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Abstract
To adapt large language models (LLMs) to
ranking tasks, existing list-wise methods, rep-
resented by list-wise Direct Preference Opti-
mization (DPO), focus on optimizing partial-
order or full-order list ranking consistency for
LLMs to enhance their ranking abilities. How-
ever, we argue that optimizing top-K ranking
consistency could be more appropriate for real-
world applications. There are two main reasons:
(1) users are typically concerned with only the
top-K results, making top-K ranking more im-
portant, and (2) tail items often lack precise
feedback, making top-K ranking more reliable.
Based on this, we propose K-order Ranking
Preference Optimization (KPO) by extending
the DPO’s Plackett-Luce model to accommo-
date top-K rankings. Additionally, recognizing
that the number of important items can vary
across queries, we extend KPO to dynamically
determine appropriate K for different samples
and introduce a curriculum learning strategy
to boost training efficiency. Extensive experi-
ments demonstrate the effectiveness of KPO,
highlighting its high sample efficiency and ro-
bustness to noise. The code is available at
https://github.com/Lanyu0303/KPO.

1 Introduction

Large Language Models (LLMs) have shown great
potential in addressing a wide range of real-world
tasks (Hadi et al., 2023; Xu et al., 2025). By lever-
aging their semantic reasoning abilities and exten-
sive world knowledge, LLMs can more effectively
capture the nuanced relationships between queries
and candidate items, making them also promising
for ranking tasks (Sun et al., 2023; Pradeep et al.,
2023b) — the core of many real-world applications
such as product search (Spatharioti et al., 2023;
Fang et al., 2024) and recommendation (Chen et al.,
2024b; Yue et al., 2023). However, as illustrated in
Fig.(1), ranking tasks extend beyond evaluating the
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Figure 1: (a) Illustration of the LLM-based ranking task.
(b) Comparison of three ranking strategies.

relevance of individual candidates to a user query;
they require ranking a list of candidates. Yet, LLMs
are not explicitly trained to optimize list-wise rank-
ing preferences during pretraining. This limita-
tion has sparked greater research efforts to enhance
LLMs’ list-wise ranking capabilities (Pradeep et al.,
2023a).

Among existing approaches, the list-wise Direct
Preference Optimization (DPO) method (Rafailov
et al., 2023; Chen et al., 2024b) has emerged as a
promising technique for optimizing LLMs to gen-
erate ranked outputs that align with human prefer-
ences directly at the list level. According to the
ranking consistency optimized for a list, existing
methods can be categorized into:
• Partial-order Method (e.g., S-DPO (Chen et al.,

2024b)), which simply optimizes the ranking con-
sistency where “the best item is better than all
others,” i.e., y1≻ all others. This method focuses
on the ranking of the best one, failing to optimize
the fine-grained ranking consistency.

• Full-order Method (e.g., DPOPL (Rafailov et al.,
2023)), which optimizes complete and fine-
grained ranking consistency, i.e., y1≻y2≻ · · · ≻
. . . Ideally, this method ensures optimal ranking
alignment, but the optimization’s inherent diffi-
culties could limit its practical performance.
Given these, we argue that optimizing top-K

ranking consistency would be more appropriate
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for real-world ranking tasks (Adomavicius and
Zhang, 2016; Le and Lauw, 2021). In practical
scenarios, users typically have limited attention
and focus only on the most relevant items, making
top-K optimization sufficient to meet their needs.
Moreover, this limited attention makes it difficult
to obtain accurate preference ranks for less relevant
items, rendering ranking optimization for long-tail
items inherently unreliable. Therefore, we pro-
pose top-K order ranking preference alignment
for LLMs—optimizing the model to align fine-
grained ranking consistency for the top-K items
while disregarding it for others, (i.e., optimizing
y1≻ . . .≻yK≻all others), as shown in Fig.(1).

Towards the top-K order ranking preference
alignment, we propose K-order Ranking Preference
Optimization (KPO). The core idea is to extend
existing DPO methods’ Plackett-Luce preference
model (Plackett, 1975), originally designed for full
rankings, to accommodate top-K rankings. Intu-
itively, KPO works by increasing the relative log
probability of each top-K item over all its subse-
quent items, ensuring both the fine-grained order
among the top-K items and the order between the
top-K items and the others. As discussed, KPO
is expected to outperform full-order methods due
to its closer alignment with real-world scenarios.
Additionally, theoretical analysis demonstrates that
KPO surpasses existing partial-order methods.

Taking it a step further, in real-world scenar-
ios, the number of most relevant items can vary
across queries. To address this, we extend KPO to
handle varying K values across samples, incorpo-
rating a strategy to adaptively determine K based
on LLM confidence in assessing item relevance.
Furthermore, to accommodate varying K, we in-
corporate a curriculum learning strategy into KPO
to simplify the learning process. Specifically, we
guide KPO to focus on K-order optimization pro-
gressively, starting from smaller K and gradually
increasing to larger K. This approach is motivated
by the fact that higher K introduces greater learn-
ing challenges, as it requires distinguishing more
complete and fine-grained rankings.

The main contributions of this work can be sum-
marized as follows:
• We propose optimizing top-K ranking consis-

tency for LLM ranking preference alignment to
better match real-world needs and constraints.

• We propose KPO for top-K order ranking align-
ment, incorporating an adaptive strategy to de-
termine suitable K values for different samples

and a curriculum learning strategy to enhance
training effectiveness.

• Extensive experimental results validate KPO’s
effectiveness while showcasing its high sample
efficiency and robustness to noisy logits.

2 Related Work

In this section, we delve into related studies from
two perspectives: LLM-based ranking and prefer-
ence alignment in LLMs.

2.1 LLM-based Ranking

With the rise of LLMs with strong reasoning
abilities, researchers have increasingly explored
their potential in ranking tasks (Sun et al., 2023;
Qin et al., 2024; Ma et al., 2024; Yue et al.,
2023). Studies in this area generally follow two
approaches: zero-shot usage (Zhuang et al., 2024;
Chen et al., 2025) or fine-tuning for enhanced per-
formance (Sun et al., 2023; Yoon et al., 2024; Ma
et al., 2024). In the zero-shot setting, methods
like RankGPT (Sun et al., 2023) leverage Chat-
GPT (OpenAI, 2022, 2023) to rank candidate pas-
sages based on a query. Fine-tuned models, such
as RankLLaMA (Ma et al., 2024), use point-wise
training to estimate relevance scores, improving
reranking precision. LlamaRec (Yue et al., 2023)
further extends this by introducing a two-stage
framework with a verbalizer-based method for
generating probability distributions over candidate
items. These advancements highlight the grow-
ing role of LLMs in ranking tasks, particularly
for search and recommendation applications (Gao
et al., 2025a,b).

2.2 Preference Alignment in LLMs

Preference alignment helps LLMs differentiate be-
tween “good” and “bad” answers using human-
labeled data (Ouyang et al., 2022). For example,
DPO (Rafailov et al., 2023) fine-tunes LLMs with
pair-wise preference data, while KTO (Ethayarajh
et al., 2024), inspired by Kahneman-Tversky’s
prospect theory (Tversky and Kahneman, 1992),
simplifies this process by utilizing point-wise la-
bels. However, both approaches face limitations
in effectively handling ranking tasks that require
aligning LLMs with multi-item ranking informa-
tion. Extensions such as DPOPL (Rafailov et al.,
2023) and S-DPO (Chen et al., 2024b) adapt DPO
for list-wise settings: DPOPL targets full-order
rankings, while S-DPO handles partial-order rank-
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ings. Nonetheless, these methods overlook K-
order ranking, a critical aspect of ranking tasks.

3 Problem Definition

Consider a ranking dataset D comprising query-
candidate pairs, where each k-th instance
(q(k), C(k)) ∈ D consists of: (1) A query q(k) repre-
senting an information need (e.g., search query,
recommendation context). (2) A candidate set
C(k) = {c(k)1 , c

(k)
2 , . . . , c

(k)
M } containing M items

to be ranked.
The LLM takes as input a concatenated sequence

x(k) = (q(k), C(k)) and aims to generate a permu-
tation Y(k) = {y(k)1 ≻ y

(k)
2 ≻ · · · ≻ y

(k)
M }, where

∀y(k)i ∈ C(k), the symbol ≻ represents a pair-wise
preference relationship. When ambiguity is absent,
we omit the superscript (k) for notational simplicity
(e.g., yi instead of y(k)i ).

We instantiate this framework through two rep-
resentative ranking applications:
• Sequential Recommendation: The query q ≜
[v1, v2, . . . , vm] encodes a user’s interaction his-
tory, where vj denotes the j-th consumed item.

• Product Search: The query q represents a tex-
tual search intent (e.g., “wireless noise-canceling
headphones”).
Both tasks share the core challenge of learning

context-aware preference relations, but differ fun-
damentally in their query semantics - making them
ideal testbeds for evaluating the generalization of
ranking frameworks.

4 Methodology

We first review foundational work in preference
modeling to establish the necessary background.
Then, we introduce the proposed model in detail.

4.1 Preliminary
Preference Modeling. Preference modeling aims
to learn a function that captures human preferences
over a set of candidate items, enabling applica-
tions such as recommender systems, information
retrieval, and human-AI alignment. One common
approach is the Bradley-Terry (BT) model (Bradley
and Terry, 1952), which provides a probabilistic
framework for pair-wise preference learning, defin-
ing the likelihood of selecting y1 over y2 given
context x as:

p̂(y1 ≻ y2 | x) =
exp(r(x, y1))

exp(r(x, y1)) + exp(r(x, y2))
,

(1)

where r(x, y) is a task-specific reward function that
quantifies the relative preference for candidate y
in context x. To learn a policy model that aligns
with preferences, a widely adopted approach is
Direct Preference Optimization (DPO) (Rafailov
et al., 2023). DPO formulates the reward function
in terms of the policy model πθ and a reference
model πref:

r(x, y) = β log
πθ(y | x)
πref(y | x) + β logZ(x), (2)

where β controls the divergence between πθ and
πref . The partition function Z(x) is defined as:

Z(x) =
∑

y

πref(y | x) exp
(
1

β
r(x, y)

)
. (3)

Full-order Preference Modeling. While the pair-
wise BT model in Eq. (1) is effective for binary
comparisons, it struggles with ranking tasks in-
volving multiple candidate items. To address this
limitation, prior work (e.g., DPOPL (Rafailov et al.,
2023)) has generalized BT to the list-wise Plackett-
Luce (PL) model (Plackett, 1975), which represents
rankings as a full-order sequence y1 ≻ y2 ≻ · · · ≻
yM :

p̂(y1 ≻ y2 ≻ · · · ≻ yM | x) =
M−1∏

i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

.

(4)

However, full-order methods risk overemphasiz-
ing irrelevant item relationships, making optimiza-
tion more challenging.

Partial Preference Modeling. To mitigate this, S-
DPO (Chen et al., 2024b) simplifies the PL model
by structuring preferences as a single positive can-
didate against multiple negatives. This modifica-
tion models preference as y1 ≻ {y2, . . . , yM}:

p̂(y1 ≻ {y2, . . . , yM} | x) = exp(r(x, y1))∑M
j=1 exp(r(x, yj))

. (5)

While S-DPO reduces computational complexity,
it oversimplifies the ranking problem by ignoring
nuanced distinctions among top candidates. In
real-world applications such as top-K recommen-
dation (Kweon et al., 2024; Luo et al., 2024) and
top-K retrieval (Ciaccia and Martinenghi, 2024;
Lee et al., 2023), users are primarily interested in
the relative ordering of the most relevant items.
This motivates our proposal for a hybrid approach
that combines the strengths of full-order and partial-
order models, focusing specifically on accurate top-
K preference modeling.

4846



26.1

27.3

18.5

…

19.2

25.6

Step 3:
Learning via 
the KPO loss 

in Eq. (13)

More preferred in 
ground truth candidate 𝑙 logit

…

𝒄𝑴

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝟒

Cut-off at 𝜏 = 24

……

Step 2:
Re-ranking 

according to 
ground truth

≻
≻

≻
…

26.1𝒄𝟏

27.3𝒄𝟐

18.5𝒄𝟑

25.6𝒄𝟒

19.2𝒄𝑴

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝑴

𝒄𝟒

𝒄

LLM

Step 1:
Selecting

potential K 
candidates 

Figure 2: The KPO framework consists of: (1) selecting
K candidates via LLM logits above threshold τ , (2)
re-ranking top-K candidates to match ground truth, and
(3) training the model with the KPO loss in Eq. (7).

4.2 KPO
Our goal is to derive a K-order preference: y1 ≻
· · · ≻ yK ≻ {yK+1, . . . , yM} where yi ∈ C,
{y1, y2, . . . , yK} correspond to the top-K relevant
items, and {yK+1, . . . , yM} represent the remain-
ing irrelevant items.

Based on the PL model in Eq. (4), we can define
the K-order preference model as below:

p̂(y1 ≻ · · · ≻ yK ≻ {yK+1, . . . , yM} | x)

=
K∏

i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

.
(6)

Due to space constraints, the detailed derivation of
Eq. (6) is provided in Appendix A.1.

Remark: The proposed K-order preference frame-
work generalizes existing approaches, with the
DPO, DPOPL, and S-DPO emerging as special
cases of Eq. (6). When M = 2 and K = 1, it
reduces to DPO’s pair-wise preference modeling.
When K = M , it recovers DPOPL’s full-order
ranking. When K = 1, it simplifies to S-DPO’s
partial-order formulation.

By following the implementation of the reward
function r(x, y) from Eq. (2) in DPO, we can de-
rive the loss function LKPO to maximize p̂ on a
ranking dataset D as follows:

LKPO(πθ;πref) = −E(x,y1,...,yM )∼D

[
K∑

i=1

log σ

(
−

log
M∑

j=i+1

exp

(
β log

πθ(yj |x)
πref(yj |x)

− β log
πθ(yi|x)
πref(yi|x)

))]
.

(7)

Theoretical Analysis:

We analyze the optimal top-K ranking accuracy
of KPO through the following theorem.

Theorem 1. Let π∗ be the optimal policy that max-
imizes the KPO objective. Given a dataset of ag-
gregated preferences Dp = {(x, y1 ≻ · · · ≻ yK ≻
{yK+1, . . . , yM}}. Assume Dp contains ground-
truth ranking probabilitie following the PL model.
Specifically, for any item yi and the subset of re-
maining items {yi+1, . . . , yM}, the ranking proba-
bility is defined as follows:

α(x, yi, y>i) = P(yi ≻ {yi+1, · · · , yM}). (8)

The top-K ranking accuracy of π∗ is given by:

R∗
KPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏

l=1

M∏

k=l+1

I
[
wlπref(yl | x)
wkπref(yk | x) > 1

]]
,

(9)

where wl
wk

is defined as

wl

wk
=

(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏

i=l

(1− α(x, yi, y>i))
−1/β .

(10)

The proof is deferred to Appendix A.2.

According to Theorem 1, we can derive the opti-
mal accuracy of S-DPO as:

R∗
S-DPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏

l=1

M∏

k=l+1

I
[
w′

lπref(yl | x)
w′

kπref(yk | x) > 1

]]
,

(11)

where w′
l

w′
k

is defined as

w′
l

w′
k

=

(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏

i=l

(1− α(x, yi, y>i))
−1/β

· I[l = 1] + I[l ̸= 1].
(12)

Based on Eq. (10) and Eq. (12), we can con-
clude that: wl

wk
>

w′
l

w′
k

for all l ∈ {2, . . . ,K}
and k ∈ {l + 1, . . . ,M}. Therefore, we have
RKPO(Dp, πref) > R∗

S-DPO(Dp, πref), implying
that the optimal ranking accuracy of KPO is greater
than S-DPO. The detailed derivation is provided in
Appendix A.3.

4.3 Query-adaptive KPO
In real-world ranking scenarios, the number of rele-
vant candidates K often varies significantly across
queries. For instance, a query like “NVIDIA A40
GPU” typically has a single authoritative result,
while “budget wireless headphones” may involve
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multiple comparable options. To address this, we
propose a query-adaptive extension of KPO that
dynamically adjusts to each query’s characteristics.

4.3.1 Query-adaptive KPO Loss
The key challenge lies in determining the appro-
priate K for each input x = (q, C). We formalize
this through a query-adaptive function K(x) that
predicts the number of relevant candidates for a
given query. This allows us to extend the KPO loss
to its query-adaptive form:

LK(x)
KPO(πθ;πref) = −E(x,y1,...,yM )∼D

[K(x)∑

i=1

log σ

(
−

log
M∑

j=i+1

exp

(
β log

πθ(yj |x)
πref(yj |x)

− β log
πθ(yi|x)
πref(yi|x)

))]

(13)

4.3.2 K-aware Curriculum Learning
To effectively train the query-adaptive loss in
Eq. (13), we propose a K-aware curriculum strat-
egy (Bengio et al., 2009). This approach organizes
training instances based on their complexity, where
complexity is defined by the number of relevant
candidates K. We treat queries with smaller K
values as “simple samples”, as they require the
model to focus on only a few relevant items. Con-
versely, queries with larger K values are considered
“challenging samples”, demanding more complex
ranking decisions.

Following this intuition, we sort the training data
in ascending order of K, allowing the model to first
learn from simpler queries before progressively
handling more complex ones. This structured train-
ing not only facilitates smoother convergence but
also ensures consistent K values within each batch,
improving training stability.

4.3.3 Acquisition of Query-adaptive K

To determine query-adaptive K values for each in-
put x = (q, C), we leverage the output information
of the LLM itself to select K relevant candidates,
eliminating the need for additional information.
Specifically, we first use the reference model πref
to compute the logits logits(q, ci) for each candi-
date item ci ∈ C based on the given query q. Items
with logits exceeding a predefined hyperparame-
ter threshold τ are regarded as relevant candidates.
The number of such items is then counted to deter-
mine the query-adaptive K. Formally, this process
is represented as K(x), defined as:

K(x) = K(q, C) =
M∑

i=1

I (logits(q, ci) > τ) . (14)

After obtaining the K values, we generate K-
order ranking data for KPO training by first sort-
ing candidate items based on their logits to se-
lect the top-K items. These top-K items are
then re-ranked using ground truth relevance la-
bels to ensure the correct relative order. The re-
sulting training data is structured as y1 ≻ · · · ≻
yK(x) ≻ {yK(x)+1, . . . , yM}. Details on obtaining
the ground truth labels are provided in Appendix B.

The whole pipeline of the proposed method is
illustrated in Fig.(2).

4.3.4 Analysis of Time Complexity
The optimization objective of KPO introduces
an additional K-layer loop compared to S-DPO,
which may raise concerns about time complexity.

To address this potential issue, we conduct an
analysis of the time required for the actual opti-
mization process. Specifically, the parameter up-
date process can be divided into three phases:
• Phase 1: Compute M “rewards” (ri =

β log πθ(yi|x)
πref(yi|x) ).

• Phase 2: Use the rewards to compute the loss.
• Phase 3: Update model parameters via loss back-

propagation.
The K-layer loop introduced by KPO occurs in

Phase 2. However, the actual runtime of Phase 2 is
significantly shorter compared to Phase 1 and Phase
3, and thus does not impact the overall runtime of
the method. Detailed experimental results support-
ing this conclusion are provided in Appendix D.1.

5 Experiments

In this section, we aim to answer the following
research questions (RQ):
• RQ1: How does KPO perform in the recommen-

dation and product search tasks?
• RQ2: What are the effects of the key components

and hyperparameters?
• RQ3: How does KPO perform in terms of sample

efficiency and robustness to noisy logits?

5.1 Experimental Setup

We organize experiments on two typical ranking
tasks: recommendation and product search.

5.1.1 Datasets
For the recommendation task, we utilize the
MovieLens (Harper and Konstan, 2016) and
Goodreads (Wan and McAuley, 2018) datasets.
The user interaction sequences in each dataset are
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Method MovieLens Goodreads Shopping Queries
HR@1 HR@5 HR@10 N@5 N@10 HR@1 HR@5 HR@10 N@5 N@10 N@5 N@10

KTO 0.5368 0.8421 0.9474 0.6996 0.7342 0.4875 0.8486 0.9534 0.6808 0.7147 0.7327 0.7525

DPO 0.5263 0.8632 0.9579 0.7052 0.7348 0.4908 0.8569 0.9584 0.6858 0.7216 0.7356 0.7531
SimPO 0.5263 0.8842 0.9579 0.7217 0.7448 0.4842 0.8569 0.9551 0.6794 0.7113 0.7392 0.7560
cDPO 0.5158 0.8632 0.9684 0.6960 0.7290 0.4509 0.8536 0.9534 0.6651 0.6979 0.7321 0.7503

S-DPO 0.5368 0.8526 0.9474 0.7062 0.7369 0.4842 0.8353 0.9484 0.6712 0.7083 0.7288 0.7480
DPOPL 0.5474 0.8737 0.9474 0.7229 0.7463 0.4859 0.8619 0.9634 0.6876 0.7205 0.7363 0.7529
KPOCUT 0.5474 0.8632 0.9684 0.7167 0.7493 0.4992 0.8453 0.9468 0.6852 0.7182 0.7347 0.7521

KPO 0.5579 0.8842 0.9684 0.7361 0.7620 0.5042 0.8719 0.9584 0.6994 0.7272 0.7477 0.7631

Table 1: Comparison with preference alignment methods. Bold indicates the best performance.

chronologically sorted and then split into training,
validation, and test sets in an 8:1:1 ratio.

For the product search task, we used the Shop-
ping Queries dataset (Reddy et al., 2022), which
includes queries paired with up to 40 candidate
products. Each product is assigned a four-level
score ({0, 1, 2, 3}) representing its relevance to the
query, which can serve as the ground truth label.
Queries are grouped and randomly split into train-
ing, validation, and test sets in an 8:1:1 ratio.

The detailed description of the datasets and their
statistical information is provided in Appendix C.1.

5.1.2 Evaluation Setting
We evaluate the model’s ability to rank 20 candi-
date items based on a given query.

For the recommendation task, the ground truth
item is the user’s most recently interacted item.
The candidate list includes this ground truth item
and 19 randomly sampled items. The model’s
performance is evaluated based on its ability to
rank the ground truth item higher, using Hit Ratio
(HR@1, 5, 10) and Normalized Discounted Cumu-
lative Gain (N@5, 10).

For the product search task, multiple ground
truth items have relevance labels, we evaluate the
model using N@5 and N@10 to measure its ability
to prioritize highly relevant items. Additional re-
sults for the setting with a single ground truth item
are provided in Appendix D.2.

5.1.3 Implementation Details
Our experiments are conducted on eight NVIDIA
A40 GPUs. We use the Llama-3.2-3B-Instruct
(Meta, 2024) model as the backbone. In the super-
vised fine-tuning (SFT) stage, the model is trained
for 5 epochs with a learning rate of 1e-4. In the
preference alignment stage, the learning rate is re-
duced to 1e-5, and training is performed over 3

epochs. The global batch size is fixed at 128. Refer
to Appendix C.3 for more implementation details.

5.2 Overall Performance (RQ1)
In this section, we compare KPO with other prefer-
ence alignment methods and non-preference align-
ment methods to evaluate the effectiveness of KPO.

Method Modeling Objective

KTO y λy − vKTO(x, y)

DPO y1≻y2 −log σ (r1 − r2)

SimPO y1≻y2 − logσ
(

β
|y1| logπθ(y1|x)−

β
|y2| log πθ(y2|x)−γ

)

cDPO y1 ≷ y2 −(1− ϵ) log σ (r1 − r2)− ϵ log σ (r2 − r1)

S-DPO y1≻{y2, . . . , yM} log σ
(
−log

∑M
j=2 exp (rj − r1)

)

DPOPL y1≻y2≻ . . .≻yM
∑M−1

i=1 log σ
(
−log

∑M
j=i+1 exp (rj − ri)

)

KPOCUT y1≻y2≻ . . .≻yK(x)

∑K(x)−1
i=1 log σ

(
−log

∑K(x)
j=i+1 exp (rj − ri)

)

KPO
y1≻y2≻ . . .≻yK(x) ∑K(x)

i=1 log σ
(
−log

∑M
j=i+1 exp (rj − ri)

)

≻{yK(x)+1, . . . yM}

Table 2: Modeling approaches and optimization ob-
jectives for preference alignment methods. For con-
venience, we define ri = β log πθ(yi|x)

πref(yi|x) . The detailed
definitions of KTO are provided in the Appendix A.4.

5.2.1 Comparison with Preference Alignment
Methods

To evaluate the effectiveness of KPO loss, we com-
pare it with various preference alignment methods
on the recommendation and product search tasks.

Baselines. We compare KPO to various base-
lines, including KTO (Ethayarajh et al., 2024),
DPO (Rafailov et al., 2023), SimPO (Meng et al.,
2024), Conservative DPO (cDPO) (Mitchell, 2023),
S-DPO (Chen et al., 2024b), and DPOPL (Rafailov
et al., 2023). We also introduce KPOCUT, a
KPO variant that cuts off tail-irrelevant items
{yK(x)+1, . . . , yM} for comparison. Objective for-
mulations are summarized in Table 2, with detailed
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Method
MovieLens Goodreads

HR@1 HR@5 HR@10 N@5 N@10 HR@1 HR@5 HR@10 N@5 N@10

SASRec 0.4043 0.8298 0.9043 0.6356 0.6588 0.3661 0.7654 0.9118 0.5763 0.6238
GRU4Rec 0.4526 0.8316 0.9053 0.6498 0.6738 0.3478 0.7504 0.9251 0.5606 0.6185
Caser 0.3404 0.7979 0.9255 0.5845 0.6259 0.4133 0.8083 0.9283 0.6251 0.6640

MoRec 0.2737 0.6842 0.8211 0.4783 0.5244 0.3111 0.7121 0.8918 0.5240 0.5824
LLaRA 0.4565 0.8370 0.9130 0.6376 0.6630 0.4742 0.8053 0.9235 0.6341 0.6713

RankGPT3.5 0.2211 0.5579 0.7368 0.3920 0.4506 0.3389 0.5763 0.7288 0.4674 0.5158
LlamaRec 0.5158 0.8526 0.9474 0.6999 0.7402 0.4842 0.8419 0.9501 0.6765 0.7114

SFT 0.5053 0.8526 0.9368 0.6983 0.7255 0.4809 0.8369 0.9468 0.6675 0.7034
KPOCL 0.5684 0.8947 0.9684 0.7381 0.7637 0.5158 0.8735 0.9667 0.7024 0.7353

Table 3: Comparison with other recommendation models and rankers. Bold indicates the best performance.

baseline descriptions in Appendix C.2.1.
Results. The experimental results are summa-

rized in Table 1. To fairly evaluate the loss func-
tion’s effectiveness, KPO’s performance is reported
without curriculum learning. The key findings are
as follows: (1) KPO consistently outperforms other
methods across most metrics, demonstrating its ef-
fectiveness. (2) KPO surpasses KPOCUT, highlight-
ing the importance of irrelevant items in helping
the model distinguish between relevant and irrel-
evant ones. (3) Although KPO slightly underper-
forms DPOPL in HR@10 on the Goodreads dataset,
the HR@10 values across all methods are already
high. Notably, KPO achieves a higher N@10 than
DPOPL, reflecting better overall ranking quality.

5.2.2 Comparison with Non-Preference
Alignment Methods

To verify whether KPO outperforms other non-
preference alignment methods, this section focuses
on the recommendation task and compares KPO
with various recommendation models and rankers.

Baselines. We thoroughly compare KPO
with three categories of models: traditional
recommendation models (SASRec (Kang and
McAuley, 2018), GRU4Rec (Hidasi et al., 2016),
Caser (Tang and Wang, 2018)), LLM-based rec-
ommendation models (MoRec (Yuan et al., 2023),
LLaRA (Liao et al., 2024)) and LLM-based rankers
(RankGPT3.5 (Sun et al., 2023), LlamaRec (Yue
et al., 2023)). The detail description of the models
can be found in Appendix C.2.2 and C.2.2.

Results. We evaluate the full KPO method with
K-aware curriculum learning (KPOCL) against
baseline models, including the SFT model for com-
parison. As shown in Table 3, KPOCL significantly
outperforms baseline models, demonstrating its ef-

fectiveness. This improvement likely stems from
the fact that baseline models are trained based on
single ground truth items, neglecting the ranking
relationships among multiple items, a core focus of
the KPO method.
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0.72

N@
5

MovieLens

0 2004006008001000
Training Steps

0.65
0.66
0.67
0.68
0.69
0.70

N@
5

Goodreads
Random Descending Ascending

Figure 3: N@5 on MovieLens and Goodreads validation
set under different training orders.

5.3 Effectiveness of Key Components (RQ2)

We investigate the effects of the following key com-
ponents of our method: (1) K-aware curriculum
learning, (2) query-adaptive K, (3) β in Eq. (13),
and (4) threshold τ in Eq. (14).

5.3.1 K-aware Curriculum Learning
To verify the effectiveness of K-aware curriculum
learning, we design three training orders for the
datasets: (1) “Random”: The dataset is randomly
shuffled. (2) “Descending”: The dataset is sorted
by K in descending order. (3) “Ascending”: The
dataset is sorted by K in ascending order.

We evaluate the impact of training orders by
plotting N@5 curves on the validation set (Fig.(3)).
The results show that the “Ascending” order outper-
forms “Random” and “Descending” orders in both
overall performance and stability, underscoring the
effectiveness of K-aware curriculum learning. Test
set results are provided in Appendix D.3.
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K
MovieLens

HR@1 HR@5 HR@10 N@5 N@10

1 0.5368 0.8526 0.9474 0.7062 0.7369
3 0.5579 0.8737 0.9684 0.7279 0.7574
5 0.5474 0.8737 0.9684 0.7251 0.7526
7 0.5474 0.8632 0.9579 0.7258 0.7469

10 0.5474 0.8737 0.9474 0.7229 0.7463

query-adaptive 0.5579 0.8842 0.9684 0.7361 0.7620

Table 4: Comparison of query-adaptive and fixed K.

5.3.2 Query-adaptive K

To evaluate the effectiveness of query-adaptive
K, we compare the performance of query-
adaptive KPO against KPO with fixed K val-
ues ([1, 3, 5, 7, 10]). As shown in Table 4, query-
adaptive K consistently outperforms fixed K, high-
lighting its effectiveness.

5.3.3 β in the Loss Function Eq. (13)

Fixing τ at 24, the β is varied across [0.1, 0.5, 1.0,
3.0, 5.0]. Typically, smaller β values indicate
stronger influence of preference signals on the
LLM, while larger values suggest weaker influ-
ence. As shown in Fig. (4), the best performance
occurs at β = 1.0, with higher β values leading
to a notable drop in HR@1. This underscores the
importance of effectively leveraging preference sig-
nals in ranking tasks.

5.3.4 Threshold τ in Eq. (14)

Fixing β at 1.0, the τ is varied across [18, 20, 22,
24, 26]. Based on the experimental results in
Fig.(4), we can find that τ = 24 is the optimal
value. Additionally, the performance of the model
is not significantly affected by variations in τ , fur-
ther indicating that KPO demonstrates a certain
level of robustness and stability.
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Figure 4: Study of β, τ on MovieLens validation set.

5.4 In-depth Analysis of KPO (RQ3)
In this section, we conduct an in-depth analysis
of KPO from three key perspectives: (1) sample
efficiency, and (2) robustness to noisy logits (3)
applicability across various backbone models.

5.4.1 Sample Efficiency
As shown in Section §4.3.4, KPO and S-DPO ex-
hibit similar runtimes. This section highlights how
the K-layer loop in KPO improves sample effi-
ciency. Fig.(5a) compares the reward curves of the
top-1 item during training for both methods.

Fig.(5a) shows that KPO consistently outper-
forms S-DPO in reward with the same number of
training steps. Moreover, KPO achieves the same
reward level as S-DPO in fewer steps, underscoring
its superior sample efficiency.

5.4.2 Robustness to Noisy Logits
Since using LLM logits to determine K candidates
may introduce inaccuracies, we investigate how
such errors impact KPO’s training performance. To
simulate these inaccuracies, we introduce a noise-
adding mechanism that randomly swaps the logits
of two items within M candidates, resulting in false
top-K selections. We then assess performance as
the number of swaps increases. Fig.(5b) presents
the experimental results on the MovieLens vali-
dation dataset. The experiments demonstrate that
KPO maintains relatively stable performance de-
spite increasing noise levels, highlighting its robust-
ness to imperfect logit estimates from the LLM.
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Figure 5: (a) Comparison of the reward of the top-1 item
between KPO and S-DPO on MovieLens. (b) Study of
noise on the MovieLens validation set.

5.4.3 Applicability across Various Backbones
In this section, we investigate whether KPO
can consistently improve performance across
various backbone models. Due to computa-
tional resource constraints, we selected Llama-
3.2-3B-Instruct (Meta, 2024), Llama-3.2-1B-
Instruct, Qwen2.5-500M-Instruct (Team, 2024),
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Model Size Method MovieLens
HR@1 HR@5 HR@10 N@5 N@10

Llama-3.2-Instruct 3B
SFT 0.5053 0.8526 0.9368 0.6983 0.7255
DPO 0.5263 0.8632 0.9579 0.7052 0.7348
DPOPL 0.5474 0.8737 0.9474 0.7229 0.7463
KPO 0.5579 0.8842 0.9684 0.7361 0.7620

Llama-3.2-Instruct 1B
SFT 0.4526 0.8316 0.9368 0.6569 0.6908
DPO 0.5053 0.8526 0.9368 0.7003 0.7247
DPOPL 0.5263 0.8632 0.9474 0.7122 0.7333
KPO 0.5368 0.8737 0.9579 0.7233 0.7401

Qwen2.5-Instruct 500M
SFT 0.4316 0.8421 0.9158 0.6467 0.6717
DPO 0.4632 0.8421 0.9474 0.6735 0.7061
DPOPL 0.4842 0.8526 0.9474 0.6782 0.7086
KPO 0.5053 0.8632 0.9579 0.6837 0.7198

SmolLM2-Instruct 135M
SFT 0.0526 0.2105 0.4842 0.1228 0.2137
DPO 0.0632 0.2526 0.5053 0.1935 0.2603
DPOPL 0.0737 0.2737 0.5263 0.2040 0.2597
KPO 0.0947 0.3263 0.5368 0.2120 0.2645

Table 5: Performance comparison across various models. Bold indicates the best performance.

and SmolLM2-135M-Instruct (Allal et al., 2025)
as our experimental models.

The experimental results are presented in Table 5.
For better comparison, we also report the perfor-
mance of SFT, DPO, and DPOPL. According to
the results, KPO consistently outperforms the other
methods across various backbone models, further
demonstrating the effectiveness of KPO.

6 Conclusion

In this study, we propose a novel method called
KPO, designed to address the limitations of exist-
ing approaches that rely on full-order or partial-
order ranking but often neglect the significance of
top-K ranking. In detail, we introduce the K-order
ranking, which prioritizes fine-grained ranking con-
sistency for the top-K items while disregarding less
relevant ones. Building on this foundation, we ex-
tend the PL model to accommodate top-K ranking
and develop the corresponding KPO loss. Addi-
tionally, we derive a theoretical formula for the
optimal accuracy achievable by KPO, thereby the-
oretically demonstrating that KPO outperforms S-
DPO. Considering the varying number of relevant
items across queries, we make KPO query-adaptive,
enabling it to dynamically adjust K for each query.
To further improve training efficiency and stability,
we introduce K-aware curriculum learning, which
allows LLMs to progressively learn from simpler
to more complex data. Extensive experiments show
that KPO significantly outperforms existing prefer-
ence alignment methods, highlighting not only the
effectiveness of top-K ranking but also the critical

role of query-adaptive K.

Limitations

In this paper, we propose a query-adaptive KPO
framework that dynamically determines the K-
order for candidate items based on each query.
While our approach has demonstrated effective-
ness in experiments, the method for obtaining the
query-adaptive K remains heuristic and does not
guarantee that the resulting K is optimal.

On one hand, we rely on the logits generated by
the LLM to represent the relevance between can-
didate items and the query. However, these logits
may not always provide an accurate measure of
relevance. It will be our future work to investigate
more precise methods for assessing relevance.

On the other hand, our approach determines K
by counting the number of items whose logits ex-
ceed a predefined threshold τ . This highlights that
K is highly sensitive to the choice of this hyperpa-
rameter. In future work, we will explore strategies
to derive a more accurate and optimal K.
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A Mathematical Derivation

A.1 Preference Modeling Derivation

In this section, we prove that the preference y1 ≻
· · · ≻ yK ≻ {yK+1, . . . , yM} can be expressed as:

p̂(y1 ≻ · · · ≻ yK ≻ {yK+1, . . . , yM} | x)

=
K∏

i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

.
(15)

Specifically, based on Eq. (4), we can derive step

by step as follows:

p̂(y1 ≻ · · · ≻ yK ≻ yK+1, yK+2, . . . , yM | x)

=
∑

Per(yK+1,...,yM )

M−1∏

i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

=
K∏

i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

×

∑

Per(yK+1,...,yM )

M−1∏

i=K+1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

=
K∏

i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

×
∑

Per(yK+1,...,yM )

p(yK+1 ≻ · · · ≻ yM | x)

=
K∏

i=1

exp(r(x, yi))∑M
j=i exp(r(x, yj))

,

(16)

where Per(yK+1, . . . , yM ) denotes the set of all
permutations of yK+1, . . . , yM .

A.2 Proof of the Ranking Accuracy Theorem

In this section, we provide the proof of the theorem
presented in Section §4.2, building on the method
outlined in (Chen et al., 2024a).

Theorem 1. Let π∗ be the optimal policy that max-
imizes the KPO objective. Given a dataset of ag-
gregated preferences Dp = {(x, y1 ≻ · · · ≻ yK ≻
{yK+1, . . . , yM}}. Assume Dp contains ground-
truth ranking probabilitie following the PL model.
Specifically, for any item yi and the subset of re-
maining items {yi+1, . . . , yM}, the ranking proba-
bility is defined as follows:

α(x, yi, y>i) = P(yi ≻ {yi+1, · · · , yM}) (17)

The top-K ranking accuracy of π∗ is given by:

R∗
KPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏

l=1

M∏

k=l+1

I
[
wlπref(yl | x)
wkπref(yk | x) > 1

]]
,

(18)

where wl
wk

is defined as:

wl

wk
=

(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏

i=l

(1− α(x, yi, y>i))
−1/β .

(19)

Proof. Firstly, under the PL model, we have:

P∗(yi ≻ {yi+1 · · · yM}) = exp(r∗(x, yi))∑M
n=i exp(r

∗(x, yn))
. (20)
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Following DPO (Rafailov et al., 2023), we can
express the ground-truth reward through its corre-
sponding optimal policy:

r∗(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x). (21)

We argue that, after thorough optimization, the op-
timal ranking probability P ∗(yi ≻ {yi+1 · · · yM})
derived from the optimal strategy equals the
ground-truth ranking probability α(x, yi, y>i) de-
fined in the dataset. Then we can derive that:

α(x, yi, y>i) =
exp

(
β log π∗(yi|x)

πref(yi|x)

)

∑M
n=i exp

(
β log π∗(yn|x)

πref(yn|x)

) . (22)

Rearranging, we have:

α(x, yl, y>l)

α(x, yk, y>k)

=
exp

(
β log π∗(yl|x)

πref(yl|x)

)

exp
(
β log π∗(yk|x)

πref(yk|x)

) ·
∑M

n=k exp
(
β log π∗(yn|x)

πref(yn|x)

)

∑M
n=l exp

(
β log π∗(yn|x)

πref(yn|x)

)

=
exp

(
β log π∗(yl|x)

πref(yl|x)

)

exp
(
β log π∗(yk|x)

πref(yk|x)

) ·
k−1∏

n=l

(1− α(x, yn, y>n)).

(23)

Then we have:

π∗(yl|x)
π∗(yk|x)

=
wl

wk

πref(yl|x)
πref(yk|x)

, (24)

where

wl

wk
=

(
α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏

i=l

(1− α(x, yi, y>i))
−1/β .

(25)

If we define for each k = 1, . . . ,M ,

Ek =
{
π∗(yk | x) > π∗(yj | x) for all j = k+1, . . . ,K

}
,

(26)

then the top-K ranking accuracy of π∗ is given by:

R∗
KPO = P

( K⋂

k=1

Ek

)
. (27)

Finally, we can calculate the ranking accuracy
as follows:

R∗
KPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏

l=1

M∏

k=l+1

I
[
π∗(yl | x)
π∗(yk | x) > 1

]]

= E(x,y1,...,yM )∼Dp

[
K∏

l=1

M∏

k=l+1

I
[
wlπref(yl | x)
wkπref(yk | x) > 1

]]
.

(28)

This complete the proof.

A.3 Proof that KPO Outperforms S-DPO
Based on Theorem 1, we demonstrate in this sec-
tion that KPO achieves a higher optimal ranking
accuracy compared to S-DPO.

In detail, S-DPO models each data point as:
y1 ≻ {y2, . . . , yM}, which is a special case of
KPO when K = 1. Thus, similar to the proof of
Theorem 1 in Appendix A.2, we express π∗(yl|x)

π∗(yk|x)
as:

π∗(yl|x)
π∗(yk|x)

=
w′

l

w′
k

πref(yl|x)
πref(yk|x)

, (29)

where

w′
l

w′
k

=

(
α(x, yl, y≥l)

α(x, yk, y>k)

)1/β

·
k−1∏

i=l

(1− α(x, yi, y>i))
−1/β

· I[l = 1] + I[l ̸= 1].
(30)

As a result, the optimal ranking accuracy of S-
DPO is:

R∗
S-DPO(Dp, πref)

= E(x,y1,...,yM )∼Dp

[
K∏

l=1

M∏

k=l+1

I
[
w′

lπref(yl | x)
w′

kπref(yk | x) > 1

]]
.

(31)

Next, we aim to prove that wl
wk

>
w′

l
w′

k
for all

l ∈ {2, . . . ,K} and k ∈ {l + 1, . . . ,M}.
Since the ranking probabilities α(x, yi, y>i) are

provided by the dataset Dp, this implies that

r∗(x, yl) > r∗(x, yk),∀l < k. (32)

Hence, we can derive that:
(

α(x, yl, y>l)

α(x, yk, y>k)

)1/β

·
k−1∏

i=l

(1− α(x, yi, y>i))
−1/β > 1.

(33)

Therefore, we conclude that wl
wk

>
w′

l
w′

k
for all

l ∈ {2, . . . ,K} and k ∈ {l + 1, . . . ,M}.
Subsequently, for l ̸= 1, we have:

I
[
wlπref(yl | x)
wkπref(yk | x) > 1

]
> I

[
w′

lπref(yl | x)
w′

kπref(yk | x) > 1

]
. (34)

Therefore, we conclude that R∗
KPO(Dp, πref) >

R∗
S-DPO(Dp, πref).

A.4 Optimization Objective of KTO
In this section, we provide a detailed introduction
to the optimization objectives of KTO (Ethayarajh
et al., 2024).

Given that λD and λU are hyperparameters for
desirable and undesirable outputs respectively, the
KTO loss is defined as:

LKTO(πθ;πref) = Ex,y∼D[λy − vKTO(x, y)], (35)
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where

rθ(x, y) = log
πθ(y|x)
πref(y|x)

z0 = KL(πθ(y
′|x)∥πref(y

′|x))

vKTO(x, y) =

{
λDσ(β(rθ(x, y)− z0)) if y ∼ ydesirable|x
λUσ(β(z0 − rθ(x, y))) if y ∼ yundesirable|x

B Ground Truth Label

As mentioned in Section §4.3.3, we need to use
the ground truth labels in the dataset to re-rank the
top-K items. In practice, ground truth relevance
labels are derived as follows:
• Product Search Tasks: Each candidate item is as-

signed a relevance score with respect to the query,
typically from a discrete set such as {0, 1, 2, 3}.

• Recommendation Tasks: Only the item most re-
cently interacted with by the user is typically con-
sidered relevant, while all other items are treated
as irrelevant. This scenario can be seen as a spe-
cial case where one item’s relevance score is “1”,
and all others are assigned a score of “0”.

C Experimental Settings

C.1 Datasets

In this section, we provide a detailed description
of three datasets, as outlined below. The statistical
information is presented in Table 6.
• MovieLens: This is a widely used dataset for

movie recommendation tasks, containing user
ratings for various movies and offering subsets
of different sizes. Given the substantial compu-
tational demands of LLMs, we chose the Movie-
Lens100K dataset for our experiments.

• Goodreads: This dataset comprises user ratings
and reviews of books. To manage the dataset
size, we filtered out users with fewer than 20
interactions on Goodreads.

• Shopping Queries: This dataset features a col-
lection of challenging Amazon search queries
and corresponding results. To limit its size, we
excluded products associated with fewer than 5
queries.

Dataset #Query #Item #Interaction
MovieLens 943 1,682 100,000
Goodreads 6,031 4,500 220,100
Shopping Queries 21,852 12,882 96,788

Table 6: Statistics of datasets.

C.2 Baselines

C.2.1 Preference Alignment Methods

We compare KPO with various preference
alignment methods, including KTO (Ethayarajh
et al., 2024), DPO (Rafailov et al., 2023),
SimPO (Meng et al., 2024), Conservative DPO
(cDPO) (Mitchell, 2023), S-DPO (Chen et al.,
2024b), and DPOPL (Rafailov et al., 2023). De-
tailed descriptions of these methods are provided
below:
• KTO: Inspired by Kahneman and Tversky’s

prospect theory (Kai-Ineman and Tversky, 1979;
Tversky and Kahneman, 1992), this method re-
lies solely on binary labels, classifying samples
as either "good" or "bad," which can be consid-
ered a point-wise approach.

• DPO: Provides a closed-form solution for the
reward model in RLHF (Ouyang et al., 2022)
and enables offline optimization of the pair-wise
preference model.

• SimPO: Proposes a simplified optimization algo-
rithm compared to DPO, eliminating the need for
a reference model.

• Conservative DPO (cDPO): Introduces a hyper-
parameter ϵ to account for the flip rate of noisy
labels.

• S-DPO: Incorporates multiple negative samples
in user preference data and develops an alter-
native DPO loss formulation tailored for LM-
based recommenders, linked to softmax sampling
strategies.

• DPOPL: Extends DPO’s Bradley-Terry modeling
to the list-wise Plackett-Luce modeling.

C.2.2 Recommendation Models

We compare KPO with various recommendation
models, which can be broadly classified into two
categories: traditional models and LLM-based
models.

The traditional recommendation models include:
• SASRec: An attention-based sequential recom-

mendation model designed to effectively capture
long-range semantic dependencies in user behav-
ior sequences.

• GRU4Rec: A recurrent neural network (RNN)-
based model known for its simplicity and effi-
ciency in recommendation tasks.

• Caser: A convolutional neural network (CNN)-
based model that interprets a user’s historical
behavior sequence as an “image” and leverages
CNN operations to extract meaningful patterns.
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Method MovieLens Goodreads
HR@1 HR@5 HR@10 N@5 N@10 HR@1 HR@5 HR@10 N@5 N@10

SFT 0.5053 0.8526 0.9368 0.6983 0.7255 0.4809 0.8369 0.9468 0.6675 0.7034
Random 0.5579 0.8842 0.9684 0.7361 0.7620 0.5042 0.8719 0.9584 0.6994 0.7272
Descending 0.5474 0.8737 0.9684 0.7233 0.7532 0.4942 0.8686 0.9584 0.6949 0.7239
Ascending 0.5684 0.8947 0.9684 0.7381 0.7637 0.5158 0.8735 0.9667 0.7024 0.7353

Table 7: Comparison of different training data orders. Bold indicates the best performance.

The LLM-based recommendation models in-
clude:
• MoRec: A model that enhances traditional rec-

ommendation models by integrating modality-
specific features of items.

• LLaRA: A hybrid model that combines LLM with
the traditional models’ embeddings through hy-
brid item representations.

C.2.3 LLM-based Rankers
We compare KPO with various LLM-based rankers,
including RankGPT3.5 (Sun et al., 2023), and Lla-
maRec (Yue et al., 2023). Detailed descriptions of
these rankers are provided below:
• RankGPT3.5: RankGPT directly prompts Chat-

GPT (OpenAI, 2022) to rank a list of candidate
items in a zero-shot manner.

• LlamaRec: LlamaRec ranks candidate items
based on the logits output by the model.

C.3 Implementation Details
Our experiments are conducted on eight NVIDIA
A40 GPUs. For the KPO method, we use the
LLama-3.2-3B-Instruct (Meta, 2024) model as the
backbone and apply LoRA (Hu et al., 2022) for
fine-tuning. Specifically, the LoRA rank is set to
32, and the LoRA alpha is configured to 64. During
the supervised fine-tuning (SFT) stage, the model
is trained for 5 epochs with a learning rate of 1e-
4. In the preference alignment stage, the learning
rate is reduced to 1e-5, and training is performed
over 3 epochs. The global batch size is fixed at
128. To ensure optimal performance, we select the
model checkpoint that achieves the best results on
the validation set. Additionally, a warm-up strat-
egy is employed, where the learning rate is initial-
ized to 1

100 of its maximum value and gradually
increased using a cosine scheduler. For traditional
models, we adopt the settings outlined in (Yang
et al., 2023), using a learning rate of 0.001, an
embedding dimension of 64, and a batch size of
256. To determine the optimal L2 regularization
coefficient, we conduct a grid search over the val-
ues [1e − 3, 1e − 4, 1e − 5, 1e − 6, 1e − 7]. For

other LLM-based models, we follow the training
protocol described in LLaRA (Liao et al., 2024),
training the models for up to 5 epochs with a batch
size of 128.

D Additional Experiments

D.1 Analysis of Time Complexity
As mentioned in Section §4.3.4, the additional K-
layer loop introduced by KPO, compared to S-DPO,
does not significantly increase the actual runtime.
To support this claim, we conducted experiments
to compare the runtime performance of KPO and
S-DPO in practice.

We measured the average runtime of each phase
during optimization on the MovieLens dataset us-
ing an NVIDIA A40 GPU with a batch size of 4.
As shown in Table 8, KPO’s total runtime is only
2% longer than S-DPO. This slight increase arises
from Phases 1 and 3 dominating the computation,
while the added complexity in Phase 2 has min-
imal impact. Therefore, KPO achieves runtime
efficiency comparable to S-DPO despite its higher
theoretical complexity.

Method Complexity Runtime
Phase 1 Phase 2 Phase 1 Phase 2 Phase 3 Total

S-DPO Θ(M) Θ(M) 2.82 0.03 8.04 10.89
KPO Θ(M) Θ(K ·M) 2.82 0.24 8.04 11.10

Table 8: Results of time complexity and actual run-
time. “Complexity” refers to the number of iterations
per phase, with execution time measured in seconds.

D.2 Shopping Queries Dataset with One
Ground Truth Item

We also align the experimental setup of the Shop-
ping Queries dataset with that of the recommenda-
tion dataset: a candidate item list is composed of
one ground truth item and 19 randomly sampled
items. The experimental results are presented in
Table 9.

Based on the experimental results, we can con-
clude that KPO outperforms other preference align-
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Method
Shopping Queries

HR@1 HR@5 HR@10 N@5 N@10

KTO 0.5120 0.8430 0.9510 0.6891 0.7243
DPO 0.5210 0.8560 0.9550 0.6968 0.7288
SimPO 0.5210 0.8580 0.9630 0.6991 0.7331
cDPO 0.5240 0.8520 0.9540 0.6972 0.7304
S-DPO 0.5270 0.8420 0.9510 0.6936 0.7293
DPOPL 0.5230 0.8560 0.9530 0.6997 0.7315
KPOCUT 0.5220 0.8410 0.9480 0.6929 0.7279

KPO 0.5330 0.8670 0.9670 0.7087 0.7414

Table 9: Comparison for optimization objectives on
the Shopping Queries dataset. Bold indicates the best
performance.

ment methods, which demonstrates the effective-
ness of KPO.

D.3 K-aware Curriculum Learning
To demonstrate the effectiveness of K-aware cur-
riculum learning, we present the performance of
three training data orders—random, descending,
and ascending—on the MovieLens and Goodreads
test set. For better comparison, we also present the
performance of the SFT model. The experimental
results are summarized in Table 7.

From these results, we have drawn the following
findings and conclusions: The model trained on
“Ascending” data consistently outperforms those
trained on “Random” and “Descending” data. This
indicates that starting with simpler data and gradu-
ally progressing to more complex data is beneficial
for improving model performance.
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