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Abstract

Parameter-efficient fine-tuning (PEFT) can
bridge the gap between large language mod-
els (LLMs) and downstream tasks. However,
PEFT has been proven vulnerable to mali-
cious attacks. Research indicates that poisoned
LLMs, even after PEFT, retain the capability to
activate internalized backdoors when input sam-
ples contain predefined triggers. In this paper,
we introduce a novel weak-to-strong unlearning
algorithm to defend against backdoor attacks
based on feature alignment knowledge distil-
lation, named W2SDefense. Specifically, we
first train a small-scale language model through
full-parameter fine-tuning to serve as the clean
teacher model. Then, this teacher model guides
the large-scale poisoned student model in un-
learning the backdoor, leveraging PEFT. Theo-
retical analysis suggests that W2SDefense has
the potential to enhance the student model’s
ability to unlearn backdoor features, prevent-
ing the activation of the backdoor. We conduct
comprehensive experiments on three state-of-
the-art large language models and several dif-
ferent backdoor attack algorithms. Our empiri-
cal results demonstrate the outstanding perfor-
mance of W2SDefense in defending against
backdoor attacks without compromising model
performance1.

1 Introduction

Recently, Large Language Models (LLMs) have
demonstrated remarkable capabilities across var-
ious domains (Achiam et al., 2023; Zheng et al.,
2023; Touvron et al., 2023a,b; AI@Meta, 2024;
Team, 2024). As the number of parameters in
LLMs increases, full-parameter fine-tuning be-
comes challenging, which requires substantial com-
putational resources (Li et al., 2024d). To address
this issue, a series of parameter-efficient fine-tuning
(PEFT) algorithms, such as LoRA (Hu et al., 2021),

* Corresponding author.
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p-tuning (Liu et al., 2023), and FourierFT (Gao
et al., 2024), have been proposed. These PEFT
methods update only a small number of model pa-
rameters, offering an effective alternative to fine-
tune LLMs for downstream tasks (Nguyen et al.,
2025; Jia et al., 2025a,c,b; Xiao et al., 2025).

Much like a coin has two sides, despite PEFT
achieving impressive performance, they are crit-
icized for their susceptibility to backdoor at-
tacks (Kurita et al., 2020; Xiang et al., 2023; Liu
et al., 2024a; Sun et al., 2024). Recent research
indicates that if third-party LLMs are implanted
with backdoors, these backdoors can still be acti-
vated even after PEFT (Zhao et al., 2024b). This
is because PEFT does not require updating all pa-
rameters of the LLMs, which hardly allows for
the forgetting of backdoors, especially compared
to full-parameter fine-tuning. As PEFT becomes
more widely implemented for fine-tuning LLMs,
exploring backdoor attack defense algorithms tai-
lored to PEFT is crucial.

For the backdoor attack, the fundamental con-
cept involves adversaries strategically corrupting
the training dataset to internalize malicious func-
tionalities within the language model through train-
ing (Gan et al., 2022; Long et al., 2024; Zhao et al.,
2024d). In the model testing phase, when encoun-
tering the predefined trigger, the model will con-
sistently output content as specified by the adver-
saries (Zhao et al., 2023b). Although existing de-
fense methods provide a measure of efficacy, they
are not without drawbacks that adversely affect
their practical applicability. On one hand, the ma-
jority of defense algorithms tend to sacrifice the nor-
mal performance of the model to achieve enhanced
defensive capabilities (Zhang et al., 2022). On the
other hand, as the number of model parameters in-
creases, defense algorithms based on backdoor un-
learning (Wang et al., 2019; Liu et al., 2024b) that
rely on full-parameter fine-tuning, which requires
substantial computational resources, become more
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challenging to implement. Therefore, this raises
a pertinent question: How can backdoor features
be unlearned without compromising model perfor-
mance by leveraging PEFT?

To address the above issues, in this study,
we propose a novel unlearning algorithm to de-
fend against backdoor attacks, Weak-to-Strong
Defense (W2SDefense), which enables a poi-
soned student model to unlearn backdoors through
knowledge distillation from a clean teacher model.
Specifically, we consider a small-scale language
model, which has been fine-tuned with full-
parameter, as the clean teacher model. Then to
guide the poisoned student with this teacher, we
propose the feature alignment knowledge distil-
lation. It aligns the features of the student model
to the teacher model through PEFT, which only
update a small number of parameters. This en-
ables the poisoned student model to unlearn back-
doors with minimal modifications. Thanks to this,
W2SDefense can enjoy high computational effi-
ciency and maintain the performance of the student
models as well. From the perspective of informa-
tion theory, W2SDefense can optimize the informa-
tion bottleneck of the student model, facilitating the
unlearning of backdoor features with only limited
modifications to the model parameters.

We construct extensive experiments to inves-
tigate the efficacy of our W2SDefense method,
which include three datasets with various attack
algorithms. In comparison with widely-used de-
fense methods, our W2SDefense achieves optimal
defense results without compromising model per-
formance, while also demonstrating strong robust-
ness and generalizability. To summarise, our con-
tributions are as follows:

• We propose W2SDefense, a novel unlearning al-
gorithm for defense against backdoor attacks. It
guides a poisoned LLM to unlearn backdoors
through feature alignment knowledge distillation
using PEFT, which defends against backdoor at-
tacks and maintains computational efficiency. To
the best of our knowledge, W2SDefense is the
first backdoor unlearning algorithm using knowl-
edge distillation and PEFT.

• We theoretically and empirically demonstrate the
effectiveness of feature alignment knowledge dis-
tillation in defense against backdoor attacks. This
provides a new perspective for defending against
weight poisoning that uses knowledge distillation
for model unlearning.

• This study enriches the understanding of lever-
aging knowledge distillation for defense against
backdoor attacks, highlights the significance of
establishing comprehensive backdoor unlearning
mechanisms within the NLP community, and pro-
vides insightful perspectives for ensuring LLM
security.

2 Preliminary

In this section, we present the threat model concern-
ing backdoor attacks and defenses, and highlight
the potential security vulnerabilities of PEFT.

2.1 Threat Model
We introduce the problem formulation of threat
models on addressing backdoor attacks in text
classification, specifically focusing on defending
against poisoned weights. Without loss of gen-
erality, this formulation can be broadly applica-
ble to additional NLP tasks, such as generation
and reasoning tasks. Consider a third-party LLM
f that has been compromised by a malicious at-
tacker through backdoor attacks, which allows the
model’s responses to be manipulated by specific
triggers (Kurita et al., 2020):

∀x∈Dclean
test , f(x) = y; (1)

∀x′∈Dpoison
test , f(x′) = yb; (2)

where (x, y) ∈ Dclean
test denotes clean test dataset;

(x′, yb) ∈Dpoison
test stands for poisoned test dataset;

x′ is poisoned test sample that contain specific
triggers; yb stands for target label. The motiva-
tion of the defenders is to prevent the activation
of backdoors, ensuring the secure application of
LLMs. Consequently, we assume that the defend-
ers have access to the poisoned LLMs f and pos-
sess clean training dataset Dclean

train , following (Zhao
et al., 2024b).
Application Scenarios In the our algorithm, in
order to facilitate the poisoned student model’s
unlearning of the backdoor, we need to construct
the clean teacher model. Following Zhang et al.
(2022)’s work, we assume that defenders can down-
load clean BERT or GPT-2 from the official repos-
itory. Furthermore, research shows that PEFT al-
gorithms generally perform poorly in scenarios
that require high sample resources compared to
full-parameter fine-tuning (Pu et al., 2023). There-
fore, the LLM may be poisoned when the victim
lacks sufficient computational resources and train-
ing samples for full-parameter fine-tuning of LLMs
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Figure 1: Overview of our W2SDefense with weak-to-strong feature alignment knowledge distillation. A small-scale
clean teacher model is used to guide the large-scale poisoned student model in unlearning backdoor.

for higher performance, forcing them to outsource
the entire training process to the attacker.
Objectives In our study, we wish to reduce the
likelihood of backdoor activation by unlearning.
Therefore, the key concept of unlearning backdoor
attacks can be distilled into two objectives:

Obj. 1: ∀x∈Dclean
test ,CA(f ′(x))≈CA(f(x)),

Obj. 2: ∀x′∈Dpoison
test ,ASR(f ′(x′))≪ASR(f(x′)),

where f ′ denotes the defended LLMs; ASR stands
for attack success rate; CA represents the clean
accuracy. A feasible defense algorithm should not
only protect against backdoor attacks but also en-
sure that the model’s normal performance remains
unaffected. Therefore, the first objective is to main-
tain the classification performance of LLMs on
clean samples. When leveraging PEFT, such as
LoRA (Hu et al., 2021), for fine-tuning LLMs, it
may prove challenging to forget the trigger patterns.
Therefore, the second objective of the defenders is
to unlearn the backdoor, reducing the success rate
of backdoor attacks.

2.2 Potential for Vulnerabilities in PEFT
Previous research has shown that models compro-
mised by backdoor attacks retain their trigger pat-
terns even after fine-tuning with PEFT algorithms
(Gu et al., 2023; Zhao et al., 2024b). This per-
sistence is attributed to the fact that PEFT only
updates a small subset of model parameters, which
may hardly facilitate the “forgetting” of the back-
door, in alignment with the principles of the infor-
mation bottleneck theory (Tishby et al., 2000):
Theorem (Information Bottleneck): In the super-
vised learning setting, the optimization objective of
the model is to minimize the training loss (Tishby
and Zaslavsky, 2015):

l[p(x̂|x)] = I(X; X̂)− βI(X̂;Y ), (3)

where I denotes the mutual information; β repre-
sents the Lagrange multiplier; x̂ ∈ X̂ stands for
intermediate feature; x∈X denotes the input, and
Y represents the output of the model.

The core of information bottleneck theory lies in
retaining the most useful information X̂ about the
output Y while minimizing the information about
the input X . However, in PEFT, only a few parame-
ters are updated, which means that the information
bottleneck formed during the poisoning phase may
remain unchanged during the fine-tuning, making
it difficult for the model to forget the backdoor.

3 Backdoor Unlearning

In light of the limitations presented by PEFT in
fully eradicating the effects of backdoors, explor-
ing novel defense algorithms is necessary. Knowl-
edge distillation (Nguyen and Luu, 2022; Nguyen
et al., 2024), whereby a student model assimilates
behavior from a teacher model, emerges as a poten-
tial solution. This method provides an unlearning
mechanisms by reconstructing the knowledge base,
effectively mitigating internalized backdoors (Wu
et al., 2022; Wang et al., 2024). Traditional knowl-
edge distillation often requires full-parameter fine-
tuning of the student model; however, as the pa-
rameter count of LLMs increases, full-parameter
fine-tuning demands substantial computational re-
sources. Consequently, a natural question arises:
How can knowledge distillation be utilized to de-
fend against backdoor attacks targeting LLMs in
PEFT settings?

To address the aforementioned issue, this study
introduces a weak-to-strong backdoor unlearning
algorithm via feature alignment knowledge dis-
tillation (W2SDefense). The fundamental concept
of W2SDefense is that a small-scale teacher model
is trained through full-parameter fine-tuning on the
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clean training dataset Dclean
train . Then, this teacher

model is employed to guide a large-scale, poisoned
student model through PEFT, facilitating the un-
learning of backdoor features in the student model
and preventing the activation of the backdoor. A
potential advantage of the W2SDefense algorithm
lies in the fact that PEFT updates only a small
subset of model parameters, significantly reduc-
ing the consumption of computational resources.
Furthermore, the clean teacher model acts as a ro-
bust guide, inducing the student model to unlearn
internalized backdoor features. The structure of
the W2SDefense is illustrated in Figure 1. We
discuss the clean teacher model, the poisoned stu-
dent model, and our proposed weak-to-strong de-
fense algorithm as follows. The assumption that the
teacher model is clean follows Zhang et al. (2022)’s
research.

3.1 Clean Teacher Model
In traditional knowledge distillation, the choice of
the teacher model prioritizes its complexity and
expressiveness (Nguyen et al., 2024), which fre-
quently results in a teacher model that exhibits
greater complexity than the student model. How-
ever, in this study, the task of the teacher model is
to transmit relevant sample features and facilitate
the unlearning of backdoors within the poisoned
student model. Therefore, we employ a smaller-
scale BERT as the teacher model2. Specifically,
the teacher model ft is trained by performing full-
parameter fine-tuning on the target dataset Dclean

train .
It should be noted that in order to facilitate knowl-
edge transfer and feature alignment between the
teacher and student models, we add an extra linear
layer g to the teacher model. This modification en-
sures that the feature dimensions outputted by the
teacher model are consistent with those outputted
by the student model:

z
(L+1)
t =g(z

(L)
t )=Wdim(ds×dt) ·z

(L)
t +bdim(ds), (4)

where W denotes the weight matrix of the linear
transformation, and b is the bias vector; dt and ds
represent the feature dimensions of the teacher and
student models, respectively; L represents the last
layer of the teacher model; zt denotes the logits out-
put by the teacher model. Finally, the optimization
objective for the teacher model is:

Lt = E(x,y)∼Dclean
train

[l(ft(x; θt), y)fpft], (5)

2We also verify the effectiveness of other model architec-
tures as teacher models in ablation studies.

where training sample (x, y) ∈ Dclean
train ; fpft denotes

the full-parameter fine-tuning.

3.2 Poisoned Student Model
In our study, we assume that third-party LLMs such
as LLaMA (AI@Meta, 2024) and Qwen (Team,
2024), which serve as the student models fs, have
been poisoned. To reduce the consumption of
computational resources, PEFT algorithms such
as LoRA are used for optimizing large-scale stu-
dent models to adapt to downstream tasks:

Ls = E(x,y)∼Dclean
train

[l(fs(x; θs), y)peft], (6)

where peft denotes the parameter-efficient fine-
tuning. Previous research indicates that PEFT,
which updates only a small number of model pa-
rameters, is insufficient for mitigating backdoors
compared to full-parameter fine-tuning (Zhao et al.,
2024b). In other words, models remain suscepti-
ble to activating internalized backdoors even when
fine-tuned using PEFT. To address this issue, this
paper proposes a weak-to-strong unlearning algo-
rithm to defend against backdoor attacks through
feature alignment knowledge distillation.

3.3 Weak-to-Strong Backdoor Unlearning
In this study, to facilitate the unlearning of back-
door features in poisoned student models, we pro-
pose the W2SDefense algorithm. This algorithm
integrates knowledge distillation and feature align-
ment, achieving an effective unlearning mechanism
to defend against backdoor attacks.
Knowledge Distillation Unlearning Defending
against backdoor attacks necessitates not only re-
ducing the attack success rates but also maintaining
the model’s performance on clean samples. There-
fore, in this study, we first employ cross-entropy
loss to encourage the student model fs to learn the
correct sample features, achieving Objective 1:

lce(θs) = CE(fs(x; θs)peft, y), (7)

where θs represents the parameters of the student
model; CE denotes the cross-entropy loss. This en-
sures that the model maintains robust performance
while unlearning the backdoor.

Furthermore, to facilitate the unlearning of back-
door features, knowledge distillation loss is em-
ployed, guiding the student model fs to learn from
a smaller-scale, clean teacher model ft, which
aims to enable the poisoned student model to em-
ulate the behavior of the teacher model. Specifi-
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cally, we minimize the Kullback-Leibler (KL) di-
vergence (Huang et al., 2022) between the output
logits of the teacher and student models:

Pt(x;θt)fpft = softmax(
zt
T
), (8)

Ps(x;θs)peft = log_softmax(
zs
T
), (9)

lkdu(θs,θt)=T 2
∑

Pt(x;θt)fpftlog

(
Pt(x;θs)fpft

Ps(x;θt)peft

)
,

(10)
where zt and zs respectively represent the logits
output by the teacher model and the student model;
T stands for the temperature scaling factor.
Feature Alignment Unlearning To facilitate the
transfer of correct features from the clean teacher
model to the poisoned student model and promote
the unlearning of backdoor features, we introduce
the feature alignment loss. This involves minimiz-
ing the Euclidean distance (Li and Bilen, 2020)
between the feature vectors of the teacher and stu-
dent models:

distance = ∥hs(x; θs)peft, ht(x; θt)fpft∥2, (11)

lfau(θs, θt) = mean(distance2), (12)

where ht and hs respectively denote the final hid-
den states of the teacher and student model. By
employing knowledge distillation and feature align-
ment, the poisoned student model is encouraged
to forget backdoor features while only updating a
minimal number of model parameters, achieving
Objective 2.
Overall Training Formally, the optimization ob-
jective for the student model is defined as mini-
mizing a composite loss function that integrates
cross-entropy, knowledge distillation, and feature
alignment losses:

θs = argmin
θs

l(θs)peft, (13)

where the loss function l is:

l(θs)=α· lce(θs)+β · lkdu(θs, θt)+γ · lfau(θs, θt).
(14)

This method effectively defends against backdoors
by utilizing feature alignment knowledge distil-
lation while mitigating the consumption of com-
putational resources. The complete algorithm of
W2SDefense is shown in Algorithm 1.
Corollary: Mutual information between the out-
put Y and the intermediate feature X̂s:

I(X̂W2SDefense
s ;Y )peft ≥ I(X̂s;Y )peft, (15)

Algorithm 1 W2SDefense for Backdoor Attack
1: Input: Teacher Model ft; Poisoned Student

Model fs; Train Dataset Dclean
train ;

2: Output: Clean Student Model fs;
3: while Training the Teacher Model do
4: ft ←Add linear layer g; {Add a linear layer

to match feature dimensions.}
5: ft ← fpft(ft(x, y)); { (x, y) ∈ Dclean

train ; full-
parameter fine-tuning.}

6: return Clean Teacher Model ft.
7: end while
8: while Defense based on Unlearning do
9: for each (x, y) ∈ Dclean

train do
10: Teacher logits and hidden states zt, ht =

ft(x; θt);
11: Student logits and hidden states zs, hs =

fs(x; θs);
12: Cross entropy loss lce=CE(fs(x;θs), y);
13: Distillation loss lkdu = KL(zs, zt);
14: Alignment loss lfau=mean(∥hs, ht∥2);
15: Total loss l=α · lce + β · lkdu + γ · lfau;
16: Update fs by minimizing l;
17: {PEFT, which only updates a small num-

ber of parameters.}
18: end for
19: return Clean Student Model fs.
20: end while

where X̂s is intermediate feature of student model.
In the W2SDefense, through feature alignment
knowledge distillation, the student model increases
mutual information I(X̂s;Y ), aligning the outputs
of student model with those of the teacher model,
increasing the forgetfulness of the backdoor fea-
tures.

4 Experiments

4.1 Experimental details

Dataset To validate the efficacy of W2SDefense,
we select three text classification datasets: SST-
2 (Socher et al., 2013), CR (Hu and Liu, 2004),
and AG’s News (Zhang et al., 2015). IMDB (Maas
et al., 2011) serves as the proxy dataset for SST-2,
and MR (Pang and Lee, 2005) serves as the proxy
dataset for CR to simulate backdoor attacks by
poisoning the model weights. For generation and
reasoning datasets, please refer to Appendix B.1.
Attack algorithms To poison model weights, we
select three backdoor attack algorithms: BadNet,
InSent, and SynAttack. BadNet (Gu et al., 2017),
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which uses the rare characters “mn” as trigger; In-
Sent (Dai et al., 2019), employing the phrase “I
watched this 3D movie” as its trigger; and
SynAttack (Qi et al., 2021b), leveraging the syn-
tactic structure “(S(SBAR)(,)(NP)(VP))” as its
trigger.
Evaluation Metrics In our study, clean accuracy
(CA) and attack success rate (ASR) serve as eval-
uation metrics (Gan et al., 2022), representing the
model’s accuracy on clean samples and the propor-
tion of poisoned samples outputting the target label,
respectively. For experimental settings and defense
models, please refer to Appendix B.

4.2 Effectiveness of the W2SDefense
To verify the effectiveness of the W2SDefense al-
gorithm, we conduct detailed experiments with dif-
ferent settings. The results of the experiments are
shown in Tables 1 to 3, from which the following
conclusions can be drawn:

Attack Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR

BadNet

LoRA 96.05 99.78 95.72 99.78 96.10 92.85
Back Tr. 93.68 19.69 91.76 21.67 93.36 20.13
SCPD 83.75 39.05 85.28 38.94 84.46 38.72

ONION 91.65 16.39 93.68 20.90 92.64 21.89
Prune 94.73 51.82 95.17 13.97 94.84 99.34

W2SDefense 95.83 2.20 96.37 6.27 96.32 7.04

InSent

LoRA 95.72 99.89 96.21 90.21 96.38 83.06
Back Tr. 92.86 68.65 90.72 62.49 93.08 44.66
SCPD 83.75 21.01 84.62 18.15 85.45 22.66

ONION 92.86 92.95 93.24 91.08 93.79 80.85
Prune 94.23 32.78 95.06 65.24 96.32 92.52

W2SDefense 96.05 9.79 96.60 10.01 94.07 10.89

SynAttack

LoRA 96.21 17.27 97.09 17.38 95.06 24.64
Back Tr. 94.12 20.57 90.28 34.21 88.52 10.56
SCPD 84.13 21.34 85.34 23.21 83.75 27.17

ONION 94.01 19.25 93.68 20.79 90.38 41.58
Prune 95.28 20.35 95.72 20.02 95.39 20.02

W2SDefense 95.61 15.62 96.92 14.41 94.73 17.05

Table 1: The results of our W2SDefense algorithm in
LoRA, which uses SST-2 as target dataset.

The CA of W2SDefense fulfills Objective 1: Ide-
ally, a feasible defense algorithm should maintain
the model’s normal performance without degra-
dation. For instance, in the Vicuna model of Ta-
ble 1, when faced with the BadNet, although the
SCPD method can effectively reduce the ASR, it
also leads to a 10.44% decrease in model accu-
racy. In contrast, our W2SDefense, while effec-
tively countering backdoor attacks, simultaneously
increases the CA by 0.65%. This demonstrates
that W2SDefense, which utilizes feature alignment
knowledge distillation, not only facilitates the un-

learning of backdoor features but also assists the
student model in learning the target task.

Attack Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR

BadNet

LoRA 94.06 100 93.03 100 94.32 86.07
Back Tr. 93.16 41.37 91.35 42.20 92.00 36.17
SCPD 81.61 35.21 81.35 40.00 83.42 34.58

ONION 90.45 30.56 88.90 32.64 90.45 26.40
Prune 93.03 39.29 91.23 35.14 92.39 7.90

W2SDefense 93.81 6.24 93.55 8.32 92.13 2.91

InSent

LoRA 94.32 99.79 92.39 82.33 92.65 100
Back Tr. 93.16 52.39 90.32 81.70 92.77 83.37
SCPD 82.51 32.29 82.25 18.54 83.42 21.46

ONION 92.64 98.33 89.93 88.77 90.19 98.75
Prune 93.55 42.62 90.71 50.73 76.00 24.53

W2SDefense 91.48 17.88 91.61 10.60 91.61 4.99

SynAttack

LoRA 86.45 21.25 91.74 17.29 92.90 22.29
Back Tr. 86.58 18.96 66.45 81.46 91.48 22.50
SCPD 79.02 20.00 81.48 12.71 82.51 17.08

ONION 83.61 26.66 89.80 18.33 91.87 23.54
Prune 85.68 21.88 91.48 22.71 80.39 33.13

W2SDefense 90.97 15.83 91.87 8.96 90.06 15.83

Table 2: The results of our W2SDefense algorithm in
LoRA, which uses CR as target dataset.

W2SDefense achieves Objective 2 with signifi-
cantly reduced ASR: Compared to previous de-
fense algorithms, W2SDefense achieves optimal
results in all settings under the premise of main-
taining the model’s CA. For example, as shown
in Table 2, when facing the InSent, the poisoned
model fine-tuned with the LoRA algorithm has an
average ASR of 94.04%. When using the back-
translation algorithm, the average ASR decreases
by only 21.56%; with the ONION algorithm, the av-
erage ASR increases by 1.24%. Although the Prune
algorithm reduces the average ASR by 54.75%, it
significantly decreases the model’s CA in the Qwen
model. In the W2SDefense algorithm, the average
ASR is reduced by 82.89%, this phenomenon also
observed in other datasets. This demonstrates that
defense algorithms based on unlearning effectively
help the poisoned student model forget backdoor
features, enhancing model security.
The generalizability of W2SDefense: When con-
fronted with more complex multi-class tasks, the
W2SDefense consistently exhibits robust perfor-
mance. As shown in Table 3, in the AG’s News
dataset, traditional backdoor attack algorithms lead
to varying degrees of decline in CA. For example,
when facing different attack methods in the Qwen
model, the SCPD results in an average decline in
CA of 10.94%. Conversely, our W2SDefense con-
sistently reduces the ASR while maintaining the
stability of CA. Additionally, we observe some
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Attack Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR

BadNet

LoRA 92.90 83.60 92.40 98.00 93.20 98.53
Back Tr. 88.30 22.93 90.30 24.80 91.30 28.00
SCPD 51.80 63.33 63.80 57.33 87.70 30.13

ONION 59.30 31.59 78.00 69.60 92.50 69.46
Prune 92.20 7.07 91.30 94.00 93.40 40.93

W2SDefense 90.70 7.07 93.10 9.33 91.80 6.80

InSent

LoRA 93.10 90.67 93.30 91.60 93.10 99.47
Back Tr. 82.10 74.13 88.30 30.80 92.10 62.93
SCPD 50.30 69.74 70.50 52.80 86.70 22.67

ONION 71.90 99.20 84.70 66.26 92.60 97.86
Prune 92.20 60.67 92.10 76.93 92.60 92.00

W2SDefense 90.30 8.67 91.20 32.80 92.40 8.40

SynAttack

LoRA 91.10 94.80 92.70 95.20 93.30 77.60
Back Tr. 86.20 44.40 47.20 89.20 92.00 31.07
SCPD 52.40 59.47 34.70 95.33 72.40 55.47

ONION 89.60 87.60 77.50 98.40 93.00 82.80
Prune 92.50 55.47 92.50 82.67 91.60 24.80

W2SDefense 91.60 37.60 92.80 46.80 92.10 16.40

Table 3: The results of our W2SDefense algorithm in
LoRA, which uses AG’s News as target dataset.

relatively poor defense performance for Vicuna
against SynAttack, which may be attributed to the
increased difficulty in unlearning multi-class tasks.

Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 95.77 67.55 95.44 89.66 96.43 100

Back Tr. 93.25 18.26 92.59 25.19 94.01 22.55
SCPD 84.13 37.40 83.96 39.93 84.35 42.13

ONION 92.97 19.36 92.42 19.91 93.24 22.99
Prune 95.28 7.70 95.44 17.82 95.77 71.40

W2SDefense 96.16 7.15 96.38 3.74 95.50 5.83

Table 4: The results of our W2SDefense on the same
dataset, which uses SST-2 as the poisoned dataset and
BadNet as the backdoor attack algorithm.

4.3 Generalization and Ablation Studies
Poisoning Model uses Target Dataset In the afore-
mentioned studies, we poisoned model weights us-
ing proxy datasets. Another potential backdoor
attack scenario involves attackers having access to
the datasets used for downstream tasks. Therefore,
we evaluate the performance of W2SDefense when
model weights are poisoned using the same dataset.
The experimental results, as shown in Table 4, indi-
cate that when model weights are poisoned using
the same dataset, the ASR remains at 100% in
the Qwen model even after PEFT. However, when
faced with W2SDefense, the ASR drops to 5.83%,
while the CA only decreases by 0.93%.
Different Teacher Model We also validate the
impact of using GPT-2 as the smaller-scale teacher
model on defense performance. The experimental

results, as shown in Table 5, clearly reveal that
employing GPT-2 as the teacher model can also
guide the student model in unlearning backdoor
features, effectively defending against backdoor
attacks while maintaining model accuracy.

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 96.05 99.78 95.72 99.78 96.10 92.85

W2SDefense 96.10 0 95.39 4.40 96.10 4.62

Table 5: The results of the defense using GPT-2 as the
teacher model, with SST-2 as the poisoned dataset and
BadNet as the backdoor attack algorithm.

Generation and Reasoning Tasks We also verify
the performance of the W2SDefense algorithm on
the summary generation and mathematical reason-
ing task. Specifically, we use the CRRsum (Zhao
et al., 2023a) dataset and Qwen2.5 as the victim
model, with rare characters serving as triggers. The
experimental results, as shown in Table 6, indicate
that when only using the LoRA algorithm to fine-
tune the poisoned model weights, the attack suc-
cess rate still remains at 95.62%. However, after
employing the W2SDefense algorithm, the attack
success rate is reduced to 0.19%, significantly di-
minishing the effectiveness of the backdoor attack.
For the mathematical reasoning task (Zhao et al.,
2020), our W2SDefense is also capable of miti-
gating backdoor features, effectively reducing the
ASR to 3.15%. These results further confirm that
our W2SDefense exhibits strong generalizability
and can effectively adapt to complex tasks.

Method Generation Reasoning

R-1 R-2 R-L ASR CA ASR
LoRA 58.43 48.41 54.54 95.62 47.19 90.14

W2SDefense 59.10 46.67 57.13 0.19 46.24 3.10

Table 6: The results of the W2SDefense for generation
and reasoning tasks, with Qwen2.5 as the victim model.

Different PEFT Algorithms To further validate
the generalizability of W2SDefense, we deploy
various PEFT methods. The experimental results,
as shown in Table 7, indicate that algorithms like
p-tuning and prompt-tuning, which only update
a small number of model parameters, also strug-
gle to forget backdoor features. For instance, in
p-tuning, the ASR remains at 100% for multiple
models. When leveraging W2SDefense, the ASR
rapidly decreases; for example, in LLaMA3, the
ASR is reduced to only 0.11%, which once again
demonstrates that the unlearning-based knowledge
distillation method can effectively defend against
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backdoor attacks.

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 96.05 99.78 95.72 99.78 96.10 92.85

W2SDefense 95.83 2.20 96.32 6.27 96.32 7.04
P-tuning 95.99 100 95.17 100 95.06 97.69

W2SDefense 95.06 0.11 95.66 6.27 95.11 7.37
Prompt-tuning 94.62 100 94.73 99.12 94.18 96.59
W2SDefense 94.29 20.35 94.62 11.77 94.23 8.91

Table 7: The results of our W2SDefense algorithm for
different PEFTs, which uses SST-2 as the poisoned
dataset and BadNet as the backdoor attack algorithm.

Ablation Experiments To verify the impact
of different components on the performance of
W2SDefense, we conduct ablation experiments on
three LLMs, as shown in Table 8. First, by isolat-
ing different components, we find that compared
to knowledge distillation loss, feature alignment
loss is more conducive to unlearning backdoor. For
example, in the LLaMA model, using only cross-
entropy and feature alignment loss, the ASR is
5.39%. However, knowledge distillation loss also
possesses the capability to unlearn backdoor; for
instance, in the Qwen model, when using cross-
entropy and knowledge distillation loss, the ASR
reduces to 68.54%. Secondly, we demonstrate the
impact of different ranks in LoRA on defense per-
formance, as shown in Figure 2. It is evident that as
r increases, LoRA is insufficient to unlearn back-
door. However, in W2SDefense, the ASR rapidly
decreases.

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
Cross-Entropy 95.72 99.89 96.21 90.21 96.38 83.06

Cross-Entropy&Alignment 94.40 5.39 95.55 5.83 94.12 32.56
Cross-Entropy&Distillation 96.32 84.27 96.16 91.20 95.94 68.54

W2SDefense 95.17 9.13 96.27 10.89 94.07 10.89

Table 8: The ablation study results of W2SDefense,
which uses InSent as the backdoor attack method and
the SST-2 as the poisoned dataset.

Impact of samples of different lengths To explore
whether samples of different lengths affect the per-
formance of backdoor attack defense, we conduct
corresponding experiments on the IMDB dataset,
which has longer sample lengths. As presented
in Table 9, when using only the LoRA algorithm,
the ASR remains above 90% in the IMDB dataset.
Conversely, with the application of our W2SAttack
algorithm, the ASR of the LLaMA model is only
2.46%, confirming that sample length does not af-
fect defensive performance.

(a) LoRA (b) W2SDefense

Figure 2: The influence of rank on the performance of
the W2SDefense. Subfigures (a) and (b) represent the
results based on LoRA and W2SDefense, respectively.

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 95.10 96.59 95.80 96.40 95.40 90.15

W2SDefense 94.30 2.46 94.80 5.11 94.90 8.33

Table 9: Defense Results of W2SDefense with IMDB
dataset. The BadNet as the backdoor attack algorithm.

Unaffected Clean Model We also explore whether
leveraging W2SDefense affects model accuracy
when the weights are free of backdoor attacks. As
shown in Table 10, compared to the LoRA algo-
rithm, the average accuracy of the model equipped
with W2SDefense improves by 0.12%. This indi-
cates that our algorithm not only defends against
backdoor attacks but also potentially enhances the
performance of clean models, which could be ben-
eficial for use in clean LLMs.

Method LLaMA3 Vicuna Qwen2.5
LoRA 95.94 96.49 96.27

W2SDefense 96.54 96.21 96.32

Table 10: The results of the W2SDefense algorithm for
the clean model, which uses SST-2 as the target dataset.

Different Model Sizes We analyze the impact of
different model sizes on defensive performance.
Due to computational resource limitations, we only
use models ranging from Qwen2.5-1.5B to 14B.
The experimental results are shown in Table 11. We
observe that as the model size increases, the ASR of
the LoRA algorithm remains close to 100%. In con-
trast, the ASR of our W2SDefense algorithm is be-
low 10%, which demonstrates that model size does
not affect the performance of our W2SDefense.

5 Related Work

Backdoor with Unlearning Unlearning algo-
rithms play a vital role in safeguarding the se-
curity of LLMs (Nguyen et al., 2022; Liu et al.,
2024e). Wang et al. (2019) demonstrate backdoor
removal by inverting the trigger to promote the
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Method
1.5B 3B 7B 14B

CA ASR CA ASR CA ASR CA ASR
LoRA 96.27 98.68 95.93 94.39 96.05 99.78 96.65 100

W2SDefense 94.23 4.51 96.38 6.38 95.83 2.2 96.76 3.41

Table 11: Analyzing the defense performance of
W2SDefense for models of different sizes. The lan-
guage model is Qwen2.5 and the dataset is SST-2.

unlearning of backdoor features in the infected
model. Liu et al. (2022) leverage machine unlearn-
ing to erase the backdoor in the victim model. They
recover the trigger pattern through entropy maxi-
mization and subsequently remove the backdoor
via further fine-tuning. Zhang et al. (2023a) design
an attack algorithm based on unlearning, which
removes the impact of relevant data on activating
the backdoor through unlearning requests. Liu et al.
(2024d) explore a backdoor attack method using
machine unlearning where an attacker submits ma-
licious requests to embed the backdoor, altering pre-
dictions when triggered. Wu et al. (2024) introduce
an unlearning algorithm targeting federated learn-
ing to remove backdoors by subtracting historical
updates and employing knowledge distillation. Liu
et al. (2024b) execute sparsity-aware unlearning
by first pruning the model and then proceeding to
unlearn, which integrates the sparse model prior
into the unlearning process. In this paper, we ex-
plore a novel unlearning algorithm based on feature
alignment knowledge distillation to defend against
backdoor attacks.
Backdoor with Knowledge Distillation Addition-
ally, knowledge distillation (Ge et al., 2021; Zhang
et al., 2024), a model compression technique, can
also be used for both backdoor attacks and de-
fense. Hong et al. (2023) propose an anti-backdoor
data-free method which removes potential back-
doors during knowledge distillation. Cheng et al.
(2024) introduce an adaptive transferable backdoor
attack that efficiently transfers the backdoor to stu-
dent models. Wu et al. (2023) present a federated
unlearning approach that removes an attacker’s in-
fluence by deducting past updates from the model
and utilizing knowledge distillation. Zhao et al.
(2024a) propose a feature alignment-enhanced
knowledge distillation algorithm that utilizes a poi-
soned small-scale teacher model to enhance the
poisoning capabilities of LLMs. To defend against
backdoor attacks, this paper proposes a weak-to-
strong backdoor unlearning algorithm that lever-
ages knowledge distillation.
Parameter-Efficient Fine-Tuning To alleviate the

challenges of computational resource consumption
during fine-tuning, several PEFT algorithms have
been proposed (Hu et al., 2021; Liu et al., 2023;
Zhang et al., 2023b; Kopiczko et al., 2023; Gao
et al., 2024). For example, LoRA (Hu et al., 2021)
only updates low-rank matrices, effectively reduc-
ing the number of parameters that need to be up-
dated. AdaLoRA (Zhang et al., 2023b), an algo-
rithm that adaptively allocates the parameter bud-
get across weight matrices based on their impor-
tance scores. DoRA (Mao et al., 2024) introduces
a method for decomposing the LoRA parameter
matrix BA into single-rank components and selec-
tively pruning these components based on a heuris-
tic importance score. SinkLoRA (Zhang, 2024)
presents Sink Fixed Attention, which cyclically re-
aligns groups of attention heads to their original
positions, effectively maintaining performance. In
this paper, we design a new defense algorithm to
ensure model security in the context of PEFT. For
more related work, please refer to Appendix A.

6 Conclusion

In this work, we focus on defending against back-
door attacks targeting poisoned model weights. To
facilitate the forgetting of backdoors in parameter-
efficient fine-tuning (PEFT), we propose a novel
unlearning algorithm named W2SDefense, which
leverages weak teacher models to guide large-scale
student models in unlearning backdoors through
feature alignment knowledge distillation. Empir-
ical results indicate that our W2SDefense can ef-
fectively reduce the attack success rate while main-
taining the normal accuracy of the model. We hope
our work can promote awareness of model security
within the NLP community, especially regarding
backdoor attacks.

Limitations

Although W2SDefense demonstrates viable de-
fense capabilities, we recognize two limitations of
the algorithm: (i) It relies on knowledge distillation,
which requires access to model weights, limiting
its utility in black-box scenarios. (ii) Despite uti-
lizing smaller-scale teacher models, the approach
still demands additional computational resources
for training the teacher models.
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A More Related Work

Backdoor Attack With the widespread applica-
tion of large language models (LLMs), model se-
curity issues have attracted the attention of re-
searchers (Formento et al., 2023; Zhao et al., 2025,
2024a; Guo et al., 2024a,b; Xu et al., 2024; Li
et al., 2024a; Jia et al., 2024). Backdoor attacks
represent a typical threat to model security (Yan
et al., 2023, 2024b; Yi et al., 2024, 2025), wherein
the fundamental concept involves attackers corrupt-
ing the training dataset to embed malicious trigger
patterns within the language model during train-
ing (Gan et al., 2022; Li et al., 2024c). During
the testing phase, the model’s response will be ma-
nipulated when input samples include predefined
triggers, such as rare characters (Gu et al., 2017),
specific sentences (Dai et al., 2019), or syntactic
structures (Qi et al., 2021b). To enhance the stealth-
iness of backdoor attacks, Gan et al. (2022) gener-
ate poisoned samples using the genetic algorithm
while maintaining the original labels of the sam-
ples; Zhao et al. (2023b) propose the ProAttack
algorithm, which uses the prompt itself as a trig-
ger, avoiding the disruption to samples caused by
embedding explicit triggers. Shi et al. (2023) in-
troduce the backdoor attack algorithm tailored for
reinforcement learning, which embeds trigger pat-
terns within the reward model to induce the model
to consistently output malicious responses. To en-
hance the quality of poisoned samples, Li et al.
(2024b) leverage ChatGPT as a tool for generating
samples in specified styles. Gu et al. (2023) design
a gradient manipulation algorithm based on PEFT
to enhance the performance of backdoor attacks. To
avoid consuming computational resources, several
studies explore backdoor attack algorithms without
the need for fine-tuning. Xiang et al. (2023) implant
specific triggers in the chain-of-thought to manip-
ulate the responses of LLMs. Zhao et al. (2024c)
propose a backdoor attack algorithm named ICLAt-
tack to explore the security of in-context learning.
Backdoor Defense The research on defending
against backdoor attacks is still in its initial
stages (Mo et al., 2023; Zhao et al., 2024b; Arora
et al., 2024; Yan et al., 2024a). Liu et al. (2018)
prune neurons and fine-tune the model on a new
dataset to defend against backdoor attacks. Qi et al.
(2021a) calculate the perplexity of each character
in the input sample and identify triggers based on
this perplexity. Back translation (Qi et al., 2021b),
which utilizes translation models to translate in-

put samples into German and then back into En-
glish, eliminating triggers. SCPD (Qi et al., 2021b)
rewrites input samples into the specific syntax struc-
ture to avoid activating backdoors. Zhang et al.
(2022) propose the fine-mixing and embedding pu-
rification strategy to purify model weights. Chen
et al. (2022) identify poisoned samples based on
an anomaly score, which is calculated using Ma-
halanobis distance. AttDef (Li et al., 2023), which
uses attribution scores to identify poisoned sam-
ples, is effective against attacks where characters
and sentences act as triggers for backdoor attacks.
DPoE (Liu et al., 2024c) leverages a shallow model
to capture backdoor shortcuts while preventing the
target model from learning those shortcuts. Zhao
et al. (2024b) randomize sample labels and utilize
PEFT to fine-tune poisoned models, identifying
poisoned samples through confidence. Although
this algorithm achieves viable defensive outcomes,
it requires multiple fine-tunings of the poisoned
model, demanding more computational resources.
In this paper, we explore a weak-to-strong defense
algorithm that facilitates model unlearning of back-
doors without compromising model performance.

B More Experiments

B.1 More Experimental Details

Experimental Settings We select three of the
state-of-the-art LLMs as victim models: LLaMA3-
8B (AI@Meta, 2024), Vicuna-7B (Zheng et al.,
2023), and Qwen2.5-7B (Team, 2024). For the
weight poisoning stage, the number of poisoned
samples is 1000, and the ASR of all pre-defined
weight-poisoning attacks consistently exceeds 90%
through full-parameter fine-tuning. The target la-
bels for the three datasets are “negative”, “nega-
tive”, and “world”. Due to the large size of the
AG’s News dataset, we choose 8,000 samples each
for the proxy and the training dataset, and 1,000
samples each for the validation and test datasets.
For the teacher model, we use BERT-110M (De-
vlin et al., 2019) and GPT-2-124M (Radford et al.,
2019), respectively. For the defense phase, we use
full-parameter fine-tuning for the teacher model
and leverage LoRA (Hu et al., 2021) as the fine-
tuning method for the student models. Addition-
ally, for the student model, we use the AdamW
optimizer, set epochs to 5, the batch size to 32, the
learning rate to 2e-4, the temperature scaling factor
to 2, and r to 512. For p-tuning and prompt-tuning,
the number of virtual tokens is set to 32, and the en-
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(a) Cross-entropy: α (b) Knowledge distillation: β (c) Feature alignment: γ

Figure 3: The impact of hyperparameters on the performance of the W2SDefense algorithm. Subfigures (a), (b) and
(c) show the effects of varying the weights of cross-entropy loss, knowledge distillation loss and feature alignment
loss, respectively. The SST-2 as the poisoned dataset, and the victim model is LLaMA.

coder hidden size is 128. We set α to {1.0, 5.0}, β
to {0.001, 0.2}, and γ to {0.001, 0.2}, for different
datasets and vicitim models. To enhance the stealth-
iness of the attacks, all algorithms are implemented
with clean-label, following (Zhao et al., 2024b).
We verify the effectiveness of various PEFT meth-
ods, which include p-tuning (Liu et al., 2023) and
prompt-tuning (Lester et al., 2021). We also verify
the generalizability of W2SDefense in summary
generation tasks using the CRRsum dataset (Zhao
et al., 2023a) and in mathematical reasoning tasks
based on the Ape210K dataset (Zhao et al., 2020).
The summary generation and mathematical reason-
ing both use rare characters as triggers, with the
target labels being “no special concern needed" and
0, respectively. The teacher model for the gener-
ation task uses the same network architecture as
the student model, but with a smaller scale. All
experiments are deployed on NVIDIA RTX A6000
GPUs.

Defense Models To demonstrate the effective-
ness of W2SDefense, we compared it with several
widely-used defense algorithms. These include
ONION (Qi et al., 2021a), which identifies triggers
by calculating perplexity; SCPD (Qi et al., 2021b),
avoiding backdoor activation by rewriting syntactic
structures; Back-Tr. (Qi et al., 2021b), rewriting
sentences with translation models; and Prune (Liu
et al., 2018), which prunes and fine-tunes model
weights to defend against backdoor attacks. Fur-
thermore, we compared other advanced defense al-
gorithms: Quantization (Li et al., 2024e), utilizing
INT4 quantization to eliminate backdoor features;
PSIM (Zhao et al., 2024b), which identifies poi-
soned samples by confidence; Merge (Arora et al.,
2024), avoiding the activation of backdoors through
model merging; and ICLDefense (Mo et al., 2023),

utilizing demonstration examples to prevent the
activation of backdoor attacks.

B.2 More Experimental Results

We analyze the impact of different loss weights on
defense performance, as illustrated in Figure 3. It
is evident that, compared to feature alignment loss,
knowledge distillation loss offers a more stable
defense effect.

Categories Defense
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR

Continuous
Fine-tuning

LoRA 96.05 99.78 95.72 99.78 96.10 92.85

Fine-tuning 94.83 7.37 95.93 17.38 95.22 80.74

Quantization 94.51 6.60 95.83 19.47 94.62 74.81

Modification
Back Tr. 93.68 19.69 91.76 21.67 93.36 20.13

SCPD 83.75 39.05 85.28 38.94 84.46 38.72

ICLDefense 95.39 3.85 90.83 12.32 91.54 16.50

Detection
ONION 91.65 16.39 93.68 20.90 92.64 21.89

PSIM 95.35 15.18 95.13 7.59 95.73 0.66

Editing Merge 95.94 58.97 96.71 10.56 96.38 86.58

Unlearning
Prune 94.73 51.82 95.17 13.97 94.84 99.34

W2SDefense 95.83 2.20 96.37 6.27 96.32 7.04

Table 12: The results of the defense algorithm compari-
son, which uses SST-2 as the target dataset and BadNet
as the backdoor attack algorithm.

More Defense Algorithms To further validate
the performance of W2SDefense, we compared
additional defense algorithms, which can be cate-
gorized according to the form of defense as con-
tinuous fine-tuning, sample modification, sample
detection, poisoned model editing, and unlearning.
As shown in Table 12, our W2SDefense, which is
based on the LoRA algorithm, saves a significant
amount of computational resources and is more effi-
cient compared to fine-tuned models such as PSIM
and Prune. Consequently, all results indicate that
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our W2SDefense algorithm achieved feasible de-
fense performance while ensuring that the model’s
performance remains unaffected.
More Attack Algorithms Furthermore, we vali-
dated the defensive performance of W2SDefense
against the ProAttack (Zhao et al., 2023b) back-
door attack, which utilizes prompts as triggers. The
experimental results, as shown in Table 13, demon-
strate that in the Vicuna model, leveraging only
LoRA fine-tuning, the ASR remains at 99.78%.
However, with the implementation of W2SDefense,
the ASR drops to only 4.95%, significantly reduc-
ing the attack’s success rate. Moreover, in the Vi-
cuna and Qwen models, the CA increased by 0.38%
and 0.6% respectively.

Method
LLaMA3 Vicuna Qwen2.5

CA ASR CA ASR CA ASR
LoRA 96.05 99.78 95.72 99.78 95.72 100

W2SDefense 95.72 10.67 96.10 4.95 96.32 33.66

Table 13: The results of the W2SDefense algorithm for
ProAttack, with SST-2 as the poisoned dataset.

Finally, we visualize the feature distributions
generated by the LoRA and W2SDefense algo-
rithms, which leverage t-SNE (Van der Maaten and
Hinton, 2008). As shown in Figure 4, when only
the LoRA algorithm is used, the sample feature dis-
tribution exhibits a distinct additional distribution,
which is identified as the distribution of poisoned
samples. However, after using the W2SDefense
algorithm, the additional feature distribution dis-
appears, which demonstrates that utilizing feature
alignment knowledge distillation helps in unlearn-
ing backdoor features.

(a) LoRA (b) W2SDefense

Figure 4: The distribution of poisoned sample features
for the LoRA and W2SDefense algorithms. The victim
model is LLaMA.
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