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Abstract

The rapid advancement of large language mod-
els (LLMs) has spurred significant interest in
tool learning, where LLMs are augmented with
external tools to tackle complex tasks. How-
ever, existing tool environments face challenges
in balancing stability, scalability, and realness,
particularly for benchmarking purposes. To ad-
dress this problem, we propose MirrorAPI, a
novel framework that trains specialized LLMs
to accurately simulate real API responses, ef-
fectively acting as “mirrors” to tool environ-
ments. Using a comprehensive dataset of
request-response pairs from 7,000+ APIs, we
employ supervised fine-tuning and chain-of-
thought reasoning to enhance simulation fi-
delity. MirrorAPI achieves superior accuracy
and stability compared to state-of-the-art meth-
ods, as demonstrated by its performance on the
newly constructed MirrorAPI-Bench and its
integration into StableToolBench.

1 Introduction

Recently, the remarkable reasoning capabilities ex-
hibited by large language models (LLMs) (Qwen
Team, 2025; DeepSeek-AI, 2025; AI@Meta, 2024;
Gemini Team, 2024) have catalyzed growing in-
terest in tool learning (Yang et al., 2023; Ye et al.,
2024; Wu et al., 2024). Analogous to the way
humans leverage tools in the physical world to
enhance their cognitive and physical capacities,
LLMs augmented with external tools (Qu et al.,
2025; Qin et al., 2024) demonstrate unprecedented
potential in addressing diverse and complex chal-
lenges such as general task solving (Qin et al.,
2023; Huang et al., 2024c), web search (Komeili
et al., 2022; Gou et al., 2024), and multimodal sce-
narios (Ma et al., 2024; Wang et al., 2024b).
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Figure 1: While existing API environments priori-
tise one or two of stability, scalability, or realness,
MirrorAPI effectively harmonises all three aspects.

In a typical tool-using scenario, three main com-
ponents are involved: (1) a user who provides in-
structions, (2) a tool-using model that performs ac-
tions, and (3) an environment containing tools that
provides feedbacks in response to those actions.
The environment is critical as it directly relates
to the quantity, quality, and stability of available
tools. Most environments (Tang et al., 2023; Chen
et al., 2024; Basu et al., 2024; Farn and Shin, 2023)
use publicly available real-world tools 1, such as
RapidAPI 2. Others use manually selected or cre-
ated APIs (Li et al., 2023; Xu et al., 2023a), of-
ten prioritising stable APIs like Google services
or Python libraries. Furthermore, recent studies
further explore prompting LLMs to generate APIs
and simulate their behaviours according to docu-
mentation. (Huang et al., 2024a; Wu et al., 2024).

However, existing environments struggle to bal-
ance stability, scalability and realness. Environ-
ments built on large-scale public APIs often ex-
hibit instability, leading to inconsistent results over
time (Guo et al., 2024). This stems from developer

1In this work, we use the terms APIs and tools interchange-
ably.

2https://rapidapi.com/
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updates, underlying behavioural modifications, and
network connectivity fluctuations. On the other
hand, environments relying on manually selected
or created APIs lack scalability due to limited
labour resources. While LLMs-simulated APIs
offer greater stability compared to real-world APIs,
there is a significant gap between simulated be-
haviours and actual API response, as demonstrated
in our experiments in Section 4.3.

To balance stability, scalability and real-
ness of tool-learning environments, we propose
MirrorAPI, a novel framework that trains special-
ized LLMs to act as “mirrors” to tool environments
by accurately replicating real API responses. A
tool can be conceptualized as a wrapper around
its underlying system, abstracted through manually
crafted documentation. Given that real documen-
tation data is both informative and practical to col-
lect, it is natural to simulate tool behaviour based
on documentation and user requests. However, the
intricate mechanism of complex underlying sys-
tems cannot be fully captured in documentation
alone. Therefore, it is crucial to align simulated
behaviour not only with documentation but also
with the practical workings of real-world APIs.

To train a specialised LLM, named MirrorAPI,
we first collect a dataset of real request-response
pairs spanning 49 categories and 7,000+ APIs with
documentation from RapidAPI for supervised fine-
tuning (SFT). To further capture the implicit factors
in underlying real API systems, we incorporate rea-
soned explanations of API mechanisms into the
training data. Specifically, given request-response
pairs, we use OpenAI o1-preview to generate
chain-of-thought (CoT) rationales that explain the
underlying working mechanisms of APIs (Yang
et al., 2024). The MirrorAPI is trained in both SFT
and CoT modes, distinguished by special prompt
tokens (Wang et al., 2023). During inference, the
model defaults to SFT mode for consistent and
better performance.

To evaluate the model, firstly, we construct
MirrorAPI-Bench by defining an in-distribution
(ID) and an out-of-distribution (OOD) sets based
on real request-response pairs with APIs seen and
unseen during training. Experiments demonstrate
that MirrorAPI outperforms state-of-the-art LLM
prompting methods in simulating real APIs, ex-
celling in documentation and instruction follow-
ing capabilities while achieving the highest sim-
ilarity to real responses. Secondly, we integrate
MirrorAPI as the tool environment into Stable-

ToolBench (Guo et al., 2024). Results show that
MirrorAPI not only maintains full environment
stability but also produces outcomes compara-
ble to real environments. Beyond benchmarking,
MirrorAPI can enhance tool-using models by pro-
viding step-wise feedback or expanding the size
and diversity of training data, offering a promising
direction for future research.

2 Methods

2.1 Request-Response Pairs Collection
To train specialised LLMs for simulating real
APIs, we collect training data by calling the
real RapidAPI server using LLM-generated re-
quests. This process consists of three stages: (1)
collecting real request-response pairs, (2) filter-
ing request-response pairs, and (3) synthesising
request-response pairs.

2.1.1 Collecting Real Request-Response Pairs
We first construct a large collection of APIs and call
them uniformly to gather data. The data collection
process is illustrated in Figure 2. Following Tool-
Bench (Qin et al., 2023), we crawl the latest tools
and their documentation from RapidAPI. Then, we
exploit LLMs (gpt-4o) to generate API requests
for the available APIs. When directly prompted to
write requests based on API documentation, LLMs
tend to produce simple calls with limited diversity.
To enhance data complexity and diversity, we em-
ploy a two-stage scenario-based approach as shown
in Appendix A. First, we prompt LLMs to generate
realistic usage scenarios for a given API based on
its documentation, setting the temperature to 1.0
to maximise diversity. Next, we prompt LLMs to
write API requests that address the tasks described
in these scenarios, setting the temperature to 0.1
to ensure stability and precision. Finally, we gen-
erate 200 calls for each available API using the
predefined method and record the responses. Each
request was attempted up to three times in case of
failures.

2.1.2 Filtering Request-Response Pairs
First, real API calls are often unsuccessful due to
various reasons, such as incorrect requests gen-
erated by LLMs, discrepancies between locally
crawled API documentation and real-time API be-
haviour, and temporary API unavailability, which
may harm model performance. To mitigate these is-
sues, we filter out unsuccessful calls using the same
rules outlined in StableToolBench as discussed in
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Figure 2: The phases of data construction (left) and the training of MirrorAPI (right).

Appendix D. Second, to ensure the trained simula-
tor can return failure messages for requests that vio-
late documentation requirements, we retain around
10,000 unsuccessful calls caused by parameter-
related issues, such as missing required parame-
ters or incorrect parameter values. Finally, due
to the large number of poorly written documenta-
tion, some real API responses may deviate from
their documentation, which can harm model per-
formance. To overcome this, we elicit gpt-4o with
the prompt as shown in Table 8. This effectively
filters out request-response pairs that do not align
with their documentation.

2.1.3 Synthesizing Request-Response Pairs

To further enlarge and balance the dataset, we
use gpt-4o to generate synthetic request-response
pairs based on existing examples. This serves
two purposes: (1) to ensure sufficient data for
robust model training, and (2) to mitigate the
scarcity of data samples for long-tail APIs. For
each generation, the prompt includes a list of 10
real API examples, comprising API documenta-
tion, LLM-generated requests, and real responses.
By varying temperature and seed values, we en-
courage the model to produce a diverse range of
request-response pairs. We then employ an exact
match function to ensure that each generated pair
is unique and does not already exist in the dataset.
After generation, we conduct a quality check and
filter out pairs with identical requests but differing
responses, and ones with responses inconsistent
with the documentation.

Dataset Samples APIs Categories

Training 95,272 7,437 49
OOD Succ 200 38 21
OOD Fail 100 22 14
ID High 100 96 14
ID Medium 100 97 15
ID Low 100 81 14

Table 1: Dataset Statistics

2.1.4 Statistics and MirrorAPI-Bench

In total, we collect 95,872 API request-response
pairs, spanning 7,500 APIs across all 49 categories
in RapidAPI. Then, we partition the dataset into
training and testing sets, named MirrorAPI-Bench.
Specifically, the OOD testing set comprises 200
successful and 100 unsuccessful pairs from 49
APIs not included in the training data. Additionally,
we construct three ID test sets, each consisting of
100 successful request-response pairs drawn from
the training APIs, representing the high-resource,
medium-resource, and low-resource groups. These
sets correspond to the top third, middle third, and
bottom third quantiles of APIs, respectively, as il-
lustrated in Figure 4. The detailed statistics of the
datasets are summarised in Table 1.

2.2 Chain-of-Thought Data Collection

Simply training models to follow API documenta-
tion does not fully close the gap between the simu-
lated and real APIs as the model is ignorant of the
working mechanism behind the real APIs. There-
fore, we propose to improve the simulation model
by augmenting reasoning API mechanism. The
data collection process is illustrated in Figure 2.

To generate proper rationales, we fully utilise
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Models OOD Succ OOD Fail ID High ID Medium ID Low

GPT-4o 5.93 2.06 4.58 4.76 3.92
GPT-4o-mini 6.10 1.95 5.17 4.09 3.57
GPT-4o CoT 4.45 3.72 4.06 4.26 4.20
o1-preview 7.67 1.81 6.11 5.47 4.11
Llama-3.1-8B-Instruct 1.27 1.86 1.74 1.61 2.28
Qwen-2.5-7B-Instruct 2.99 1.71 3.33 2.89 2.27
Deepseek-R1-Distill-Qwen-32B 5.97 1.82 4.61 4.33 3.38
Deepseek-R1-Distill-Qwen-7B 3.03 1.83 2.42 3.12 2.56

MirrorAPI CoT 6.51 8.64 8.91 8.79 9.01
MirrorAPI SFT 6.86 8.28 8.76 8.63 8.74

Table 2: Performance of observation following on MirrorAPI-Bench. OOD Succ and OOD Fail stand for the test
sets of OOD successful and unsuccessful calls respectively. The ID High/Medium/Low stands for the test sets of ID
calls with a large/medium/low number of training samples. Tables below use the same notation.

the real responses in the data (Yang et al., 2024).
Specifically, for a request-response pair (R,O),
where R is a request to an API and O is the re-
sponse from the API, we use a general reasoning
LLM (OpenAI o1-preview) to reason the implicit
working mechanism, which serves as a rationale
for simulation. The prompt is shown in Table 9,
i.e.,

Ro1 = LLMo1(R,O,Doc)

where Doc denotes the API documentation.
We randomly sample 43,597 successful call-

response pairs and 2,000 unsuccessful pairs from
the training set to generate rationales. To ensure the
quality of the generated rationales and avoid exces-
sively verbose explanations, we apply a length filter,
restricting the maximum token count of the final
outputs to 2,560. As a result, we obtain 42,465 suc-
cessful and 1,975 unsuccessful request-response
pairs each annotated with a generated rationale.
Note that all CoT data is constructed based on the
SFT training data, meaning no request-response
data is created here.

2.3 Model Training

We train the environment model in both SFT and
CoT modes simultaneously. Namely, we mix
95,272 SFT samples and 44,440 CoT samples in
the final training data. This combination ensures
that the MirrorAPI benefits from the extensive
SFT data while also leveraging the performance-
boosting advantages of CoT. Illustration of the two
modes can be seen in Figure 2.

To distinguish the two modes during training and
testing, following OpenChat (Wang et al., 2023),
we introduce a special tag [chain-of-thought]
at the beginning of the CoT mode system prompt.
This approach allows the simulator to operate in

two distinct modes by switching between system
prompts. The prompts for the SFT and CoT cases
are shown in Table 10 and 11, respectively.

During training, we finetune a Qwen2.5-7B-Int
ruct (Qwen Team, 2025) model to generate API
responses in the SFT mode, given the user request
and API documentation. In the CoT mode, the
model is trained to generate both the rationale and
the simulation output. Formally, these two modes
can be expressed as:

S = LLMsimu(R,Doc|PSFT ) (SFT mode)

[Ro1, S] = LLMsimu(R,Doc|PCoT ) (CoT mode)

where S,R,Doc and LLMsimu represent the sim-
ulation output, the user request, the API documen-
tation and the LLM to train, respectively. PSFT

and PCoT are the system prompts used in the
two modes. Ro1 is the rationale generated by
o1-preview.

At testing time, the model generates simulations
based on user requests and API documentation in
the SFT mode, while in the CoT mode, it addi-
tionally produces rationales before delivering final
outputs. Mathematically, this can be represented
as:

S = LLMsimu(R,Doc|PSFT ) (SFT mode)

[Rs, S] = LLMsimu(R,Doc|PCoT ) (CoT mode)

where S,R,Doc and LLMsimu represent the sim-
ulation output, the user request, the API documen-
tation and the trained model respectively. PSFT

and PCoT are the system prompts used in the two
modes. Rs is the rationale the model generates
before giving a simulation output. Note that during
inference, we set the SFT mode as default.
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Models OOD Succ OOD Fail ID High ID Medium ID Low

BLEU Cosine BLEU Cosine BLEU Cosine BLEU Cosine BLEU Cosine

GPT-4o 13.4 63.1 10.7 36.0 10.0 55.8 12.4 53.4 14.8 52.8
GPT-4o mini 14.7 62.3 11.3 36.6 10.3 56.2 12.5 53.1 14.5 53.6
GPT-4o CoT 13.4 60.3 13.6 42.8 11.7 55.0 14.2 52.8 16.5 54.5
o1-preview 19.2 65.6 8.4 37.2 12.1 57.5 14.6 55.7 15.9 54.3
Llama-3.1-8B-Instruct 5.3 49.6 11.2 43.7 6.3 47.2 9.6 46.3 9.9 47.8
Qwen-2.5-7B-Instruct 7.5 53.5 9.2 36.3 7.7 50.6 11.3 48.4 7.7 47.3
Deepseek-32B 12.6 63.6 9.7 38.1 9.2 55.5 13.4 53.8 15.9 53.9
Deepseek-7B 12.3 60.0 12.0 38.0 10.8 52.3 12.6 51.9 12.8 51.8

MirrorAPI CoT 31.6 66.7 84.9 90.7 73.6 87.6 77.5 88.0 84.7 93.4
MirrorAPI SFT 35.6 69.9 89.9 94.1 74.2 88.7 80.0 89.8 86.3 94.2

Table 3: Comparison of BLEU scores and LLM cosine similarity between real and simulated responses across
different groups. BLEU and Cosine stand for the BLEU metric and LLM consine similarity metrics respectively.
Deepseek-32B and Deepseek-7B are Deepseek-R1-Distill-Qwen-32B and Deepseek-R1-Distill-Qwen-7B.

3 Evaluation on MirrorAPI-Bench

3.1 Evaluation Metrics
Following Documentation and Instructions. To
assess the documentation and instruction fol-
lowing capability of the simulation model, we
adopt an LLM-as-a-judge framework, following
FastChat (Zheng et al., 2023). The prompt is shown
in Table 12. Specifically, we employ gpt-4o as the
evaluator model, judging whether the simulated
responses align with the documentation and user
requests, rating from 1 to 10.
Similarity to Real Responses. In addition to evalu-
ating the following capability, we directly compare
the simulated responses with those real responses
from real-world APIs. To do so, we adopt two met-
rics: BLEU (Papineni et al., 2002) and LLM cosine
similarity (Zhang* et al., 2020). Specifically, we
calculate BLEU-4 scores from NLTK toolkit (Bird
et al., 2009). For the LLM cosine similarity, we first
encode the real API responses and simulated re-
sponses with OpenAI text-embedding-3-small,
respectively. Then we calculate the cosine similar-
ity score between the real and simulated responses
pairwise. Mathematically,

S =
1

N

N∑

n=1

cos(Enc(Rreal), Enc(Rsimu))

where S,N,Rreal, Rsimu and Enc are the similar-
ity score, total number of samples in the test set,
real responses, simulated responses, and the encod-
ing LLMs, respectively.

3.2 Baseline
We evaluate several baselines on the simula-
tion test data, including both general-purpose

and reasoning-enhanced LLMs. These include
gpt-4o and gpt-4o-mini (OpenAI, 2024a), which
are API-based, general-purpose LLMs. Addi-
tionally, we consider gpt-4o CoT, a variant of
gpt-4o integrated with chain-of-thought reason-
ing through the API mechanism. We also in-
clude o1-preview (OpenAI, 2024b), a general-
purpose LLM known for its strong reasoning capa-
bilities. For open-source alternatives, we evaluate
Llama-3.1-8B-instruct (AI@Meta, 2024) and
Qwen-2.5-7B-Intruct (Qwen Team, 2025), both
of which are general-purpose LLMs. Finally, we
assess the Deepseek-R1-Distill-Qwen-7B and
Deepseek-R1-Distill-Qwen-32B (DeepSeek-AI,
2025), which are open-source models with en-
hanced reasoning abilities.

3.3 Results

We run our model with both CoT and SFT prompts,
keeping the temperature at 0 during generation for
all models. The results for the documentation and
instruction-following metrics are presented in Ta-
ble 2. BLEU scores and LLM Cosine Similarity
scores are detailed in Table 3. As shown in the
tables, our trained simulation model outperforms
all baselines, except for o1-preview, on OOD suc-
cessful tasks when evaluated using the documenta-
tion and instruction-following metrics, demonstrat-
ing the generalizability of our approach. Moreover,
our model surpasses all other baselines, including
o1-preview, on OOD failing tasks and all ID sub-
tasks across all metrics. This result underscores the
effectiveness of training on API calls in enabling
accurate simulation of those APIs. Interestingly,
o1-preview outperforms all prompting methods
on the OOD successful tasks, showing the poten-
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Figure 3: Comparison between the real environment,
GPT 4o, and MirrorAPI simulated environments.

tial of reasoning for simulation. Additionally, our
trained SFT model outperforms its CoT counter-
parts on OOD successful tasks. However, this does
not diminish the importance of reasoning-based
training. Further insights and supporting evidence
are explored in Section 5.1. We further conducted
an error analysis of MirrorAPI and typical errors
can be seen in Appendix H.

4 Environment Simulation for
StableToolBench

An important application of the simulation model
is its role as an environment model in a tool learn-
ing benchmark. To improve the reliability and sta-
bility of simulation on StableToolBench, we fur-
ther finetune MirrorAPI on the cache data, named
MirrorAPI-Cache. To evaluate MirrorAPI and
MirrorAPI-Cache on StableToolBench, we com-
pare the real environment with our MirrorAPI in
the StableToolBench setting, with both the Solv-
able Pass Rate (SoPR) and our proposed Final An-
swer Completeness (FAC) scores. Additionally, we
present the performance of several baseline models
when MirrorAPI is used as the environment model,
demonstrating its reliability.

4.1 Training MirrorAPI-Cache

To better improve the performance of the model
on benchmarks, we fine-tune the model using real

API data accumulated from the StableToolBench.
This dataset provides a rich collection of real-world
API usage data, which is essential for evaluating
the model’s performance in practical scenarios. By
leveraging this dataset, we aim to ensure the model
is better aligned with actual user needs and be-
haviours, thereby improving its ability to generalize
to real-world tasks. The dataset used for fine-tuning
comprises 110,700 samples, in which 200 of the
samples are used as the test set.

4.2 Evalution Metrics

Solvable Pass Rate. We use the SoPR metric in
StableToolBench in this project. We evaluate all in-
stances three times and calculate the average scores
and standard deviation. We use gpt-4o as the eval-
uator model.3.

Final Answer Completeness. Besides the Solv-
able Pass Rate scores in StableToolBench, we pro-
pose the new FAC score to measure whether the
final answer completes the user query well. In tool
learning, users ultimately need the final answer.
How the tool-using model reaches that answer is
less important. Therefore, it is more meaningful to
measure whether the final answer matches the need
of the user’s request.

To ensure the stability of the metric, we decide
to use performant closed-sourced models for an-
notation and train an offline evaluator. We first
randomly sample 3,714 samples from ToolBench
training data and let gpt-4o, gpt-4o-mini and
gpt-4-turbo to annotate whether the answer com-
pletes the user request, given only these two pieces
of information. The model is required to an-
swer either solved or unsolved. The annotation
prompt is shown in Table 13. We then sample
77 of these samples and invite two human anno-
tators to annotate ground truth. Accuracy scores
of these models are shown in Appendix F. Finally,
we train a Llama-3.1-8B-Instruct model using
the C-RLFT method (Wang et al., 2023). We
use the gpt-4-turbo tag during inference because
gpt-4-turbo performs best in the previous anno-
tation process. Our model finally achieves 88.3%
accuracy against both annotators.

3Evaluation models used in ToolBench and StableTool-
Bench are gpt-3.5-turbo and gpt-4-turbo, both legacy
models now
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Method I1 Inst I1 Cat I1 Tool I2 Cat I2 Inst I3 Inst Average

ToolLLaMA v2 CoT 28.0±1.9 30.5±0.8 21.5±0.9 19.9±1.0 22.3±0.4 19.1±0.8 22.8±0.8

ToolLLaMA v2 DFS 28.4±0.9 32.5±0.8 22.2±1.0 22.8±1.5 19.2±1.6 18.6±1.5 22.9±1.4

GPT 4o mini CoT 27.8±1.4 34.9±0.3 34.2±0.5 24.5±1.0 22.3±2.7 20.8±1.5 25.9±1.7

GPT 4o mini DFS 26.8±1.4 36.4±1.6 33.1±1.1 25.8±1.7 25.8±2.7 20.2±0.8 26.4±1.6

GPT 4o CoT 33.3±2.0 35.1±0.6 33.6±0.8 32.5±1.7 29.6±1.6 27.9±3.5 32.0±2.2

GPT 4o DFS 32.7±1.9 42.3±1.3 34.6±1.3 32.8±1.5 28.3±1.3 23.0±1.3 30.9±1.7

Table 4: Solvable pass rate scores. “Inst” and “Cat” stand for the Instruction and Category subsets. Tables below
use the same abbreviation.

Method I1 Inst I1 Cat I1 Tool I2 Cat I2 Inst I3 Inst Average

ToolLLaMA v2 CoT 45.4 38.6 34.2 40.3 37.7 31.1 37.9
ToolLLaMA v2 DFS 47.9 40.5 31.0 40.3 34.0 31.1 37.5
GPT 4o mini CoT 42.3 39.9 38.0 44.4 36.8 36.1 39.6
GPT 4o mini DFS 46.0 43.8 44.3 41.1 34.9 34.4 40.8
GPT 4o CoT 45.4 43.8 44.3 54.0 45.3 32.8 44.3
GPT 4o DFS 46.6 53.6 44.9 50.0 42.5 34.4 45.3

Table 5: FAC scores for different methods and conditions.

4.3 Compare Real and Simulated
Environments

To compare the real and simulated environments,
we first need to generate a set of queries. It is
important to note that we cannot directly use the
queries from the StableToolBench test set, as many
of the ground-truth APIs are no longer available.
In contrast, the simulated APIs are always accessi-
ble, which would introduce a bias between the two
environments. To create new queries, we follow
the approach used in ToolBench but without limit-
ing the group or categories of APIs. Specifically,
we sample 2-5 APIs from the entire set of avail-
able APIs and prompt gpt-4o to generate queries
based on these APIs. The prompt is provided in
Table 14. We then filter out unsolvable queries fol-
lowing the StableToolBench methodology. Next,
we run gpt-4o and gpt-4o-mini using the CoT
and Depth-First-Search (DFS) methods on these
queries in the real environment. We ask gpt-4o to
assess whether all APIs are functioning correctly in
the response trajectory, using the prompt shown in
Table 15. Any queries involving unavailable tools
are filtered out. After this filtering process, 158
queries remain.

We run gpt-4o, gpt-4o-mini, and ToolLLaMA
-v2 using both CoT and DFS methods on these
queries. The evaluation compares across three
environments: the real environment, the envi-
ronment simulated by gpt-4o, and the environ-
ment simulated by our MirrorAPI. The results
are presented in Figure 3. As shown in the fig-
ures, our MirrorAPI closely matches the real en-

vironment across all tool-using methods, while
the performance of gpt-4o in simulated environ-
ments is significantly lower. This demonstrates that
MirrorAPI better simulates the tool environment
compared to gpt-4o.

4.4 StableToolBench Performance with
MirrorAPI-Cache

As an improved version for StableToolBench envi-
ronments, we evaluate baseline model performance
with MirrorAPI-Cache simulated environments.

First, to directly compare simulation outputs
with real API calls, we evaluated the model on
StableToolBench cache data containing actual calls
from the test set. We randomly sampled 200 in-
stances from the cache test set, stated in Section 4.1.
The results demonstrate strong performance, with
a BLEU-4 score of 84.9 and an observation and
instruction following score of 8.82. In contrast, the
general MirrorAPI achieved significantly lower
scores of 27.1 and 4.76 respectively on the same
metrics. This substantial improvement demon-
strates the effectiveness of the finetuning approach
on real-world API interaction data.

Then, we run ToolLLaMA-v2, GPT-4o-mini,
and GPT-4o using both CoT and DFS inference
methods on the simulated environments. The
single step max length is set to 20, and the
max observation length is set to 2048. The re-
sults are shown in Table 4 and Table 5. As observed
in the tables, DFS methods generally outperform
CoT methods, which aligns with the findings in
ToolBench. Additionally, the latest GPT-4o model
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outperforms the other models, as expected. How-
ever, the performance gap between DFS and CoT
methods is narrower than anticipated. This is likely
due to the reduced number of failing APIs during
the inference stages, making the retry mechanism
in DFS less advantageous. Moreover, the FAC
scores are higher than the pass rate scores, which
is consistent with expectations. Despite this, even
GPT-4o DFS achieves only 45.3, which remains far
from satisfactory.

5 Analysis

5.1 Ablation Studies

To evaluate the effectiveness of training in CoT
mode, we compare several models on the OOD
Succ test set using the observation-following met-
ric. The models tested include: MirrorAPI,
MirrorAPI without CoT training, MirrorAPI with-
out augmented and CoT data, and MirrorAPI
trained sequentially with SFT and CoT. Note that
no additional data was created specifically for CoT
compared to SFT. For inference, we use the direct
SFT prompt for all models except the one trained
sequentially with CoT, which uses the CoT prompt
to achieve better performance.

The results are presented in Table 6. Incorpo-
rating augmented and CoT training data enhances
model performance. Interestingly, generating out-
puts using the SFT prompt outperforms the CoT
prompt, as detailed in Section 3.3. However, omit-
ting CoT data during training negatively impacts
performance. We hypothesize that adding CoT data
lowers the training difficulty, as models may learn
to reason implicitly during inference. This remains
an open area for future research. Furthermore, the
CoT training data is much smaller in size compared
to the SFT data, which makes inference with CoT
more challenging. Last, while sequential training
with SFT and CoT yields worse performance than
mixed training, it still outperforms training without
CoT, supporting our hypothesis.

5.2 Cache Model on General Tasks

While MirrorAPI-Cache achieves satisfactory re-
sults on the StableToolBench test set, it is impor-
tant to note that this post-training process does
not degrade performance on OOD successful tasks.
Specifically, the observation following metrics for
CoT and SFT are 6.13 and 6.81, respectively.
These results suggest that MirrorAPI has learned
a robust representation that generalizes well across

Method Score

MirrorAPI 6.86
w/ Seq CoT 6.33
w/o CoT 6.70
w/o A+CoT 6.26

Table 6: Ablation on the CoT Training on the OOD
Succ test set. A and CoT represent data augmentation
and CoT training data respectively. Seq CoT means the
model is trained on SFT data and then CoT data.

the benchmark through the diverse training datasets
used. In this context, post-training fine-tunes the
model on more task-specific features, but these ad-
justments do not significantly alter the model’s core
capabilities, allowing it to maintain strong perfor-
mance across a variety of tasks.

5.3 Finetuning Reasoning Model

It is intriguing to examine the performance of
fine-tuned reasoning models, especially given that
test-time scaling has shown remarkable results on
complex tasks (DeepSeek-AI, 2025). After fine-
tuning the Deepseek-R1-Distill-Qwen model, we
observed that its documentation and instruction
following score on OOD successful tasks is signif-
icantly lower than that of the MirrorAPI and the
o1-preview, with scores of 5.54 and 5.55 for CoT
and SFT, respectively. Two potential explanations
for this underperformance are as follows. First, the
distilled models are heavily tuned for reasoning
tasks, which may limit their ability in new domains.
Second, the reasoning required for generating API
responses can be subtle or implicit, leading to inef-
ficiencies. In contrast, the normal LLM can more
effectively handle tasks without unnecessarily forc-
ing a reasoning process, which may explain its
better performance in these scenarios.

6 Related Work

Tool Learning Benchmarks. LLMs augmented
with external tools have demonstrated remarkable
problem-solving capabilities, often exceeding their
stand-alone performance (Li et al., 2023; Patil et al.,
2023; Yang et al., 2023; Song et al., 2023; Tang
et al., 2023; Ye et al., 2024; Xu et al., 2023a). Con-
sequently, numerous benchmarks have been devel-
oped to evaluate proficiency in various aspects of
tool learning, including tool selection (Wu et al.,
2024; Xu et al., 2023b), task planning (Huang et al.,
2024b; Shen et al., 2024), API stability (Guo et al.,
2024) and query formulation (Shen et al., 2025).
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Tool Environment Simulation. Prior studies (Lù
et al., 2024; Yao et al., 2023; Rawles et al., 2024)
have explored various real-world tool environment.
Recent work has shifted toward simulated environ-
ments, such as web simulators (Shi et al., 2017;
Yao et al., 2023; Zhou et al., 2024; Furuta et al.,
2024; Chae et al., 2024), tool simulators for safety
scenarios (Ruan et al., 2024), and multi-modal envi-
ronment simulation (Zheng et al., 2024). However,
existing approaches struggle to balance stability,
scale, and realism. To address this, we propose a
novel framework for training specialized LLMs to
simulate tool environments effectively.

7 Conclusion

In this work, we present MirrorAPI, a novel frame-
work that trains specialized LLMs to act as “mir-
rors” to tool environments by accurately replicat-
ing real API responses. The simulator is trained
on request-response data pairs from over 7,000
APIs sourced from RapidAPI, with performance
enhanced through a novel API mechanism reason-
ing framework. Experimental results demonstrate
that MirrorAPI achieves strong documentation and
instruction following capability. Responses pro-
vided by it are also the most similar to the real envi-
ronment compared to baseline prompting methods.
Furthermore, when deployed as an environment
model in StableToolBench, MirrorAPI delivers re-
liable outcomes comparable to those obtained from
real-world APIs, validating its practical utility.

Beyond the immediate scope of this work, gen-
eral tool simulators may be beneficial to advancing
LLMs’ tool-using capabilities. First, such simula-
tors can enable execution feedback during training
or inference without costly real-environment inter-
actions, paving the way for novel online training
algorithms and adaptive inference strategies (Wang
et al., 2024a; Renze, 2024; Yu et al., 2025). Sec-
ond, they facilitate the generation of diverse train-
ing trajectories through the integration of synthetic
APIs, addressing data scarcity challenges in tool-
learning scenarios. Finally, while our current focus
lies in simulating functional and reliable tools, the
framework can be extended to simulate tools with
operational failures, safety-critical vulnerabilities,
or ethical concerns. This capability could signifi-
cantly expand the scope of tool-learning research
by enabling risk-aware training and robustness test-
ing in controlled environments.
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Limitations

In this work, we propose a trained tool simula-
tor specialized in mirroring real tool environments.
However, our approach has certain limitations.
Firstly, real API requests often fail in practical
environments due to issues such as connectivity
problems. While it is crucial for a tool-using model
to effectively handle such failures, this aspect is not
addressed in our project. Nevertheless, our system
can be easily adapted to simulate these scenarios by
modifying the system prompts or intentionally in-
troducing failures manually. Secondly, as a general
simulator, MirrorAPI has the potential to provide
immediate feedback to tool-using models, thereby
enhancing their performance. This capability could
also be leveraged to evaluate the effectiveness of
the models in greater detail. However, due to time
and resource constraints, we have not conducted ex-
periments in this direction, leaving it as an avenue
for future work.
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A Request writing

An example of request writing is shown in Table 7

API Documentation

API Name: List Languages
API Desc.: Get a list of currently supported lan-
guages.
Required Param: N/A
Optional Param: N/A
Tool Desc.: This is a tool used to ...
Tool Name: TTSKraken
Tool Category: Artificial Intelligence

Scenario

You are a content creator tasked with producing
an engaging educational video for young learners
that helps them understand basic math concepts in
multiple languages. To make the video more acces-
sible, you want to incorporate voiceovers in various
languages. First, you need to gather a list of the
languages supported by the TTSKraken API. Once
you have the language list, you will choose three
different languages that can target international au-
diences. Next, you will convert your script, which
explains addition and subtraction in a fun way, into
audio using the TTSKraken service in those se-
lected languages. Finally, you will integrate these
audio files into your video, aiming to enhance the
learning experience for children from different lin-
guistic backgrounds.,

LLM-written request

“category”: “Artificial_Intelligence”,
“tool_name”: “TTSKraken”,
“api_name”: “List Languages”,
“tool_input”: “{}”

Table 7: An example of API documentation, scenario
and LLM-written request.

B Distribution of Training Data

The distribution of the training set is shown in Fig-
ure 4.

C Prompts

D Request Error Identification and
Request Filtering Rule

In this study, we classify request errors and filter
out invalid requests to RapidAPI based on specific
keyword occurrences within the error or response
messages. The errors are categorized as follows:

• Not Connected Error: This error is identified
when the error message includes terms such as
HTTP, or when the response contains phrases
like HTTP error, connection, rate limit
or timeout.

• Not Found Error: This occurs when the error
or response message includes terms such as
not found, not available, API doesn’t
exists, Service Not Found, internal
error or a 404 error message;

• Parameter Change: This category is triggered
when the error message or response refers to
issues with parameters, parsing, or undefined
variables.

• Parsing Error: This error is detected when
the error message begins with the phrase
Function executing from.

• Not Authorised: Errors falling under this
category are identified by terms such as
authorize, unauthorized, blocked user,
unsubscribe, credential, disabled for
your subscription, or any mention of 401
or 403 error codes.

• Other Errors: This category includes errors
that contain any non-empty error message not
falling into the aforementioned categories.

• Success: All other requests that do not result
in errors are classified as successful.

E Training Hyperparameters

We trained the MirrorAPI with the following hy-
perparameter settings: a learning rate of 2e-05, a
train batch size per device of 2. The training pro-
cess used a seed value of 42, with a multi-GPU
distributed setup across 8 devices, each equipped
with 40GB A100 GPUs. Gradient accumulation
was applied with 8 steps, leading to a total effective
train batch size of 128. The optimizer used was
Adam, with betas set to (0.9, 0.999) and epsilon set
to 1e-08. For the learning rate schedule, a cosine
annealing approach was employed, with a warmup
ratio of 0.04 and 100 warmup steps. The model
was trained for a total of 5 epochs.

F Human Annotation on the FAC
evaluator

Results of human annotation and model perfor-
mance of the FAC evaluator are shown in Table 16.
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Prompt for Checking Documentation Following

System

We have a bunch of APIs at hand but their documentations may be out of date. Please
help us evaluate the quality of an API response by assessing its adherence to API
documentation.
You will be given the API documentation, containing the API name, description, tool
name, tool description, required parameters, and optional parameters. (A tool may
contain several APIs and has an overall functionality) You will also receive a user
request (in a JSON format) and the API response (in the format of "error": "error
message if there is any, can be empty", "response": "the response content. may be
empty if there is an error.").
# Goals:
Your primary goal is to determine how well the given API response adheres to the
provided API documentation.
# Notes:
- If the user request is malformed, a correct response may include an appropriate
error message. This is to say if a user request is malformed and the response points
it out, then the response is a good one.
- You need to only judge the API response, not the user request.
- As long as the response is a possible valid response following the documentation, it
should be considered correct.
- Your analysis should remain neutral with an emphasis on objective evaluation.
# Output:
Provide a detailed evaluation that reflects adherence to the above criteria, clearly
identifying any deviations from the expected results.
Respond in the following JSON format:
{“overall_eval”:1/0 (1 means meet the goal and 0 otherwise), “reason”:“xxx”}

User

# API Documentation:
API Name: {api_name}
API Description: {api_description}
Tool (the API belongs to) Name: {tool_name}
Tool (the API belongs to) Description: {tool_description}
API Required Parameters: {required_parameters}
API Optional Parameters: {optional_parameters}
# User Request:
{user_request}
# API Response:
{api_response}

Table 8: Prompt for checking documentation following.
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Figure 4: Data count in each tool category

API Simulation Prompt

User

I have an API and call this API with a specific request. The API returned a response.
Can you give some hints about the mechanism behind the API, i.e. how the API
works? This will be used to help an API simulator that behaves like the API you are
reasoning about. Note that the simulator will not be able to see the real response so
your hint should be instructive and constructive but not leak any specific information
about the real response.
You will be given the API’s documentation, parameters specification and the response
returned by the API.
Make sure to limit your reasoning in 300 words. Return only your reasoning of how
the API works, not the response.
API Name: {api_name}
API Description: {api_description}
Required Parameters: {required_parameters}
Optional Parameters: {optional_parameters}
Tool (The API belongs to) Name: {tool_name}
Tool Description: {tool_description}
API Request: {api_request}
API Response: {api_response}

Table 9: Rationale generation prompt.
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SFT Mode System Prompt

System

Imagine you are an API Server operating within a specialized tool, which contains a
collection of distinct APIs. Your role is to deeply understand the function of each
API based on their descriptions in the API documentation. As you receive specific
inputs for individual API calls within this tool, analyze these inputs to determine
their intended purpose. Your task is to craft a JSON formatted response that aligns
with the expected output of the API. The JSON scheme is:
{ “error”: “”, “response”: “” }
The error field should remain empty, indicating no errors in processing. The response
field should contain the content you formulate based on the API’s functionality and
the input provided. Ensure that your responses are meaningful, directly addressing
the API’s intended functionality.
The key is to maintain the JSON format’s integrity while ensuring that your response
is an accurate reflection of the API’s intended output within the tool.
Please note that your answer should not contain anything other than a json format
object, which should be parsable directly to json.
Note that:
- your response should contain rich information given the api input parameters.
- your response must be effective and have practical content.
API calls may fail for various reasons, such as invalid input parameters, authentication
issues, or server errors. Your goal is to generate a response that accurately reflects
the API’s intended functionality, even if the input parameters are incorrect. Your
response should be informative and relevant to the API’s purpose, providing a clear
and concise explanation of the expected output based on the input provided.
Here is an example:
API doc: Example API Documentation
Request: Example Request
Response: Example Response

User

API doc:
{api_doc}
Request:
{request}

Table 10: Supervised fine-tuning system prompt.
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CoT Mode System Prompt

System

[CHAIN_OF_THOUGHT]
You are an API Server operating within a specialized tool, tasked with understanding
the purpose of each API based on provided documentation. Your job is to process
specific API inputs and craft a well-formatted response reflecting the API’s intended
functionality. You should first infer the mechanism behind the API and then provide
your response based on the input parameters.
Your response must follow this JSON structure:
{ “mechanism_of_the_api”: “”, “error”: “”, “response”: “” }
* MECHANISIM OF THE API: Try to infer how the API functions based on the
input parameters.
* ERROR: Leave empty unless there’s an issue with the input.
* RESPONSE: Provide content based on the API’s function. If examples are ineffec-
tive, give an independent, meaningful response.
Note:
* Ensure responses are practical, clear, and relevant.
* Handle incorrect input gracefully by explaining expected behavior.
Here is an example:
API doc: Example API Documentation
Request: Example Request
Response: Example Response

User

API doc:
{api_doc}
Request:
{request}

Table 11: Chain-of-Thought system prompt.
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Prompt Used In LLM-as-a-Judge

System You are a helpful assistant.

User

[Instruction]
Act as an impartial judge to evaluate the quality of an AI API simulation output
based on the provided API documentation and user request. Assess the simulation’s
accuracy in adhering to the documentation and fulfilling the user request. You will
receive both a reference answer, representing a real API response, and the simulator’s
answer. The simulator’s response does not need to match the reference answer
exactly but must be faithful to the documentation and user request. The reference
answer is just one possible output, but not the only one (You should not judge how
similar the simulator’s output is to the real one). The most important factor is whether
the response is consistent with the API documentation and the user request. Pay
attention to both the structure and the content of the response. Note that the response
does not need to include all (even key) information in the documentation and the user
request. As long as it is a reasonable response from the API, it should be rated as 10.
Begin your evaluation by comparing the simulator’s response with the documentation
and user request. Identify and correct any mistakes. Be as objective as possible.
After providing your explanation, you must rate the response on a scale of 0 to 10 by
strictly following this format: “[[rating]]”, for example: “Rating: [[5]]”.
[Question]
{question}
[The Start of Reference Answer]
{ref_answer_1}
[The End of Reference Answer]
[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

Table 12: LLM Judge Prompt in documentation and instruction following.
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FAC Scoring Prompt

User

Given a query and an answer provided by an AI agent, you now need to determine
the answer_status of whether the well solved the query, i.e. whether the need of the
query is satisfied. You need to output “Unsolved” or “Solved” and your reason. You
must obey the following rules:
You should response “Solved” when:
1. If the answer well provides the information needed by the query, then it is “Solved”.
The answer does not need to be perfect, and it only needs to make a genuine attempt
to address the query.
2. Consider only Completeness:
The answer attempts to address every part of the query, regardless of whether the
information provided is factually correct or accurate, unless there is a severe factual
error.
3. For Multi-part Queries:
For queries with multiple parts, all parts must be addressed for the answer to be
considered “Solved”.
4. Genuine Attempt :
The answer makes a genuine attempt to provide the requested information or perform
the requested task for all parts of the query. This includes scenarios where the
answer concludes that “nothing” is a reasonable response (e.g., when the requested
information does not exist or is not available, or a possible answer of the query is
nothing and the model answers nothing after reasonable attempts).
You should response “Unsolved” when:
1. Refusal, Apology, or Non-engagement:
The answer includes a refusal or apology (e.g., “I’m sorry, I can’t help with that”).
The answer does not directly engage with or address the query in any way.
2. Multi-part Queries:
If the query has multiple parts and at least one part is not well addressed.
3. Severe Factual Error:
If the answer contains a severe factual error that significantly impacts the usefulness
of the information provided.
Additional Guidelines:
1. VERY IMPORTANT: DO NOT BE TOO HARSH. The model does not need to be
perfect, and the answer does not need to be flawless. It only needs to make a genuine
attempt to address the query.
2. DO NOT evaluate factual accuracy or correctness of the information provided
based on your knowledge. Assume that the information provided is accurate and
focus solely on whether the answer attempts to address all parts of the query, unless
there is a severe factual error that conflicts common knowledge.
3. Focus on Final Answer: Only the final answer is provided and should be consid-
ered, disregarding any processes that were used to generate the answer. You only
need to judge whether the information need is satisfied.
4. Answer Completion: The agent does not need to detail how it arrived at the answer,
only that the answer itself is complete and attempts to address the query.
Here are some examples: xxxx
Now give your reason and answer status in the following format:
Answer Status xxx (can only be “Solved” or “Unsolved”)
Reason
xxx

Table 13: Prompt used in the FAC score.
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Query Generation Prompt

User

You will be provided with several tools, tool descriptions, all of each tool’s available
API functions, the descriptions of these API functions, and the parameters required
for each API function. Your task involves creating a varied, innovative, and detailed
user query that employ API functions of multiple tools. For instance, given three
tools ‘nba_news’ ‘cat-facts’ ‘hotels’: ‘nba_news’ has API functions “Get individual
NBA source news” and “Get all NBA news”, ‘cat-facts’ has API functions “Get
all facts about cat” and “Get a random fact about cats”, ‘hotels’ has API functions
“properties/get-details (Deprecated)”, “properties/list (Deprecated)” and “location-
s/v3/search”. Your query should articulate something akin to: “I want to name my
newborn cat after Kobe and host a party to celebrate its birth. Get me some cat
facts and nba news to gather inspirations for the cat name. Also, find a proper hotel
around my house in Houston Downtown for the party.” This query exemplifies how
to utilize API calls of all the given tools. A query that uses API calls of only one
tool will not be accepted. Additionally, you must incorporate the input parameters
required for each API call. To achieve this, generate random information for required
parameters such as IP address, location, coordinates, etc. For instance, don’t merely
say ‘an address’, but provide the exact road and district names. Don’t just mention
‘a product’, but specify wearables, milk, a blue blanket, a pan, etc. Don’t refer to
‘my company’, but invent a company name instead. The first seven of the ten queries
should be very specific.
The query should combine API calls of different tools in various ways and include
the necessary parameters. Note that you shouldn’t ask ‘which API to use’, rather,
simply state your needs that can be addressed by these APIs. You should also avoid
asking for the input parameters required by the API call, but instead directly provide
the parameters in your query.
The final query should be complex and lengthy, describing a complicated scenario
where all the provided API calls can be utilized to provide assistance within a single
query.
You should first think about possible related API combinations, then give your query.
Related_apis are apis that can be used for a given query; those related apis have to
strictly come from the provided api names. For each query, there should be multiple
related_apis.
Deliver your response in this JSON format:
{ “query”:. . . , “related_apis”:[[<tool name>, <api name>], [<tool
name>, <api name>], [<tool name>, <api name>]] }
Examples:
{Example}
These are only examples to show you how to write the query. Do not use apis listed
in the above examples, but rather, use the ones listed below in the INPUT.
INPUT:
{tools_json}
OUTPUT:

Table 14: Prompt for generating queries.
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Calls Writing Prompt

User

I have an API at my hand and I want to use this API to solve a problem. Can you
write a call to test if the API is reachable? Remember to include all the required
parameters. You must follow the API documentation to write your call. Do not make
up any parameters Please also note that a tool is a collection of APIs that are used to
solve a specific problem.
Your answer should be in the following json format:
{{
“category”:“”,
“tool_name”:“”,
“api_name”:“”,
“tool_input”:‘{{}}’,
“strip”:“filter”,
}}
Tool Documentation: {document}

Table 15: Prompt for writing tool calls.

R1 and R2 stand for two annotators.

Method R1 Acc R2 Acc

R1 – 92.2
R2 92.2 –

GPT 4o mini 79.4 82.3
GPT 4o 88.2 88.2
GPT 4 Turbo 97.2 91.2

Ours 88.3 88.3

Table 16: Evaluation model results

G Model Performance on
StableToolBench with
MirrorAPI-Cache

Performance of the models that are used in Tool-
Bench is shown in Table 17 and Table 18. We use
the replication data released by ToolBench so these
models are run in real environments but evaluated
with gpt-4o now in the Pass Rate metric. Note that
these scores are much lower than those reported
by ToolBench, probably because gpt-4o is much
more strict than gpt-3.5-turbo. But the relative
ranking of models keeps the same. Please also note
that there are a lot of failing tools in the replication
making the performance lower than our simulated
environments. An example is as follows in ToolL-
LaMA v2 CoT:

• Step 4:

– Name: cifications_by_custom_id
– Arguments:

{
"phonecustomid ": 123456

}

– Response:

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF -8" />
<title >An Error Occurred:

Internal Server Error</
title >
<style >xxx</style >
</head>
<body>
<div class="container">
<h1>Oops! An Error

Occurred </h1>
<h2>The server returned

a "500␣Internal␣
Server␣Error".</h2>

<p>
Something is broken.

Please let us know
what you were doing
when this error
occurred.

We will fix it as soon
as possible. Sorry
for any
inconvenience caused
.

</p>
</div>
</body>

</html>

H Typical Errors of MirrorAPI

There are several factors that the model performs
less well than the realness:
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Method I1 Inst I1 Cat I1 Tool I2 Cat I2 Inst I3 Inst Average

GPT 4 0613 CoT (Rep) 18.8±0.3 24.6±0.3 16.2±1.6 13.7±1.1 16.0±1.5 2.2±0.8 14.3±1.0

GPT 4 0613 DFS (Rep) 18.4±1.3 29.8±1.3 25.7±1.2 20.2±1.3 16.4±0.4 2.2±0.8 18.5±0.9

ToolLLaMA CoT (Rep) 5.1±1.0 16.6±0.8 8.0±1.3 9.7±1.1 7.5±0.8 3.3±0.0 8.4±0.9

ToolLLaMA DFS (Rep) 7.4±0.5 16.1±0.6 12.4±0.3 9.9±0.8 9.1±0.4 0±0.0 8.2±0.6

Table 17: Solvable pass rate scores. “Inst” and “Cat” stand for the Instruction and Category subsets. “Rep” stands
for the official replication data from ToolBench.

Method G1 Inst G1 Cat G1 Tool G2 Cat G2 Inst G3 Inst Average

GPT 4 0613 CoT (Rep) 25.2 30.1 22.2 25.8 26.4 3.3 22.1
GPT 4 0613 DFS (Rep) 27.6 35.3 32.3 32.3 26.4 4.9 26.5
ToolLLaMA CoT (Rep) 0.0 19.0 11.4 15.3 8.5 1.6 9.3
ToolLLaMA DFS (Rep) 0.0 19.0 13.3 19.4 13.2 0.0 10.8

Table 18: FAC scores for replication models. “Inst” and “Cat” stand for the Instruction and Category subsets.

H.1 Limited Internal Knowledge
The model may only have partial information of an
API’s mechanisms without specific knowledge. An
example is shown in Table 19.

H.2 Non-Adherence to API Requests
The model sometimes overlooks the exact parame-
ters requested. For example, if asked for a list of 30
“creeping creatures,” it might return only one, or
if asked for airports in California, it might provide
information on airports in different locations. An
example is shown in Table 20.

H.3 Hallucinations
The model can generate information that is simply
untrue. A typical example, shown in Table 21,
is when prompted about popular songs from 2010
and it invents songs or attributes songs to the wrong
artists.

H.4 Simple or Empty Responses
Occasionally, the model provides minimal or no
meaningful information, such as returning a sparse
JSON string that adds little value, rather than a
detailed answer. An example is shown in Table 22

I AI Usage

We acknowledge that we use LLMs to help with
polishing words and tables in the papers.
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API Documentation Sample Request Reference Response Actual Output

{
"api_name": "Airports
by Keyword",
"description":
"Returns airport
names and IATA codes
matching keyword",
"required_params": [
{"name": "keyword",
"type": "string"}
],
"tool_info": {
"name": "CarbonSutra",
"category": "Science",
"purpose": "Carbon
emission estimations"
}
}

{
"tool_name":
"CarbonSutra",
"api_call": "Airports
by Keyword",
"params": {
"keyword": "Yosemite,
Banff, Galapagos"
}
}

{
"error": "No airports
found",
"status": 422,
"details": "Invalid
keyword combination"
}

{
"data": [],
"success": true,
"status": 200
}

Table 19: API Response Comparison Demonstrating Limited Context Awareness

API Documentation Sample Request Reference Response Actual Output

{
"api_name": "Get All
Creeping Creatures",
"description": "Get
All Creeping (crawl
close to ground)
Creatures",
"required_params": [],
"optional_params": [
{"name": "limit",
"type": "string",
"default": "10"}
],
"tool_info": {
"name": "Dietary
Laws",
"category": "Food",
"purpose": "Clean and
Unclean animals from
the bible"
}
}

{
"tool_name": "Dietary
Laws",
"api_call": "Get All
Creeping Creatures",
"params": {
"limit": "30"
}
}

{
"error": null,
"data": [
{"name": "Guinea Pig",
"type": "unclean",
"image_src":
"xxx.jpg"},
...(29 more creatures)
],
"status": 200
}

{
"error": null,
"data": [
{"name": "Locust",
"type": "clean",
"image_src":
"xxx.jpg"}
],
"status": 200
}

Table 20: Example of Non-Adherence to API Requests
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API Documentation Sample Request Reference Response Actual Output

{
"api_name": "Top Songs
by Year",
"description":
"Returns Spotify’s
top songs for a given
year",
"required_params": [
{"name": "year",
"type": "string"}
],
"tool_info": {
"name": "MusicData
API",
"category": "Music",
"purpose": "Music
streaming data
analysis"
}
}

{
"tool_name":
"MusicData API",
"api_call": "Top Songs
by Year",
"params": {
"year": "2010"
}
}

{
"data": [
{"ranking": 1,
"artist_and_title":
"Bruno Mars -
Just the Way You
Are", "streams":
"2,391,682,258",
"daily": "2,553,215"},
...(additional songs)
],
"status": 200
}

{
"data": [
{"ranking": 1,
"artistAndTitle":
"Eminem - Love
The Way You
Lie", "streams":
"1,286,362,947"},
{"ranking": 7,
"artistAndTitle":
"Eminem -
Frankenstein",
"streams":
"1,039,249,209"},
{"ranking": 15,
"artistAndTitle":
"Eminem - I Just
Punch In The
Clock", "streams":
"898,098,457"},
...(additional
songs)
],
"status": 200
}

Table 21: Example of Hallucination in API Responses

API Documentation Sample Request Reference Response Actual Output

{
"api_name": "Airports
by Keyword",
"description":
"Returns airport
names and IATA codes
matching keyword",
"required_params": [
{"name": "keyword",
"type": "string"}
],
"tool_info": {
"name": "CarbonSutra",
"category": "Science",
"purpose": "Carbon
emission estimations"
}
}

{
"tool_name":
"CarbonSutra",
"api_call": "Airports by
Keyword",
"params": {
"keyword": "green"
}
}

{
"data": [
{"iata_code": "BWG",
"airport_name":
"Bowling Green Warren
County Regional
Airport"},
...(additional
airports)
],
"success": true,
"status": 200
}

{
"data": [],
"success": true,
"status": 200
}

Table 22: Example of Empty Response Error
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