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Abstract
Cross-lingual vocabulary transfer plays a
promising role in adapting pre-trained lan-
guage models to new languages, including low-
resource languages. Existing approaches that
utilize monolingual or parallel corpora face
challenges when applied to languages with lim-
ited resources. In this work, we propose a sim-
ple yet effective vocabulary transfer method
that utilizes bilingual dictionaries, which are
available for many languages, thanks to descrip-
tive linguists. Our proposed method leverages
a property of BPE tokenizers where removing a
subword from the vocabulary causes a fallback
to shorter subwords. The embeddings of target
subwords are estimated iteratively by progres-
sively removing them from the tokenizer. The
experimental results show that our approach
outperforms existing methods for low-resource
languages, demonstrating the effectiveness of
a dictionary-based approach for cross-lingual
vocabulary transfer1.

1 Introduction

Vocabulary transfer, or adaptation, is a method
to bridge the gap between languages in language
models (Wang et al., 2020; Chau et al., 2020)
to improve their performance for new languages.
Vocabulary transfer can also address token over-
fragmentation (Ahia et al., 2023; Petrov et al., 2023;
Yamaguchi et al., 2024a,b; Han et al., 2025), where
a sentence is split into spuriously many tokens,
causing slower inference and more significant cost.
Previous works rely on monolingual or parallel
corpora to align source and target languages or fo-
cus on vocabulary overlaps between them (Minix-
hofer et al., 2022; Dobler and de Melo, 2023; Pham
et al., 2024; Liu et al., 2024; Remy et al., 2024;
Minixhofer et al., 2024; Han et al., 2025; Moroni
et al., 2025). However, these methods face a sig-
nificant challenge when dealing with low-resource

1Code is available at https://github.com/sj-h4/
dict_trans_tokenizer.
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Figure 1: Conceptual illustration of our proposed
method. Embeddings of target subwords are initial-
ized using those of corresponding source subwords.

languages, where parallel corpora are often unavail-
able (Artetxe et al., 2017; Fang and Cohn, 2017), or
when there is little lexical overlap between source
and target languages that use different scripts.

Dictionaries offer a potential solution to this is-
sue. When reading in an unfamiliar language, bilin-
gual dictionaries can aid in comprehension by con-
necting words in the unknown language to their
equivalents in a known language, and they can
also enhance the performance of language mod-
els (Vasselli et al., 2025). Such dictionaries are of-
ten available, even when other linguistic resources
are scarce, thanks to descriptive linguists, who pro-
duce them as part of their work in documenting
languages (Adams et al., 2017).

In this light, we propose an embedding initial-
ization method for cross-lingual vocabulary trans-
fer based on bilingual dictionaries as illustrated in
Figure 1. Our proposed method utilizes dictionar-
ies to map as many target subwords as possible
to source subwords for embedding initialization.
This method is inspired by Trans-Tokenizer (Remy
et al., 2024) that maps target subwords to source
subwords through word alignment using parallel
corpora. Our proposed method differs from Trans-
Tokenizer in that we utilize dictionaries, which
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are more available for low-resource languages and
have helpful features for subword mapping, and
we estimate the target embeddings iteratively. To
perform iterative mapping, we utilize the BPE
tokenizer algorithm (Sennrich et al., 2016), but
progressively remove subwords, forcing the tok-
enizer to decompose words into shorter and shorter
subwords. We estimate the embeddings for as
many target subwords as possible by removing
subwords mapped to source subwords from the
vocabulary and reapplying tokenization. The ex-
perimental results demonstrate that our dictionary-
based approach outperforms existing methods and
multilingual language models in terms of F1 score
on a downstream task and perplexity, across low-
resource languages with different scripts. Our find-
ing is that our dictionary-based method can im-
prove the performance in low-resource languages
that are genealogically distant from English and
show typologically isolating or agglutinative char-
acteristics (e.g., Uyghur, Khmer, and Manchu).

2 Background and Related Work

Cross-lingual vocabulary transfer consists of
subword embedding initialization and language-
adaptive pre-training.

Embedding Initialization. Embedding initializa-
tion is a fundamental component of cross-lingual
vocabulary transfer. WECHSEL (Minixhofer et al.,
2022) initializes target language subword embed-
dings using static embeddings obtained from mono-
lingual corpora and bilingual dictionaries between
source and target languages. In contrast, FO-
CUS (Dobler and de Melo, 2023) initializes target
subword embeddings without bilingual dictionar-
ies by leveraging subword overlap between source
and target languages and static subword embed-
dings. UniBridge (Pham et al., 2024) explores
vocabulary size optimization and initializes sub-
word embeddings, considering both syntactic and
semantic aspects. While it utilizes subword over-
lap for initialization, it also employs static embed-
dings from monolingual corpora to consider sim-
ilarity for languages with rare subword overlap.
Trans-Tokenizer (Remy et al., 2024) initializes tar-
get subword embeddings using word-level align-
ment from parallel corpora. ZeTT (Minixhofer
et al., 2024) trains a hypernetwork that predicts the
embeddings for target tokenizers with zero-shot.
However, each approach has limitations for low-
resource languages: WECHSEL requires substan-

tial monolingual corpora and bilingual dictionar-
ies, FOCUS and UniBridge face challenges with
languages using different scripts or having min-
imal subword overlap with the source language,
and Trans-Tokenizer is not applicable to languages
lacking parallel corpora with the source language.

Language Adaptive Pre-Training (LAPT). Af-
ter embedding initialization, most approaches train
the embeddings or all weights in a target model.
This process is called Language-Adaptive Pretrain-
ing (LAPT) (Chau et al., 2020) or continuous pre-
training. FOCUS, UniBridge, Trans-Tokenizer, and
Yamaguchi et al. (2024b) initialize subword em-
beddings with each approach, followed by LAPT.
UniBridge incorporates Masked Language Model
(MLM) loss and KL divergence in its LAPT pro-
cess, and others use MLM loss or Causal Lan-
guage Model (CLM) loss. Trans-Tokenizer and
Yamaguchi et al. (2024b) train the top and bottom
two layers in CLMs with LoRA (Hu et al., 2022).
Yamaguchi et al. (2024b) also demonstrates that
continuous pre-training with multi-token predic-
tion (Gloeckle et al., 2024) sometimes improves
the performance and does not cause performance
degradation.

3 Proposed Method

In this study, we propose a simple approach for low-
resource languages utilizing bilingual dictionaries,
which comprise of words (entries) in a target lan-
guage and their definitions in a source language. In
this approach, we suppose that source models are
trained with high-resource languages and have tok-
enizers with pre-trained embeddings. The proposed
method consists of three parts: training a tokenizer
for the target language, aligning subwords between
languages, and initializing target language subword
embeddings.

3.1 Tokenizer Training

We train byte-level BPE tokenizers (Sennrich et al.,
2016) using dictionary entries to obtain a tokenizer
for the target language. We employ byte-level BPE
tokenizers to ensure that no tokens are out of vo-
cabulary, even when training on limited resources.

3.2 Subword Mapping

The subword mapping algorithm is illustrated in Al-
gorithm 1. This process aims to maximize the num-
ber of target subwords that can be mapped to source
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Figure 2: An illustration of the subword mapping part in the proposed method. We (1) tokenize definitions and
entries, (2) align subwords using tokenized definition-entry pairs, (3) map a target subword to source subwords
based on the alignment result, and (4) remove mapped target subwords from a target tokenizer. We repeat these
processes until no target subwords are newly mapped. The target language is Manchu in this illustration, and “-mbi”
is a vowel suffix.

subwords, reducing the number of unmapped sub-
words. Since unmapped target subwords are as-
signed the unknown token’s embedding from the
source language, our goal is to minimize their oc-
currence by increasing the coverage of mapped
target subwords as much as possible. This map-
ping process consists of four steps: tokenization,
alignment, mapping, and removal, as illustrated in
Figure 2.

(1) Tokenization. First, we tokenize dictionary
entries and definitions using the trained target lan-
guage tokenizer and the source model’s tokenizer,
respectively (line 2 in Algorithm 1).

(2) Alignment. We treat the entry-definition pairs
as a parallel corpus and employ fast_align (Dyer
et al., 2013), which is based on the IBM translation
models (Brown et al., 1993), IBM Model 2, as
an alignment tool to obtain target-source subword
pairs and their counts (line 3). In this step, the
subwords are handled as tokens, not types.

(3) Mapping. Based on the target-source sub-
word pairs obtained in step 2, we create a one-to-
many mapping for all target language subwords at
the type level (line 4), and then update the subword

Algorithm 1: Subword Mapping
Input: S: source tokenizer
T : target tokenizer
D: dictionary (entry-definition pair)
M: target-source subwords mappings
(one-to-many) and the count for each
mapping
Output: Target-Source one-many subword

mapping

1 do
2 C ← TokenizeCorpus(S, T, D);
3 A ← FastAlign(C);
4 Mnew ← MapSubwords(A);
5 M← UpdateMapping(M,Mnew)

6 T ← DeleteTokens(T,Mnew);
7 while |Mnew| > 0;
8 returnM;

mapping (line 5). The update process includes up-
dating target-source subword pairs at the type level
and aggregating their count.

(4) Removal. After creating target-source sub-
word mappings, we remove the mapped target sub-
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words from the target tokenizer’s vocabulary and
the merged pairs that contain the subwords (line
6). The aim is to assign source subwords to un-
mapped target subwords in the next loop. Since
BPE tokenizers iteratively merge subwords into
longer subwords, only the longest subwords are
mapped by default, and their constituent subwords
remain unmapped if this removal is skipped. Re-
moving subwords enables the mapping of shorter
subwords, as BPE tokenizers fall back to shorter
segments when a subword is no longer available in
the vocabulary.

We repeat these steps until no new subwords are
mapped. We assign the UNK token from the source
language model for target language subwords with-
out corresponding source language subwords in the
tokenizer’s vocabulary.

This subword mapping method is different from
the Trans-Tokenizer. Our proposed method em-
ploys subword-level alignment because dictionar-
ies are primarily composed of words, and the
words are short. It also estimates mappings for
shorter subwords, while the Trans-Tokenizer em-
ploys word-level alignment and estimates mapping
heuristically.

3.3 Initializing Subword Embeddings

Let At be the set of source language subwords
corresponding to a target language subword t, ES

s

and ET
t be the sets of embeddings for a source

language subword s and a target language subword
t, respectively. Let c(x, y) be the count of a pair of
x and y. The relative counts of subword s inMt

is defined as:

c(s|t) = c(s, t)

Σx ∈Mtc(x, t)

Using the embedding eSs ∈ ES of the source sub-
word s ∈ At, the embedding eTt ∈ ET of the target
subword t is initialized as a weighted average of
corresponding source subwords embeddings2:

eTt =
∑

s ∈Mtc(s|t) · eSs

We finally copy the embeddings of the special
tokens, digits, and punctuations from the source
model to the target model and then replace the em-
beddings in the source model with the initialized
embeddings.

2Note that Llama 3 tokenizer does not have the UNK token,
so we initialize the subword randomly.

Language Script Entries

German Latin 101,997
Japanese Kanji, Kana 25,969
Old English Latin 7,592
Uyghur Arabic 1,131
Sanskrit Devanagari 5,282
Khmer Khmer 5,656
Manchu Latin 21,620

Table 1: The script and the number of entries in the
dictionary for each language.

FOCUS Ours

Language XLM Llama 3.1 Gemma 2

German 1,948,497 2,063,441 1,720,272 2,282,288
Japanese 2,320,596 2,554,873 2,275,944 4,291,810
Old English 398,508 416,885 327,382 660,516
Uyghur 1,440,550 1,582,594 1,359,842 3,656,931
Sanskrit 1,373,894 2,851,798 1,142,922 4,612,928
Khmer 1,983,542 4,203,481 1,955,756 7,589,786
Manchu 191,649 180,748 77,737 209,420

Table 2: The number of tokens in the data for LAPT for
each language.

This embedding initialization method is different
from FOCUS. FOCUS initializes target subword em-
beddings using source-target subword mapping ob-
tained from overlapping subwords between source
and target languages and static embeddings from
FastText (Bojanowski et al., 2017). In contrast, our
method uses the mapping trained with dictionaries.

4 Experimental Setups

Languages. We use English as a source lan-
guage and German, Japanese, Old English, Uyghur,
Sanskrit, Khmer, and Manchu as target lan-
guages. We treat German and Japanese as
high-resource languages and other languages as
low-resource languages. As source models, we
use RoBERTa (base) (Liu et al., 2019), XLM-
R (base) (Conneau et al., 2020), Llama 3.1
8B (Grattafiori et al., 2024), and Gemma 2
9B (Team et al., 2024). The detailed information
about the models is provided in Appendix A

Evaluation Metrics. We evaluate the perfor-
mance of our initialization method using F1 for
the NER performance of a masked language model
(RoBERTa) and perplexity for causal language
models (Llama 3.1 and Gemma 2). The perplexity
is normalized by word length, not subword length,
for fair comparison across tokenizers. This is be-
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German Japanese Old English Uyghur Sanskrit Khmer Manchu

RoBERTa 89.61 75.33 62.39 38.73 51.48 27.58 73.52
XLM-R 90.27 81.28 37.59 28.30 48.85 34.78 65.32
FOCUS (XLM-R) 89.28 77.22 37.57 23.00 36.16 19.35 28.00

+ LAPT 90.00 77.46 37.57 37.16 12.33 12.33 28.03
Ours (RoBERTa) 76.99 71.93 45.43 36.06 44.23 42.21 94.87

+ LAPT 76.43 73.60 52.71 64.52 42.08 62.96 92.87
Ours (XLM-R) 75.98 72.66 35.10 25.07 37.53 36.55 94.69

+ LAPT 75.98 74.73 40.94 59.41 56.99 58.37 91.39

Table 3: Micro F1 scores of MLMs for WikiANN and ManNER.

cause comparing models with different tokenizers
based on the perplexity normalized by subword
length is unfair (Roh et al., 2020). We compute the
word length using MeCab (Kudo et al., 2004) with
unidic-lite3 for normalization for Japanese and to-
kenize by space for other languages. We use this
perplexity for comparison between models within
the same language, but not for comparison across
different languages.

Datasets. As dictionary data, we use different
resources for each language. For Manchu, we use
data extracted from the Manchu–English dictio-
nary (Norman, 2013)4. For German and Japanese,
we employ the <target language>-English bilin-
gual dictionary from MUSE (Lample et al., 2017)
that is utilized in WECHSEL (Minixhofer et al.,
2022)5. For Uyghur, Sanskrit, and Khmer, we
use the <target language>-English dictionary from
Wiktionary as employed in WECHSEL (Minixhofer
et al., 2022)6. Note that the Manchu dictionary
includes entries and definitions that consist of mul-
tiple words, whereas in the other dictionaries, each
target language word is paired with a single word.

We use “Manwen Laodang”7 as a text corpus for
initializing with FOCUS and training for LAPT for
Manchu and Wikipedia dataset (Foundation)8 for
other languages. For NER, we use ManNER (Lee
et al., 2024) for Manchu and WikiANN (Pan et al.,
2017; Rahimi et al., 2019) for other languages. Ta-
ble 1 shows the writing system and the number of

3https://github.com/polm/unidic-lite
4https://github.com/tyotakuki/manchuvocabdata
5https://github.com/facebookresearch/MUSE
6https://github.com/CPJKU/wechsel/tree/main/

dicts
7The Manwen Laodang data used in this study was col-

lected in-house.
8https://huggingface.co/datasets/wikimedia/

wikipedia. We use the 20231101 dump.

entries in the dictionary for each language9.

Training. After embedding initialization, we con-
duct continuous pretraining with up to 3,000 sam-
ples for LAPT. The number of tokens for each
model is shown in Table 2. For masked language
models, we fine-tune all layers using the MLM
loss. We also fine-tune both models with LAPT
and models without LAPT for the downstream task.
We train only the top and bottom two layers with
LoRA (Hu et al., 2022) in the CLMs, following
Remy et al. (2024) and Yamaguchi et al. (2024b).
We also adopt multi-token prediction (Gloeckle
et al., 2024) for training efficiency, which causes no
significant performance degradation (Yamaguchi
et al., 2024b). The hyperparameters are in Ap-
pendix A.

Baselines. We use FOCUS as a baseline for em-
bedding initialization performance because this is
a widely used baseline in vocabulary transfer stud-
ies (Remy et al., 2024; Yamaguchi et al., 2024b;
Pham et al., 2024; Minixhofer et al., 2024). We
train target tokenizers with up to 50,000 samples
in the dataset. We initialize target subword embed-
dings with FOCUS. We use up to 50,000 samples
in a dataset for initialization. We apply FOCUS to
XLM-R instead of RoBERTa as an MLM baseline
because FOCUS performs better for multilingual
models than monolingual models. We also apply
FOCUS to Llama 3.1 and Gemma 2 as CLM base-
lines.

5 Results and Discussion

Table 3 shows the results on NER. When the results
of RoBERTa-based models were compared with
those of the proposed method, the proposed method

9Note that Manchu uses the Manchu alphabet, but the
dictionary and dataset transcribe it in the Latin alphabet.
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German Japanese Old English Uyghur Sanskrit Khmer Manchu

Llama 3.1 655.26 7868.14 199411567.86 2.07× 1024 548192867.74 inf 2.30× 1019

FOCUS 13275123.06 58188456.24 1.03× 1010 4.36× 1022 2.99× 1020 inf 1893791141.42
+ LAPT 2375.69 574.71 57810645.31 7.53× 1020 12376253.13 inf 1288173.19

Ours 444876.62 473.72 46180.42 18053.31 1503.39 64508.22 144818.36
+ LAPT 88.61 4.42 406.53 168.43 3.56 4.32 502.02

Gemma2 2013.66 494072.35 3.36× 1011 3.98× 1027 1.02× 1010 inf 1.06× 1016

FOCUS 2.83× 1011 993607.28 5.17× 1013 1.71× 1030 5.09× 1014 inf 1025102.29
+ LAPT 14045.20 356.75 57810645.31 2.89× 1023 144650900.73 inf 42687.69

Ours 6802328.30 1340.02 4685467.63 3163709.28 97101.92 652351.91 4848206.72
+ LAPT 595.14 5.83 1324.49 83.32 10.57 16.80 509.64

Table 4: Perplexity of CLMs. The perplexity is normalized by word length, not subword length, for fair comparison
across different tokenizers.

achieved better performance for Uyghur, Khmer,
Sanskrit, and Manchu.

Table 4 shows the perplexity for the base and
transferred models of Llama 3.1 and Gemma 2.
This result indicates that the performance of the
proposed method with LAPT achieves the best
performance. Figure 3 illustrates the perplexity
distribution of the Llama 3.1-based model for Ger-
man and Manchu using our proposed method. The
distributions of other languages are illustrated in
Figure 6 in Appendix B.2. There are some outliers
regardless of whether LAPT is performed or not,
suggesting out-of-distribution (OOD) issues occur.
We also visualize the embeddings in Appendix B.1.

5.1 Data Size
Table 5 shows the number of words of target lan-
guages in the data used for embedding initialization.
The results shown in Tables 3, 4, and 5 demonstrate
that our proposed method achieves better perfor-
mance than FOCUS in the low-resource languages,
with less than 10% of the data, highlighting the
efficiency of the proposed method.

On the other hand, FOCUS performs better than
our proposed method for high-resource languages,
German and Japanese. This indicates that FOCUS

can effectively initialize subword embeddings if a
sufficient amount of data is available, while our pro-
posed method can initialize subword embeddings
with a limited amount of data.

5.2 Mapped Subwords Coverage
Table 6 shows the trained tokenizers’ vocabulary
size and the number of mapped subwords that were
transferred from Llama 3.1 to target languages. The
coverage of mapped tokens varies by language and
can be categorized into two groups: Japanese and
Sanskrit, as well as others. Japanese and Sanskrit

Language FOCUS Ours

German 21,582,818 101,997
Japanese 3,118,885 25,969
Old English 353,515 7,592
Uyghur 2,771,058 1,131
Sanskrit 2,812,121 5,282
Khmer 1,937,229 5,656
Manchu 397,659 21,620

Table 5: The number of words in the data of target lan-
guages for embedding initialization. We count strings
separated by spaces as a word.

Language Tokenizer size Mapped tokens

German 50,265 43,656 (86.85 %)
Japanese 33,449 32,043(95.80 %)
Old English 11,427 10,059 (88.03 %)
Uyghur 2,693 2,372 (88.08 %)
Sanskrit 1,719 1,672 (97.27 %)
Khmer 1,634 1,465 (89.67 %)
Manchu 20,578 15,918 (77.35 %)

Table 6: The vocabulary size in tokenizers and the num-
ber of mapped tokens during transferring Llama 3.1.

have relatively regular stem changes. On the other
hand, German has complex inflection, and Uyghur
and Manchu have vowel harmony, which makes
tokenization inefficient. These linguistic features
cause the coverage of mapped tokens to be lower.

This result indicates that the Llama 3.1-based
model performs better with higher mapped sub-
word coverage for the tokenizer size. The results of
Gemma 2 also demonstrate that unmapped tokens
cause performance degradation.
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RoBERTa XLM-R Llama 3.1 Gemma 2 FOCUS Ours

Language XLM Llama 3.1 Gemma 2

German 3,686,547 2,426,841 2,983,799 2,598,287 2,069,545 2,198,015 1,827,442 2,429,275
Japanese 7,720,302 3,616,523 4,129,765 3,608,275 2,479,331 2,735,561 2,431,308 4,585,446
Old English 100,320 83,383 93,820 86,062 46,263 47,782 37,764 75,784
Uyghur 3,482,499 837,816 2,189,895 1,750,318 472,816 525,931 455,439 1,264,060
Sanskrit 4,482,539 946,657 1,541,635 1,343,833 592,570 1,230,733 497,080 19,974,128
Khmer 9,987,789 1,318,386 5,773,353 3,533,035 736,043 1,674,177 726,099 3,100,085
Manchu 104,660 87,861 95,225 85,902 52,104 49,198 21,111 56,912

Table 7: The number of subwords in the test data for perplexity for each language. Note that the same tokenizer,
trained on dictionary entries, was used for each language for our proposed method during experiments.

Base Model RoBERTa Llama 3.1 Gemma 2

iter 1 iter2 iter 3 iter 4 iter 1 iter2 iter 3 iter 4 iter 1 iter2 iter 3 iter 4

German 43,591 62 3 0 44,134 63 1 0 44,652 63 1 0
Japanese 21,003 10,987 34 0 21,003 11,008 34 0 21,002 11,013 28 0
Old English 7,520 2,503 17 10 7,523 2,508 17 10 7,522 2,508 17 10
Uyghur 1,152 1,079 109 27 1,152 1,079 109 27 1,152 1,079 109 27
Sanskrit 1,575 90 4 2 1,575 93 3 0 1,575 94 3 0
Khmer 1,370 77 3 0 1,385 78 2 0 1,384 76 3 0
Manchu 15,053 846 4 0 15,066 848 4 0 15,068 851 4 0

Table 8: The number of mapped subwords in the iteration until the fourth iteration.

5.3 Token Efficiency

Table 7 shows that our approach reduces the num-
ber of subwords for low-resource languages com-
pared to Llama 3.1, although FOCUS achieves an
even greater reduction. Our proposed method trains
a dedicated tokenizer for the target languages com-
pared with the Llama 3.1 tokenizer. As a result, our
tokenization is more efficient than that of a mul-
tilingual tokenizer. This result demonstrates that
our approach can address token over-fragmentation,
although performance improvement is limited to
several languages.

5.4 Multilingual Model vs. Monolingual
Model as a Source Model

Table 3 shows the micro F1 scores of RoBERTa-
based models and XLM-R-based models. This
result indicates that our proposed method works
better with a monolingual model for languages ex-
cept Japanese and Sanskrit than with a multilingual
model. Our proposed method uses only English
information to estimate the embeddings of target
subwords. Thus, monolingual models are suitable.

5.5 Language Characteristics

A common characteristic among the languages that
saw the most benefit from our approach—Uyghur,

Khmer, and Manchu—is that they are genealogi-
cally distant from English. Additionally, Uyghur
and Khmer use different writing systems from
English. Although this difference can limit the
RoBERTa and XLM-R performance, our proposed
method improves performance.

However, Japanese is also genealogically dis-
tant from English and uses a different script, yet
RoBERTa outperformed the proposed method. A
possible reason for this is the large number of char-
acter types in Japanese. When a tokenizer is trained
on limited data, the wide variety of characters can
prevent subwords from achieving sufficiently ro-
bust representations. This limitation likely con-
tributed to the constrained performance of our pro-
posed method in Japanese.

Table 4 indicates that our proposed method
can handle languages with any script, thanks to
language-specific tokenizers.

5.6 Morphological Typological Features

Our proposed method utilizes bilingual dictionar-
ies, but these dictionaries generally only contain
a single word form, excluding conjugated or in-
flected variants. This feature might also make it
challenging to handle inflection or particles. We
analyze the results with respect to two morpholog-
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Figure 3: The perplexity distribution and box plot of
Llama 3.1-based our proposed method.

ical types: isolating-synthetic and agglutinative-
fusional (Whaley, 1997).

Synthesis. In languages used in the experiments,
Khmer is isolating, German is relatively synthetic,
and others are synthetic. Since isolating languages
do not have inflectional changes, and words are
generally used in the form listed in the dictionaries,
such languages benefit from our proposed method
shown in Table 3.

Fusion. German, Old English, and Sanskrit have
stronger fusional (inflected) characteristics, and
Japanese, Uyghur, and Manchu have stronger ag-
glutinative characteristics. In fusional languages,
affixes carry multiple grammatical functions, re-
quiring more training data to capture these func-
tions than in agglutinative languages, where each
affix corresponds to a single grammatical function.
As a result, the performance improvement by our
proposed method for German, Old English, and
Sanskrit is limited, as shown in Table 3.
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Figure 4: The perplexity distribution and box plot of
Llama 3.1-based our proposed method without the re-
moval step.

5.7 Ablation Study

LAPT. LAPT improves NER performance for
Japanese, Old English, Uyghur, and Khmer, while
it has challenges for German, Sanskrit, and
Manchu, as shown in Table 3. Considering that
we fine-tune the models for NER, this suggests that
LAPT plays an insignificant role. This result is be-
cause the word order is insufficient for MLMs, and
we also fine-tuned the model for NER. On the other
hand, LAPT improves the perplexity for all lan-
guages, as shown in Table 4. This result suggests
that LAPT tunes the model for target languages
by incorporating word order, as the subword ini-
tialization does not consider word order. On the
other hand, Figure 3 implies that there might be
out-of-distribution samples with limited training
data.

Mapped Subwords during Transferring Ta-
ble 8 shows the number of mapped subwords in
each iteration. The number remains almost the
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German Japanese Old English Uyghur Sanskrit Khmer Manchu

Ours (w/o LAPT) 76.99 71.93 45.43 36.06 44.23 42.21 94.87
- Removal 74.48 55.30 46.83 31.16 43.81 37.50 95.25

Ours (w/ LAPT) 76.43 73.60 52.71 64.52 42.08 62.96 92.87
- Removal 59.96 29.70 29.75 49.89 53.70 57.27 41.58

Table 9: Micro F1 scores of MLMs for WikiANN and ManNER of RoBERTa-based models when skipping the (4)
Removing step in our proposed method, finishing the subword mapping at the first iteration.

German Japanese Old English Uyghur Sanskrit Khmer Manchu

Llama 3.1
Ours (w/o LAPT) 444,876.62 473.72 46180.42 18,053.31 1,503.39 64,508.22 144,818.36

- Removal 16,709.97 19.73 17,395.35 7,126.41 3,404.88 13,652.20 52,778.58
Ours (w/ LAPT) 88.61 4.42 406.53 168.43 3.56 4.32 502.02

- Removal 25.00 2.98 28.25 55.62 3.07 3.67 549.36

Gemma 2
Ours (w/o LAPT) 6,802,328.30 1,340.02 4,685,467.63 3,163,709.28 97,101.92 652,351.91 4,848,206.72

- Removal 9,314.48 131.73 50,985.49 51,610.23 35,789.10 5,966.91 403,457.47
Ours (w/ LAPT) 595.14 5.83 1,324.49 83.32 10.57 16.80 509.64

- Removal 18.98 5.98 37.22 1,650,481.13 6.91 3.71 1,238.87

Table 10: The perplexity when skipping the (4) Removing step in our proposed method and finishing the subword
mapping at the first iteration.

same across different models, indicating that itera-
tive mapping is robust across base models’ tokeniz-
ers for the same language.

Subword Removal. Table 9 and Table 10 show
the results of the ablation study about the mapped
subword removal step in our proposed method. Fig-
ure 4 shows that OOV issues also occur without the
removal. The distribution of other languages and
analysis are in Appendix B.2. These results indi-
cate that the removal of mapped subwords and iter-
ation play a crucial role in MLMs, specifically for
LAPT. On the other hand, the removal and iteration
negatively affect CLMs, except in Japanese and
Manchu. The number of mapped subwords after
the second loop varies across languages, as shown
in Table 8. For MLMs, the number of mapped
subwords is essential, so the removal works well.
For example, approximately only 60% of subwords
in the vocabulary of the Japanese tokenizer are
mapped in the first loop, which causes the per-
formance decrease. These results also align with
the analysis in Section 5.2. The exacerbation of
perplexity indicates that the shorter subword map-
ping is noise for CLMs. However, skipping the
removal sometimes causes inefficient fine-tuning,
as in Uyghur. We conclude that removal can im-
prove MLM performance and enhance the model’s

ability to handle extremely low-resource languages
that are not included in the training data of pre-
trained models.

6 Conclusion

In this study, we propose a dictionary-based cross-
lingual vocabulary transfer approach. This method
utilizes bilingual dictionaries, which are available
even for low-resource languages. It iteratively
maps a subword in a target language to subwords in
a source language and initializes the target subword
embeddings. The experimental results demonstrate
that our approach effectively initializes the sub-
word embeddings for low-resource languages, in-
dicating it is a promising approach for building
language models for those languages.

Limitations

Dictionaries and Languages. Dictionaries have
only the unmarked form and not the inflected form
in general, suggesting that handling inflection is
challenging for our dictionary-based method. Ad-
ditionally, some online dictionaries (e.g., MUSE)
suffer from quality issues (Kementchedjhieva et al.,
2019). However, as this study demonstrates, the
dictionary-based method performs better for low-
resource languages than the existing method we
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used as a baseline. This indicates that dictionaries
are helpful for cross-lingual vocabulary transfer for
low-resource languages despite the lack of gram-
matical information.

Language Set. In the experiments, we used
seven languages: German, Japanese, Old English,
Uyghur, Sanskrit, Khmer, and Manchu. The num-
ber of selected languages is limited, and there are
other languages with different linguistic features to
test. However, we include the language, Manchu,
whose resources are less available on the Internet.
This means that we tested the language in which
the training data of language models contains less
data, which is valuable for low-resource languages.

Generalizability. Our proposed method shows
challenges for several languages and might raise
questions about the generalizability. However, it is
valuable if the method improves the performance of
languages that face challenges with existing meth-
ods.

Evaluation. We evaluated CLMs by perplexity,
which might raise questions about fair comparison
when we compare a model with other models with
different tokenizers. The performance of down-
stream tasks can be used to evaluate CLMs (Yam-
aguchi et al., 2024b; Minixhofer et al., 2024; Han
et al., 2025). However, we aim to apply our pro-
posed method to low-resource languages, including
extremely low-resource languages (e.g., Manchu),
and the downstream tasks’ datasets for CLMs are
not available for those languages. Thus, we use the
perplexity normalized by word length, not subword
length, for fair comparison.

Performance Improvement. Section 5 shows
that the performance improvement is limited with
our proposed method for some languages. There
is room for performance improvement by refin-
ing the alignment method or hyperparameter tun-
ing. However, the limited improvement is a known
problem in cross-lingual vocabulary transfer for
low-resource languages (Yamaguchi et al., 2024b).
We aim to demonstrate the potential of a dictionary-
based approach for cross-lingual vocabulary trans-
fer in low-resource languages, and performance
improvement will be the subject of a future study.

Model Expansion Instead of Replacement. In
this study, we replace the source vocabulary with
the target vocabulary instead of extending the
source vocabulary. Vocabulary expansion is some-

times needed for multilingualism. However, vocab-
ulary replacement performs better than expansion
for target languages (Dobler and de Melo, 2023;
Yamaguchi et al., 2024a), and sometimes performs
better even in a source language (Yamaguchi et al.,
2024a). In this study, we incorporate vocabulary
replacement for this reason.

Tokenization. Since the trained tokenizer using
dictionary entries has meaningful tokens in our pro-
posed method, morpheme-aware tokenization (Li-
bovický and Helcl, 2024; Asgari et al., 2025) can
be helpful. Other tokenizers can also be used, such
as SentencePiece (Kudo and Richardson, 2018).
However, in this study, we trained BPE tokenizers,
which are widely used tokenizer types, to compare
with existing models.

Ethical Considerations

Dataset. In this study, we use bilingual dictionar-
ies and corpora from several sources. We follow
the given licenses for each dataset. These datasets
might contain identical or sensitive information,
even though they are used widely. The model’s
behavior in this study should be assessed before
releasing it as an application.

Use of AI Assistants. In this study, we have used
GitHub Copilot for coding support.
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Jindřich Libovický and Jindřich Helcl. 2024. Lexically
grounded subword segmentation. In Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7403–7420, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yihong Liu, Peiqin Lin, Mingyang Wang, and Hinrich
Schuetze. 2024. OFA: A framework of initializing
unseen subword embeddings for efficient large-scale
multilingual continued pretraining. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 1067–1097, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining
approach. Preprint, arXiv:1907.11692.

Benjamin Minixhofer, Fabian Paischer, and Navid Rek-
absaz. 2022. WECHSEL: Effective initialization of
subword embeddings for cross-lingual transfer of
monolingual language models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3992–4006,
Seattle, United States. Association for Computational
Linguistics.

Benjamin Minixhofer, Edoardo M. Ponti, and Ivan Vulić.
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A Details of Experimental Setups

We use the Hugging Face Transformers li-
brary (Wolf et al., 2020) to utilize the language
models. Table 11 lists the models used in this study
along with their corresponding Hugging Face IDs.
The hyperparameters used in the experiments are
in Tables 12 and 13. We execute the EM algo-
rithm seven times with fast_align. We use a sin-
gle NVIDIA GeForce RTX 3090 GPU for training
MLMs and inference of MLMs and CLMs. We
also use eight NVIDIA L4 GPUs, a single NVIDIA
A100-SXM4-40GB GPU, or one or two NVIDIA
RTX A6000 or NVIDIA RTX 6000 Ada Genera-
tion GPUs for training of CLMs.

B Details of the Results

B.1 Visualization
Figure 5 visualizes the subword embedding with
t-SNE (van der Maaten and Hinton, 2008) for
Manchu, emphasizing several subwords’ points.
This figure demonstrates that the subwords that
have similar meanings or concepts to each other
are positioned close to each other.

B.2 Removal and Perplexity Distribution
Figure 6 illustrates the perplexity distribution.
There are some outliers even after the LAPT was
performed. Figure 7 illustrates the perplexity distri-
bution without the removal step. The distribution
is similar to that with the removal step.

Language Models HuggingFace ID

RoBERTa (base) FacebookAI/roberta-base
XLM-R (base) FacebookAI/xlm-roberta-base
Llama 3.1 8B meta-llama/Llama-3.1-8B
Gemma 2 9B google/gemma-2-9b

Table 11: Lists of the models with Hugging Face IDs
we used in this study.

Parameter Value

Batch size 8, 16
Epochs 2, 50
Sequence length 256, 512
Learning rate 1× 104

Learning rate scheduler cosine
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 108

Precision bf16
Seed 42

Table 12: Hyperparameters for LAPT. We train CLMs
with batch size 8, 2 epochs, and sequence length 512,
and MLMs with batch size 16, 50 epochs, and sequence
length 256.

Parameter Value

Batch size 64
Epoch 25
Learning rate 5e-5
Learning rate scheduler linear
Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 108

Seed 42

Table 13: Hyperparameters for task adaptation.

bithe

monggo
solho

margan

tacimbi

sati

Figure 5: The subword embedding visualization with t-
SNE for Manchu after transferring from RoBERTa with-
out LAPT. “monggo”, “slho”, “bithe”, “tacimbi”, “sati”,
“margan” mean “Mongol”, “Korea”, “book”, “lern”,
“bear”, and “deer” respectively.
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Figure 6: The perplexity distribution and box plot of Llama 3.1-based our proposed method.
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Figure 7: The perplexity distribution and box plot of Llama 3.1-based our proposed method without the removal.
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