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Abstract

The filter bubble is a notorious issue in Rec-
ommender Systems (RSs), characterized by
users being confined to a limited corpus of in-
formation or content that strengthens and am-
plifies their pre-established preferences and be-
liefs. Most existing methods primarily aim to
analyze filter bubbles in the relatively static
recommendation environment. Nevertheless,
the filter bubble phenomenon continues to
exacerbate as users interact with the system
over time. To address these issues, we pro-
pose a novel paradigm, Hypergraph-Aware
Multi-Grained Preference Learning to Burst
Filter Bubbles in Conversational Recommen-
dation System (HyperCRS), aiming to burst
filter bubbles by learning multi-grained user
preferences during the dynamic user-system
interactions via natural language conversa-
tions. HyperCRS develops Multi-Grained Hy-
pergraph (user-, item-, and attribute-grained)
to explore diverse relations and capture high-
order connectivity. It employs Hypergraph-
Empowered Policy Learning, which includes
Multi-Grained Preference Modeling to model
user preferences and Preference-based Deci-
sion Making to disrupt filter bubbles during
user interactions. Extensive results on four
publicly CRS-based datasets show that Hy-
perCRS achieves new state-of-the-art perfor-
mance, and the superior of bursting filter bub-
bles in the CRS. Our code is available at
https://github.com/zysensmile/HyberCRS.

1 Introduction

Conversational Recommendation Systems (CRSs)
(Zheng et al., 2024c,d; Qian et al., 2023) are pow-
erful tools that enable the provision of personal-
ized recommendations to assist users in finding
desirable items, which have been widely applied
in diverse domains such as e-commerce (Liu et al.,
2023), music recommendation (Jin et al., 2023b).

†Corresponding author.

Figure 1: Illustration of the dynamic user-system feed-
back loop and filter bubble. The filter bubble will be
continually exacerbated when the user chats with the
system over time.

Nevertheless, CRSs usually face the challenge
of filter bubbles, which refer to the phenomenon
where users are overexposed to a limited range of
information and suggestions that align with their
dominant preferences during user-system interac-
tions (Gao et al., 2022). Worse still, the filter bub-
ble issue will be further increasingly intensified
as users interact with the system over time. Thus,
it is crucial to mitigate filter bubbles in dynamic
user-system feedback loop.

Recently, most methods (Li et al., 2023; Ribeiro
et al., 2020; Hussein et al., 2020; Liu et al., 2021;
Nguyen et al., 2014; Wang et al., 2022; Gao et al.,
2022) have primarily focused on filter bubbles in
static recommendation settings, often neglecting
the negative impacts of dynamic user-system feed-
back loops. These studies identify core factors
contributing to filter bubbles through extensive ex-
periments on large-scale Recommender Systems
(RSs). Two key factors have emerged: first, RS
learning mechanisms exacerbate filter bubbles by
reinforcing users’ prevailing tendencies; second,
users with limited preference diversity are more
likely to become trapped in filter bubbles. While
these studies offer valuable insights, they do not ef-
fectively address the negative effects of dynamic in-
teractions. Some recent research (Gao et al., 2022)
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has attempted to mitigate filter bubbles in Interac-
tive Recommender Systems (IRSs) by considering
user-system interactions, but these methods fail to
allow users to express their thoughts through natu-
ral language conversations.

Despite their effectiveness, most existing meth-
ods have two major limitations: 1) Interaction
Manner. Most methods primarily focus on miti-
gating filter bubbles for offline recommendations
in a static manner, overlooking the negative im-
pact of the dynamic user-system feedback loop, as
shown in Fig.1. In reality, filter bubbles often in-
tensify as users interact with the system over time
(Steck, 2018; Zheng et al., 2024a). While some
studies (Gao et al., 2022; Li et al., 2023; Wang et al.,
2022) begin to address this issue in the interactive
setting, they still rely on the rigid manners, e.g.,
click or skip, like or dislike, limiting users’ ability
to express their diverse and complex preferences
through natural language. 2) Preference Explo-
ration. Many previous researches (Hussein et al.,
2020; Liu et al., 2021; Nguyen et al., 2014; Ribeiro
et al., 2020) show that modeling diverse user pref-
erences is key to breaking filter bubbles. Thus, they
leverage additional knowledge sources to capture a
broad spectrum of preferences. Knowledge Graphs
(KGs) (Zhou et al., 2020d,a; Liao et al., 2018; Chen
et al., 2019; Lin et al., 2020) are commonly used
for their rich relationships. However, KGs are lim-
ited to simple pairwise connections, which restrict
preference learning and complicate the capture of
higher-order relationships. Thus, leveraging more
powerful graph structures (e.g., hypergraphs) is
essential for effectively learning diverse user pref-
erences and breaking filter bubbles.

To address these issues, we proposed a novel
end-to-end framework, Hypergraph-Aware Multi-
Grained Preference Learning to Burst Filter Bub-
bles in Conversational Recommendation System
(HyperCRS), aiming to learn multi-grained user
preferences for bursting filter bubbles when users
interact with the system over time via natural lan-
guage conversations. Considering the constraint of
KG edges being limited to connecting two nodes,
HyperCRS first builds Multi-Grained Hypergraph
(i.e., user-, item-, and attribute-grained hypergraph)
to explore varying types of multiplex relations
closely related to user preferences and capture high-
order connectivity information. Afterwards, Hy-
perCRS devises Hypergraph-Aware Policy Learn-
ing, which incorporates Multi-Grained Preference
Modeling to effectively capture diverse user prefer-

ences based on multi-grained hypergraphs, along-
side Hypergraph-based Decision Making to auto-
matically mitigate filter bubbles in the CRS by uti-
lizing the learned diverse preferences when the
user interacts with the system over time continu-
ously. Lastly, HyperCRS aims to prevent users
from becoming trapped in personalized informa-
tion bubbles, promoting a more diverse and inclu-
sive recommendation experience. To validate its
effectiveness, we conduct empirical evaluations of
our proposed HyperCRS on four widely-adopted
CRS-based benchmarks. The results demonstrate
that HyperCRS achieves new state-of-the-art per-
formance, highlighting its superiority in breaking
filter bubbles within the CRS.

Overall, our main contributions are included:
• To the best of our knowledge, this is the first work

to break filter bubbles in the attributed-based
multi-round CRS by learning diverse preferences
based on a series of constructed hypergraphs.

• We proposed an end-to-end framework, Hyper-
CRS, aiming to construct multi-grained hyper-
graphs to capture high-order user relation pat-
terns for exploring diverse preferences, thereby
bursting filter bubbles in the CRS.

• Extensive experiments on four publicly widely-
adopted CRS-based datasets show that Hyper-
CRS achieves new state-of-the-art performance
and its superiority in bursting filter bubbles.

2 Related Work

2.1 Conversational Recommendation System

Conversational Recommendation Systems (CRSs)
(Zheng et al., 2024a,b) leverage natural language
conversations to suggest items to users, creat-
ing a more engaging and interactive experience.
These systems can be broadly categorized into
two types: attribute-based CRSs (Christakopoulou
et al., 2016a; Sun and Zhang, 2018; Zhou et al.,
2020b; Zhang et al., 2022a) and generation-based
CRSs (Zhou et al., 2022, 2020c; Hayati et al.,
2020; Li et al., 2018; Zheng et al., 2024a,b). This
work specifically focuses on attribute-based CRSs,
which gather various attributes and preferences
from users to refine and personalize recommen-
dations. These systems can operate in two distinct
modes: single-round (Christakopoulou et al., 2018;
Sun and Zhang, 2018), where recommendations are
provided in a single interaction, and multi-round
(Lei et al., 2020a,b; Xu et al., 2021; Ren et al.,
2021; Deng et al., 2021; Tu et al., 2022; Hu et al.,
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2022; Zhang et al., 2022b), which involve multiple
interactions to gather more nuanced information
until the task is complete or the session concludes.
While multi-round attribute-based CRSs offer a
more realistic and dynamic approach to understand-
ing user needs, they often face challenges such as
filter bubble issues. Filter bubbles occur when users
are repeatedly exposed to a narrow range of rec-
ommendations, limiting their exposure to diverse
options and potentially skewing their preferences.
Our work adopts the multi-round approach to effec-
tively mitigate these filter bubble effects by actively
learning and adapting to diverse user preferences
throughout the conversation. By fostering a richer
dialogue and incorporating varied attributes, we
aim to enhance the overall recommendation quality
and user satisfaction.

2.2 Filter Bubbles in Recommendation

In the context of recommendation system (Zheng
et al., 2021, 2023b,a), the filter bubble (Zheng et al.,
2024a) refers to individuals encountering person-
alized online content that aligns with their beliefs
while being shielded from diverse perspectives (Liu
et al., 2021; Nguyen et al., 2014). This is driven by
algorithmic filtering that prioritizes content based
on past behavior, social connections, and demo-
graphics. Recent research has identified key factors
contributing to filter bubbles. One factor is that
individuals with narrower preferences are more
susceptible to these bubbles (Ribeiro et al., 2020;
Spinelli and Crovella, 2020). Another is that the
learning process reinforces a user’s existing pref-
erences. Additionally, there is an assumption that
user satisfaction correlates with preference, leading
to the belief that an overload of favored items won’t
harm satisfaction (Gao et al., 2022; Li et al., 2023;
Wang et al., 2022). However, existing methods pri-
marily address filter bubbles in static environments.
In contrast, our HyperCRS aims to disrupt filter
bubbles during dynamic user-system interactions
through natural language conversations.

3 HyperCRS

Filter bubbles is a notorious issue in the CRS, and
it will be increasingly intensified over time as users
interact with the system. To address these issues,
we propose a novel paradigm, HyperCRS, which
consists of Multi-Grained Hypergraph Construc-
tion and Hypergraph-Aware Policy Learning. The
overall pipeline of HyperCRS is depicted in Fig.2.

3.1 Definition and Preliminaries

RL-based CRS. Let C represent items, attributes,
and types. Each item v ∈ V has attributes Pv ∈ P ,
with each attribute p linked to a type cp ∈ C.
Users u start by stating their preferred attributes p0,
prompting the system to ask for more attributes or
recommend items. Key notations include: 1) P(t)

acc,
P(t)
rej , P

(t)
cand: accepted, rejected, and candidate at-

tributes; 2) V(t)
rej , V

(t)
cand: rejected and candidate

items; 3) F (t)
u : friends from interaction history. We

use Reinforcement Learning (RL) to simulate the
CRS, defining the state and action space as: 1)
State: st = [P(t)

acc,P(t)
rej ,V

(t)
rej ,P

(t)
cand,V

(t)
cand,F

(t)
u ];

2) Action: at ∈ At includes candidate items and
attributes; 3) Transition: User responses change
state st to st+1; 4) Reward: Feedback gives an
immediate reward R(st, at).

Hypergraph. Hypergraphs capture complex in-
teractions among entities through hyperedges.
We define multi-grained hypergraphs as G(t) =

(G(t)
user,G(t)

item,G(t)
attr), where each component rep-

resents user, item, and attribute hypergraphs, re-
spectively. Each hypergraph is formalized as
G(t)
∗ = (N (t)

∗ ,H(t)
∗ ,A(t)

∗ ), consisting of: 1) A node
set N (t)

∗ ; 2) A hyperedge set H(t)
∗ = H(t)

∗_like ∪
H(t)

∗_dis ∪ H(t)
∗_f , representing Favor, Disfavor, and

Relation hyperedges; 3) An adjacency matrix A(t)
∗

of size |N (t)
∗ | × |H(t)

∗ |, indicating weights between
nodes and hyperedges.

3.2 Multi-Grained Hypergraph Construction

The key of bursting filter bubbles is to explore di-
verse user preferences (Nguyen et al., 2014; Hus-
sein et al., 2020; Liu et al., 2021), and thus we
develop the Multi-Grained Hypergraph to explore
multiplex relations and capture high-order connec-
tivity information to learn diverse user preferences.

User-Grained Hypergraph. The user-grained
hypergraph captures multiplex user relationship
patterns by considering users’ preferences for items
and attributes (favor hyperedge), their dislikes (dis-
favor hyperedge), and the influence of friends with
similar preferences (relation hyperedge). This
multi-faceted representation allows for a richer
understanding of user interactions and behaviors
within a recommendation system. Formally, the
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Figure 2: Overview of our HyperCRS, including Multi-Grained Hypergraph and Hypergraph-Aware Policy Learning,
aiming to burst filter bubbles by learning diverse user preferences via multi-grained hypergraphs in the CRS.

user-grained hypergraph G(t)
user is defined as:

G(t)
user = (N (t)

user,H(t)
user,A(t)

user);

N (t)
user = {u} ∪ F (t)

u ∪ S(t)
u ∪ V(t)

u′ ∪ P(t)
u′ ;

H(t)
user = H(t)

user_like ∪H(t)
user_dis ∪H(t)

user_f .

(1)

Here, S(t)
u denotes the strangers to user u, meaning

for s ∈ S(t)
u , Vu ∩ Vs = ∅. V(t)

u′ includes the items
interacted with by user u′ ∈ {u} ∪ F (t)

u ∪ S(t)
u ,

while P(t)
u′ refers to the attributes that user u′ likes.

Each hyperedge h ∈ H(t)
item corresponds to a user

u′h. H(t)
user_like, H

(t)
user_dis, and H(t)

user_f represent
user u, strangers to u, and friends of u, respectively.
For a given user u, we can derive A(t)

user:

A(t)
i,j =





1, if hj ∈ H(t)
user_∗, ni = u′hj

1

|P(t)
hj

|
, if hj ∈ H(t)

user_∗, ni ∈ P(t)
hj

1

|F (t)
hj

|
, if hj ∈ H(t)

user_∗, ni ∈ F (t)
hj

0, otherwise
(2)

Item-Grained Hypergraph. Similarly, the item-
grained hypergraph captures multiplex item rela-
tionship patterns. It considers users’ preferences
and dislikes for items, along with the influence

of friends who have shown similar preferences
based on historical interactions. By incorporat-
ing these factors, we effectively capture the con-
nections among items and their relation to user
preferences. Formally, it can be expressed as:

G(t)
item = (N (t)

item,H(t)
item,A(t)

item);

N (t)
item = {u} ∪ F (t)

u ∪ V(t)
rej ∪ V(t)

u ∪ V(t)
f ∪ P(t)

v ;

H(t)
item = H(t)

item_like ∪H(t)
item_dis ∪H(t)

item_f .
(3)

Here V(t)
u , V(t)

f , and P(t)
v mean items in V(t)

cand

that the user has interacted with, items that user’s
friends have interacted with, and attributes that
belong to the item v ∈ V(t)

rej ∪ V(t)
u ∪ V(t)

f , respec-

tively. Each hyperedge h ∈ H(t)
item refers to a item

vh. Given a user u, we can get the A(t)
item:

A(t)
i,j =





1, if hj ∈ H(t)
item_∗, ni = vhj

1

|P(t)
hj

|
, if hj ∈ H(t)

item_∗, ni ∈ P(t)
hj

1, if hj ∈ H(t)
item_like, ni = u

− 1, if hj ∈ H(t)
item_dis, ni = u

1

|F (t)
hj

|
, if hj ∈ H(t)

item_f , ni ∈ F (t)
hj

0, otherwise
(4)
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where P(t)
hj

are attributes connected to hj .
Attribute-Grained Hypergraph. Attribute-

grained hypergraphs strive to explore multiplex at-
tribute relations. They take into account the user’s
favor and disfavor towards attributes, along with
the preferences of their friends who share simi-
lar tastes based on historical interactions. This
approach enables a richer understanding of how
attributes influence user behavior and interactions
within the network. Formally, the attribute-grained
hypergraph can be expressed as:

G(t)
attr = (N (t)

attr,H
(t)
attr,A

(t)
attr);

N (t)
attr = {u} ∪ F (t)

u ∪ P(t)
rej ∪ P(t)

acc ∪ P(t)
f ∪ V(t)

p ;

H(t)
attr = H(t)

attr_like ∪H(t)
attr_dis ∪H(t)

attr_f .
(5)

Here F (t)
u denotes the user’s friends, P(t)

f repre-

sents attributes liked by friend f ∈ F (t)
u , and V(t)

p

includes items matching attributes p ∈ P(t)
rej ∪

P(t)
acc ∪ P(t)

f . Each hyperedge h ∈ H(t)
attr corre-

sponds to an attribute ph. H(t)
attr_like, H(t)

attr_dis,

and H(t)
attr_f represent attributes liked, disliked, and

liked by the user’s friends, respectively. For user u,
we derive A(t)

attr as:

A(t)
i,j =





1, if hj ∈ H(t)
attr_∗, ni = phj

1

|V(t)
hj

|
, if hj ∈ H(t)

attr_∗, ni ∈ V(t)
hj

1, if hj ∈ H(t)
attr_like, ni = u

− 1, if hj ∈ H(t)
attr_dis, ni = u

1

|F (t)
hj

|
, if hj ∈ H(t)

attr_f , ni ∈ F (t)
hj

0, otherwise
(6)

where V(t)
hj

, F (t)
hj

denote items connected to hyper-
edge hj and user’s friends associated with hj .

3.3 Hypergraph-Aware Policy Learning
To break filter bubbles, we propose Hypergraph-
Aware Policy Learning to capture diverse user
preferences, integrating Multi-Grained Preference
Modeling and Hypergraph-based Decision Making.

Multi-Grained Preference Modeling. The key
to breaking filter bubbles lies in diverse user pref-
erences (Hussein et al., 2020; Liu et al., 2021;
Nguyen et al., 2014; Spinelli and Crovella, 2020;
Li et al., 2023; Gao et al., 2022). To learn multi-

grained user preferences, we use a hypergraph neu-
ral network (Zhao et al., 2023) to blend structural
and connectivity information, enabling hyperedge
representation through a hypergraph message pass-
ing approach that facilitates information exchange
between nodes. This process can be defined as:

H = D−1
h A⊤EW n, (7)

where H ∈ R|H(t)|×d, Dh, E ∈ R|N (t)|×d, and
W n ∈ Rd×d are hyperedge embeddings, the diag-
onal matrix that encodes the degrees of the hyper-
edges, the initial embedding of related nodes, and
the weight matrix, respectively.

The hypergraph message-passing paradigm cap-
tures multiplex relations but struggles with sequen-
tial information. As conversations evolve, new
hyperedges form from user approvals or rejections,
necessitating higher-level interactions for prefer-
ence understanding. We integrate the Transformer
encoder (Vaswani et al., 2017). Consider the l-th
Transformer layer:

H
′
∗ = MHA(H

(l)
∗ ,H

(l)
∗ ,H

(l)
∗ ), (8)

H
(l+1)
∗ = LN(FFN(H

′
∗) +H

(l)
∗ ). (9)

Here ∗ ∈ {attr, item, user}, and MHA(·), LN(·),
and FFN(·) mean multi-head attention, layer nor-
malization, and feed-forward network, respectively.
Besides, we use learnable label embeddings L to
explicitly distinguish the category information of
each hyperedge, obtaining H

(0)
∗ :

h
(0)
∗ = h∗ ⊕ lh∗ , (10)

where h∗, lh∗ denote hyperedge embeddings, and
the hyperedge’s label embedding, respectively. ⊕
is the concatenation operation. After undergoing L
transformer layers, we can aggregate the informa-
tion by a mean pooling layer to derive the represen-
tation H̃∗ of each hypergraph:

H̃∗ = MeanPool(H(L)
∗ ), (11)

where H̃∗ ∈ R1×d. Next, we combine the rep-
resentations of the three hypergraphs by concate-
nating them together to induce the diverse user
preferences pt as

pt = FFN(H̃all),Hall = H̃user ⊕ H̃ item ⊕ H̃attr,
(12)

here H̃user, H̃ item, and H̃attr is user-, item-, and
attribute-grained preference, respectively.
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Hypergraph-based Decision Making. Next,
we will use pt to break filter bubbles in the CRS.
To simulate the dynamic user-system feedback loop
within an RL framework, the first step is to estab-
lish the action space At. Since the system aims to
explicitly capture user preferences for items and
attributes, the action space should include both.
Following (Qian et al., 2023), we select the top-Kp

items based on the recommendation score w(t)
v and

the top-Kp attribute instances based on the entropy
score w

(t)
p . Formally, we rank them as:

w(t)
v = σ

(
e⊤v eu +

1

|V(t)
f |

∑

v′∈V(t)
f

e⊤v ev′

+
∑

p∈P(t)
acc

e⊤v ep −
∑

p∈P(t)
rej

e⊤v ep
)
,

(13)

w(t)
p = −P(p)·log2(P(p))−(1−P(p))·log2(1−P(p)),

(14)

P(p) =
|V(t)

cand ∩ V(t)
p |

|V(t)
cand|

, (15)

where σ(·) is the sigmoid function, eu, ev and ep are
embeddings of the user, item and attribute, respec-
tively. The candidate items V(t)

cand and attributes
P(t)
cand are updated by:

V(t)
cand =

{
v | v ∈ Vp0 − V(t)

rej&Pv ∩ P(t)
acc ̸= ∅

& Pv ∩ P(t)
rej = ∅

}
,

(16)

P(t)
cand = PV(t)

cand

− P(t)
acc ∪ P(t)

rej . (17)

Here, Vp0 are items that meet the initial attribute p0
specified by the user, and PV(t)

cand

denotes attributes

associated with at least one candidate item V(t)
cand.

After constructing At, we utilize the dueling
Q-network (DQN) to determine the next action.
Concretely, the expected reward Q-value Q(st, at)
related to st and at is:

Q (st, at) = fθV (pt) + fθA (pt, at) , (18)

Here fθV (·) and fθA(·) are two multi-layer percep-
trons (MLPs). In the RL framework, the Q-value
guides action selection, with the agent choosing the
action with the highest Q-value. For item actions,
the system recommends the top-K items Ṽ (t) from
At. For attribute actions, it selects Ka attributes

from the same category c in At. The Q-value fol-
lows the Bellman equation (Bellman and Kalaba,
1957; Zhang et al., 2022a):

Q∗ (st, at) = Est+1 [rt+γ max
at+1∈At+1

Q∗(st+1, at+1],

(19)
where Q∗(st+1, at+1) = Q∗(st+1, at+1|st, at),
and rt is the reward, and γ means discounted factor.

At each turn, the agent, upon receiving reward rt,
transitions from state st to the next. If seeking con-
sultation, accepted and rejected user attributes are
as P(t)

cur_acc and P(t)
cur_rej respectively, updating the

state by merging these attributes. If recommend-
ing items Ṽ(t), all rejected by the user, the state
updates by adding these to V(t)

rej . The session ends
once an item is accepted. The agent’s experiences
are stored in a replay buffer D, which also stores
tuples (st, at, rt, st+1,At+1). The loss function is:

L = E(sa,at,rt,st+1,At+1)∼D[(yt−Q(st, at; θQ, θM ))2],
(20)

where θM is the parameters of the module de-
signed for hypergraph-based representation learn-
ing, while θQ = {θV , θA} represents the parame-
ters related to the action-value function, and yt is
the target value as:

yt = rt + γ max
at+1∈At+1

Q (st+1, at+1; θQ, θM ) .

(21)
Here we periodically synchronize a target network
Q′ with the online network to train HyperCRS.

3.4 Model Complexity Analysis

In this study, model complexity primarily centers
on hypergraph constructions. Assuming the train-
ing process involves O(n) items (where n can be
adjusted through the batch size parameter), con-
structing a single hypergraph requires iterating over
all items, resulting in a complexity of O(n). Con-
sequently, the complexity for constructing the three
types of hypergraphs is O(3 × n) = O(n). This
indicates that the running speed can achieve near-
linear acceleration on large-scale datasets. Further-
more, this efficiency is crucial for real-time appli-
cations where rapid data processing is essential.
By optimizing the hypergraph construction, we can
significantly reduce computational overhead, allow-
ing for more extensive analyses without sacrificing
performance. Ultimately, this approach enhances
the scalability of our model, making it suitable for
diverse applications in complex systems.
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Models Yelp LastFM Amazon Book MovieLens
SR@15↑ AT↓ hDCG↑ SR@15↑ AT↓ hDCG↑ SR@15↑ AT↓ hDCG↑ SR@15↑AT↓hDCG↑

Abs Greedy 0.195 14.08 0.069 0.539 10.92 0.251 0.214 13.50 0.092 0.752 4.94 0.481
Max Entropy 0.375 12.57 0.139 0.640 9.62 0.288 0.343 12.21 0.125 0.704 6.93 0.448

CRM 0.223 13.83 0.073 0.597 10.60 0.269 0.309 12.47 0.117 0.654 7.86 0.413
EAR 0.263 13.79 0.098 0.612 9.66 0.276 0.354 12.07 0.132 0.714 6.53 0.457
SCPR 0.413 12.45 0.149 0.751 8.52 0.339 0.428 11.50 0.159 0.812 4.03 0.547

UNICORN 0.456 11.33 0.176 0.778 7.17 0.386 0.538 9.68 0.253 0.862 4.07 0.579
MCMIPL 0.462 11.42 0.179 0.848 7.21 0.351 0.556 10.21 0.237 0.864 4.00 0.581
MHCPL 0.824 10.14 0.254 0.980 5.79 0.388 0.786 8.51 0.302 0.968 2.38 0.647
HutCRS 0.528 11.33 0.175 0.900 6.52 0.348 0.638 9.84 0.227 0.902 4.16 0.475

HyperCRS* 0.874 9.35 0.277 0.990 5.71 0.392 0.832 8.02 0.323 0.976 2.07 0.676

Table 1: Performance comparison of different models on the four datasets. hDCG stands for hDCG@(15, 10).
Higher SR@t and hDCG indicate better performance, while lower AT suggests higher efficiency.

4 Experiments and Analyses

We conduct experiments on four CRS-based bench-
marks to answer the following questions:

• RQ1: How does HyperCRS perform compared
with state-of-the-art methods?

• RQ2: How does HyperCRS perform at different
conversation turns?

• RQ3: How does HyperCRS burst filter bubbles?
• RQ4: How do the different hypergraphs impact

the performance?
• RQ5: How do parameters affect our HyperCRS?

4.1 Experimental Protocol
Datasets. To fully evaluate HyperCRS, we use four
widely-adopted CRS-based datasets: Yelp (Zhang
et al., 2022b); LastFM (Zhang et al., 2022b); Ama-
zon Book (Zhang et al., 2022b); MovieLens.
Baselines. We compare our HyperCRS with a
series of strong baselines, including AbsGreedy
(Christakopoulou et al., 2016b), MaxEntropy,
CRM (Sun and Zhang, 2018), EAR (Lei et al.,
2020a), SCPR (Lei et al., 2020b), UNICORN
(Deng et al., 2021), MCMIPL (Zhang et al.,
2022a), MHCPL (Zhao et al., 2023), HutCRS
(Qian et al., 2023). Following (Qian et al., 2023),
we adopt several metrics: the success rate (SR@t),
Average Turns (AT), and hDCG@(T, K). Higher
SR@t and hDCG indicate better performance,
whereas lower AT reflects greater efficiency.

4.2 Overall Performance (RQ1)
Experimental results in Table 1 highlight the supe-
riority of our model over all compared state-of-the-

https://grouplens.org/datasets/movielens/

art methods. Key observations include: 1) Hyper-
CRS outperforms all methods across four datasets.
This significant improvement can be attributed to
three main factors: (a) The multi-grained hyper-
graph effectively models diverse multiplex relation-
ships tied to user preferences, capturing high-order
interactions among entities within hyperedges; (b)
Multi-grained preference modeling excels at uncov-
ering underlying graph structures and higher-order
sequential information based on the constructed
hypergraphs, enabling the learning of diverse user
preferences; (c) Hypergraph-based Decision Mak-
ing focuses on breaking filter bubbles in the CRS
by leveraging diverse user preferences throughout
the conversation. 2) Generally, graph-based mod-
els (e.g., MHCPL, MCMIPL, UNICORN, SCPR)
outperform factorization-based models (e.g., EAR,
CRM). This is primarily due to their ability to ef-
fectively extract user preferences from the rich in-
formation and diverse entities present in the graph.
Notably, MCMIPL excels among graph-based ap-
proaches, surpassing UNICORN and SCPR by in-
corporating various aspects of user interests. Fur-
thermore, MHCPL outperforms MCMIPL by lever-
aging hypergraphs to explore interconnected rela-
tionships and dynamically learn user preferences.
Most importantly, HyperCRS surpasses all existing
graph-based methods, thanks to its multi-grained
hypergraphs, which capture user preferences at dif-
ferent levels of granularity.

4.3 Comparison at Different Turns (RQ2)

Apart from measuring the performance solely in the
final turn, we also present the success rates at dif-
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Figure 3: Comparisons at Different Conversation Turns.

ferent conversation turns, as illustrated in Fig.3. In
comparing relative success rates with strong base-
lines like MHCPL, HutCRS, MCMIP, and UNI-
CORN, we find: 1) HyperCRS dominates all base-
lines at every turn, mainly because it captures multi-
grained user preferences helping negate CRS filter
bubbles through effective high-order interactions
modeling of entities. 2) In early turns, most meth-
ods, including HyperCRS, MHCPL, MCMIPL,
fail to surpass baseline due to scant information,
prompting preference for questioning over recom-
mending. Conversely, as conversations evolve with
more information, these methods adeptly adapt,
leading to precision in personalized recommenda-
tions. 3) We can also see that UNICORN outper-
forms other baselines at the beginning turns. Its
superior results may be explained by its ability to
quickly adapt to user input and context, allowing it
to generate relevant and engaging responses right
from the start. Furthermore, UNICORN’s train-
ing on a wide range of conversational data equips
it to understand user intent more effectively early
on. This combination of contextual awareness and
robust training likely accounts for its strong perfor-
mance in the initial turns.

4.4 Study on Filter Bubbles (RQ3)

Our HyperCRS aims to break filter bubbles in con-
versational recommendations as users interact with
the system over time. Filter bubbles, which arise
when algorithms selectively guess what informa-
tion a user would like to see based on their past
behavior, can significantly limit exposure to diverse
viewpoints and content. This phenomenon not only
narrows the spectrum of information available to
users but can also reinforce existing biases, mak-

Model Yelp Yelp

A@5↓ A@10↓ G@5↓ G@10↓ L@5↓ L@10↓ D@5↑ D@10↑
UNICORN 0.0020 0.0042 0.6910 0.7692 2.6830 3.6720 0.4067 0.5621
MCMIPL 0.0033 0.0045 0.6856 0.7740 2.7134 3.7013 0.4310 0.5843
MHCPL 0.0030 0.0048 0.7289 0.7450 2.5211 3.7193 0.4839 0.5791
HutCRS 0.0028 0.0039 0.7011 0.7629 2.4567 3.6934 0.4455 0.5939
HyperCRS* 0.0012 0.0023 0.6480 0.7410 2.1034 3.4802 0.4955 0.6011

Model LastFM LastFM

A@5↓ A@10↓ G@5↓ G@10↓ L@5↓ L@10↓ D@5↑ D@10↑
UNICORN 0.0038 0.0042 0.5011 0.6411 3.8135 4.8561 0.4914 0.5871
MCMIPL 0.0035 0.0049 0.5123 0.6528 3.9462 4.8732 0.4982 0.5904
MHCPL 0.0037 0.0047 0.5108 0.6255 3.8110 4.7123 0.4914 0.6010
HutCRS 0.0045 0.0046 0.5020 0.6207 3.7855 4.7639 0.4907 0.5951
HyperCRS* 0.0029 0.0035 0.4968 0.6184 3.6554 4.6411 0.5105 0.6040

Table 2: Study on filter bubbles.

ing it crucial to develop systems that encourage
broader exploration. To investigate HyperCRS’s
effectiveness in reducing filter bubbles, we analyze
various fairness metrics (Jin et al., 2023a), such
as Average Popularity (A@K), Gini Coefficient
(G@K), KL-Divergence (L@K), and Difference
(D@K). A decrease in A@K, G@K, L@K, and an
increase in D@K indicate our proposed HyperCRS
can better solve the filter bubble issue.

As shown in Table 2, HyperCRS consistently
achieves the lowest values A@K, G@K, L@K and
the highest values compared with the strongest
baselines. This performance underscores the ef-
fectiveness of HyperCRS in mitigating the filter
bubble phenomenon, which often restricts users
to a narrow range of content based on their previ-
ous interactions. For instance, HyperCRS demon-
strates remarkable improvements in D@5, achiev-
ing enhancements of 179.21%, 130.17%, 100.91%,
and 2.34% over prominent models such as UNI-
CORN, MCMIPL, HutCRS, and MHCPL on the
Yelp dataset, respectively. These substantial gains
indicate that HyperCRS not only introduces a wider
variety of recommendations but also successfully
diversifies the content presented to users, fostering
exploration beyond their established preferences.

4.5 Ablation Studies (RQ4)

To thoroughly evaluate each component of Hyper-
CRS, we conduct a series of ablation studies de-
signed to isolate the impact of specific hypergraph
elements on the system’s performance. The fol-
lowing configurations are examined: 1) w/o G(t)

user:
This configuration removes the user-grained hyper-
graph, which captures the intricate relationships
among users based on their interactions and pref-
erences. 2) w/o G(t)

item: In this scenario, the item-
grained hypergraph is omitted. This hypergraph
is essential for understanding the connections and
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Model Yelp Yelp

A@5↓ A@10↓ G@5↓ G@10↓ L@5↓ L@10↓ D@5↑ D@10↑
HyperCRS* 0.0012 0.0023 0.6480 0.7410 2.1034 3.4802 0.4955 0.6011
w/o G(t)

user 0.0021 0.0030 0.6934 0.7645 2.4633 3.5910 0.4822 0.5702
w/o G(t)

item 0.0018 0.0032 0.6856 0.7710 2.3942 3.5810 0.4810 0.5783
w/o G(t)

attr 0.0033 0.0029 0.6983 0.7681 2.3891 3.5956 0.4805 0.5850

Model LastFM LastFM

A@5↓ A@10↓ G@5↓ G@10↓ L@5↓ L@10↓ D@5↑ D@10↑
HyperCRS* 0.0029 0.0035 0.4968 0.6184 3.6554 4.6411 0.5105 0.6040
w/o G(t)

user 0.0038 0.0044 0.5013 0.6381 3.8391 4.8561 0.4819 0.5820
w/o G(t)

item 0.0040 0.0043 0.5125 0.6490 3.8419 4.8545 0.4900 0.5866
w/o G(t)

attr 0.0041 0.0041 0.5066 0.6501 3.8420 4.8601 0.4941 0.5756

Model Book Book

A@5↓ A@10↓ G@5↓ G@10↓ L@5↓ L@10↓ D@5↑ D@10↑
HyperCRS* 0.0009 0.0013 0.3546 0.3970 2.5046 2.9412 0.5820 0.6490
w/o G(t)

user 0.0015 0.0018 0.3719 0.4012 2.6731 3.0193 0.5718 0.6210
w/o G(t)

item 0.0019 0.0016 0.3824 0.4015 2.6810 3.0312 0.5721 0.6241
w/o G(t)

attr 0.0014 0.0017 0.3791 0.4045 2.6798 3.0284 0.5720 0.6258

Model MovieLens MovieLens

A@5↓ A@10↓ G@5↓ G@10↓ L@5↓ L@10↓ D@5↑ D@10↑
HyperCRS* 0.0018 0.0026 0.5610 0.5823 1.6528 2.3510 0.6870 0.7933
w/o G(t)

user 0.0025 0.0031 0.5719 0.5910 1.8012 2.4529 0.6410 0.7305
w/o G(t)

item 0.0024 0.0030 0.5730 0.5911 1.8020 2.5655 0.6595 0.7466
w/o G(t)

attr 0.0024 0.0035 0.5740 0.5914 1.8045 2.4793 0.6601 0.7511

Table 3: Ablation studies with fairness-aware metrics.

similarities between different items, thereby influ-
encing the diversity of recommendations. 3) w/o
G(t)
attr: This configuration excludes the attribute-

grained hypergraph, which encapsulates the var-
ious features and characteristics of items. This
component plays a crucial role in enhancing the
granularity of recommendations based on specific
attributes. The results of these ablation studies
are presented in Table 3. Notably, we observe a
significant decrease in performance regarding the
mitigation of filter bubbles whenever any of the
hypergraph components is omitted. This decline
underscores the critical importance of each element
in the HyperCRS framework.

4.6 Hyperparameter Analysis (RQ5)

We next investigate the impacts of the transformer
layer number L on the performance of HyperCRS.
As depicted in Figure 4, our analysis reveals several
important insights: 1) A suitable number of trans-
former layers is critical for improving the model’s
performance. This optimal configuration allows
HyperCRS to effectively capture high-order infor-
mation and complex interactions among various
data features. By utilizing an appropriate number
of layers, the model can learn intricate patterns
and relationships that are essential for generating
accurate recommendations. In conversational rec-
ommendation systems, where user preferences and
contextual nuances play a vital role, the ability
to discern these complexities can significantly en-

Figure 4: Impact of Layer Number (L).

hance the relevance and quality of the recommen-
dations provided; 2) Conversely, we find that an
excessive number of transformer layers can lead
to performance degradation. This decline in per-
formance is likely attributable to overfitting, a phe-
nomenon where the model becomes too tailored to
the training data, resulting in a loss of generaliza-
tion capability. As the number of layers increases,
the model’s capacity to memorize specific patterns
and noise also rises, which can adversely affect its
performance on unseen data. This issue is particu-
larly pronounced as the number of neighborhood
hops increases, leading to a more complex model
that may struggle to maintain robustness across
diverse contexts.

5 Conclusion

To break filter bubbles in the CRS, we propose Hy-
perCRS, which features Multi-Grained Hypergraph
and Hypergraph-Aware Policy Learning. The for-
mer models multiplex relations through high-order
interactions among entities, while the latter learns
diverse preferences via hypergraph structures and
sequential information. Extensive experimental
results validate the effectiveness of HyperCRS,
demonstrating its superiority in breaking filter bub-
bles within CRS, providing users with a broader
spectrum of options and fostering a more enriching
online experience. In future work, we plan to in-
tegrate Large Language Model (LLM) agents into
HyperCRS to enhance conversational capabilities
and improve user interactions, and we will also fo-
cus on developing user-centric evaluation metrics
that assess the effectiveness of LLM interactions
within the recommendation framework.
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6 Limitations

Despite the exceptional performance of our Hy-
perCRS, several limitations exist. First, it may
not fully capture the nuances of individual user
behavior, particularly when preferences change
rapidly. Additionally, its effectiveness across di-
verse cultural and demographic contexts remains
untested, as user preferences can vary significantly.
Lastly, ongoing attention to user privacy and data
security is essential, especially when utilizing user-
generated content for preference learning.
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