
Findings of the Association for Computational Linguistics: ACL 2025, pages 2990–3001
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Position-Aware Depth Decay Decoding (D3): Boosting Large Language
Model Inference Efficiency

Siqi Fan1, Xuezhi Fang2, Xingrun Xing2,3, Peng Han1, Shuo Shang1*, Yequan Wang2*

1University of Electronic Science and Technology of China, Chengdu, China
2Beijing Academy of Artificial Intelligence, Beijing, China

3Institute of Computing Automation, Chinese Academy of Sciences, Beijing, China
{sqfann, jedi.shang, tshwangyequan}@gmail.com

Abstract

Due to the large number of parameters, the
inference phase of Large Language Models
(LLMs) is resource-intensive. Unlike tradi-
tional model compression, which needs retrain-
ing, recent dynamic computation methods show
that not all components are required for infer-
ence, enabling a training-free pipeline. In this
paper, we focus on the dynamic depth of LLM
generation. A token-position aware layer skip-
ping framework is proposed to save 1.5x times
operations efficiently while maintaining perfor-
mance. We first observed that tokens predicted
later have lower perplexity and thus require less
computation. Then, we propose a training-free
algorithm called Position-Aware Depth Decay
Decoding (D3), which leverages a power-law
decay function,

⌊
L× (αi)

⌋
, to determine the

number of layers to retain when generating to-
ken Ti. Remarkably, without any retraining,
the D3 achieves success across a wide range of
generation tasks for the first time. Experiments
on large language models (i.e., the Llama) with
7 ∼ 70 billion parameters show that D3 can
achieve an average 1.5x speedup compared
with the full-inference pipeline while maintain-
ing comparable performance with nearly no
performance drop (< 1%) on the GSM8K and
BBH benchmarks.

1 Introduction

LLMs have demonstrated impressive performance
on various downstream tasks (e.g., text generation,
question & answering, and sentiment analysis) us-
ing various evaluation protocols such as zero-shot,
few-shot, and fine-tuning (Touvron et al., 2023).
Notably, In-context learning ability allows LLMs
to adapt to tasks using input-output examples with-
out parameter updates (Brown et al., 2020; Todd
et al., 2024). However, their inference phases are
very expensive due to the large number of param-
eters (Liu et al., 2023). LLMs employ multi-layer

*Corresponding authors.

(a) Decoder LM

𝑦! 𝑦" 𝑦# 𝑦$⋯

Copy Operation

Used Layer

Skipped Layer

Core Layer

Initial Stage

𝑦!= target token
at i time step

(b) Early Exit

𝑦! 𝑦" 𝑦# 𝑦$⋯

(c)SkipDecode

𝑦! 𝑦" 𝑦# 𝑦$⋯

(d) ours: 𝐷#

𝑦! 𝑦" 𝑦# 𝑦$⋯

head

tail

flex

Used Layer = 𝑳×(𝜶𝒊)

Figure 1: D3’s generation process vs. (a) standard im-
plementation, (b) Early Exit, and (c) SkipDecode.

Transformers, focusing much of the computation
on decoder blocks. For LLMs like Llama, infer-
ence complexity is LSd(d + S) per single infer-
ence, where d is the word vector dimension, S is
the sequence length, and L represents the number
of decoder blocks (Narayanan et al., 2021). This
shows that computational cost scales linearly with
the number of decoder blocks. Therefore, many
works explore the possibility of achieving dynamic
depth in LLMs during inference (Schuster et al.,
2022; Ma et al., 2023).

Early studies in visual neural networks (Boluk-
basi et al., 2017; Huang et al., 2017) show that
“Easy” instance activates at shallower layers while
“hard” ones at deeper layers. Dynamic depth
was then widely used in classification tasks with
encoder-only LLM like BERT (Li et al., 2020; Liu
et al., 2020; Kong et al., 2022), mainly through
early exiting and skipping layers. The rise of gen-
eration tasks in decoder-only LLMs, prompts us
to question: “Can we allocate different computa-
tional resources for generating tokens at different
positions?" However, extending dynamic depth to
generation tasks such as autoregressive decoding
in Transformers presents challenges, as it requires
computing the entire Transformer stack for each
token (Schuster et al., 2022). This introduces two
key challenges:

(i) Handling Missing State. Managing the miss-

2990

ing hidden state and key-value cache for the current
token Ti becomes challenging if the previous token
Ti−1 exited at a lower layer than Ti. The common
approach (Corro et al., 2024; Schuster et al., 2022)
is adding the missing state by copying. However,
there are many variable factors affecting this copy
operation are unclear (e.g., when to add the missing
state).

(ii) Decision on Skipping Layer Number and
Direction. While the concept of “easy” instances
activate at shallower layers and “hard” ones at
deeper layers is appealing, this approach is incom-
patible with batching (Huang et al., 2017). The
recent SkipDecode (Corro et al., 2024) addresses
this by controlling the computational budget with
batched exit points. However, choosing which lay-
ers to skip remains an open question. Currently,
there are differing views on whether to skip head
or tail layers at different timesteps. CALM (Schus-
ter et al., 2022) uses a confidence measure to skip
tail layers, while SkipDecode designs a batch exit
function to skip head layers, but the reason behind
this choice is unclear (Figure 1).

In this paper, we propose Position-Aware Depth
Decay Decoding (D3) to address the above chal-
lenges. D3 dynamically reduces the number of
activated layers per token.

We find that generation performance is sensitive
to early decoding steps, as shown by Llama per-
plexity (PPL) decrease per token. We hypothesize
that “During LLM generation, tokens predicted
later have lower perplexity and thus require less
computation." Previous work also (Schuster et al.,
2022; Corro et al., 2024) supports this, noting that
early incorrect predictions affect subsequent tokens
and that average loss decreases over time. These
findings guide the design of D3.

The core of D3 lies in decision-making strategy
for each token (i.e., skip layer number and skip
direction). Inspired by the decreasing behavior of
Llama PPL per token, we design a power law decay
function

⌊
L× (αi)

⌋
to decide how many layers to

keep when generating token Ti at i time step. Here,
L is the total number of layers in the model, and
α is a hyperparameter that controls the decay rate.
For the skip direction, previous works like (Men
et al., 2024; Yang et al., 2024) suggest skipping
middle layers based on cosine similarity of hidden
states. We further validate this by analyzing the
information flow (e.g., MLP, attention activations)
across each block during pretraining.

Subsequently, we can perform D3 to achieve

efficient inference without additional learning. It
involves only two hyperparameters: the flex layer
start ID and the decay rate (α). These can be de-
termined through grid search on a validation set
on a small model and then directly transferred to
larger models. Moreover, the task-specific nature
of these hyperparameters allows for adaptive infer-
ence, with different parameter settings reflecting
the model’s ability to adjust to specific tasks.

Experiments on well-known large language mod-
els (i.e., the Llama series) with 7 ∼ 70 bil-
lion parameters show that our proposed D3 can
achieve 1.07x to 1.94x speedup compared with full-
inference pipeline (i.e., HuggingFace implementa-
tion) on the GSM8K and BBH benchmarks while
maintaining comparable performance with nearly
no performance drop (< 1%). More importantly,
D3 is orthogonal to other model acceleration tech-
niques (batch processing and KV caching), offering
the potential for further enhancing inference effi-
ciency. We argue that D3 unlocks a new paradigm
for efficient inference alongside existing effective
methods.

In summary, our main contributions are as fol-
lows:

• A simple but effective framework (D3) to de-
cide computation resource per token for LLM
generation without any model retraining.

• A complement analysis of the token-position
wise decoding that motivates the design of
power law decay function.

• Experiments demonstrate D3 achieve average
1.5x speedup on two benchmarks while main-
taining comparable performance.

2 Related Work

Dynamic Depth. Dynamic depth involves two
methods: Early Exit (EE) and Skip layer. EE first
appeared in CNN/DNN networks for visual tasks
(Bolukbasi et al., 2017; Huang et al., 2017; Teer-
apittayanon et al., 2016). Subsequently, it was uti-
lized in accelerating the inference of encoder-only
architectures in BERT for classification tasks by
(Li et al., 2020; Liu et al., 2020; Li et al., 2021;
Kong et al., 2022). Recently, (Schuster et al., 2022;
Varshney et al., 2023; Corro et al., 2024) discuss
confidence-based or batch exit EE for accelerate
LM inference. Meanwhile, skip-layer dynamically
omits the execution of middle layers (or modules)
for any input token, facilitated by a gate function

2991

Method Gen. KV Batch Extra Draft Task Adapt.

Early-EE ✗ ✗ ✗ ✗ ✓
CLAM ✓ ✗ ✗ ✗ ✗

SkipDecode ✓ ✓ ✓ ✗ ✗

SD ✓ ✓ ✓ ✓ ✓
Self-SD ✓ ✓ ✓ ✗ ✓
Ours: D3 ✓ ✓ ✓ ✗ ✓

Table 1: Comparison of related methods. Gen. indicates
support for generation, KV and Batch for KV caching
and batch processing, Extra Draft for requiring a draft
model, and Task Adapt. for task adaptability.

(Wang et al., 2018) or a binary router (Zeng et al.,
2023) and layer pruning (Kim et al., 2024; Yang
et al., 2024; Song et al., 2024). In addition, Dola
and SLED (Zhang et al., 2024; Chuang et al., 2024)
improve model factuality from the perspective of
dynamic depth, highlighting the potential of dy-
namic depth in various applications.

Speculative Decoding (SD). Vanilla speculative
decoding (Leviathan et al., 2023; Chen et al., 2023)
uses two models: a lightweight draft model for
simple tokens and a powerful verification model
for complex tokens. The draft model quickly
predicts potential tokens, while the verification
model checks their accuracy in parallel. To re-
duce model dependency, self-Speculative Decoding
(Zhang et al., 2023; Elhoushi et al., 2024), using a
skip-layer version of the verification model as the
draft model, thus avoiding additional model load-
ing overhead. These skipped layers are searched
via Bayesian optimization, which efficiently identi-
fies the most suitable layer configurations for draft
model. Compared to existing methods, our ap-
proach eliminates secondary model loading and
token verification process, with key differences
summarized across four dimensions in Table 1.

3 Methodology

In this section, we introduce D3. We begin with
brief recap the two phases of text generation for
decoders-only transformers for convenience (§ 3.1),
then bring the challenges when dynamic depth
comes up with generation. Last, we investigate the
effects of dynamic depth on model performance
(§ 3.2) identify the primary reason for performance
degradation, and propose strategies to mitigate
them (§ 3.3), which guide our designed D3 for
per token-position wise decoding(§ 3.4).

3.1 Preliminary: Dissecting Efficient
Inference of LLMs

Mainstream LLMs (e.g., GPT, Llama) are rooted in
the Transformer architecture (Vaswani et al., 2017),
and pretrained with a full language modeling ob-
jective with a decoder-only structure, computing
loss on all tokens.

Two phases behind generative tasks. When
LLMs engage in generative tasks, they enter a next-
token prediction loop until reaching an exit signal
(e.g., an EOS token or reaching the maximum se-
quence length). This process involves two phases.
The first, known as the initiation phase, entails
generating the first token of the completion by pro-
cessing the tokenized prompt through the network.
Subsequently, the generated token is appended to
the input token sequence, becoming part of the
new input to generate the subsequent token. This
iterative process continues until the exit signal is
encountered, often referred to as the generation
phase.

Practical accelerate methods: Batching and KV
cache. Batch processing and Key-Value (KV)
cache are practical acceleration methods used dur-
ing inference in LLMs. Batch processing involves
simultaneously handling batches of data during
inference. Since the decoder operates causally, dur-
ing the generation phase, Key-Value (KV) caches
prevent the recomputation of keys and values for
past tokens to reduce computation costs.

Challenges. (i) Instance-aware dynamic depth
poses challenges for batch processing and KV
cache. Confidence-based methods like CALM
(Schuster et al., 2022; Varshney et al., 2023) when
processing batch data, instances within the same
batch have to wait until the last token in a batch
exits before they can stop computing. This severely
restricts the practical application of such techniques
(Corro et al., 2024). (ii) Filling missing state has er-
ror propagation. At the sequence level, if the depth
at which the previous token exits is earlier than that
of subsequent tokens, filling of missing layers’s
hidden state and KV cache for preceding tokens
may cause error propagation. (iii) Uncertainty skip
layer number and direction. CALM (Schuster et al.,
2022) uses a confidence measure to skip tail layers,
while SkipDecode designs a batch exit function to
skip head layers. However, the rationale behind
their choice is unclear.

2992

Model Layer Num. SD Conf
Llama2 7B 32 21 0.8
Llama2 13B 40 23 0.7
Llama2 70B 80 53 0.8

Table 2: LLM Saturation Statistics. “SD" refers to the
average Saturation Depth per token, and “conf" indi-
cates the confidence level of the Saturation Depth.

(b) Llama PPL behavior per token position (a) Sensitive to early time step

Figure 2: Error propagation and explanation from per-
plexity (PPL) behavior in filling missing States.

3.2 Error Propagation on Filling Missing
State

In autoregressive decoding, when generated token
t, computing the input hidden state hit for layer
i depends on hi−1

1:t−1, which is the output hidden
states of the previous layer for all the tokens that
have been generated so far. Therefore, if the model
has early exited at some layer j < i− 1 for a
token s < t, then hi−1

s and KV cache for s is not
available.

To handle these missing hidden states and KV
cache, methods like CALM (Elbayad et al., 2019;
Schuster et al., 2022) adopt the approach of copy-
ing hidden states and recomputing KV cache, while
SkipDecode (Corro et al., 2024) copies both hidden
states and KV cache. Both methods may introduce
error propagation. To this end, we first investigate
the potential of layer skip in LLMs. Then we will
analyze the impact of copied operation on perfor-
mance, in addition to considering other factors. We
use Llama2-7b (Touvron et al., 2023) and the BBH
word sorting task (Suzgun et al., 2022) for these
experiments.

Dynamic depth potential across scaling laws.
We control for the correctness of the predicted to-
kens to examine the potential of early exit in LLMs.
That is, we first explored confidence-based ora-
cles for decoder-only LLMs without regard to cost
(Schuster et al., 2022). Due to the exact match

La
ye

r

Training Step

Eu
cl

id
ea

n
di

st
an

ce
C

os
in

e
si

m
ila

ri
ty

(ℎ, ℎ%= 8192) (mlp, ℎ%= 8192) (attn, ℎ%= 8192)(ℎ, ℎ%= 1024)(ℎ, ℎ%= 512)

Figure 3: Visualization of input/output information flow,
including features hidden state, mlp, and attention acti-
vation value, for each block during training.

evaluation metric for word sorting1, when gener-
ating each token t, we can compare each block
i’s output hidden state hit with the last block hid-
den state hLt after passing lm_head layer2. This
allows us to identify the hidden state’s Satura-
tion Depth and obtain the corresponding confi-
dence. This process can be represented by the
formula: for each generated token t in each block
i, i ∈ [1, L), argmax p(yt+1 | lm_head(hit)) =
argmax p(yt+1 | lm_head(hLt)).

CALM (Schuster et al., 2022) finds that in an
8-layer T5 encoder-decoder model, exits at an aver-
age of 1.53 layers per token without performance
degradation. Similar observation also happens in
decoder-only LLMs, for the initial phase, the first
token required processing through all layers, but
during the generation phase, approximately 95%
of the tokens were correctly predicted by around
0.7 depth of the model (Refer to Table 2). This
suggests that LLMs exhibit significant redundancy
in depth, highlighting substantial potential for com-
pute savings through layer skipping.

Copy operation is sensitive to early time step.
Note that in the above Oracle experiment, miss-
ing hidden states are copied while missing KV
caches are recalculated regardless of cost. When
KV caches are copied, performance drops signif-
icantly (by about 20% on the word sorting task).
Although CALM (Schuster et al., 2022) addresses
this by recalculating KV states, this approach is im-
practical for decoder-only architectures due to high
computational costs (Corro et al., 2024). There-

1A given predicted string’s exact match score is 1 if it is
the exact same as its reference string, and is 0 otherwise.

2The classification layer (lm_head) transforms decoder
logits into a vocabulary-wide probability distribution using
linear transformation and softmax, enabling word prediction
by selecting the top probability option.

2993

𝑆!"##$% 	 𝑇" 	= 𝑙 ∈ ℤ , head ≤ 𝑙 ≤ head + 𝐿 − 𝐿×(𝛼") 	

Skipped layer ID set

i-th generated token

Decay function

Model max Layer IDStart skipped layer ID

(a) power-law decay function with different decay rate (b) The skipped layers ID set for each generated token 𝑇!

Figure 4: The layer usage for the current generated token Ti follows a power-law decay function with decode time
steps.

fore, we examine how the copy operation affects
generative tasks in Figure 2(a). We consider two
variables: (i) The effect of decoder time steps (one
token decoded at a time) on final performance when
the same layers are copied, and (ii) the number of
layers copied. For convenience, only tail layers
are copied. The results are depicted in Figure 2(a),
which shows that earlier perturbations lead to more
significant performance degradation while copying
more layers exacerbates performance decline. We
attribute this outcome to perplexity (PPL) behavior
per token in Figure 2(b). It provides a measure of
uncertainty or “surprise" about the prediction. For
a token Ti with probability p(Ti), it is calculated as
PPL(Ti) =

1
p(Ti)

. At the start of the generation,
limited information causes higher PPL. As more
tokens are decoded, richer context lowers PPL for
later tokens. Thus, we hypothesize that “During
LLM generation, tokens predicted later have lower
perplexity and thus require less computation.”

3.3 Core & Flex Layer

Modern LLMs build coarse-grained features in
their head layers and develop more detailed, fine-
grained representations in deeper layers, facili-
tated by multi-head attention mechanisms (Vaswani
et al., 2017) and residual connections (He et al.,
2016). To investigate representation changes in
each decoder block, we visualize the input-output
flow during training, as shown in Figure 3. Specifi-
cally, we calculate Cosine similarity and Euclidean
distances for hidden state, perception, and attention
activation. For instance, given output hidden states
h1, h2 from block 1 and block 2 at training step t,
the cosine similarity is computed as h1·h2

∥h1∥∥h2∥ , and

the Euclidean distance is
√∑d

i=1(h1,i − h2,i)2,
where d is the hidden size. Other metrics, such
as perception (MLP) and attention activation (attn),
follow similar calculation processes. Detailed data
is provided in the supplementary materials.

Results show that while middle layers exhibit
minimal changes in input-output flow over time,
the head and tail layers remain distinct. We pro-
pose that the head and tail layers can be called core
layers, with specific roles: (i) head layers handle
abstract, fundamental features close to the embed-
ding layer, and (ii) final layers align with the output
near the classification layer. Middle layers, termed
flex layers, are more adaptable. Dynamic depth
like CALM (Schuster et al., 2022) skip tail layers,
and SkipDecode (Corro et al., 2024) skip head lay-
ers. We argue that the middle flex layers should be
skipped first, and the optimal starting point for skip-
ping can be determined through parameter search
in smaller models.

3.4 D3: Token Position Decay Strategy

Previous early exit methods require a stop signal
for each token, such as training early exit classifiers
(Li et al., 2020; Liu et al., 2020) or using softmax
response (Schuster et al., 2022). However, we be-
lieve these methods significantly increase computa-
tional load, especially since the softmax response
projects the hidden state to a large output vocab-
ulary size. Therefore, after identifying the core
layers, we propose a decay method that does not
require training or softmax response. SkipDecode
(Corro et al., 2024) uses linear decay given a target
speedup ratio. In contrast, we design a power-law
decay function

⌊
L× (αi)

⌋
based on the power-law

trend of PPL behavior in Figure 2(b). The decay
rate is adjusted by controlling the decay coefficient
α, as illustrated in Figure 4(a). Given a model with
L layers, the skipped layers for each generated to-
ken Ti are depicted in Figure 4(b).

It’s worth noting that our approach is effective
yet simple and easy to implement. Besides the
token skipping policy, it does not necessitate any
additional modifications to the transformer archi-
tecture, either during training or generation.

2994

Model Params Layer Num. GQA
Llama 2 7B 32 %

Llama 2 13B 40 %

Llama 2 70B 80 !

Table 3: LLMs statistics.

Task output length
BBH 182(2-182)
GSM8K 1230(50-1230)

Table 4: Tasks statistics

4 Experiments

4.1 Experiment Settings

Evaluation Tasks. We assess our method from
two common text generation benchmarks from
Hugging Face Open LLM Leaderboard with vary-
ing target lengths and domins: BBH (Suzgun
et al., 2022), comprising 23 challenging BIG-
Bench tasks (Srivastava et al., 2022), where pre-
vious language models fell short compared to hu-
man raters, necessitating multi-step reasoning and
few-shot prompting without CoT; GSM8K (Cobbe
et al., 2021), designed for question answering on
basic mathematical problems requiring multi-step
reasoning. The average number of tokens in ref-
erence targets of evaluation datasets is detailed in
Table 4.

Evaluation Metrics. For performance evalua-
tion, we report exact match score from the lm-
harness evaluation framework (Gao et al., 2023),
this serves as the backend for Open LLM Leader-
board and is utilized by numerous open-source
LLMs (Biderman et al., 2023; Touvron et al., 2023).
We evaluate our approach under few-shot scenarios,
using sample sizes of 3. Training set examples are
added to xq. For in-context learning prompts, we
use a default template: Q : {xk} \nA : {yk} \n\n,
concatenating random xk and yk samples from task-
specific training sets.

Following CALM (Schuster et al., 2022), our
main efficiency metric is the average number of
decoder layers used per output token, as it directly
measures complexity reduction without conflating
with implementation or infrastructure specific de-
tails. For reference, we convert it to average FLOPs
reduction per output token (Elbayad et al., 2019;
Narayanan et al., 2021; Corro et al., 2024). Taking
into account the conditional checks and redundant
parameter passing (e.g., token position) involved
in D3, we also compared the actual speed of D3

in real-world scenarios compared with Hugging
Face implementation, reporting wall-clock time
(Dehghani et al., 2021).

Large Language Models. For D3’s backbone,
we choose widely recognized Llama 2 series, de-

HP Grid Search Space Description

start [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] Drop layer start position
α [0.8, 0.9, 0.999, 0.9999] Decay rate

Table 5: Details of the computation layer ID set used for
generating token Ti at time step i, along with the search
range and descriptions for the formula’s hyperparame-
ters.

tailed in Table 3. These models vary in terms of the
number of parameters, ranging from 7 billion to
70 billion, and the number of layers, ranging from
32 layers to 80 layers. Compared with Llama 2
7/13B version, the 70B version employs Grouped
Query Attention (Ainslie et al., 2023), enhancing
its inference capabilities.

Hyperparameter Settings We conducted a grid
search using 10% of the training set to determine
the optimal values for start and α. The hyperpa-
rameter ranges explored are listed in Table 5. Im-
portantly, the optimal hyperparameters identified
for smaller models were directly applied to larger
models, significantly reducing the time and effort
required for the search. For GSM8k, we found
α = 0.9999 and start = 0.2. For BBH, the values
were α = 0.99 and start = 0.6. Notably, these
hyperparameters, optimized for the LLaMA 7B
model, were efficiently transferred to the LLaMA
13B and 70B models, demonstrating a low-cost,
high-efficiency approach.

Comparison Methods. We select Early Exit
(Schuster et al., 2022) (i.e., CALM-DEC) and
SkipDecode (Corro et al., 2024) for comparison
with our D3. The original CALM (skip deep lay-
ers) was designed for the encoder-decoder architec-
ture of T5 and does not support batch processing
due their adaptive hidden state saturation policy. To
facilitate comparison, we adapted the CALM early
exit concept to suit decoder-only models and enable
batch processing. SkipDecode (skip shallow lay-
ers) applies linear decay within the specified upper
and lower bounds of the model’s executable layers,
given a target speedup ratio. For a fair comparison,
we ensure that SkipDecode and our method have a
comparable or greater average layer number, with
other parameters (e.g., warm-up layer number and
passing prompt inputs through all layers in the ini-
tial stage) consistent with the original paper. To
ensure reproducibility, all experiments were con-
ducted with a fixed random seed, controlling for
randomness and enabling accurate comparisons.

2995

Methods
BBH GSM8K

EM #Avg.Layer FLOPs r. EM #Avg.Layer FLOPs r.

Llama2 7B maximum length 200 maximum length 1024
Full Depth 31.22 32.00 - 10.61 32.00 -
Early Exit 31.22 19.73 1.60x 10.61 29.90 1.07x
SkipDecode 31.65 24.68 1.28x 0.00 29.90 1.07x
Ours: D3 31.88 19.17 1.64x 12.05 29.90 1.07x

Llama2 13B maximum length 200 maximum length 1024
Full Depth 37.77 40.00 - 22.67 40.00 -
Early Exit 37.72 33.50 1.19x 22.74 37.51 1.06x
SkipDecode 38.98 30.99 1.29x 9.32 37.51 1.06x
Ours: D3 39.07 20.33 1.94x 23.43 37.51 1.06x

Llama2 70B maximum length 200 maximum length 1024
Full Depth 50.90 80.00 - 52.91 80.00 -
Early Exit 50.02 50.14 1.59x 22.74 75.53 1.05x
SkipDecode 51.87 62.48 1.27x 26.68 75.53 1.05x
Ours: D3 51.42 48.43 1.65x 54.51 75.53 1.05x

Table 6: Main Results: Performance and efficiency
across model scales.

Actual Time Llama2 7B Llama2 13B Llama2 70B

HF Full Depth 6218 10428 12893
Ours 5559 8427 11294
Speed Up 1.12x 1.23x 1.14x

Table 7: Wall-clock time(s) and actual speed up on
GSM8K.

4.2 D3: Performance and Efficiency Across
Scaling Laws

The main experimental results of D3 are summa-
rized in Tables 6 and 8. These experiments were
conducted in few-shot settings, showcasing per-
formance and computational efficiency compared
to HuggingFace’s full-depth implementation and
early exit method, SkipDecode. From a perspective
of performance and computational efficiency, we
can draw the following experimental conclusions.

Performance is Comparable with Minimal
Loss(< 1%). Tables 6 and Figure 5 show that
exact match remains within a narrow margin of
< 1%, when compared to HuggingFace’s full-
depth implementation. D3 maintains mainstream
LLM capabilities and in-context learning abilities
without modifying model parameters. This finding
is promising, especially in light of our observation
in Table 2, where we demonstrate the feasibility of
implementing early exit strategies within LLM mid-
dle layers while preserving accuracy. For certain
tasks, D3 surpasses the last layer (Full Depth). This
hints at a tendency for deep layers to potentially
over-represent certain tasks, which could impede
performance during LLM inference.

Over 1.5x Speed Up. We convert the average
skipped layers per token for each task to FLOPs

Figure 5: D3 vs. Full Depth performance difference (±)
on BBH benchmarks

(a) GSM8K on Llama7b (b) GSM8K on Llama13b

Figure 6: α vs. Start accross model scales. The consis-
tent HP sensitivity trends between Validation and Test
sets suggest that optimal hyperparameters can be identi-
fied on a small validation set and transferred to larger
models, saving extensive search efforts.

reduction in Table 6. It can be observed that the
FLOPs reduction varies for different types of tasks,
ranging from 1.07x to 1.94x. This variation is be-
cause of different output lengths of each task. We
argue that, the computation required decreases dur-
ing the generation process, and allocating fewer
computational resources for later tokens can im-
prove computational efficiency.

Recall that the universality decoder layers, our
algorithmic improvements D3 are fully compati-
ble with traditional model acceleration techniques.
This compatibility is noteworthy, especially con-
sidering that many earlier instance-wise dynamic
depth methods (Schuster et al., 2022) did not sup-
port batching and KV cache. These improvements
are applicable to various LLMs and can be easily
transferred despite minor architectural and activa-
tion function differences.

Wall-clock time compared with HuggingFace
implementation. It’s worth mentioning that the
actual speedup may slightly vary during generation,
given the impossibility of predicting the number of
tokens the model will generate in advance (Corro
et al., 2024). Additionally, the introduction of cer-
tain computations, such as conditional statements
and array creation, also adds to the computational

2996

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?

𝑿

<s>_Jan_et_e_ats__3_eggs_for_breakfast_and_b_akes_m_uff_ins_with__4_eggs_._\n_So_,_she_s_ells__1_6_-__3_-__4_=_<<_1_6_-_3_-
4=_9_>>_9_eggs_at_the_far_mers_'_market_._\n_She_s_ells__9_eggs_at_$_2_per_egg_,_so_she_makes_$_2_x__9_=_$_<<_2_*_9_=_
1_8_>>_1_8_per_day_at_the_far_mers_'_market_._\n_####__1_8_\n_\n

𝒀𝒇𝒖𝒍𝒍_𝟖𝟎

𝛼 = 0.9999
𝒀𝟐

<s>_Jan_et_e_ats__3_eggs_and_b_akes__4_eggs_,_so_she_s_ells__1_6_-__3_-__4_=_<<_1_6_-_3_-_4_=_9_>>_9_eggs_._\n_She_s_ells
__9_eggs_for_$_2_each_,_so_she_makes_$_2_*__9_=_<<_2_*_9_=_1_8_>>_1_8_dollars_._\n_####__1_8_\n_\n

𝛼 = 0.999
	𝒀𝟏

79 layers 78 layers 77 layers 76 layers 75 layers80 layerscolor mapping:

Standard

<s>_Jan_et_s_ells__1_6_-__3_-__4_=_<<_1_6_-_3_-_4_=_9_>>_9_du_ck_eggs_a_day_._\n_She_makes__9_*__2_=_$_<<_9_*_2_=_1_8_
>>_1_8_every_day_at_the_far_mer_’_s_market_._\n_####__1_8

Figure 7: Example output comparison in GSM8K: Hugging Face implementation vs. D3 outputs under different
decay rate α by our design power law decay function

⌊
L× (αi)

⌋
. Tokens of different colors correspond to the

number of computational layers used for each token Ti. When the decay rate is relatively small, the computation
decreases rapidly, as seen in the output of Y1. Conversely, for Y2, the computation decreases more slowly.

load. Therefore, to accurately assess the practical
acceleration benefits of our approach, we integrated
D3 into the lm-harness evaluation framework and
conducted end-to-end speed measurements for the
entire GSM8K task within the framework, compar-
ing it with the HF implementation. For the LLama
7B and 13B versions, we utilized 2xV100 GPUs
with 32GB memory, setting the batch size to 4. As
for the 70B model, we employed 8xA100 GPUs
with 40GB memory, setting the batch size to 8.
All three models were subjected to data parallelism
during inference. The results are presented in Table
7, indicating that our method achieves significant
acceleration in real-world scenarios, with this ad-
vantage becoming more pronounced as the batch
size increases.

4.3 Factor Study

We investigate the impact of Flex Layer start po-
sition and decay rate on performance and conduct
case studies on output samples for different decay
rates.

Exploration of decay rate and flex Layer im-
pact. Firstly, we examine the effect of decay rate
α and Flex Layer start depth on performance on
GSM8K, as shown in Figure 6. We draw the fol-
lowing conclusions: (i) At the same decay rate, it is
more appropriate to start the decay from the middle
of the model for models of various sizes. This ex-
perimental conclusion confirms our hypothesis in
Section 3.3 that LLMs have Core and Flex Layers.
The Core Layer generally represents the layers at
the beginning and end, while the Flex Layer rep-
resents the middle layers, where redundant layers
exist and can be skipped to improve inference ef-
ficiency. (ii) Additionally, the results presented in

the Appendix Table 9 for BBH exhibit a similar
trend, with optimal hyperparameters differing from
those for GSM8K. In this appendix, we provide
the detailed numerical results for the BBH bench-
mark, as shown in Table 8. Table 9 presents the
description and search range for each parameter
during the hyperparameter tuning process. Table
10 demonstrates the successful transfer of optimal
parameters, identified using 10% of the validation
set, from smaller models to larger-scale models.

This observation suggests that α and start are
task-specific parameters. We hypothesize that this
is due to the BBH task having a much shorter out-
put length compared to GSM8K, which necessi-
tates a faster decay rate (i.e., a smaller decay coef-
ficient) for optimal performance.

Example Output: optimizing model capacity al-
location by token position. Figure 7 illustrates
two example outputs from D3 for mathematical rea-
soning responses on the GSM8K dataset, compared
to the outputs of the full model (Llama70B with
80 layers) implemented by Huggingface. Black
tokens indicate passage through all layers, while
other colors represent the number of layers each
token has traversed, as computed under different
decay coefficients.

5 Conclusion

This work introduces a token-position wise layer
skipping framework called D3 which saves 1.5x
times operations efficiently while maintaining com-
petitive performance. Through analysis of the
missing states and input-output flow, we design
a training-free algorithm using the power law de-
cay function to decide how many layers to keep
per generated token. Experimental results on main-

2997

stream LLMs, demonstrate D3 significantly im-
proves speed (average 1.5x) compared to Hugging-
Face implementation on GSM8K and BBH bench-
marks, while keeping performance barely no drop.
Additionally, D3 can complement other model ac-
celeration techniques, such as batch processing
and KV caching, potentially enhancing inference
efficiency. We argue that D3 establishes a new
paradigm for efficient inference alongside existing
effective methods.

6 Limitation

This work approaches LLM behavior from a global
perspective, analyzing per-token perplexity (PPL)
dynamics. However, it may overlook the impact
of certain special tokens, which could introduce
nuances that are not fully captured in the proposed
framework.

Acknowledgments

This work is supported by the National Science and
Technology Major Project (No. 2022ZD0116314),
the National Science Foundation of China (No.
62106249).

References
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury

Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and
Venkatesh Saligrama. 2017. Adaptive neural net-
works for efficient inference. In International Confer-
ence on Machine Learning, pages 527–536. PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irv-
ing, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. 2023. Accelerating large language

model decoding with speculative sampling. CoRR,
abs/2302.01318.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James R. Glass, and Pengcheng He. 2024. Dola:
Decoding by contrasting layers improves factuality in
large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Luciano Del Corro, Allison Del Giorno, Sahaj Agar-
wal, Bin Yu, Ahmed Hassan Awadallah, and Sub-
habrata Mukherjee. 2024. Skipdecode: Autoregres-
sive skip decoding with batching and caching for
efficient LLM inference.

Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish
Vaswani, and Yi Tay. 2021. The efficiency misnomer.
arXiv preprint arXiv:2110.12894.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2019. Depth-adaptive transformer. arXiv
preprint arXiv:1910.10073.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, et al. 2024. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv
preprint arXiv:2404.16710.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Lau-
rens Van Der Maaten, and Kilian Q Weinberger. 2017.
Multi-scale dense networks for resource efficient im-
age classification. arXiv preprint arXiv:1703.09844.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834.

2998

https://openreview.net/forum?id=bcHty5VvkQ
https://openreview.net/forum?id=bcHty5VvkQ
https://openreview.net/forum?id=bcHty5VvkQ
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Jun Kong, Jin Wang, Liang-Chih Yu, and Xuejie Zhang.
2022. Accelerating inference for pretrained language
models by unified multi-perspective early exiting. In
Proceedings of the 29th International Conference on
Computational Linguistics, pages 4677–4686.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 19274–19286.
PMLR.

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li,
Jie Zhou, and Xu Sun. 2020. Cascadebert: Acceler-
ating inference of pre-trained language models via
calibrated complete models cascade. arXiv preprint
arXiv:2012.14682.

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan,
Xipeng Qiu, and Xuanjing Huang. 2021. Accelerat-
ing bert inference for sequence labeling via early-exit.
arXiv preprint arXiv:2105.13878.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. arXiv
preprint arXiv:2004.02178.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137–22176. PMLR.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. CoRR,
abs/2403.03853.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. 2021. Efficient large-scale
language model training on GPU clusters using
megatron-lm. In International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2021, St. Louis, Missouri, USA, Novem-
ber 14-19, 2021, page 58. ACM.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. Ad-
vances in Neural Information Processing Systems,
35:17456–17472.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. Sleb:
Streamlining llms through redundancy verification
and elimination of transformer blocks. arXiv preprint
arXiv:2402.09025.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016
23rd international conference on pattern recognition
(ICPR), pages 2464–2469. IEEE.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron
Mueller, Byron C. Wallace, and David Bau. 2024.
Function vectors in large language models. In Pro-
ceedings of the 2024 International Conference on
Learning Representations.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and
Chitta Baral. 2023. Accelerating llama inference by
enabling intermediate layer decoding via instruction
tuning with lite. arXiv e-prints, pages arXiv–2310.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. 2018. Skipnet: Learning dy-
namic routing in convolutional networks. In Proceed-
ings of the European Conference on Computer Vision
(ECCV), pages 409–424.

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco:
Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

Dewen Zeng, Nan Du, Tao Wang, Yuanzhong Xu, Tao
Lei, Zhifeng Chen, and Claire Cui. 2023. Learn-
ing to skip for language modeling. arXiv preprint
arXiv:2311.15436.

2999

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209

Jianyi Zhang, Da-Cheng Juan, Cyrus Rashtchian, Chun-
Sung Ferng, Heinrich Jiang, and Yiran Chen. 2024.
Sled: Self logits evolution decoding for improving
factuality in large language models. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems (NeurIPS 2024.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023. Draft
& verify: Lossless large language model accelera-
tion via self-speculative decoding. arXiv preprint
arXiv:2309.08168.

3000

https://arxiv.org/abs/2411.02433
https://arxiv.org/abs/2411.02433

Tasks 7B D3-7B 13B D3-13B 70B D3-70B

boolean expressions 68.40 68.40 72.80 72.80 82.00 82.00
causal judgement 50.27 50.27 54.55 54.55 62.57 62.57
date understanding 36.80 37.60 ↑ (0.8) 51.20 51.60 ↑ (0.4) 61.60 61.60
disambiguation qa 53.60 49.20 ↓ (4.4) 32.80 36.40 ↑ (3.6) 57.20 58.00 ↑ (0.8)
dyck languages 8.00 19.60 ↑ (11.6) 6.00 7.60 ↓ (1.6) 20.00 22.80 ↑ (2.8)
formal fallacies 43.60 43.60 52.40 52.40 52.00 51.60 ↓ (0.4)
geometric shapes 9.20 9.60 ↑ (0.4) 31.60 34.00 ↑ (2.4) 47.60 46.80 ↓ (0.8)
hyperbaton 48.40 48.40 61.20 61.20 74.00 72.80 ↓ (1.2)
logical deduction (5 objects) 25.60 24.00 ↓ (1.6) 21.20 25.60 ↑ (4.4) 35.20 36.00 ↑ (0.8)
logical deduction (7 objects) 14.80 15.20 ↑ (0.4) 18.40 24.00 ↑ (5.6) 42.00 41.20 ↓ (0.8)
logical deduction (2 objects) 32.40 36.00 ↑ (3.6) 39.60 41.60 ↑ (2) 59.20 63.60 ↑ (4.4)
movie recommendation 38.40 41.60 ↑ (3.2) 74.40 76.00 ↑ (1.6) 92.00 92.80 ↑ (0.8)
multistep arithmetic two 0.40 0.80 ↑ (0.4) 1.20 1.20 1.20 1.60 ↑ (0.4)
navigate 41.60 41.60 59.20 59.20 59.60 58.80 ↓ (0.8)
object counting 35.60 28.80 ↓ (6.8) 50.00 48.40 ↓ (1.6) 51.60 53.20 ↑ (1.6)
penguins in a table 24.66 27.40 ↑ (2.74) 29.45 30.14 ↑ (0.69) 39.04 41.10 ↑ (2.06)
reasoning about colored objects 21.60 21.20 ↓ (0.4) 27.20 26.80 ↓ (0.4) 45.60 49.20 ↑ (3.6)
ruin names 26.40 27.60 ↑ (1.2) 40.00 43.60 ↑ (3.6) 82.80 84.80 ↑ (2)
salient translation error detection 23.60 22.00 ↓ (1.6) 35.20 34.00 ↓ (1.2) 50.40 50.40
snarks 46.63 48.88 ↑ (2.25) 52.81 53.37 ↑ (0.56) 80.34 80.90 ↑ (0.56)
word sorting 12.00 20.00 ↑ (10) 16.00 31.60 ↑ (15.6) 32.40 27.20 ↓ (5.2)
sports understanding 66.40 66.40 64.80 64.80 80.40 80.40
temporal sequences 7.60 10.00 ↑ (2.4) 18.80 12.00 ↓ (6.8) 62.40 66.80 ↑ (4.4)
tracking shuffled objects (5 objects) 15.60 16.8 ↑ (1.2) 17.20 16.40 ↓ (0.8) 16.40 15.60 ↓ (0.8)
tracking shuffled objects (7 objects) 16.80 11.60 ↓ (5.2) 12.80 14.80 ↑ (2) 14.00 15.60 ↑ (1.6)
tracking shuffled objects (2 objects) 33.20 33.20 32.00 33.20 ↑ (1.2) 30.40 29.20 ↓ (1.2)
web of lies 48.80 48.80 52.00 52.00 48.80 48.80

Avg. 27 Tasks 31.22 31.88 ↑ (0.66) 37.77 39.07 ↑ (1.3) 50.90 51.42 ↑ (0.52)

Table 8: Detailed Performance comparison for BBH 27 tasks between HuggingFace Implementation and D3

Ti Drop Layer set HP Grid Search Space Description

{l |start< l <start+L −
⌊
L × (αi)

⌋
}

start [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] Drop layer start position
α [0.999, 0.9999] Decay rate

Table 9: Details of the computation layer ID set used for generating token Ti at time step i, along with the search
range and descriptions for the formula’s hyperparameters.

α
start

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Val Test Val Test Val Test Val Test Val Test Val Test Val Test

Llama 7b Dense Implementation of Validation and Test Results: 11.76, 10.61
0.999 6.68 7.42 5.61 4.85 3.34 3.63 4.41 5.00 5.35 5.46 6.68 6.22 6.68 8.34
0.9999 11.63 10.46 9.36 8.49 8.16 6.44 8.02 7.66 7.62 8.42 10.69 9.70 11.36 12.05
Llama 13b Dense Implementation of Validation and Test Results: 23.32, 22.67
0.999 12.70 13.19 8.42 9.02 3.88 4.70 9.36 9.40 14.71 13.04 16.58 16.30 16.44 16.30
0.9999 21.52 20.55 18.72 19.94 10.30 9.33 19.65 18.04 22.72 21.53 24.60 23.43 23.54 22.44

Table 10: Hyperparameter Search Results: Performance for Different start and α Values, Including Validation (10%
of train set) and Test Results. The results indicate that minor searches in validation parameters are effective on
test performance, showing consistent sensitivity trends. Due to space constraints, only the GSM8k results are
shown; similar results apply to the BBH task. We highlighted the best parameter combinations in Table 1, noting
that a broader search could yield even better results.

3001

