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Abstract

Research shows that two evaluation experi-
ments reporting results for the same quality
criterion name (e.g. Fluency) do not necessar-
ily evaluate the same aspect of quality. Not
knowing when two evaluations are comparable
in this sense means we currently lack the ability
to draw conclusions based on multiple indepen-
dently conducted evaluations. It is hard to see
how this issue can be fully addressed other than
by the creation of a standard set of quality crite-
rion names and definitions that the evaluations
in use in NLP can be grounded in. Taking a de-
scriptivist approach, the QCET Quality Criteria
for Evaluation Taxonomy derives a standard set
of 114 quality criterion names and definitions
from three surveys of a combined total of 933
evaluation experiments in NLP, and structures
them into a reference taxonomy. We present
QCET and its uses in (i) establishing compara-
bility of existing evaluations, (ii) guiding the
design of new evaluations, and (iii) assessing
regulation compliance.

1 Introduction

Natural Language Processing (NLP) uses a wide va-
riety of different names to refer to what is assessed
in system evaluations, estimated to number over
200 for text-generating systems alone (Howcroft
et al., 2020). Details of evaluations and defini-
tions of what they assess are mostly patchy (Belz
et al., 2023a,b; Ruan et al., 2024; Schmidtova et al.,
2024), and it is often impossible to tell if the same
aspect of quality was assessed in two evaluations,
resulting in unclear comparability and low repeata-
bility (Cohen et al., 2018). Consider the following
evaluations which use the same name, Fluency, but
each with a different definition:

1. Yu et al. (2020): “judging the question fluency.”
2. Van de Cruys (2020): “grammatical and syntactically

well-formed.”
3. Pan et al. (2020): “follows the grammar and accords

with the correct logic.”

The first two evaluations assess single but different
criteria (utterances can be grammatical but not very
fluent), the third assesses two (an utterance can be
grammatical yet illogical), so none of them assess
the same aspect of quality. It is common for what
was actually evaluated to be at odds with the name
(or even definition) given in papers (Howcroft et al.,
2020), e.g. the second evaluation above claims to
be evaluating Fluency, but actually evaluates Gram-
maticality. In this situation, not only is it mislead-
ing to report, say, that a system improves Fluency,
but any comparisons with other Fluency assess-
ments are also unsafe.

As has been argued (van der Lee et al., 2019;
Howcroft et al., 2020; Belz et al., 2020; van der
Lee et al., 2021; Gehrmann et al., 2023), this is
problematic, in particular for human evaluation
which has always been considered the Litmus test
of quality in NLP. It is hard to see how the cur-
rent misalignments between (i) what is actually
evaluated vs. what it is named, and (ii) what differ-
ent researchers mean by the same quality criterion
name, can be addressed other than by a standard
reference set of criterion names and definitions that
those actually in use can be grounded in. Deriving
such a resource from reported evaluations has been
our aim in the work reported here, resulting in the
QCET Quality Criteria for Evaluation Taxonomy,
consisting of the following resources (browser at
https://nlp-qcet.github.io/; other items at
https://github.com/DCU-NLG/qcet_code):

1. An interactive taxonomy browser;
2. Extended description and usage guidance;
3. At-a-glance diagram of taxonomy (see also in Figure 3).

2 Standardising Quality Criteria

QCET is based on the notion of quality criterion
(QC), i.e. the specific aspect of system quality that
is assessed in an evaluation, and the level at which
we would expect two (well-designed) evaluations
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Figure 1: High-level view of QCET taxonomy structure with example leaf nodes (total leaf nodes at same branch).

(that assess the same QC) to support the same con-
clusions about which of two systems is better.

Consider these descriptions of two evaluations:
“[...] eight users were given flight reservation tasks that
required them to access the airline schedule [...]. The
system logged the total completion time of a dialogue
(Total Completion Time) [...].” (Qu and Green, 2002)

“[we] compare [search] task completion times for two
search algorithms [...] we had a number of paid partici-
pants describe a difficult [search] task which they had
recently attempted. [...] Once 100 tasks were obtained
in this manner, a separate group of 200 paid participants
[acted] as users to attempt these tasks. [...] The resulting
task times [...]” (Xu and Mease, 2009)

There are considerable differences between the
two evaluation experiments: 1 system, 8 users in
Q&G vs. 2 systems, 200 users in X&M; researcher-
composed narrow tasks in Q&G vs. user-generated
open tasks in X&M, etc. However, none of these
differences change the answer to the question:

Q: What does this evaluation consider a better
system to be?

In the above evaluations, a better system is not one
that is found to be better in an experiment with 8
users that access an airline schedule database to
book a specific flight while talking to the system
and take less time to do it. User numbers, inter-
action mode, location of information, etc., are not
part of the aspect of system quality assessed, but
of experiment design or system implementation.

Instead, once we disregard such factors, we are left
with the following answer to the above question:

A: A better system is one that enables the user to
complete a given task more quickly.

At this level we can see that both evaluations above
assess the same aspect of quality. We would expect
two well-designed evaluations that assess the same
pair of systems in terms of this aspect of quality,
using the same task and data, to come to the same
conclusion about which is better.1

The above process is in fact how we derive stan-
dard QC definitions from three surveys of NLP
evaluations. The first (Howcroft et al., 2020) pro-
posed 71 standardised QCs for human evaluation
of text-generating systems which we reviewed and
revised for inclusion in QCET. We conducted two
new surveys (Belz et al., to appear) of 60 papers
each, published in 2022–2024 in ACL main pro-
ceedings. Here our scope was all of NLP, not just
NLG as was the case in the 20Years survey. We
identified altogether 455 individual occurrences of
QCs, among which were 19 new ones which we
added to the taxonomy. Based on the three surveys
we ended up with 114 QCs for QCET.

For QC names, we follow the convention that we
name QCs after the ‘good end’ of the correspond-

1Or more precisely, we would expect a majority of evalu-
ations of this type to come to the same conclusion (because
each is associated with some probability of a wrong result).
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ing quality spectrum, or both ends where there isn’t
one (see Section 3), also aiming to closely reflect
the definition. E.g. the QC assessed in the above
evaluations is Task Completion Speed.

As a taxonomy of quality criteria, QCET is ag-
nostic about, and therefore covers equally, auto-
matic and human evaluations, all types of NLP
systems and output modalities (speech, structured
representations, labels, data), with the exception
of certain individual terminal nodes (e.g. Spelling
Accuracy is defined only for textual output).

3 Taxonomy Structure and QC Nodes

Figure 1 provides a high-level view of the struc-
ture of the QCET taxonomy. The second, third and
fourth levels (after the root) correspond to the main
three branching factors frame of reference (Sec-
tion 3.2), type of quality (Section 3.3), and aspect
of quality (Section 3.4). Below these in the actual
taxonomy are levels of specific quality criteria (for
space reasons not shown in the figure, except for
single, abbreviated examples), mostly at the one
terminal-node level shown in the figure. However,
in a small number of cases there are more specific
QCs sitting on two further levels. We start below
with conventions for node IDs and content, before
describing each of the three branching factors.

3.1 Node IDs and content

In the taxonomy, in addition to the QC names
shown in Figure 1, each node also has (i) the QC
definition, (ii) attestations in the literature, (iii) ex-
planatory notes, and (iv) example questions to put
to evaluators for the example evaluation modes ab-
solute and relative (Belz et al., 2020). We have
included the full list of QCs, with i–iii above in the
appendix (Section C).

Each node has a unique ID which traces its path
from the root via the first letters in the intervening
node labels. E.g. Grammaticality (top right in Fig-
ure 1) has the ID QOC-f-1 (Quality, Output in its
own right, Correctness, f orm only, leaf node 1).

In the remainder of the paper, we use node ID
plus node name to refer to QCs. These can be quite
long, so we use light grey highlight to indicate the
span of the node ID/name, as in [QOC-f-1] Gram-
maticality. Note that all nodes represent a subclass
and most also a QC. Some nodes only function as
subclasses and not as QCs in their own right, e.g.
the internal nodes in the Features subclass. IDs for
such nodes are marked with an asterisk.

3.2 Frame-of-Reference Branches

The root node corresponds to the single most gen-
eral QC class, Quality of outputs. The next tax-
onomic level relates to the Frame of Reference
that is used in an evaluation. For example, in or-
der to assess Fluency with human raters, we don’t
need to look at anything other than a sample of
system outputs; to assess Meaning Preservation e.g.
in paraphrasing, we need to look only at a sample
of system inputs and outputs; to assess BLEU, we
only need a sample of outputs and corresponding
target outputs; and in order to assess Task Com-
pletion Speed by users of the system, we need to
get users to interact with the system and complete
a specified task (here, users and use context form
part of a system-external frame of reference that
the QC is defined relative to).

Figure 2a provides a diagrammatic overview
of these possible inputs to evaluation methods,
divided into external frames of reference in the
dashed box, and the system, and samples of in-
puts, outputs and target outputs at the bottom left.
By looking at which of these a given evaluation
method uses, we can tell which of the frame-of-
reference branches of the taxonomy the QC being
evaluated in the evaluation method belongs to:

1. Output in its own right: QCs that are defined relative
to just the output (capture the quality of the output in its
own right); an evaluation method of this type uses only
the system outputs, as in e.g. Human Fluency Ratings.

2. Output relative to input: QCs that are defined relative
to both and only the output and the input (capture the
quality of the output relative to the input and nothing
else); an evaluation method of this type uses only the
system inputs and outputs, as in e.g. Meaning Preserva-
tion Ratings in Figure 2.

3. Output relative to in-distribution target outputs (+/-
input): QCs that are defined relative to target outputs
sampled from the same distribution as the training data,
and optionally also to the input (capture the quality of
the output relative to given target outputs, optionally
also taking the input into account). E.g. BLEU in Fig-
ure 2 uses (just) system outputs and target outputs.

4. Output relative to a system-external frame of refer-
ence (FoR) (+/- input): QCs that are defined relative
to a system-external FoR, and optionally also the input
(capture the quality of the output relative to an external
frame of reference, optionally also taking the output
and/or input into account). An evaluation method of this
type uses an explicit external FoR, as is the case when
measuring time taken for task completion (here the FoR
is user interaction with the system), see Figure 2.

3.3 Type-of-Quality Branches
The next taxonomic level captures the type of qual-
ity that a QC relates to (Belz et al., 2020). Cor-
rectness and Goodness QCs align with (i) what
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(a) Possible inputs to evaluation methods. (b) Four example evaluation methods and their inputs.

Figure 2: The different frames of reference, system-external and internal that are typically used, in different
combinations, in evaluation methods (a); and example evaluation methods and the frames of reference they use (b).

we train systems to be good at, and/or (ii) common-
sense notions of desirable properties in NLP sys-
tems. E.g. [QEG-w-6] User Satisfaction as Af-
fected by Outputs and [QIC-w-1] Translation Ac-
curacy: it is hard to conceive of circumstances
under which we would want to consider a system
better if it has lower user satisfaction or lower trans-
lation accuracy. Another way to look at it is that
there is a preferred end to the scale independently
of evaluation context.

This is not the case for the Features subclass
where either end of the scale can be the preferred
end depending on evaluation context. E.g. in the
case of [QOF-w-3] Complexity/Non-complexity
(outputs as a whole), sometimes better systems are
those with simpler outputs (e.g. text simplification;
Angrosh and Siddharthan, 2014), and sometimes
those with less simple outputs (e.g. story genera-
tion; Purdy et al., 2018). Or, alternatively, neither
end of the scale is better, and a better system is
one that is better at generating texts at target levels
of simplicity/complexity (graph summarisation at
different reading levels; e.g. Moraes et al., 2016).

In more general terms:

1. Correctness QCs are based on (a finite set of) countable
errors (e.g. spelling errors in [QOC-f-2] Spelling Ac-
curacy). This makes it possible to state formally and
precisely the conditions under which an output is of
maximal quality, namely when it is free of errors.

2. For Goodness QCs, the conditions under which an out-
put is of maximal quality cannot normally be stated
generally. Goodness QCs are not primarily based on
countable errors, typically taking multiple factors into
account without distinguishing them. E.g. in [QOG-w-
4] Humanlikeness, many different factors play into what
makes an output more human-like.

3. Features: For a feature-type QC +X/-X, outputs are not
generally better either if they are more +X, or if they are
more -X. Depending on evaluation context, either more

+X may be better, or more -X may be better, worse,
or neither is associated with a notion of better/worse.
E.g. in the case of [QEF-w-3] Effect on User Emotion,
a better system produces outputs that affect the user’s
emotions (a) more, (b) less, or (c) as specified in the
input, in terms of a given range of possible emotions.

3.4 Aspect-of-Quality Branches
The third taxonomic level captures which aspect of
an output is being assessed:

1. Form: The form of outputs (in contrast to its content)
is assessed, e.g. [QOC-f-1] Grammaticality: a sentence
can be grammatical yet wrong or nonsensical in content.

2. Content: The content/meaning of outputs alone is as-
sessed, e.g. [QIC-c-4] Coverage of Topics (given in
input) – two sentences can have the same meaning, but
differ in form.

3. Outputs as a whole: Outputs are assessed without dis-
tinguishing between form and content. E.g. [QOG-c-3]
Coherence is a property of outputs as a whole, either
form or meaning can detract from it.

Except for a few edge cases, we have found it
straightforward to distinguish Form QCs from
Content QCs. The former refers to how some-
thing is said, whereas the latter refers to what is
said. Style, level of formality, choice between near-
synonyms, syntax, word order, typography, etc. are
part of Form. Sentiment, topic, factual truth, en-
tailment, consistency, coherence, etc. are part of
Content. However, when comparing the meaning
of two representations (input, output, reference),
the line between Form and Content has to be drawn
explicitly. In the case of metrics, the algorithmic
definition draws the line, while in human evalua-
tion evaluators need to be instructed at what level
of granularity to assess sameness of meaning.

4 Using QCET
Below we discuss three envisaged use cases for
QCET, with illustrative examples. For fully worked
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examples, please see the extended version of this
paper at https://github.com/DCU-NLG/qcet_
code.

Identifying the QC in an existing experiment
and mapping it to the right QCET node: The
first step is to locate all resources shared about a
given experiment, then to identify (i) QC name, (ii)
QC definition and (iii) the question and/or instruc-
tions put to evaluators. In many cases, i–iii are not
completely aligned in which case iii takes priority
as expressing what was actually evaluated.

A complicating factor is that in the effort of ex-
plaining one QC, researchers often introduce terms
associated with other QCs, e.g. in the second Flu-
ency definition at the start of the paper, Fluency is
explained (only) in terms of grammaticality which
introduces another QC. To identify the correct QC
node, the taxonomy is perused top down, armed
with the information in i–iii above, until the correct
node is reached that corresponds to the specific in-
dividual quality criterion being assessed (possibly
multiple QCs).

Selecting quality criteria for a new evaluation:
A good starting point for evaluation in system de-
velopment (in both academic and industry contexts)
is the following question: suppose we have two
candidate systems, how do we know which one pro-
duces better outputs? A useful answer is unlikely
to be the one with the higher BLEU score, because
that just means its outputs are more similar to the
given sample of target outputs. Instead, the answer
is likely involve multiple dimensions of quality.

Taking accommodation highlights generation in
an accommodation booking context as an exam-
ple (Kamath et al., 2024), a company developing
such a system might conceivably decide that the
better accommodation description summariser of
two candidate systems would produce summaries
that have better quality of language, cover the main
selling points, contain fewer mistakes or misrepre-
sentations, while also being closer to some given
target length range. These broad dimensions each
correspond to one or more specific QCET branches,
but can each be covered by multiple QCET nodes
within those branches (except for output length).

Kamath et al. went for [QOC-w-1] Grammati-
cality for the first aspect; a combination of [QOG-
c-2] Informativeness and [QOG-w-5.1] Clarity for
the second; [QIC-c-2] Absence of Additions (rela-
tive to input) and [QIC-c-3] Consistency with In-
put for the third; and controlled the fourth without

assessing it as part of the reported evaluation.

AI regulation compliance assessment: AI regu-
lation is under active development in several coun-
tries, and implemented in some, with interpretation
and application in practice is underway. E.g. the
EU’s AI Act2 came into force on 1 August 2024,
with provisions coming into operation within 6 to
36 months. The Act requires high-impact general-
purpose AI models that might pose systemic risk,
such as GPT-4 to undergo thorough evaluations un-
der transparency and accuracy requirements. What
such evaluations will consist of, and what type of
evaluations must be carried out, is currently not
clear. The European Commission has requested
standards to be developed by ISO/IEC that can be
used to assess and enforce compliance with the pro-
visions of the AI Act, and these include assessment
for different aspects of overall system ‘accuracy.’3

The standard used by oversight bodies could
directly incorporate standardised QCET QCs in
which case assessment boils down to applying the
above steps for identifying QCs to the evaluations
carried out by the developer, then comparing the
resulting QCET QCs with those identified in the
standard. Note this is also the approach that would
be used by a deployer of technology developed
by a third party to ensure they are compliant with
regulations in using the technology. The developer
would use the same standard to identify the QCs
that need to be covered (possibly among others) by
their evaluations, otherwise following the steps for
selecting QCs above.

5 Conclusion

We have presented QCET, a taxonomy of 114 stan-
dard quality criteria complete with definitions and
attestations from the literature, derived from a com-
bined total of 933 existing NLP evaluation exper-
iments. QCET is designed to support (i) assess-
ments of the comparability of existing evaluations,
(ii) guiding the design of new evaluations that are
comparable by design, and (iii) assessment of reg-
ulation compliance. Rather than attempting to
achieve complete coverage of QCs currently in use,
QCET is designed to be extensible by adding new
QCs to the appropriate branches of the taxonomy.

2https://www.europarl.europa.eu/
topics/en/article/20230601STO93804/
eu-ai-act-first-regulation-on-artificial-intelligence

3ISO/IEC AWI 23282 Artificial Intelligence: Evaluation
methods for accurate natural language processing systems:
https://www.iso.org/standard/87387.html
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Ethical Considerations and Risks

The main components in the research presented are
(i) systematic surveys of peer-reviewed NLP pa-
pers, and (ii) construction of a resource taxonomis-
ing the quality criteria assessed in evaluations in
the papers. As such, the ethical implications and
risks associated with the work is minimal. How-
ever, we have vetted the evaluation methods and
quality criteria asses in them for appropriateness.
We would have excluded any inappropriate evalu-
ation methods and quality criteria, had we found
any.

Limitations

A limitation of the work is the time window and
the sampling method via which we obtained the
set papers we analysed in the systematic survey
described in Section A. It is likely that there are
evaluation methods and quality criteria in papers
outside of this sample that are not covered by our
taxonomy. We have addressed this limitation by
making the taxonomy arbitrarily expandable as and
when new evaluation methods and quality criteria
come to light that are not yet covered.
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After i and ii, we searched for exact attestations
in the literature for each QC, i.e. where exactly
the QC had been assessed in an evaluation method,
retaining only those for which we found at least
one attestation.

We then conducted the two surveys described
next, where we found just 19 unique new QCs
in the 455 evaluation experiments analysed; these
were then added to the QCET taxonomy. This
serves as an indication that QCET has reasonably
good coverage.

New surveys
To better cover automatic metrics and non-text gen-
erating NLP systems in QCET, we carried out two
additional surveys for this paper of 2×60 randomly
selected NLP papers published in ACL main pro-
ceedings over the last three years (2022–2024), col-
lecting provided information for the following prop-
erties (in addition to bibliographic information) for
every evaluation method found in the paper:

1. Metric vs. human evaluation, or ‘none found’

2. Location in paper or elsewhere of evidence

3. Verbatim QC name in paper, or ‘none given‘

4. Verbatim QC definition (or closest thing to it)
in paper

5. QCET node a QC belongs to, or ‘not found’

If QCET did not already cover the QC, we created a
new QC node for it. Nearly all new QC names and
definitions were derived from evaluation methods
using automatic metrics. In this way, we increased
the total number of QC terminal nodes in QCET to
114.

B Diagrammatic View of QCET
Taxonomy

Figure 3 shows the whole of the QCET taxonomy
in diagrammatic overview, displaying node IDs and
QC names only.

C List of Quality Criteria with
Definitions and Notes

C.1 QCs that define quality in terms of
outputs only

Figure 3 shows a simplified view of the Quality of
outputs in their own right branch of the QCET
Taxonomy (only node IDs and Names are shown
for each node). The top three levels were explained

in the paper; below we list each QC and definition,
with some additional explanatory notes in some
cases, grouped according to subtrees (see Figure 3).

C.1.1 Correctness

Form

[QOC-f-1] Grammaticality: A better system pro-
duces texts with fewer grammatical errors.

Example: Humphreys et al. (2001) informally eval-
uate 200 outputs manually for Grammaticality re-
porting 4% of outputs with grammatical errors for
their combined parser/generator.

Notes: [QOC-f-1] is Grammaticality as judged by
native speakers, i.e. it’s a human-assessable only
QC. Cf. [QIC-f-1] Matching Syntactic Structure
(given in input), and [QEC-f-2] Adherence to Syn-
tactic Rules which can be assessed either with met-
rics or humans.

[QOC-f-2] Spelling Accuracy: A better system
produces texts with fewer spelling errors.

Example: Farrús Cabeceran et al. (2010) manu-
ally compare Google Translate and the language-
pair specific N-II system, e.g. reporting 169 ortho-
graphic errors in 711 Spanish-Catalan translations
for Google compared to 62 for N-II.

Notes: –

[QOC-f-3] Pronunciation Accuracy: A better sys-
tem produces speech with fewer pronunciation er-
rors.

Example: Fong (2024) manually compare US and
Scottish speech code inputs for their text-to-speech
system, finding e.g. that the former lead to mispro-
nunciations in 15% of words, and the latter in 24%
(Table 7.1).

Notes: –

Content

[QOC-c-1] Semantic Correctness: A better system
produces outputs with fewer semantic errors.

Example: Lindberg et al. (2013) ask an education
specialist to assess questions generated by their
system in terms of semantic validity, finding e.g.
that 66% of them “made sense.”

Notes: Semantic correctness is about the output
being logically sound, but also obeying common-
sense knowledge about the real world and events
occurring in the right temporal order.
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Figure 3: Diagrammatic overview of the QCET taxonomy, showing node IDs and quality criterion (QCs) names
only. * = node is a class of QCs, but not a QC in its own right.
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Outputs as a whole

[QOC-w-1] Correctness of Outputs (outputs as a
whole): A better system produces outputs with
fewer overall errors.
Example: Rafatbakhsh et al. (2021) manually deter-
mine the proportion of acceptable multiple-choice
language learning items generated by their system;
the assessment involved checking that question and
answers matched, and that there were the right
number of answers.
Notes: Correctness of Outputs is often about
whether the output is of the correct type, e.g. in a
question generator, is the output a question, or if
an LLM is prompted for class labels, is the output
a class label. The notion of correctness often de-
rives simply from the system task (as in both these
examples).

C.1.2 Goodness

Form

[QOG-f-1] Nonredundancy (form): A better sys-
tem produces outputs with less redundancy in their
form.
Example: Wang et al. (2024a) assess outputs from
LLM-based MT with a ‘repetition ratio’ metric
defined as the percentage of translations that have
repetitions of substrings at the end.
Notes: Examples of redundancies of form in-
clude unnecessary repetitions of word or character
strings, and extraneous brackets in code or mathe-
matical expressions.

[QOG-f-2] Speech Quality: A better system pro-
duces speech that is of better quality.
Example: Hu and Loizou (2007) ask evaluators to
rate speech enhancement outputs in terms of the
level of distortion of the speech signal on a 5-point
scale ranging from "very natural, no degradation"
to "very unnatural, very degraded."
Notes: –

Content

[QOG-c-1] Nonredundancy (content/meaning): A
better system produces outputs with less redun-
dancy in their content/meaning.
Example: Di Fabbrizio et al. (2014) evaluate the
‘compactness’ of review summaries on a 5-point
scale via human evaluation on Amazon Mechanical
Turk, where a compact summary is one that “does
not repeat information.”

Notes: Examples of redundancies of con-
tent/meaning include the same meaning being ex-
pressed more than once in different ways, use
of full names when pronouns would suffice, and
overly explanatory details (e.g. They closed the
door behind them using the doorhandle which was
affixed to the door.).

[QOG-c-2] Informativeness: A better system pro-
duces outputs that are more informative.
Example: Green (2006) evaluates the outputs of
a discourse generator that produces lay-oriented
genetic counseling texts, by asking students to edit
the outputs to ensure their contents provide the
right level of information. The amount of editing
done is viewed as indicative of informativeness.
Notes: Informativeness can be about information
density and/or information sufficiency. E.g. a text
that conveys a lot of information concisely, without
using more words than necessary, is information
dense. A text that provides the right level of in-
formation for a given scenario provides sufficient
information.

[QOG-c-3] Coherence: A better system produces
outputs whose contents/meaning hang(s) together
better.
Example: In the 2005 DUC shared task on sum-
marisation (Dang, 2005), outputs are assessed
in terms of the degree to which they meet the
following statement: “The summary should be
well-structured and well-organized. The summary
should not just be a heap of related information,
but should build from sentence to sentence to a
coherent body of information about a topic.”
Notes: –

[QOG-c-3.1] Wellorderedness: A better system
produces outputs whose content/meaning is or-
dered better.
Example: In their content-planning enhanced ap-
proach to dialogue, Xu et al. (2021) evaluate con-
tent ordering by first manually segmenting a dia-
logue by topic, and then rating each segment 1 if
the ordering is appropriate, otherwise 0, and report-
ing the average.
Notes: [QOG-c-3.1] Wellorderedness captures
whether content is ordered in a way that makes
sense, e.g. that events are presented in the right
order, that related points are made in the right
place(s), etc. It is a necessary, but not sufficient,
condition for [QOG-c-3] Coherence.

[QOG-c-3.2] Cohesiveness: A better system pro-
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duces outputs whose content/meaning elements are
linked better.
Example: Eisenstadt and Elhadad (2020) compare
WebNLG outputs generated by (i) T5, and (ii) T5
plus a neural micro-planner, with the human tar-
get output texts in terms of the counts of cohesive
devices they contain, finding that texts generated
with a micro-planner are much more similar in this
respect to human-written texts.
Notes: [QOG-c-3.2] Cohesiveness is all about link-
age between content elements at every level of gran-
ularity, typically a property of text, it involves dis-
course connectives, anaphoric referencing, lexical
congruity, etc. It is a necessary, but not sufficient,
condition for [QOG-c-3] Coherence.
[QOG-c-4] Internal Consistency of Outputs: A bet-
ter system produces outputs that are more consis-
tent in their content/meaning.
Example: In their work on automatic alignment
of images and text snippets from different sources,
Chen et al. (2023) evaluate output image-text pairs
with the CLIPScore text-to-image similarity metric
that computes the cosine similarity between the
embeddings of the image and the text produced by
a multimodal model.

Outputs as a whole

[QOG-w-1] Nonredundancy (output as a whole):
A better system produces outputs with less overall
redundancy.
Example: In the 2005 DUC shared task on sum-
marisation (Dang, 2005), outputs are assessed in
terms of the degree to which they meet the follow-
ing statement: “There should be no unnecessary
repetition in the summary. Unnecessary repetition
might take the form of whole sentences that are
repeated, or repeated facts, or the repeated use of a
noun or noun phrase (e.g., ‘Bill Clinton’) when a
pronoun (‘he’) would suffice."
Notes: Nonredundancy of outputs as a whole cap-
tures redundancies of form and content both. The
explanation from DUC 2005 quoted in the attesta-
tion for this node provides a good explanation of
this QC.
[QOG-w-2] Readability: A better system produces
outputs that are more readable.
Example: Afsal and Kuppusamy (2024) compare
the readability of texts generated with the Gemini
LLM via different prompts with the Flesch Read-
ing Ease (FRE) and Flesch-Kincaid Grade Level
(FKGL) metrics.

Notes: Readability captures ‘reading ease’ in the
sense of text measures like Flesch and Flesch-
Kincaid which aim to capture ability to easily read
at different reading ages. Better readability is as-
sociated e.g. with more common words, shorter
words, shorter sentences, and simpler sentence
structure. Cf. [QOG-w-3] Fluency: very short sen-
tences with repetitive structure would score highly
on Readability, but not on Fluency.

[QOG-w-3] Fluency: A better system produces
outputs that are more fluent.
Example: Resendiz and Klinger (2025) evaluate
the fluency of affective text generation systems
via LLM-prompting with the following prompt:
“Assess the text’s fluency, assigning a score from 1
to 5, with 5 representing the highest level of fluency.
Do not give an explanation of the selection.”
Notes: Fluency captures how well text or speech
flows, being absorbed readily without bringing the
reader or listener up short, and without in the case
of speech, hesitations, filler, or overly long pauses.
For high fluency, language does not necessarily
need to be simple, cf. [QOG-w-2] Readability.

[QOG-w-4] Humanlikeness: A better system pro-
duces outputs that are more human-like.
Example: Cercas Curry et al. (2015) assess the
humanlikeness of navigation instructions by asking
evaluators to rate the extent to which an instruction
“could have been produced by a human” on a 4-
point scale.
Notes: –

[QOG-w-4.1] Native Speaker Likeness: A better
system produces speech or text that is more like
that of a native speaker.
Example: [QGO-f-2-1] Novikova et al. (2018) as-
sess system outputs e.g. by asking evaluators the
question: “Could the utterance have been produced
by a native speaker?”
Notes: –

[QOG-w-4.2] Non-AI Likeness: A better system
produces outputs that are less like those produced
by AI.
Example: Juraska et al. (2019) ask human judges
to assess model outputs in terms of “how much
one would expect to encounter [this] utterance in a
conversation with a human, as opposed to sounding
robotic’.’
Notes: –

[QOG-w-5] Understandability: A better system
produces outputs that are more understandable.
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Example: Hershenhouse et al. (2024) assess LLMs
in terms of their ability to communicate medical
information to the public by asking crowdworkers
to demonstrate their understanding of generated
texts through multiple-choice questions.
Notes: Understandability captures whether an out-
put can be understood and is commonly evaluated
in terms of whether it has been understood (via
comphrehension questions). Cf. sub-QC [QOG-
w-5.1] Clarity for which an output is assessed in
terms of the higher-threshold criterion whether it
can be easily understood.

[QOG-w-5.1] Clarity: A better system produces
outputs that are clearer.
Example: Clinciu et al. (2021) evaluate a system
that generates explanations of Bayesian network
graphs, e.g. in terms of clarity where evaluators
are asked to indicate “[h]ow clear the meaning of
an explanation is” on a 7-point scale, where 1 =
unclear and 7 = very clear.
Notes: –

[QOG-w-5.1.1] Speed of Understanding: A better
system produces outputs that are faster to under-
stand.
Example: Mohan (2021) assessed system explana-
tions in terms of the time it took people to select a
response when asked how well they understood the
explanations generated by the system.
Notes: –

C.1.3 Feature
Form

[QOF-f-1] Diversity/Non-diversity (form): A bet-
ter system produces outputs that are in their form
either (a) more diverse, or (b) less diverse.
Example: Chen et al. (2024) compare the average
type-token ratio (ATTR) of poems generated with
a range of models, finding e.g. that humans, poetry-
specific models and general models have broadly
similar ATTR scores.
Notes: Diversity of form captures the variedness of
the form of outputs either at the level of individual
outputs where those are longer than a sentence, or
at the level of a sample of outputs. Varied form
could be diverse sentence structures, format, or
speech patterns, etc.

[QOF-f-2] Poeticness/Non-poeticness (form): A
better system produces outputs that are in their
form either (a) more poetic, or (b) less poetic.
Example: Xie et al. (2017) manually compare four

LSTM variants in terms of the quality of rhyme and
metre, finding that gated and CNN-based LSTMs
perform better than word and character LSTMs.
Notes: (Non)poeticness of form captures the degree
to which outputs have the formal characteristics of
a poem, including alliteration, rhythm, rhyming
and specific syllable/metre patterns. For [QOF-
f-2], this is assessed without taking the input or
anything external to the system into account.

[QOF-f-3] Complexity/Non-complexity (form): A
better system produces outputs that are in their
form either (a) more complex, or (b) less complex.
Example: In their evaluation of a text simplification
system for Spanish, Saggion et al. (2015) measure
the syntactic complexity of a sentence as the maxi-
mum distance between root and leaf nodes in the
dependency tree of the sentence.
Notes: Complexity of form captures aspects of out-
put complexity irrespective of meaning, e.g. longer
word and sentence length, nested syntactic struc-
ture, and low frequency words can all be indicative
of higher complexity of form.

[QOF-f-4] Formality/Informality: A better system
produces outputs that are either (a) more formal, or
(b) less formal.
Example: Abu Sheikha and Inkpen (2011) asked
human annotators to label system outputs from
their template-based, formality-controlled text gen-
erator as either formal or informal.
Notes: (In)formality captures how relaxed the lan-
guage of outputs is: in a conversation with friends,
or on social media, language tends to be more infor-
mal, whereas in academic articles or legal contexts,
it tends to be much more formal.

[QOF-f-5] Output Length: A better system pro-
duces outputs that are either (a) longer, or (b)
shorter.
Example: Ghalandari et al. (2022) report the mean
length of the outputs from their unsupervised sen-
tence compression system.

Content

[QOF-c-1] Diversity/Non-diversity (con-
tent/meaning): A better system produces
outputs that are in their content/meaning either (a)
more diverse, or (b) less diverse.
Example: Chen et al. (2024) use mean cosine sim-
ilarity between SBERT embeddings to assess the
semantic diversity of generated poems, finding e.g.
that their German poems are on the whole substan-
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tially more diverse than the English ones.
Notes: (Non)diversity of content/meaning captures
the variedness of the content/meaning of outputs
either at the level of individual outputs where those
are longer than a sentence, or at the level of a sam-
ple of outputs. Varied content/meaning could be
diverse topics, information, or events, etc.
[QOF-c-2] Poeticness/Non-poeticness (con-
tent/meaning): A better system produces outputs
that are in their content/meaning either (a) more
poetic, or (b) less poetic.
Example: Wu et al. (2019) ask evaluators to as-
sess “whether some part of the poem is imaginative
and/or moving” in a 4-step assessment procedure
which is then mapped to a single score.
Notes: (Non)poeticness of form captures the degree
to which outputs have the semantic characteristics
of a poem, including metaphor, topic and narrative
structure. For [QOF-c-2], this is assessed without
taking the input or anything external to the system
into account.
[QOF-c-3] Complexity/Non-complexity (con-
tent/meaning): A better system produces outputs
that are in their content/meaning either (a) more
complex, or (b) less complex.
Example: Onoe et al. (2024) measure semantic
complexity as the number of nodes in the ‘scene
graph’ corresponding to an image description.

As part of the composite LLM Rater metric, Luo
et al. (2024) ask evaluators to assess the extent to
which a summary “avoid[s] the use of technical de-
tails that would be difficult for non-expert readers
to understand[, ... and] contains sufficient explana-
tions of any complex terms and abbreviations.”
Notes: Complexity of content/meaning captures
aspects of output complexity irrespective of form,
e.g. complex logical structure or technical details
can be indicative of higher semantic complexity.

Outputs as a whole

[QOF-w-1] Diversity/Non-diversity (outputs as a
whole): A better system produces outputs that are
either (a) more diverse, or (b) less diverse.
Example: Jin and Le (2016) ask evaluators to assess
the overall diversity of a set of questions generated
by a system from a given input text.

Li et al. (2015) assess the diversity of the re-
sponses produced by their conversational system
with the distinct-1 and distinct-2 metrics computed
as the number of distinct unigrams (bigrams) over
the total number of generated tokens.

Notes: (Non)diversity of outputs as a whole cap-
tures diversity of form and content both, either
at the level of individual outputs where those are
longer than a sentence, or at the level of a sample of
outputs. E.g. a diverse set of questions and answers
generated for a given text passage would have little
overlap in coverage of the text between them.

[QOF-w-2] Poeticness/Non-poeticness (outputs as
a whole): A better system produces outputs that
are either (a) more poetic, or (b) less poetic.
Example: Xie et al. (2017) ask evaluators to assess
the overall poeticness of generated poems, finding
e.g. that poems generated by more complex LSTMs
are perceived as more poetic than those generated
by simple LSTMs.
Notes: (Non)poeticness of outputs captures the de-
gree to which outputs have the characteristics of a
poem, including alliteration, rhythm, rhyming and
specific syllable/metre patterns, metaphor, topic
and narrative structure. For [QOF-w-2], this is as-
sessed without taking the input or anything external
to the system into account.

[QOF-w-3] Complexity/Non-complexity (outputs
as a whole): A better system produces outputs that
are either (a) more complex, or (b) less complex.
Example: Angrosh and Siddharthan (2014) com-
pare their rule-based simplification system (which
combines handcrafted with automatically acquired
rules) to a learned system and a human topline in
terms of human-assessed text simplicity, finding
that their system outperforms the learned system.
Notes: Complexity of outputs captures aspects
of output complexity both of form and con-
tent/meaning, e.g. longer word and sentence length,
nested syntactic structure, and low frequency
words, complex logical structure or technical de-
tails can all be indicative of higher complexity.

Zhang et al. (2024) assess the overall layness
of generated lay summaries via human evaluation
(“to what extent is the content of the model output
comprehensible (or readable) to a non-expert, in
terms of both structure and language?"), and three
automatic metrics.

[QOF-w-4] Conversationality/Non-conversational-
ity: A better system produces outputs that are either
(a) more conversational, or (b) less conversational.
Example: Cervone et al. (2019) ask evaluators to
assess how conversational the turns generated by
different versions of a conversational agent are on
a scale of 1–6.
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Notes: Conversationality is typically assessed in
dialogue scenarios where it captures the degree to
which a series of turns between user and system
resemble conversations between people, usually in
the same situation. While it’s difficult to conceive
of situations where Nonconversationality would
need to be assessed explicitly, it is certainly the
case that in many situations user-facing generated
text should not be conversational, in particular in
single-turn scenarios such as question-answering.
[QOF-w-5] Humorousness/Non-humorousness: A
better system produces outputs that are either (a)
more humorous, or (b) less humorous.
Example: Alnajjar and Hämäläinen (2018) assess
whether generated film titles are humorous, on a
1–5 agreement scale.
Notes: –

C.2 QCs that define quality relative to inputs
Figure 3 shows a simplified view of the Quality
of outputs relative to input branch of the QCET
Taxonomy (only node IDs and Names are shown
for each node). Below we list each QC and defi-
nition, with some additional explanatory notes in
some cases, grouped according to subtrees (see
Figure 3).

C.2.1 Correctness
Form

[QIC-f-1] Conformance to Syntactic Structure
(given in input): A better system produces texts
with fewer deviations from the target syntactic
structure provided in the input.
Example: Kumar et al. (2020) compute the tree-
edit distance between the syntax exemplar given in
the input and the output generated by their syntax-
controlled paraphrasing system.
Notes: –
[QIC-f-2] Inclusion of Keywords (given in input):
A better system produces texts that lack fewer of
the keywords provided in the input.
Example: Sasazawa et al. (2023) compute the pro-
portion of outputs that contain all the keywords
given in the input in several keyword position con-
trolled text generation systems.
Notes: –

Content

[QIC-c-1] Absence of Omissions (relative to input):
A better system produces outputs that lack fewer
of the content/meaning units provided in the input.

Example: González Corbelle et al. (2022) assess
their transformer-based weather forecast generator
e.g. with a metric that computes the number of
output texts with omissions (input elements not
literally contained in the output), finding omissions
in 160 out of 272 texts (58%).
Notes: Absence of Omissions is defined for
cases where Absence of Additions, as its in-
verse, is also defined. This will typically
hold in those cases where the output is sup-
posed to contain/cover/verbalise all and only con-
tent/items/formal representations provided in the
input. Cf. [QIC-f-2] Inclusion of Keywords where
addition is not defined.

[QIC-c-2] Absence of Additions (relative to input):
A better system produces outputs that contain fewer
content/meaning units not provided in the input.
Example: Cripwell et al. (2023) evaluate the seman-
tic accuracy of the outputs of data-to-text systems
in under-resourced languages using several criteria,
one of them being the absence of additions. Human
evaluators are shown the structured data input and
an output text and are asked “Looking at the Text, is
all of its content expressed in the Data expression?
(Allow duplication of content.)”
Notes: Absence of Additions is defined for
cases where Absence of Omissions, as its in-
verse, is also defined. This will typically
hold in those cases where the output is sup-
posed to contain/cover/verbalise all and only con-
tent/items/formal representations provided in the
input. Cf. the three Nonreduncy QGs, [QOG-f-1],
[QOG-c-1], and [QOG-w-1], where omission is not
defined.

[QIC-c-3] Consistency with Input: A better system
produces outputs that have fewer inconsistencies
with a given aspect of the input.
Example: Shu et al. (2021) propose a metric
called bi-directional logic evaluation of consistency
(BLEC) for evaluating the consistency between
database query logic inputs and textual questions
in the output.
Notes: Cf. Similarity/Dissimilarity to Input (con-
tent/meaning); Consistency with Input is not about
meaning similarity, but consistency in a task-
specific sense, for which absence of contradictions
may be sufficient.

[QIC-c-4] Coverage of Topics (given in input): A
better system produces outputs that lack fewer of
the topics provided in the input.
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Example: Basu Roy Chowdhury et al. (2022) as-
sess summarisation systems in terms of the aver-
age number of distinct aspects (fine-grained topics)
covered in generated summaries, finding e.g. that
the aspect-aware variant of their system increases
aspect coverage by about 1 topic on average.
Notes: –

Outputs as a whole

[QIC-w-1] Translation Accuracy: A better system
produces translations of the input with fewer trans-
lation errors.
Example: Popović (2020) asked annotators to iden-
tify and mark up word spans in machine-translated
text whose meaning differed from the input text,
then investigated different ways of numerically ag-
gregating the annotations.
Notes: When assessed by human evaluators, Trans-
lation Accuracy is often broken down into different
error types which are assessed (and sometimes re-
ported) separately. However, such error taxonomies
differ too widely in granularity and meaning be-
tween papers to be incorporated here as sub-QCs.
Among metrics, BLEU (created for MT) works
particularly well, especially when assessed against
multiple target output translations per input.

C.2.2 Goodness
Form

[QIG-f-1] Appropriateness of System Response
Type: A better system produces outputs that are of
a more appropriate type relative to the input.
Example: Webb et al. (2010) evaluate whether or
not it was appropriate (a) for the system to give a
response when it responded, and (b) for the stystem
not to respond when it didn’t, regardless of the
content of the response.
Notes: Appropriateness of System Response Type
captures, at the level of entire responses, whether
the system response was of the right type. Often
used in dialogue, evaluation methods assessing this
QC might take into account whether the system
took initiative or handed over to a human when
it should have done. In a question-answering sce-
nario, whether the system response constituted an
attempt to answer the question (as distinct from
whether that answer was correct or informative)
might be assessed.

[QIG-f-2] Success of Style Transfer from Sample:
A better system produces outputs that are more like
the style sample provided in the input.

Example: In their survey of text style transfer re-
search, Hu et al. (2022) identify two main ways
in which previous work has measured style trans-
fer success: transfer acccuracy measured as the
accuracy achieved by style classifiers compared to
the intended style; and earth mover distance be-
tween the style distributions of the input text and
the transferred text.
Notes: Cf. Control over Alternative Styles; in Suc-
cess of Style Transfer from Sample, content and
style samples are provided in the input, whereas
in ‘Control over’ QCs, the task definition includes
the controlled attribute and its finite set of possible
values one of which is added to the input.
[QIG-f-3.1] Success of Speech Style Transfer from
Sample: A better system produces speech that
sounds more like the speech sample specified in
the input.
Example: Peng et al. (2024) evaluate speech LLMs
on speech editing tasks where the input is a speech
recording, corresponding transcript and an edited
version of the transcript, and the output is a spoken
rendition of the modified transcript that is intended
to sound like the speech recording. The evaluation
assesses if the speech sample and the spoken sys-
tem output sound the same, via metric (source and
target sound file comparion) and human evaluation
(rate input/output similarity on a scale from 1 to 5).
Notes: As is the case for the parent node, [QIG-f-2]
Success of Style Transfer from Sample, here the
target style is provided in the form of a sample in
the input. In contrast, in [QIF-f-2] Control over
Style, typically the system is trained on a given
number of different styles which are selected via
control attributes in the input.

Content

[QIG-c-1] Answerability from Input: A better sys-
tem produces questions that are more answerable
on the basis of information provided in the input.
Example: In their evaluation of a question gen-
eration system, Harrison and Walker (2018) ask
human assessors to evaluate on a 4-point scale how
much of the information required to correctly an-
swer the generated question is contained within the
[input] text passage.
Notes: –
[QIG-c-3] Relevance to Input: A better system
produces outputs that are in a given sense more
relevant to the input.
Example: Shen et al. (2022) evaluate systems for
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the automatic generation of counseling dialogue
turns by asking evaluators to indicate on a 3-point
scale “whether the response is on topic and relevant
to the dialogue history" (the latter being provided
in the input).
Notes: Relevance relative to the input is of-
ten assessed in a question-answering, instruction-
generation or dialogue context, where it captures
the relevance of the answer to the user’s question,
of the instruction to the user’s need, and of the dia-
logue to the dialogue context. ’The given sense’ in
which relevance is assessed is often specified in hu-
man evaluations, e.g. whether the answer responds
to the question.

Outputs as a whole

[QIG-w-1] Parse Accuracy (reference-less): A bet-
ter system produces outputs that are more complete
and accurate parses of the input.
Example: Opitz and Frank (2022) evaluate parsers
by asking evaluators to asess the ‘parse accept-
ability’ of parser outputs (graphs) given the input
sentence.
Notes: Parse Accuracy is sometimes assessed by
asking parsing experts whether e.g. output phrase-
structure or depency parses represent complete and
correct analyses of the input sequence.

[QIG-w-2] Degree to which Output Answers Ques-
tion in Input: A better system produces outputs
that are more complete and accurate answers to
questions provided in the input.
Example: In the TREC-8 Question Answering
shared task Voorhees et al. (1999) ask human as-
sessors whether answers generated by participating
systems contain words that answer the input ques-
tion.
Notes: –

[QIG-w-3] Quality as Explanation of Input: A bet-
ter system produces outputs that are more complete
and accurate explanations of the inputs.
Example: Sarsa et al. (2022) evaluate automatically
generated code explanations by answering the ques-
tion “Are all parts of the code explained?” (Yes /
No) and computing the proportion of correctly ex-
plained lines out of all the generated explanation
lines.
Notes: Cf. [QEG-w-4] Goodness as Explanation
of System Behaviour; Quality as Explanation of
Input only takes the input and output into account,
assessing how well the latter explains the former.

C.2.3 Feature
Form

[QIF-f-1] Control over Complexity/Non-complex-
ity (form): A better system produces outputs that
are in their form more at the target level of com-
plexity provided in the input.
Example: Agrawal (2023) assesses the degree to
which complexity-controlled machine translation
systems succeed in generating translations at the
target level of complexity by computing the cor-
relation between the Automatic Readability Index
(ARI) scores of the actual and target translations.
Notes: Complexity of form captures aspects of
output complexity irrespective of meaning, e.g.
longer word and sentence length, nested syntac-
tic structure, and low frequency words can all be
indicative of higher complexity of form. [QIF-f-1]
Control over Complexity/Non-complexity (form) is
for systems where target levels of (non)complexity
of form are defined and the system is trained to
achieve them.

[QIF-f-2] Control over Style: A better system pro-
duces outputs that are in their form more in the
target style provided in the input.
Example: Gero et al. (2019) evaluate whether au-
tomatically generated sentences exhibit the style
specifed in the input, by asking human annotators
to label output sentences with style labels and then
calculating the accuracy compared to the input la-
bels.
Notes: Style captures aspects of form, as opposed
to meaning. It relates to the way something is
said, rather than what is said. Examples include
formal/informal, literary/non-fiction, and more fine-
grained distinctions such as newspaper house style
and personal writing style. [QIF-f-2] Control over
Style typically is used to evaluate systems that are
trained on a specific set of alternative styles, with
a control attribute in the input indicating the style
that outputs are supposed to be generated in.

[QIF-f-2.1] Control over Formality/Informality: A
better system produces outputs that are in their
form more at the target level of formality provided
in the input.
Example: Yang and Klein (2021) assess the outputs
of an informal-to-formal MT system in terms of
the mean likelihood that the output is indeed for-
mal according to a formality classifier trained on
separate data.
Notes: (In)formality captures how relaxed the lan-
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guage of outputs is: in a conversation with friends,
or on social media, language tends to be more infor-
mal, whereas in academic articles or legal contexts,
it tends to be more formal. [QIF-f-2.1] Control
over Formality/Informality typically is used to eval-
uate systems that are trained on data with different
levels of formality, with a control attribute in the
input indicating the level of formality that outputs
are supposed to be generated in. Cf. [QOF-f-4] For-
mality/Informality which captures the (in)formality
of the output when generating outputs with given
levels of formality is not part of the system task.

[QIF-f-3] Output Size Relative to Input: A bet-
ter system produces outputs that achieve, relative
to the input, (a) a greater reduction in size, (b) a
greater increase in size, or (c) size change at the
target level given in the input.
Example: Clarke and Lapata (2006) compare hu-
man and machine-produced sentence-level sum-
maries via their respective compression rates (num-
ber of tokens in output sentences over number of
tokens in input sentences), finding that humans are
more conservative than machines.
Notes: [QIG-f-3] Output Size Relative to Input is
commonly assessed as the ratio of output size over
input size, where size is e.g. measured as number
of words or characters. Typical NLP tasks where
this QC is assessed include sentence summarisation
and simplification.

[QIF-f-4] Similarity/Dissimilarity to Input (form):
A better system produces outputs that in their form
are (a) more similar to the input, (b) less similar to
the input, or (c) more at the target level of similarity
to the input, where that target level is provided in
the input.
Example: Yin et al. (2022) measure the ’syntactic
divergence’ between text input and paraphrased
output using Kendall’s tau.

Content

[QIF-c-1] Control over Complexity/Non-complex-
ity (content/meaning): A better system produces
outputs that are in their content/meaning more at
the target level of complexity provided in the input.
Example: Imperial et al. (2024) assess content
generation which uses English language standards
(CEFR, CCS) to control complexity by asking ex-
pert assessors to assign English standard levels to
generated stories, then measuring the accuracy rel-
ative to target levels specified in inputs.
Notes: Complexity of content/meaning captures as-

pects of output complexity irrespective of form, e.g.
complex logical structure or technical details can be
indicative of higher semantic complexity. [QIF-c-
1] Control over Complexity/Non-complexity (con-
tent/meaning) is for systems where target levels of
(non)complexity of content/meaning are defined
and the system is trained to achieve them.

[QIF-c-2] Similarity/Dissimilarity to Input (con-
tent/meaning): A better system produces outputs
that in their content/meaning are (a) more similar
to the input, (b) less similar to the input, or (c) more
at the target level of similarity to the input, where
that target level is provided in the input.
Example: In their survey of text style transfer
research, Hu et al. (2022) identify some of the
main ways in which previous work has mea-
sured the meaning (dis)similarity between source
text and transferred text: cosine similarity be-
tween embeddings, word overlap (excluding style-
related words), and human assessment of meaning
(dis)similarity.
Notes: [QIF-c-2] Similarity/Dissimilarity to Input
(content/meaning) is the same as [QEF-c-1] Simi-
larity/Dissimilarity to Non-target Reference (con-
tent/meaning), but here the comparison is against
the input, rather than a system-external reference.
Typical NLP tasks where this QC is assessed in-
clude paraphrasing and style transfer.

[QIF-c-3] Specificity/Non-specificity (relative to in-
put): A better system produces outputs that, relative
to some aspect of the input, are (a) more specific,
(b) less specific, or (c) more at the target level of
specificity provided in the input.
Example: In an evaluation of a content selection
method for question generation, Jin and Le (2016)
ask human judges to assess in a binary fashion
whether or not a question is specific enough con-
sidering the input text.
Notes: [QIF-c-3] Specificity/Non-specificity (rela-
tive to input) is about the level of specificity with
which the output addrsses a given aspect of the
input. E.g. where the output answers an input ques-
tion, does it do so with enough specificity, or is it
too vague? Similarly if the output is instructions for
a given task, are the instructions specific enough to
solve the task?

Outputs as a whole

[QIF-w-1] Control over Complexity/Non-complex-
ity (outputs as a whole): A better system produces
outputs that are more at the target level of complex-
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ity provided in the input.
Example: Moraes et al. (2016) assess their system’s
ability to generate graph summaries at the target
level of complexity by first asking evaluators to
rank systems in terms of complexity (=suitability
for grade levels), then computing the proportion
of pairwise ranks that match those of the target
complexity levels, finding a match in 72% of cases.
Notes: Complexity of outputs captures aspects
of output complexity both of form and con-
tent/meaning, e.g. longer word and sentence length,
nested syntactic structure, and low frequency
words, complex logical structure or technical de-
tails can all be indicative of higher complex-
ity. [QIF-w-1] Control over Complexity/Non-
complexity (outputs as a whole) is for systems
where target levels of (non)complexity are defined
and the system is trained to achieve them.

Luo et al. (2024) prompt an LLM to summarise
articles “for a lay audience,” asking evaluators to
assess summaries in terms of the following state-
ment:“Layness: Compared to the original article,
the summary should decrease the linguistic com-
plexity, omit content that is too technical, and in-
clude sufficient background explanation of techni-
cal terms."

[QIF-w-2] Control over Sentiment: A better system
produces outputs that are more at the target level
of positivity/negativity provided in the input.
Example: Kumar et al. (2024) assess the effec-
tiveness of sentiment control (negative, positive,
uncontrolled) in a feedback generator as the accu-
racy according to majority voting by four sentiment
classifiers.
Notes: [QIF-w-2] Control over Positive/Negative
Sentiment captures, usually at the whole-text level,
the overall tone of a text reflecting positive/negative
disposition either to its topic(s) overall, or towards
a specific aspect. This QC is for systems where tar-
get levels of positivity/negativity are defined (com-
monly positive, neutral, negative) and the system
is trained to achieve them (possibly among other
things including in LLMs).

[QIF-w-3] Bias Inversion: A better system pro-
duces outputs that are more of the inverse bias
relative to the input.
Example: Chen et al. (2018) evaluate a system that
inverts the political bias of a news article (between
left and right) by asking human evaluators to assess
whether input/output pairs have fully or partially
opposite bias.

Notes: Here, target bias is usually implicit in the
system task, e.g. the system would be trained on
input-output pairs where the output has the inverse
bias of the input. Alternatively, both input and
output could have (inverse) bias labels.

[QIF-w-4] Similarity/Dissimilarity to Input (out-
puts as a whole): A better system produces outputs
that overall are (a) more similar to the input, (b)
less similar to the input, or (c) more at the target
level of similarity to the input, where that target
level is provided in the input.
Example: Panthaplackel et al. (2022) ask evaluators
to assess whether an updated headline makes only
minimal edits to the original headline, i.e. makes
changes only to parts that warrant it.
Notes: [QIF-w-4] Similarity/Dissimilarity to Input
(outputs as a whole) is the same as [QEF-w-1] Sim-
ilarity/Dissimilarity to Non-target Reference (out-
puts as a whole), but here the comparison is against
the input, rather than a system-external reference.
Typical NLP tasks where this QC is assessed in-
clude paraphrasing and style transfer.

[QIF-w-5] Control over Multiple Attributes: A bet-
ter system produces outputs that are more at the
target levels of multiple attributes provided in the
input.
Example: Zhong et al. (2024) report results for
’controllability’ defined as the average classifier
identification success for the controlled attributes.

C.3 QCs that define quality in terms of one or
more target outputs

C.3.1 Correctness

Form

[QTC-f-1] Form Accuracy: A better system pro-
duces outputs that in their form less often differ
from the given target outputs .
Example: Kasner and Dusek (2022) report the ac-
curacy score of their ordering model on WebNLG
against the human-generated plans from Ferreira et
al. (2018).

Content

[QTC-c-1] Meaning Accuracy: A better system
produces outputs that in their content/meaning less
often differ from the given target outputs .
Example: Zheng et al. (2024) evaluate free defini-
tion generation in terms of the percentage of correct
definitions generated, where a generated definition

26707



is correct if it is judged to be semantically equiva-
lent to the given target output by GPT-4.

Outputs as a whole

[QTC-w-1] Classification Accuracy: A better sys-
tem produces output classes that less often differ
from the given target output class (from a given
finite set of classes) .
Example: Jarvis et al. (2013) evaluate a classifier
that predicts the native language of participants
by computing class Recall on 11,000 texts (in 11
languages).
Notes: The notion of accuracy in this QC is wider
than just the Accuracy metric, encompassing also
e.g. Recall, Precision, F-score, and other combina-
tions of true/false positives/negatives.

[QTC-w-2] Sequence Labelling Accuracy: A better
system produces sequences of output labels that
less often differ from the given target output label
(from a given finite set of labels).
Example: de Vries et al. (2022) compute the part-
of-speech (POS) tagging accuracy achieved by a
task-tuned model on pairs of languages where one
was seen during task-tuning and the other was not.
They report POS tagging accuracy for a large num-
ber of pairs of languages some of which were seen
during model pretraining, some were not.

[QTC-w-3] Complete Target Output Matching: A
better system produces outputs that less often differ
from a given target output (where the set of possible
outputs is not given, and is not necessarily finite).
Example: Yue et al. (2022) report the exact match
(EM) rate for question-answer generation systems,
where an exact match is a question that appears in
the set of target output questions verbatim.
Notes: In contrast to Classification Accuracy, this
QC is defined for cases where the system does
not choose between a set of posible outputs that
is known a priori. Instead the output is typically
generated in some way from the input, and is often
quantified as the exact match rate.

[QTC-w-3.1] Complete Word Matching: A better
system produces a words that less often differ from
corresponding given target words (where the set
of possible output words is not given, and is not
necessarily finite).
Example: Pupier et al. (2024) report the word error
rate (WER) of systems in a speech recognition task.

[QTC-w-3.2] Character Matching: A better system
produces a words that less often differ from cor-

responding given target words (where the set of
possible output characters is not given, and is not
necessarily finite).

Example: Pupier et al. (2024) report the character
error rate of systems in a speech recognition task.

[QTC-w-4] Retrieval Accuracy: A better system
produces query results that less often differ from
those in a given set of target query results.

Example: Cheng et al. (2024) report Mean Recipro-
cal Rank for their conversational retrieval system.

[QTC-w-5] Sequence Alignment Accuracy: A bet-
ter system produces alignments between two input
sequences that have fewer errors compared to a
given target alignment.

Example: Latouche et al. (2024) report two word
alignment metrics to assess their approach to word
sequence alignment: Alignment Error Rate and the
percentage of correctly aligned words.

[QTC-w-6] Parse Accuracy (with references): A
better system produces parses for input texts that
have fewer errors compared to a given target parse.

Example: Pupier et al. (2024) report two parse accu-
racy metrics for their approach to end-to-end depen-
dency parsing of speech: labelled attachment score
(LAS) and unlabelled attachment score (UAS).

C.3.2 Goodness

Form

[QTG-f-1] Similarity to Target Outputs (form): A
better system produces outputs that are in their
form more similar to given target outputs.

Example: Gero et al. (2019) use BLEU to compute
the similarity between (a) reconstructions of test
sentences from content and feature representations,
and (b) the original test sentences. Because the
content is constrained to be the same, this assesses
similarity of form.

Notes: Similarity to target outputs is a very com-
mon form of evaluation in NLP where one or more
target outputs (often called gold outputs or refer-
ences) are provided as part of a test set, and the
degree of similarity between actual system output
and target output(s) is measured. Note this is differ-
ent from binary same/not same assessments made
e.g. in Classification Accuracy. [QTG-f-1] Similar-
ity to Target Outputs (form) assesses similarity in
terms of form, covering aspects such as morphol-
ogy, syntax, document structure, style, etc.
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Content

[QTG-c-1] Similarity to Target Outputs (con-
tent/meaning): A better system produces outputs
that are in their content/meaning more similar to
given target outputs.
Example: In their study about experiment design
for the evaluation of dialogue system ouptuts, San-
thanam and Shaikh (2019) compute the cosine simi-
larity between embeddings of (a) system responses
and (b) target system responses’.

Mille et al. (2018) evaluate multilingual surface
realisers that take syntactic or semantic trees as in-
put by asking raters to assess the meaning similarity
between system outputs and the target outputs (i.e.
the original sentences previously parsed to get the
inputs).
Notes: Similarity to target outputs is a very com-
mon form of evaluation in NLP where one or more
target outputs (often called gold outputs or refer-
ences) are provided as part of a test set, and the
degree of similarity between actual system output
and target output(s) is measured. Note this is differ-
ent from binary same/not same assessments made
e.g. in Classification Accuracy. [QTG-c-1] Simi-
larity to Target Outputs (content/meaning) assesses
similarity in terms of content units or semantic rep-
resentations.

Outputs as a whole

[QTG-w-1] Similarity to Target Outputs (outputs
as a whole): A better system produces outputs that
are overall more similar to given target outputs.
Example: In the WebNLG shared tasks Gardent
et al. (2017), the similarity between outputs of data-
to-text generators and target system outputs is eval-
uated using BLEU (strict n-gram matching) and
METEOR (allowing synonyms and morphological
variation).
Notes: Similarity to target outputs is a very com-
mon form of evaluation in NLP where one or more
target outputs (often called gold outputs or refer-
ences) are provided as part of a test set, and the
degree of similarity between actual system out-
put and target output(s) is measured. Note this is
different from binary same/not same assessments
made e.g. in Classification Accuracy. [QTG-w-1]
Similarity to Target Outputs (outputs as a whole)
assesses overall similarity, not distinguishing form
or content.
[QTG-w-2] Similarity to Inputs and Target Outputs
Combined (outputs as a whole): A better system

produces outputs that are overall more similar to
given target outputs and more similar to the input.
Example: Ingólfsdóttir et al. (2023) use the GLEU
metric in their work on grammatical error correc-
tion to asses that their system’s outputs both make
the right corrections (similarity to target outputs),
and do so in a way that minimally changes the text
(similarity to input texts).

[QTG-w-3] Cross-Dataset Generalisation: A better
system produces outputs that obtain higher scores
on a given out-of-distribution task dataset .
Example: Huang et al. (2024) report work where a
system is trained on a series of tasks, and after each
new task training round, the system’s performance
(i) on the last task it was trained on, and (ii) on
the next task it will be trained on, is assessed with
ROUGE-L.
Notes: [QTG-w-3] captures the extent to which
a system generalises beyond the data distribution
on a sample from which it was trained (and in
rare cases, created manually). It can be used e.g.
to assess transfer learning (without any additional
training).

C.4 QCs that define quality in terms of one or
more external frames of reference

C.4.1 Correctness
Form

[QEC-f-1] Adherence to Style Guide: A better sys-
tem produces texts with fewer deviations from a
given style guide.
Example: Zhang et al. (2022) report an auto-
matic code refactoring system which transforms
Python code into more python-idiomatic, function-
ally equivalent code on the basis of a given set of
idioms. They assess each refactored output e.g. by
manually checking that it conforms with Pythonic
idiom, reporting an accuracy of 0.998.
Notes: When assessing [QEC-f-1] Adherence to
Style Guide, outputs are normally compared with a
system-external style guide onn the basis of which
style errors can be identified in outputs, and then
counted and aggregated.

[QEC-f-2] Adherence to Syntactic Rules: A better
system produces outputs with fewer syntactic errors
as defined by a given grammar.
Example: Pratapa et al. (2021) present a metric
to evaluate the morphosyntactic well-formedness
of generated text using dependency parsing and
morphosyntactic rule checking.
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Notes: [QEC-f-2] Adherence to Syntactic Rules
captures grammaticality, or perhaps more accu-
rately parsability, as defined by a given formal
grammar, either computational or described in a
text resource. In the former case, automatic assess-
ment can establish whether a text can be parsed
with a given grammar; in the latter case, evalua-
tors can be asked if a text conforms with the rules
described in the grammar. Cf. [QOC-f-1] Gram-
maticality

Content

[QEC-c-1] Factual Truth: A better system produces
texts with fewer real-world untruths.
Example: Thomson and Reiter (2020) evaluate the
outputs of their sports summarisation system by
asking participants (a) to mark up factual errors as
determined by open web search as non-overlapping
word spans, then (b) to categorise the word spans.
They report an average of 19 erorrs per summary.
Notes: In assessing [QEC-c-1] Factual Truth, the
aim is to establish the real-world truth or untruth of
output content. In contrast to [QEC-c-2] Relative
Factual Accuracy, specific information sources (not
expected to contain contradictory information) are
not normally provided in evaluation. More typi-
cally, a process is described whereby truth is to be
established for the purposes of the evaluation which
may involve resolving any amount of contradictory
information.

[QEC-c-2] Relative Factual Accuracy: A better sys-
tem produces texts with fewer untruths according
to a given source of information.
Example: Min et al. (2023) present FACTSCORE,
an estimator that decomposes generated text into
atomic facts, then validates each based on a given
knowledge source.
Notes: Assessing [QEC-c-2] Relative Factual Ac-
curacy involves consulting a given source of infor-
mation that is not expected to contain contradic-
tory information (a website, a work of fiction, a
database etc.), and checking if outputs are factually
accurate relative to the closed world of the infor-
mation source. I.e. unlike in [QEC-c-1] Factual
Truth, there is no attempt to get at real-world truth
of output content; whatever the information source
states is taken as fact.

Outputs as a whole

[QEC-w-1] Functional Correctness: A better sys-
tem produces outputs that result in functional be-

haviour that less often differs from the target be-
haviour when applied to a given set of tests.
Example: Lee et al. (2024) evaluate the functional
quality of generated source code by executing the
code and calculating the proportion of times gener-
ated code performs correctly on a set of unit tests,
reported as pass@1 in tables.

C.4.2 Goodness
Form

[QEG-f-1] Naturalness (form): A better system pro-
duces texts that are in their form more natural in a
given context and/or for a given subset of speakers.
Example: Mir et al. (2019) evaluate the naturalness
of style-transferred texts via classifiers that have
been adversarially trained to distinguish transferred
from non-transferred texts in the same style domain.
The idea is that outputs that are natural texts in the
given style will be classified as non-transferred by
the classifier. As the meaning is constrained to be
the same, this assesses the naturalness of the form
of (non-)transferred texts.
Notes: If an output is not natural in form, then it
isn’t likely to be encountered in this form in the
given scenario. Cf. [QEG-f-2] Appropriateness: if
a text is not appropriate in form then it shouldn’t
be in this form in the scenario.

[QEG-f-2] Appropriateness (form): A better sys-
tem produces texts that are in their form more ap-
propriate in a given context and/or for a given sub-
set of speakers or audience.
Example: Sripada et al. (2014) asked experts from
the UK national weather agency to assess whether
individual generated forecast texts are of appropri-
ate length.
Notes: If an output is not appropriate in form, then
it shouldn’t be in this form in the given scenario.
Cf. [QEG-f-1] Naturalness: if a text is not natural
in form then it isn’t likely to be encountered in this
form in the scenario, but it’s not the case that it
shouldn’t be.

Content

[QEG-c-1] Naturalness (content/meaning): A bet-
ter system produces texts that are in their con-
tent/meaning more natural in a given context and/or
for a given subset of speakers.
Example: Xu et al. (2021) extract event chains
from narrative texts and connect them as a graph.
To evaluate the quality of the graph, they randomly
sample 500 edges and calculate the proportion of
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edges which are “suitable for chatting," finding that
to be the case for 73.6
Notes: If an output is not natural in content, then
it isn’t likely to be encountered with this content
in the given scenario. Cf. [QEG-f-2] Appropriate-
ness: if a text is not appropriate in content then it
shouldn’t have this content in the scenario.

[QEG-c-2] Appropriateness (content/meaning): A
better system produces texts that are in their con-
tent/meaning more appropriate in a given context
and/or for a given subset of speakers or audience.
Example: Mahamood and Reiter (2011) evaluate
the impact of adding reassurance statements to au-
tomatically generated texts giving medical infor-
mation to parents of pre-term newborns. Parent
users rate on a scale of 1–5 the extent to which
the text “appropriately considers the parents’ emo-
tional state in the given scenario”.
Notes: If an output is not appropriate in content,
then it shouldn’t have this content in the given sce-
nario. Cf. [QEG-f-1] Naturalness: if a text is not
natural in content then it isn’t likely to be encoun-
tered with this content in the scenario, but it’s not
the case that it shouldn’t be.

Outputs as a whole

[QEG-w-1] Naturalness (outputs as a whole): A
better system produces texts that are more natu-
ral in a given context and/or for a given subset of
speakers.
Example: In the E2E shared task (Dušek et al.,
2018), systems generated short restaurant descrip-
tions from a meaning representation; these were
manually evaluated on a quasi-continuous scale in
terms of naturalness.
Notes: If an output is not natural, then it isn’t likely
to be encountered in the given scenario. Cf. [QEG-
f-2] Appropriateness: if an output is not appropriate
then it shouldn’t be used in the scenario.

[QEG-w-2] Appropriateness (outputs as a whole):
A better system produces texts that are more appro-
priate in a given context and/or for a given subset
of speakers or audience.
Example: Macdonald and Siddharthan (2016) com-
pare the outputs of two news summarisers, one
producing basic summaries and the other produc-
ing summaries suitable for children. They ask hu-
man participants the following question: “Overall,
which of these summaries do you believe is more
suitable for a child?”

Notes: If an output is not appropriate, then it
shouldn’t be used in the given scenario. Cf. [QEG-
f-1] Naturalness: if an output is not natural then it
isn’t likely to be encountered in the scenario, but
it’s not the case that it shouldn’t be.

[QEG-w-3] Usefulness (nonspecific): A better sys-
tem produces outputs that more useful to the user.
Example: Colineau et al. (2002) evaluate a system
that generates interactive instructions for technical
writers using a text editor by asking users to indi-
cate how they would “evaluate the usefulness of
the help” on a 6-point scale.
Notes: [QEG-w-3] Usefulness (nonspecific) is of-
ten assessed simply by asking users how useful
they find the system. Cf. User Satisfaction as Af-
fected by Outputs: users can be satisfied with a
system (e.g. one whose primary purpose is enter-
tainment) without also finding it useful. See also
the more specific sub-QC [QEG-w-3.1] Usefulness
for Task/Information Need.

[QEG-w-3.1] Usefulness for Task/Information
Need: A better system produces outputs that are
more useful for the user’s task and/or information
need.
Example: Qu and Green (2002) assess a co-
operative mixed-initiative dialogue system for
information-seeking dialogue via a user study
where they measure the agreement between “the
user’s recorded solution for each task” and “the
user’s original information need” with the kappa
statistic (Carletta, 1992).
Notes: [QEG-w-3.1] Usefulness for
Task/Information Need shares the same charac-
teristics of its parent QC[QEG-w-3] Usefulness
(nonspecific), but is more specific, assessing useful-
ness for a given task, such as following generated
instructions to trouble-shoot a malfunctioning
app, or for a given information need, e.g. are the
accommodation descriptions on a website useful in
selecting a holiday rental.

[QEG-w-4] Goodness as Explanation of System
Behaviour: A better system produces explanations
that better help the user understand its behaviour .
Example: Chiyah Garcia et al. (2018) evaluate a
system that generates natural language explana-
tions for an autonomous underwater vehicle by
asking evaluators to indicate (dis)agreement with
the following statement on a 7-point scale: “’Worth
it’ question: It would be worth reading the expla-
nations to understand how the system is behaving.”
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Notes: Cf. [QIG-w-3] Quality as Explanation of
Input; Quality as Explanation of System Behaviour
assesses how well the system can explain its own
outputs or other aspects of its behaviour, e.g. what
the evidence was on the basis of which it rejects an
application for job or a loan.

[QEG-w-5] System Usability as Affected by Out-
puts: A better system is more usable by the user,
where compared systems differ only in their out-
puts.
Example: Zheng et al. (2015) evaluate five varied
NLP systems using a software usability tool called
TURF which records interaction streams and user
audio; they also evaluate ease of use on a scale
from -1 to 2.
Notes: In software development, Usability is com-
monly defined in terms of the effort required to use
a system. The scope of the QCET taxonomy is eval-
uation of NLP systems, so usability evaluation in
this context would vary just the NLP components,
not e.g. the user interface or animation design.

[QEG-w-5.1] Ease of Communication: A better
system produces outputs that make communication
with the user easier.
Example: In their evaluation of ease of commu-
nication with a new dialogue system, Rieser et al.
(2011) ask evaluators for a rating on a scale from 1
to 6 for how well users perceived they were under-
stood by the system.
Notes: [QEG-w-5.1] Ease of Communication cap-
tures the perceived or measured ease with which
users (i) convey their communicative goals to the
system, and (ii) understand what the system tells
them.

[QEG-w-5.2] Task Completion Speed: A better
system produces outputs that result in faster task
completion by the user.
Example: Qu and Green (2002) give users flight
reservation tasks to evaluate two versions of a di-
alogue system in terms of task completion time,
finding that the system-initiative version allows
users to solve tasks more quickly.
Notes: This QC is assessed with a system, a user
and a task that the user has to complete with the
system. The speed with which the user completes
the task is measured. Task Completion Speed is
independ o overall interaction duration. Cf. [QEF-
w-8] Interaction Completion Speed.

[QEG-w-6] User Satisfaction as Affected by Out-
puts: A better system is one that users are more

satisfied with, where compared systems differ only
in their outputs.

Example: Mulia et al. (2023) evaluate the satis-
faction of users with ChatGPT via (dis)agreement
with the statement “I think that I would like to use
this system frequently," finding a mean agreement
score of 3.95 out of 5.

Notes: User Satisfaction is about how happy users
are with their use of a system, and is commonly
assessed by asking users directly how satisfied they
are, or via tracking repeat use. In the present con-
text of NLP system evaluation, evaluations would
take into account variations of the NLP compo-
nent(s), but not other aspects like other functional-
ity, user interface, etc.

[QEG-w-7] Clarity of Referents: A better system
produces referring expressions that more clearly
identify their referents.

Example: In the 2005 DUC shared task on sum-
marisation, Dang (2005) manually assess systems
in terms of ‘Referential clarity,’ defined as follows:
“It should be easy to identify who or what the pro-
nouns and noun phrases in the summary are refer-
ring to. If a person or other entity is mentioned,
it should be clear what their role in the story is.
So, a reference would be unclear if an entity is
referenced but its identity or relation to the story
remains unclear.”

Notes: Clarity of referents is about how readily
intended referents can be identified from referring
expressions in texts or other representations. The
explanation included in the DUC 2005 attestation
provides a good explanation for the case of texts.

[QEG-w-8] Performance of an Embed-
ding/Downstream System/Component: A
better system produces outputs that result in
outputs with better performance when used by
another system or component.

Example: Reddy et al. (2017) evaluate a system
that generates question-answer pairs from key-
words by assessing whether its outputs can improve
the performance of a semantic parser when added
to its training data. Comparing performance when
(a) training on manual question-answer pairs only
with (b) training on the manual data plus the sys-
tem’s question-answer pairs, they find a 5.5% im-
provement for the augmented training data.

Notes: Assessing a system in terms of the impact
its outputs have on the performance of the bigger
system it is part of, or in terms of another system
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that uses its outputs, is often called an extrinsic
form of evaluation. Extrinsic evaluation is espe-
cially suitable for NLP components embedded in
a larger system, such as a TTS component that is
part of an interactive system.
[QEG-w-9] Multi-task Performance: A better sys-
tem produces outputs that obtain higher aggregated
scores on a given set of task datasets and metrics .
Example: Zhou et al. (2023) explore data leakage
in LLM assessment, evaluating different models on
the MMLU benchmark of 57 different tasks that
require real-world knowledge and problem-solving
abilities.
Notes: Multi-task benchmarks have become in-
creasingly common in NLP, particularly in LLM
evaluation. [QEG-w-10] Multi-task Performance
covers any case where aggregated results express-
ing performance at multiple tasks is reported.
[QEG-w-10] Win Rate: A better system produces
outputs that more often beat a given comparitor
system or system stand-in.
Example: Wang et al. (2024b) evaluate a model by
measuring the fraction of times a powerful LLM
(e.g. GPT-4) prefers the outputs from that model
over outputs from a reference model.

C.4.3 Feature
Form

[QEF-f-1] Similarity/Dissimilarity to Non-target
Reference (form): A better system produces out-
puts that are in their form (a) more similar, (b) less
similar, or (c) more at the target level of similarity,
compared to given references that are not target
system outputs.
Example: Chim et al. (2024) assess various types
of similarity of synthetic user-generated text with
‘known source data’ that was included in training
data for the generating model. One type of sim-
ilarity they look at is idiolect preservation where
they measure the cosine similarity between idiolect
embeddings that reflect stylistic idiosyncrasies to
capture style preservation relative to the source
data.
Notes: We use the term ‘non-target references’ here
to refer to texts, speech, or structured representa-
tions which system outputs are compared against,
but which do not have the status of a target system
output for the given input. In the case of [QEF-f-1]
Similarity/Dissimilarity to Non-target Reference
(form), such comparisons assess form similarity.
This is the case e.g. when the similarity of outputs

to a sample of multiple texts, speech, or structured
representations (that are not target outputs) is mea-
sured as an indication of stylistic or other form
alignment.

Content

[QEF-c-1] Similarity/Dissimilarity to Non-target
Reference (content/meaning): A better system pro-
duces outputs that are in their content/meaning (a)
more similar, (b) less similar, or (c) more at the tar-
get level of similarity, compared to given references
that are not target system outputs.
Example: Shibayama et al. (2021) propose a new
metric to assess the degree of novelty of scientific
articles, which uses the distance relative to em-
beddings of cited articles, and show that a larger
average distance correlates with a higher level of
novelty.
Notes: We use the term ‘non-target references’ here
to refer to texts, speech, or structured representa-
tions which system outputs are compared against,
but which do not have the status of a target system
output for the given input. In the case of [QEF-f-1]
Similarity/Dissimilarity to Non-target Reference
(content/meaning), such comparisons assess con-
tent/meaning similarity. This is the case e.g. when
the similarity of outputs to a sample of multiple
texts, speech, or structured representations (that are
not target outputs) is measured as an indication of
topic or other semantic alignment.

Outputs as a whole

[QEF-w-1] Similarity/Dissimilarity to Non-target
Reference (outputs as a whole): A better system
produces outputs that are overall (a) more similar,
(b) less similar, or (c) more at the target level of
similarity, compared to given references that are
not target system outputs.
Example: Chim et al. (2024) assess various types
of similarity of synthetic user-generated text with
‘known source data’ that was included in training
data for the generating model. One type of similar-
ity they look at is divergence (text overlap) as an
intrinsic proxy for privacy preservation, for which
they compute the BLEU score between source-data
text and synthetic text, reporting divergence per
data point as 1–BLEU(s, t).
Notes: We use the term ‘non-target references’ here
to refer to texts, speech, or structured representa-
tions which system outputs are compared against,
but which do not have the status of a target system
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output for the given input. In the case of [QEF-f-1]
Similarity/Dissimilarity to Non-target Reference
(outputs as a whole), such comparisons assess over-
all output similarity. This is the case e.g. when
the similarity of outputs to a sample of multiple
texts, speech, or structured representations (that are
not target outputs) is measured as an indication of
overall alignment.

[QEF-w-2] Effect on User Behaviour: A better
system produces outputs that affect the user’s be-
haviour (a) more, (b) less, or (c) as specified in
the input, in terms of a given range of possible
behaviours.

Example: Davis et al. (2020) evaluate a virtual
health assistant inter alia in terms of user diet ad-
herence and overall goal achievement, finding that
mean dietary adherence was 91% and was lowest
for discretionary foods, grains, red meat, and veg-
etables. Participants met their step goal 59% of the
time.

Notes: [QEF-w-2] Effect on User Behaviour cap-
tures changes in the behaviour of users as a result
of using the system. Cf. [QEF-w-3] Effect on User
Emotion; [QEF-w-6] Effect on User Opinion; and
[QEF-w-7] Effect on User Stance. Examples of be-
haviours include driving behaviour, diet adherence,
smoking, and exercise.

[QEF-w-3] Effect on User Emotion: A better sys-
tem produces outputs that affect the user’s emotions
(a) more, (b) less, or (c) as specified in the input, in
terms of a given range of possible emotions.

Example: van der Sluis and Mellish (2009) evalu-
ate text generation strategies aimed at emphasising
positive feedback in mixed-feedback texts via lex-
ical and syntactic choice in terms of the effect on
users’ emotions. One type of measure asks users to
rate the strength with which they are feeling differ-
ent emotions before and after receiving feedback
(in the form of human-written stand-ins); they find
that the system version using positive emphasis
strategies has a distinct positive effect, increasing
mean ratings for all tested emotions.

Notes: [QEF-w-3] Effect on User Emotion captures
changes in the emotional state of users as a result
of using the system. Cf. [QEF-w-2] Effect on User
Behaviour; [QEF-w-6] Effect on User Opinion;
and [QEF-w-7] Effect on User Stance. An example
of a set of emotion classes is Ekman et al.’s six
cross-cultural basic emotions: anger, disgust, fear,
happiness, sadness and surprise.

[QEF-w-4] Detectability of Speaker/Author Stance:
A better system produces outputs that make the
entity producing the output come across to an ob-
server as having one of a range of given stances (a)
more, (b) less, or (c) to the degree specified in the
input.
Example: van der Lee et al. (2017) evaluate a sys-
tem that generates football game summaries for (a)
supporters of the home team, and (b) supporters of
the away team, by asking evaluators who they they
think the summaries are intended for, finding that
evaluators identified the correct team in 91% of all
cases.
Notes: [QEF-w-4] Detectability of Speaker/Author
Stance is about the degree to which the user per-
ceives the entity producing the outputs (which may
be perceived as an interlocutor) as having a given
stance towards a given object. In contrast to trait
([QEF-w-5] Detectability of Speaker/Author Trait),
a stance cannot be expressed in a single adjective.
An example is (strength of) support for a sports
team, as in the example attestation.

[QEF-w-5] Detectability of Speaker/Author Trait:
A better system produces outputs that make the
entity producing the output come across to an ob-
server as having one of a range of given traits (a)
more, (b) less, or (c) to the degree specified in the
input.
Example: Glas and Pelachaud (2015) evaluate
different strategies for dialogue agents to intro-
duce new topics into conversation, assessing which
makes the user perceive the agent as more (a) com-
petent, (b) friendly, (c) fun, and (d) informed, i.e.
four different traits.
Notes: [QEF-w-5] Detectability of Speaker/Author
Trait is about the degree to which the user perceives
the entity producing the outputs (which may be
perceived as an interlocutor) as having a given trait.
A trait in this context is usually something that can
be captured in a single adjective, as in the example
attestation.

[QEF-w-6] Effect on User Opinion: A better sys-
tem produces outputs that affect the user’s opinions
(a) more, (b) less, or (c) as specified in the input, in
terms of a given range of possible opinions.
Example: Wu et al. (2023) evaluated six versions of
a web search system in terms of the extent to which
user opinions change on several topics after system
use. Opinions for and against are captured at the
start and the end on a +6 to -6 scale and opinion
change is computed as the difference between the
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value at the start and the value at the end.
Notes: [QEF-w-6] Effect on User Opinion captures
changes in user opinion about a given topic as a
result of using the system. Cf. [QEF-w-2] Effect on
User Behaviour; [QEF-w-3] Effect on User Emo-
tion; and [QEF-w-7] Effect on User Stance. Opin-
ion is more fine-grained than stance, and while an
opinion can be typical of a stance, it would take
more than one opinion to identify a stance. E.g.
favouring the introduction of a universal income is
a political opinion, not an overall political stance.

[QEF-w-7] Effect on User Stance: A better system
produces outputs that affect the user’s stance (a)
more, (b) less, or (c) as specified in the input, in
terms of a given range of possible stances.
Example: Forrest et al. (2018) compare explain-
ability components for use with machine learning
tools where components use either (i) language
generation, or (ii) more numbers-based forms of
explanation, by asking users if they “would trust
a decision with this explanation," finding that the
components that use language-generation inspire
more trust in users.
Notes: [QEF-w-7] Effect on User Stance captures
changes in user stance as a result of using the sys-
tem. Cf. [QEF-w-2] Effect on User Behaviour;
[QEF-w-3] Effect on User Emotion; and [QEF-w-
6] Effect on User Opinion. Stance is more coarse-
grained than opinion, typically comprising multi-
ple related opinions. E.g. Left-leaning and right-
leaning are political stances, not in themselves po-
litical opinions.

[QEF-w-8] Interaction Completion Speed: A better
system produces outputs that result in interactions
with the user completing in (a) more time, (b) less
time, or (c) as much time as specified in the input.
Example: Peng et al. (2017) evaluate four dialogue
systems in terms of the average number of turns in
simulated user interactions with three user types.
Notes: [QEF-w-8] Interaction Completion Speed
captures how quickly user-system interactions are
completed. This can be measured in different ways,
including number of turns, number of system turns,
length of turns altogether, or clock time. Note
that in many cases, a better system will have faster
interaction completion speed, but in other cases the
aim may be to keep the user interacting for as long
as possible.

[QEF-w-9] Likelihood According to External
Model: A better system produces outputs that are

estimated to be more likely by a given external
model.
Example: Yedetore et al. (2023) train various
models (5-gram model, LSTMs, Transformers) on
child-directed language data, and use perplexity (a
standard formulation as well as the word-frequency
normalised SLOR metric) to evaluate how well
each model captures the basic structure of the train-
ing domain, finding that Transformers have the
lowest perplexity, the 5-gram model the highest.
Notes: The more common use of perplexity is in
evaluations where low perplexity as computed with
a given model is desirable, where it’s seen as indica-
tive of ‘natural’ output. However, it can equally
be desirable for outputs to have high perplexity,
e.g. in situation where a different style from that
encapsulated by the model is intended. [QEF-w-
9] Model Perplexity is a Feature-type QC, hence
captures both possibilities. Note that various met-
rics exist for measuring model perplexity including
normalised ones such as SLOR.
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