time spent to execute the
takes.

the state conflicts in different steps by integrating
forward and backward reasoning. The open-source
Llama-3 model can benefit more from it because
the initial plans’ quality of Llama-3 is lower than
that of GPT4. Additionally, by comparing the two
methods to select anchor steps, we find that step
scoring can bring greater performance improve-
ment. This is because the sliding window method
chooses too many anchor step pairs and introduces
unnecessary noise into the generated plans.

Figure 6: Results of the ablation study for state con-
sistency maintaining module, GPT4 as the backbone
model.

5 Conclusion

In this paper, we study the planning problem for
complex tasks in the Minecraft environment. We
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Figure 7: Results of the ablation study for state consis-
tency maintaining module, Llama-3-8B as the backbone
model.

argue that, compared with forward reasoning, back-
ward reasoning has the advantage to avoid the per-
ception gap between the agent’s initial state and
the task goal. We further point out a key weakness
of backward reasoning is that it may fail to com-
plete the task because of the state conflicts during
planning. To this end, we propose BAR with: (1)
recursive goal decomposition to make robust back-
ward reasoning, (2) a state consistency maintaining
module to address state conflicts, (3) and a stage
memory module promote more efficient planning.
Experimental results show the superiority of our
agent in both static and dynamic planning, surpass-
ing other baselines by a large margin.

6 Ethical Considerations

The dataset we constructed does not contain any
personal, private or sensitive information and is
only used for research purposes. The participation
of volunteer human annotators in the construction
of the dataset does not constitute an ethical concern,
as all annotators were informed of the nature of
the task, participated voluntarily without coercion,
and no sensitive personal data was collected or
disclosed during the annotation process. Therefore,
we believe that there is no ethical issue with our
work.

7 Limitations

To verify the generalizability of our work, tests on
many further tasks should be undertaken, but we
believe that as a primary step towards Backward
Reasoning based Planning with LLMs, Minecraft
is rich enough to provide many scenarios and tasks
in an open-ended environment that simulates the
real world. As described in section 4.1, we have
collected a large number of tasks with various
difficulty levels in different scenarios to demon-

strate that our method can handle a wide range of
tasks. Moreover, as demonstrated in prior work,
Minecraft is a sufficiently complex environment to
undertake a rich variety of planning experiments.
We leave exploration in other environments as fu-
ture work.
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A Introduction to the Simulation
Environment Minecraft

Minecraft is a simulation environment with ex-
tremely high degrees of freedom and provides a
large number of scenarios and tasks similar to the
real world for agents to explore. In Minecraft, in-
telligent agents can do anything they want in differ-
ent scenarios, such as collecting various materials
and crafting useful tools. Therefore, exploring the
behaviors of agents in Minecraft is of great signif-
icance for serving various applications in the real
world. Minecraft covers diverse types of tasks that
can be executed, with sufficiently complex tasks to
challenge the agents’ abilities. Moreover, the simu-
lation environment is completely under our control,
which facilitates us to conduct a large number of
scientific experiments. Based on these advantages,
we chose Minecraft as the platform to explore the
automatic task completion and planning abilities of
LLM based agents.

B Details of Experimental Settings

B.1 Details of Evaluated Tasks

To evaluate the planning ability of different models,
we constructed a dataset consisting of various tasks
on the technology tree in Minecraft.

Considering that the evaluation metrics are based
on overlap computation to assess the accuracy of
generated plans, we only selected tasks with unique
plans when constructing the dataset. This can make
sure that the ground truth for each task is unique.
For a few flexible tasks, we first standardize the
plans generated by the model according to our pre-
defined unified standards and then compare them
with the ground truth to ensure fair comparison
(e.g., always ensure that the step “craft 1 craft-
ing_table” is before the step “craft 1 stick”).

Details of the chosen tasks for evaluation are
listed in Table 3.

Table 3: Details of Evaluated Tasks

Group Task Num Avg Plan Length Example
Stone 11 8.27 obtain 1

Iron 21 13.27 obtain 1
Diamond 7 15.86 obtain 1
Redstone 7 16.14 obtain 1

Gold 7 16.86 obtain 1

B.2 Details of Adopted Textual Metrics

We design three textual metrics based on overlap
computation to evaluate the quality of generated
plans. The computation demonstration of the three
metrics is shown in Figure 8.

Figure 8: Computation demonstration of the three
adopted textual metrics.

B.3 Details of the Simulation Environment

B.3.1 High-level Steps Encapsulation

As our work focuses on task planning instead
of generating fine-grained machine instructions,
based on the work of Jarvis-1 (Wang et al., 2023d),
we utilize our game experience and knowledge
of Minecraft to encapsulate complex operations
into high-level steps that align with the steps in
generated plans by our agent and baseline models.
The action space in Minecraft includes keyboard
and mouse operations that are usually performed
by humans. For example, using the keyboard to
control the agent’s movement, jumping, opening
or closing the inventory, and selecting items from
the hotbar. Mouse movements are used to adjust
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the agent’s view, including horizontal rotation and
pitch. Mouse clicks are used for attacking mobs,
breaking blocks, and interacting with crafting_table
and furnace. When using crafting_table and fur-
nace, precise item selection and manipulation are
needed with fine-grained mouse movement control,
which cannot be reliably accomplished by current
low-level controller models.

To address this problem and make sure the gen-
erated plans can be successfully executed in the
environment, we propose to encapsulate the fine-
grained keyboard and mouse operations into three
types of frequently-used steps: craft, smelt,
and equip. Heuristic rules are applied to the three
types of steps for encapsulation. For another two
types of important steps mine and dig down,
we use the SOTA low-level controller model Mine-
Dreamer(Zhou et al., 2024) to directly execute the
natural language instructions. Details of the action
space in Minecraft and the encapsulation of the
above mentioned steps are listed in Table 4 and
Table 5.

B.3.2 Environment Setting

In dynamic planning experiments, to make sure
the comparison between different methods is fair
and the agent can successfully execute the gener-
ated plans, we need to control the environment to
remove the influence of irrelevant factors in the
environment. For example, for the task “Craft 1

(diamond pickaxe)”, when executing the step
“Mine 3 (diamond)”, the agent may not be able
to mine enough diamonds even if the agent uses
the right tool to mine in below the ground because
the storage of diamonds below the ground is too
scarce.

To solve this problem, we conduct two types of
initialization in the environment:

Global Environment Initialization. The rules
used to set global setting are listed as follows:

• We set the agent to be born in a fixed position in
a fixed scene with an empty inventory each time.
Therefore, the agent executes the plan starting
from a fixed initial state every time.

• We set the agent to have a bright field of view
even in the dark. Therefore, the execution of
steps will not be affected by the darkness when
the agent is below the ground.

• We set the environment to peaceful mode so that

no other creatures (such as zombies) can interfere
with the agent to execute the plans.

• We set that the environment is always in day-
light. So the agent can better execute the plans
on above the ground with adequate lighting.

Ore Distribution Initialization. To ensure that
there is sufficient ore below the ground for the
agent to mine, we place some ore below the ground
when initializing the environment, so that the agent
is more likely to mine the required ore as long as
the plans are correct. The command used to place
the ore is listed as follows:

/fill <from_x> <from_y> <from_z> <to_x>
<to_y> <to_z> minecraft:ore

Specifically, we implemented an ore distribution
algorithm to place the ore. This algorithm gener-
ates multiple concentric square layers of ore around
the agent’s born position in below the ground. In
this way, there will be enough ore below the ground
for the agent to mine.

C Details of Our Agent

We list the prompts used in our designed agent as
follows.

To conduct the goal decomposition by LLM, we
prompt the LLM to decompose each goal into step
and sub-goals. For a fair comparison, keeping con-
sistent with other baselines, we only provide the
recipe information of the target item required by
the task goal, excluding the intermediate sub-goals.
Prompt used for goal decomposition in section 3.1
is as follows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft,
and you need to decompose the goal into
a single step and a list of sub goals to
achieve. Output the reasoning thought and
the decomposed result. You can follow the
history dialogue to make the decomposition.

User:
========
Goal: collect 3 stone.
Thought:
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Table 4: Details of the action space in Minecraft.

Action Description
Forward Move forward. Press "W" in keyboard.

Back Move backward. Press "S" in keyboard.
Left Move left. Press "A" in keyboard.

Right Move right. Press "D" in keyboard.
Jump Jump up. Press "Space" in keyboard.

Toggle Inventory Open or close the inventory GUI. Press "E" in keyboard.
Attack Attack items. Click left button in mouse.

Use Use items in front of the agent. Click right button in mouse.
Yaw Move agent’s view in the horizontal direction.
Pitch Move agent’s view in the vertical direction.

Hotbar Select the item in the hotbar to equip it to the agent’s hand. Press 1-9 in keyboard.
Table 5: Details of the encapsulation of used steps in our experiments.

Step Description
Craft Take the crafting table from the inventory. Place it on the ground. Open the crafting table,

select the required materials based on the recipe to craft the target item. Take the crafted
target item. After that, close the crafting table, destroy the crafting table, and return it to the
inventory.

Smelt Take the furnace from the inventory. Place it on the ground. Open the furnace, select the
required materials based on the recipe to smelt the target item. Take the smelted target item.
After that, close the furnace, destroy the furnace, and return it to the inventory.

Equip Locate the cell of the target item in the inventory or hotbar and equip it to the agent’s hand.
Mine Directly execute the natural language instructions using the SOTA low-level controller model

MineDreamer (Zhou et al., 2024).
Dig down Directly execute the natural language instructions using the SOTA low-level controller model

MineDreamer (Zhou et al., 2024).

To collect 3 stone, the last step is to mine
3 stone with wooden_pickaxe, as mining
the stone requires at least wooden_pickaxe.
And the previous sub goals are to obtain
1 wooden_pickaxe and dig down with
wooden_pickaxe, because stone only
appears at the below ground level. Based on
these analysis, the decomposed result is as
follows:
Decomposed Step:
Mine 3 stone with wooden_pickaxe
Decomposed Sub Goals:
1. Obtain 1 wooden_pickaxe
2. Dig down with wooden_pickaxe
========

========
Goal: {new goal}
Thought:

Assistant:

Prompt used to rate for all the steps in the initial
plan in section 3.2 is as follows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft
and the generated initial plan to achieve this
goal. You need to rate for all the steps in
the initial plan to evaluate the correctness
of the steps on a scale of 1 to 10, where
1 indicating the next few steps starting
from this step is likely to be wrong and 10
indicating the next few steps starting from
this step is completely accurate.

User:
========
Goal: collect 3 stone.
Initial Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
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4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Mine 3 stone with wooden_pickaxe
Thought:
As the stone only exists in below the ground,
when executing the step “Mine 3 stone
with wooden_pickaxe”, the agent should be
below the ground. However, before this step
the agent is gathering materials and crafting
items above the ground. So the latter half
of the steps in the initial plan may not be
executed successfully.
Rating:
1. Mine 3 log with barehand - 10
2. Craft 9 planks - 8
3. Craft 2 stick - 5
4. Craft 1 crafting_table - 3
5. Craft 1 wooden_pickaxe - 3
6. Mine 3 stone with wooden_pickaxe - 5
========

========
Goal: {goal of new task}
Initial Plan:
{generated initial plan}
Thought:

Assistant:

Prompt used to complement the partial plan be-
tween the given start and end anchor steps in sec-
tion 3.2 is as follows:

System:
You are a helpful assistant in Minecraft.
I will give you a task goal to achieve in
Minecraft and a pair of start and end anchor
steps chosen from the corresponding plan
to achieve the task goal. You need to
complement the partial plan between the
start and end anchor steps to help achieve
the task goal.

User:
========
Goal: collect 3 stone.
Start Anchor Step: Craft 1 crafting_table
End Anchor Step: Mine 3 stone with
wooden_pickaxe

Thought:
To achieve the task goal “collect 3
stone”, starting from the step “Craft 1
crafting_table”, next I need to craft 1
wooden_pickaxe to mine stone. But
before mining stone, I need to reach below
ground first as stone only exists under-
ground. Finally I can mine 3 stone with
wooden_pickaxe. Based on these analysis,
the partial plan should be as follows:
Partial Plan:
Craft 1 crafting_table
Craft 1 wooden_pickaxe
Dig down with wooden_pickaxe
Mine 3 stone with wooden_pickaxe
========

========
Goal: {goal of new task}
Start Anchor Step: {given start anchor step}
End Anchor Step: {given end anchor step}

Thought:

Assistant:

Prompt used to integrate the initial plan and the
complementary partial plan is as follows:

System:
You are a helpful assistant in Minecraft. I
will give you an initial plan to achieve a goal
in Minecraft and a complementary partial
plan. You need to compare the two plans
and correct possible mistakes in the initial
plan.

User:
========
Goal: collect 3 stone.

Initial Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Mine 3 stone with wooden_pickaxe

Complementary Partial Plan:

6140



4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Dig down with wooden_pickaxe
7. Mine 3 stone with wooden_pickaxe

Thought:
The initial plan ignores one important step
“Dig down with wooden_pickaxe” that is
presented in the complementary partial plan.
As the stone is in below ground, the agent
should reach below ground first and then
mine the stone.

Corrected Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Dig down with wooden_pickaxe
7. Mine 3 stone with wooden_pickaxe
========

========
Goal: {goal of new task}

Initial Plan:
{generated initial plan}

Complementary Partial Plan:
{complementary partial plan}

Thought:

Assistant:

D Details of Baseline Models

In this section, we will provide the details of the
baselines used in our experiments.

D.1 Baselines in Static Planning

Baselines in static planning do not interact with the
environment. The plans are generated by prompt-
ing LLMs with specific modeling methods in the
original studies. We adopt “Meta-Llama-3-8B-
Instruct” 2 and “OpenAI-gpt-4” as the backbone

2https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

model for “Chain-of-thought”, “Reverse Chain”,
and “Self-Refine”.

Chain-of-Thought (Wei et al., 2022). Chain-of-
Thought utilizes forward reasoning based thought
chains to generate the plans step by step. Prompt
used for Chain-of-Thought is as follows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft,
and you need to decompose the goal into
a sequence of steps to help achieve the
goal. Output the reasoning thought and the
decomposed result. You can follow the
history dialogue to make the decomposition.

User:
========
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.

Thought:
Now let’s think step by step. I should first
mine 3 log with barehand. Then use 3
log to craft 9 planks. Then use 2 planks
to craft 2 stick. Then use 4 planks to
craft 1 crafting_table. Then use 3 planks
and 2 stick to craft 1 wooden_pickaxe
on 1 crafting_table. Then dig down with
wooden_pickaxe. Then mine 3 stone with
wooden_pickaxe. Based on the above
reasoning, the plan to achieve the goal is:
Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Dig down with wooden_pickaxe
7. Mine 3 stone with wooden_pickaxe
========

========
Goal: {goal of new task}.
Recipe: {recipe of new task}.

Thought:

Assistant:
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Reverse Chain (Zhang et al., 2024). In contrast
to Chain-of-thought, Reverse Chain utilizes back-
ward reasoning based thought chains to generate
the plans. Prompt used in Reverse Chain is as fol-
lows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft,
and you need to decompose the goal into
a sequence of steps. Output the reasoning
thought and the decomposed result. You
can follow the history dialogue to make the
decomposition.

User:
========
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.

Thought:
Now let’s think step by step by backward
reasoning. The final goal is to collect
3 stone. To collect 3 stone, I need to
mine 3 stone with wooden_pickaxe. stone
usually exists underground, so I need
to dig down with wooden_pickaxe. To
obtain 1 wooden_pickaxe, I need to craft
1 wooden_pickaxe using 3 planks and
2 stick on 1 crafting_table. To obtain
1 crafting_table, I need to craft 1 craft-
ing_table using 4 planks. To obtain 2 stick,
I need craft 2 stick using 2 planks on 1
crafting_table. So I totally need 9 planks.
To obtain 9 planks, I need to craft 9 planks
using 3 log, so I need to mine 3 log first.
Mining 3 log can be done with barehand,
so I start from here. Based on the above
reasoning, the plan to complete this task is:
Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Dig down with wooden_pickaxe
7. Mine 3 stone with wooden_pickaxe
========

========

Goal: {goal of new task}.
Recipe: {recipe of new task}.

Thought:

Assistant:

Self-Refine (Madaan et al., 2024). Self-Refine
first generates an initial plan using the same prompt
as Chain-of-Thought. The generated initial plan
is then sent to the same LLM to obtain feedback.
Finally, the feedback and the generated initial plan
are sent to the same LLM to produce a refined plan.
This process is repeated until the LLM’s feedback
indicates that the generated plan is totally correct.

Prompt used to generate the feedback for the
already generated plan is as follows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal and the corresponding
plan to achieve it in Minecraft, and you
need to check the correctness of the plan
and output the feedback. You need to output
"Correct" or "Incorrect" first. If outputting
"Incorrect", then output the detailed analysis
and list the mistakes.

User:
========
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.

Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 wooden_pickaxe
5. Dig down with wooden_pickaxe
6.Mine 3 log with wooden_pickaxe
7. Mine 3 stone with wooden_pickaxe

What’s wrong with the plan? Please give me
the feedback and list the mistakes if the plan
is wrong.

Incorrect. Step 4 "Crafting 1
wooden_pickaxe" must be done on a
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crafting_table. But the plan does not include
"Craft 1 crafting_table" before Step 4, so
the first mistake is "ignoring obtaining
one crafting_table before using it to craft
other tools". Step 6 "Mine 3 log with
wooden_pickaxe" is executed after Step 5
"Dig down with wooden_pickaxe". But log
only exists on above the ground. So the
second mistake is "collecting materials on
above the ground when the agent is already
in below the ground".

Mistake:
1. Ignoring obtaining one crafting_table
before using it to craft other tools.
2. Collecting materials on above the ground
when the agent is already in below the
ground.
========

========
Goal: {goal of new task}
Recipe: {recipe of new task}

Plan:
{generated initial plan of new task}

What’s wrong with the plan? Please give me
the feedback and list the mistakes if the plan
is wrong.

Assistant:

Prompt used to refine the initial plan based on
the feedback given by LLM:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft,
the initial plan of this goal and the feedback
about the initial plan. You need to correct
the initial plan according to the feedback
and output the refined plan.

User:
========
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.

Initial Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 wooden_pickaxe
5. Dig down with wooden_pickaxe
6. Mine 3 log with wooden_pickaxe
7. Mine 3 stone with wooden_pickaxe

Feedback:
Incorrect. Step 4 "Crafting 1
wooden_pickaxe" must be done on a
crafting_table. But the plan does not include
"Craft 1 crafting_table" before Step 4, so
the first mistake is "ignoring obtaining
one crafting_table before using it to craft
other tools". Step 6 "Mine 3 log with
wooden_pickaxe" is executed after Step 5
"Dig down with wooden_pickaxe". But log
only exists on above the ground. So the
second mistake is "collecting materials on
above the ground when the agent is already
in below the ground".

Mistake:
1. Ignoring obtaining one crafting_table
before using it to craft other tools.
2. Collecting materials on above the ground
when the agent is already in below the
ground.

Refined Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Dig down with wooden_pickaxe
7. Mine 3 stone with wooden_pickaxe
========

========
Goal: {goal of new task}
Recipe: {recipe of new task}

Initial Plan:
{initial plan of new task}

Feedback:
{feedback of the initial plan}

6143



Refined Plan:

Assistant:

Tree-of-thought (Yao et al., 2024). Tree-of-
thought generates the plan for each task by explor-
ing multiple possible paths simultaneously. Start-
ing from the initial state, Tree-of-thought samples
three possible steps each time that can be executed
next. In our experiments, we adopt “OpenAI-gpt-4”
as the backbone model. We set the temperature
of LLM to 0.7 and sample for three times to get
three possible next step each time. During plan-
ning, Tree-of-thought maintain multiple generated
plans and select the best one through LLM rating.
The generation of each plan ends when inferring
the step to create the required item of the task goal.

The prompt used to sample possible steps is
shown as follows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft,
the recipe for the required item of the goal
and the already generated partial plan. You
need to generate the next step for current
plan.

User:
========
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.
Already Generated Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
Next Step:
4. Craft 1 crafting_table
========

========
Goal: {goal of new task}
Recipe: {recipe of new task}
Already Generated Plan:
{generated partial plan}
Next Step:

Assistant:

After generating multiple candidate plans, the
best plan is selected by taking the average result of
three times of rating by LLMs. The prompt used to
rate generated plan is shown as follows:

System:
Evaluate if the given plan can help to reach
the goal (sure/likely/impossible)

User:
========
Goal: obtain 1 wooden_pickaxe.
Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. craft 1 wooden_pickaxe
Evaluation:
sure
========

========
Goal: obtain 1 wooden_pickaxe.
Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. craft 1 wooden_pickaxe
Evaluation:
impossible
========

========
Goal: {goal of new task}
Plan: {generated plan of new task}
Evaluation:

Assistant:

DEPS (Wang et al., 2023c). DEPS first gener-
ates the initial plan and then re-generates the plan
through integrating the description and the expla-
nation of the plan given by large language models.
We adopt “OpenAI-gpt-4” as the backbone model.

DEPS first generates the initial plan by in-
context learning in a code style:
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System:
You are a helper agent in Minecraft. You
need to generate the sequences of steps for a
certain task in Minecraft.

User:
========
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.
The code for collecting 3 stone is as follows:
def collect_3_stone( ):
1 mine({’log’:3}, null);
1 craft({’planks’:9}, null);
1 craft({’stick’:2}, null);
1 craft({’crafting_table’:1}, null);
1 craft({’wooden_pickaxe’:1}, null);
1 dig_down(wooden_pickaxe);
1 mine({’stone’:3}, wooden_pickaxe);
1 return ‘3 stone’;
========

========
Goal: {goal of new task}
Recipe: {recipe of new task}

Assistant:

Then, DEPS fixes the possible mistakes in the
initial plan based on the description and the expla-
nation of the initial plan:

System:
You are a helper agent in Minecraft. You
need to generate the sequences of steps for a
certain task in Minecraft.

User:
========
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.
The code for collecting 3 stone is as follows:
def collect_3_stone( ):
1 mine({’log’:3}, null);
1 craft({’planks’:9}, null);
1 craft({’stick’:2}, null);
1 craft({’wooden_pickaxe’:1}, null);
1 dig_down(wooden_pickaxe);
1 mine({’stone’:3}, wooden_pickaxe);

1 return ‘3 stone’;
Descriptor: The step
“craft({’wooden_pickaxe’:1}, null)” will not
be executed successfully.
Explainer: Because I need a crafting_table
to craft the wooden_pickaxe.
RePlanner: The code for collecting 3 stone
is as follows:
def collect_3_stone( ):
1 mine({’log’:3}, null);
1 craft({’planks’:9}, null);
1 craft({’stick’:2}, null);
1 craft({’crafting_table’:1}, null);
1 craft({’wooden_pickaxe’:1}, null);
1 dig_down(wooden_pickaxe);
1 mine({’stone’:3}, wooden_pickaxe);
1 return ‘3 stone’;
========

========
Goal: {goal of new task}
Recipe: {recipe of new task}
generated code for new task
Assistant:

Plan-and-Solve (Wang et al., 2023b). Plan-and-
Solve enables the large language model to generate
the intermediate planning results before outputting
the final plan. Plan-and-Solve can calculate the
execution results of generated plans by in-context
learning and thus enhances the accuracy of gen-
erated plans. We adopt “OpenAI-gpt-4” as the
backbone model. The prompt used to generate the
plans is shown as follows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft,
the recipe for the required item of the goal.
You need to generate the plan to achieve the
task goal.

User:
========
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.

Let’s first understand the task and devise a
plan to achieve the task goal.
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Then, let’s carry out the plan and achieve
the task goal step by step.

Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Dig down with wooden_pickaxe
7. Mine 3 stone with wooden_pickaxe

Task goal achieving:
1. I obtain 3 log by mining with barehand
2. I obtain 9 planks using 3 log
3. I obtain 2 stick using 2 planks, I have 7
planks left
4. I obtain 1 crafting_table using 4 planks, I
have 3 planks left
5. I obtain 1 wooden_pickaxe using 2 stick
and 3 planks on 1 crafting_table using, I
have 0 planks left and 0 stick left
6. I reach below the ground by digging
down with wooden_pickaxe
7. I obtain 3 stone by mining with
wooden_pickaxe

In conclusion, I have achieved the task goal
by obtaining 3 stone.
========

========
Goal: {goal of new task}
Recipe: {recipe of new task}

Let’s first understand the task and devise a
plan to achieve the task goal.
Then, let’s carry out the plan and achieve
the task goal step by step.

Plan:

Assistant:

Openai-o1 (OpenAI, 2024). Openai-o1 uses
the same prompt as Chain-of-thought. However,
Openai-o1 will conduct more exploration on differ-
ent paths and more refinements before outputting
the final plans.

D.2 Baselines in Dynamic Planning

In dynamic planning experiments, the agent needs
to interact with the environment and obtain the
feedback to help conduct the planning. Therefore,
the baseline models need to inform LLMs the feed-
back from the environment through prompts and
utilize LLMs’ reasoning ability to help generate
proper plans.

React (Yao et al., 2023). React first conduct rea-
soning based on the task goal and the observation
from the environment to infer the next few steps
to be executed. Then it executes the inferred steps
in the environment to obtain new observation, and
repeats the reasoning and execution process until
achieving the task goal. We adopt “OpenAI-gpt-4”
as the backbone model. The used prompt is shown
as follows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft,
and you need to reason what steps to be
executed next based on the task goal and
the observation from the environment.
Output the reasoning thought and the next
few steps. After executing these steps
in the environment, you will receive the
observation from the environment. Then
you need to reflect the execution results and
continue to output the next few steps to be
executed.

========
User:
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.

Assistant:
Reasoning:
There is nothing in my inventory. I need
to collect stone, so I first need to craft a
wooden_pickaxe, arrive at below the ground,
and mine the stone. Therefore, I need to
craft the wooden_pickaxe.
Steps:
Mine 2 log with barehand
Craft 8 planks
Craft 2 stick
Craft 1 crafting_table
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Craft 1 wooden_pickaxe

User:
Observation:
Mine 2 log with barehand completed, there
are 2 log in my inventory. Craft 8 planks
completed, there are 0 log, 8 planks in my
inventory. Craft 2 stick completed, there are
6 planks, 2 stick in my inventory. Craft 1
crafting_table completed, there are 2 planks,
2 stick, 1 crafting_table in my inventory.
Craft 1 wooden_pickaxe failed.

Assistant:
Reasoning:
I failed crafting 1 wooden_pickaxe since
there is no enough planks in my inventory.
So I need to mine 1 more log to craft more
planks. Then execute the following steps:
Steps:
Mine 1 log with barehand
Craft 1 planks
Craft 1 wooden_pickaxe

User:
Observation:
Mine 1 log with barehand completed,
there are 1 log, 2 planks, 1 crafting_table,
2 stick in my inventory. Craft 1 planks
completed, there are 0 log, 3 planks, 1
crafting_table, 2 stick in my inventory. Craft
1 wooden_pickaxe completed, there are 1
crafting_table, 1 wooden_pickaxe in my
inventory.

Assistant:
Reasoning:
I have 1 wooden_pickaxe in my inventory
now, I can dig down to arrive at below the
ground to mine stone. Therefore I need to
dig down with wooden_pickaxe and mine
stone]
Steps:
Dig down with wooden_pickaxe
Mine 3 stone with wooden_pickaxe

User:
Observation:
Dig down with wooden_pickaxe com-
pleted, there are 1 crafting_table, 1

wooden_pickaxe in my inventory. I am
already below the ground. Mine 3 stone
with wooden_pickaxe completed, there are
1 crafting_table, 1 wooden_pickaxe, 3 stone
in my inventory. Goal achieved.
========

========
User:
Goal: {goal of new task}
Recipe: {recipe of new task}

Assistant:

Jarvis-1 (Wang et al., 2023d). Jarvis-1 can adjust
the plans based on the execution results from the
environment. Through deep thinking, it can find
the reason for the failure of previous plan and gen-
erate the corrected plan based on the thinking. We
adopt “OpenAI-gpt-4” as the backbone model. The
prompt used by Jarvis-1 is shown as follows:

System:
You are a helpful assistant in Minecraft. I
will give you a goal to achieve in Minecraft
and the initial plan to achieve the goal.
After executing the plan in the environment,
you will receive the observation about
the execution results of the plan from the
environment. You need to reflect the reason
for the failure if the plan cannot be executed
successfully and output corrected plan based
on your reflection. Repeating the above
process until the goal being achieved.

========
User:
Goal: collect 3 stone.
Recipe: stone can be mined below the
ground with at least wooden_pickaxe.

Initial Plan:
1. Mine 2 log with barehand
2. Craft 8 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Mine 3 stone with wooden_pickaxe

Observation:
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Mine 2 log with barehand completed, there
are 2 log in my inventory. Craft 8 planks
completed, there are 0 log, 8 planks in my
inventory. Craft 2 stick completed, there are
6 planks, 2 stick in my inventory. Craft 1
crafting_table completed, there are 2 planks,
2 stick, 1 crafting_table in my inventory.
Craft 1 wooden_pickaxe failed.

Assistant:
Thinking:
I failed crafting 1 wooden_pickaxe since
there is no enough planks in my inventory.
So I need to mine 1 more log to craft more
planks.
Corrected Plan:
1. Mine 3 log with barehand
2. Craft 9 planks
3. Craft 2 stick
4. Craft 1 crafting_table
5. Craft 1 wooden_pickaxe
6. Mine 3 stone with wooden_pickaxe

User:
Observation:
Mine 3 log with barehand completed, there
are 3 log in my inventory. Craft 9 planks
completed, there are 0 log, 9 planks in my
inventory. Craft 2 stick completed, there are
7 planks, 2 stick in my inventory. Craft 1
crafting_table completed, there are 3 planks,
2 stick, 1 crafting_table in my inventory.
Craft 1 wooden_pickaxe completed, there
are 1 crafting_table, 1 wooden_pickaxe in
my inventory. Goal achieved.
========

========
User:
Goal: {goal of new task}
Recipe: {recipe of new task}

Initial Plan:
{initial plan of new task}

Observation:
{observation from the environment}

Assistant:

Figure 9: The performance of different models on plans
of different lengths. Best viewed on screen.

Figure 10: Sample diversity of different models on tasks
in different groups. Best viewed on screen.

E Supplementary Experiments

E.1 Advantage Analysis

To demonstrate the advantages of our proposed
agent over other baselines, we evaluate the sensi-
tivity of different models to plan length and the
stability of inferring intermediate steps during plan-
ning. We first evaluate the planning performance
of different models on plans of different lengths.
As shown in Figure 9, the performance of baseline
models varies significantly with the increase of the
plan length, exhibiting extreme instability, espe-
cially for plans from the length of 7 to the length of
12. In contrast, our agent shows no significant vari-
ation in performance when the length of the plans
increases. This is because our agent can narrow
down the situations that the agent needs to consider
for goal decomposition through the recursive goal
decomposition module. Therefore, the difficulty
of goal decomposition will not increase when the
plans become longer, enabling our agent to conduct
robust planning for various tasks.

Then we evaluate the stability of immediate step
inference for different models. For tasks in each
group, we provide a partial plan in the ground truth
and require the model to generate the next three
steps. For each task, we sample 50 generations for
each model and calculate how many different three
steps there are in these 50 generations, denoted as
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diversity value. As shown in Figure 10, compared
to other baselines, our agent consistently maintains
low diversity for the planning of different tasks.
This demonstrates the stability of our agent in goal
decomposition and plan generation.

Figure 11: Results of ablation study for state consistency
maintaining, GPT4 as the backbone model, under the
Accuracy metric.

Figure 12: Results of ablation study for state consistency
maintaining, Llama-3-8B as the backbone model, under
the Accuracy metric.

Figure 13: Results of ablation study for state consistency
maintaining, GPT4 as the backbone model, under the
Edit Distance metric.

Figure 14: Results of ablation study for state consistency
maintaining, Llama-3-8B as the backbone model, under
the Edit Distance metric.

E.2 Supplementary Ablation Study

We show part of the experimental results here that
are not presented in the main part due to space lim-
itations. For the ablation study in section 4.4, in
addition to F1-Score, we also present the results un-
der Accuracy and Edit Distance metrics. As shown
in Figure 11 and Figure 12, under the Accuracy
metric, our proposed state consistency maintaining
module can significantly improve the quality of
generated plans. Moreover, As shown in Figure 13
and Figure 14, under the Edit Distance metric, we
can still draw the same conclusion because the pro-
posed module can reduce the difference between
generated plans and the ground truth. In addition,
for the two methods to select anchor steps, the step
scoring method can bring greater performance im-
provement, as the sliding window method chooses
too many anchor step pairs and brings unnecessary
noise to the plans.
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