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Abstract

Artificial Text Detection (ATD) is becoming in-
creasingly important with the rise of advanced
Large Language Models (LLMs). Despite nu-
merous efforts, no single algorithm performs
consistently well across different types of un-
seen text or guarantees effective generalization
to new LLMs. Interpretability plays a crucial
role in achieving this goal. In this study, we
enhance ATD interpretability by using Sparse
Autoencoders (SAE) to extract features from
Gemma-2-2B’s residual stream. We identify
both interpretable and efficient features, ana-
lyzing their semantics and relevance through
domain- and model-specific statistics, a steer-
ing approach, and manual or LLM-based in-
terpretation of obtained features. Our meth-
ods offer valuable insights into how texts from
various models differ from human-written con-
tent. We show that modern LLMs have a dis-
tinct writing style, especially in information-
dense domains, even though they can produce
human-like outputs with personalized prompts.
The code for this paper is available at https:
//github.com/pyashy/SAE_ATD.

1 Introduction

The active development of large language mod-
els (LLMs) has led to the increasing presence of
AI-generated text in various domains, including
news, education, and scientific literature. Although
these models have demonstrated impressive flu-
ency and coherence, concerns about misinforma-
tion, plagiarism, and AI-generated disinformation
have required the development of reliable artificial
text detection (ATD) systems (Abdali et al., 2024).
Existing ATD frameworks primarily rely on sta-
tistical measures, linguistic heuristics, and deep
learning classifiers, yet these methods often lack
interpretability, limiting their reliability in high-
stakes applications (Yang et al., 2024).

A promising approach to enhancing interpretabil-
ity in ATD is the use of Sparse Autoencoders

Figure 1: Interpretations of one of the most “universal”
SAE features that are useful for ATD task.

(SAEs), which learn structured representations
of textual data by enforcing sparsity constraints
(Huben et al., 2023; Makelov et al., 2024). We can
extract human-interpretable features that capture
the underlying structure of text.

In this study, we extend this line of research
by applying SAEs from the Gemma-2-2b model
(Team, 2024a) residual streams to analyze features
that contribute to artificial text detection. By exam-
ining these features, we introduce a categorization
of extracted features into discourse features (captur-
ing long-range dependencies), noise features (high-
lighting unnatural artifacts), and style features (dis-
tinguishing stylistic variations). Our contributions
are the following:

(i) we demonstrate the efficiency of SAE for
the ATD task; (ii) we extract features which alone
can effectively detect artificial texts for some do-
mains and generation methods; (iii) interpreting
these features, we identify meaningful patterns that
contribute to ATD interpretability.

For our main dataset, we utilized a highly com-
prehensive and up-to-date dataset from GenAI Con-
tent Detection Task 1 – a shared task on binary
machine-generated text detection, conducted as
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part of the GenAI workshop at COLING 2025
(Wang et al., 2025). Hereafter referred to as the
COLING dataset, it contains a diverse range of
model generations, from mT5 and OPT to GPT-
4o and LLaMA-3. A complete list of models,
along with generation examples, is provided in Ap-
pendix C.

We also performed additional experiments on the
RAID dataset (Dugan et al., 2024), which contains
generations from several models with various sam-
pling methods and a wide range of attacks, from
paraphrasing to homoglyph-based modifications.
We provide the full list of models and attacks, along
with examples of generations, in Appendix B.

2 Background

Given a token sequence (t1, t2, ..., tn), an LLM
computes hidden representations xi ∈ Rd at each
layer l as x

(l)
i = g(l)(x

(l−1)
1 ,x

(l−1)
2 , ...,x

(l−1)
i ),

where g represents a transformer block, typically
including self-attention and feedforward opera-
tions. These activations encode meaningful in-
formation about text, but understanding models
requires breaking them into analyzable features.
Individual neurons are limited as features due to
polysemanticity (Olah et al., 2020), meaning that
models learn more semantic features than there are
available dimensions in a layer; this situation is re-
ferred to as superposition (Elhage et al., 2022b). To
recover these features, a Sparse Autoencoder (SAE)
has been proposed to identify a set of directions in
activation space such that each activation vector is
a sparse linear combination of them (Sharkey et al.,
2023).

Given activations x from a language model, a
sparse autoencoder decomposes and reconstructs
them using encoder and decoder functions with
some activation function σ:

f(x) = σ(Wencx+ benc)

x̂(f) = Wdecf(x) + bdec

for which x̂(f(x)) should map back to x. Here, the
sparse and non-negative feature vector f(x) ∈ RM

(with M ≫ d) specifies how to combine columns
of Wdec which is learned features, or latents in
order to reconstruct x.

3 Methods

In this work, we take a step towards improving
the interpretability of artificial text detection using

SAEs. We employ the Gemma-2-2B model along
with pre-trained autoencoders on residual streams
from Gemma-Scope (Lieberum et al., 2024).

Classifier models. For each even layer, we uti-
lize an individual SAE (f (l), x̂(l)) to extract learned
features from each token. To obtain a feature vector
f representing the entire text for layer l, we sum
over all tokens, yielding

f =
n∑

i=1

f (l)(x
(l)
i )

We use an XGBoost classifier to evaluate the
expressiveness of the full feature sets for each layer
and identify the most important features for fur-
ther analysis1, while LLM and SAE models remain
frozen. The classifiers are trained exclusively on
the Train subset of COLING and evaluated on the
similar Dev set, as well as on the entirely distinct
Devtest and Test subsets.

Additionally, we employ indicator functions of
the form I[fj > τ ] as threshold-based classifiers on
individual features for a detailed feature analysis.
To obtain the optimal classifier Iτ∗ , we determine
the threshold τ∗ using logistic regression on the
training data. Furthermore, leveraging the sparsity
of the feature vectors, we define classifier I0 by
setting τ = 0. In this setting, we consider feature j
to be activated in a text if fj > 0, and not activated
otherwise.

Manual Interpretation and Feature Steering.
For manual interpretation, we analyzed the texts
that activate the most expressive features. In layers
with strong performance and generalization (layers
8 to 20), we selected the top-20 most significant fea-
tures identified by XGBoost, as well as all features
that achieved the highest detection performance for
each domain and model using a threshold classifier.
These selected features, their statistical properties,
and example texts are publicly available2.

To examine how learned features affect text gen-
eration, we use feature steering, which enables tar-
geted modifications by selectively adjusting latent
feature activations. For a given feature with index
i, associated with a specific text property, we first
compute its maximum activation Amax across a
reference dataset. During generation, hidden states

1We use a pretrained SAE with 16k of features. However,
only 1–2% of these features contribute to ATD, based on the
top 90% of cumulative gain derived from XGBoost.

2https://mgtsaevis.github.io/
mgt-sae-visualization/
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Figure 2: Macro F1 for XGBoost model on mean-pooled activations and SAE-derived features on different subsets
of COLING

Figure 3: Macro F1 for a threshold classifier on individual features across each model for the 16th layer. Max F1
presents the maximum F1 score for every feature; features 3608 and 4645 are considered general features

are modified as

x′ = x+ λAmaxdi

where x is the original hidden state, di is the col-
umn of Wdec and λ is a scaling factor controlling
the steering effect.

Furthermore, we employed the GPT-4o model
to analyze changes across all sequences and deter-
mine the nature or function of a particular hidden
feature (see Appendix I).

4 Results

General Detection Quality. To verify that SAE-
derived features enable the detection of artificially
generated texts, we apply XGBoost on these fea-
tures and compare the results with XGBoost ap-
plied to mean-pooled activations from the layers.
For training, we use the Train Subset of COLING
datasets, while testing is conducted on all remain-
ing data from it.

As shown in Figure 2, both SAE features and
activations perform well on this subset but degrade
slightly on others. Notably, SAE features outper-
form activations both in training and across other
subsets, suggesting that removing superposition
helps the classifier focus on more fundamental,
atomic features.

Although our primary objective is interpretabil-
ity, it is worth noting that at the 16th layer SAE-
derived features outperform the state-of-the-art
MTL model on this dataset (Gritsai et al., 2025).
However, out-of-domain performance appears to
be influenced by the choice of architecture and
model. We conducted additional experiments us-
ing other pretrained SAEs based on LLaMA-3.1-
8B (He et al., 2024) and Pythia-160M-deduped3.
While these models demonstrated comparable per-
formance on in-domain tasks, their ability to gen-
eralize to unseen domains was noticeably weaker
(see discussion in Appendix G).
Domain/Model-Specific and General Features.
In our analysis of the feature structure, our objec-
tive is to distinguish between general features and
domain- or model-specific features. We focus on
the 16th layer, as its features have proven to be the
most expressive and lead to the best generalization,
as discussed in the previous section. Given the
highly imbalanced distribution in the dataset, we
split it into subsets by domains or models. Then we
trained a threshold classifier Iτ∗ for each feature
across different subsets and analysed their perfor-
mance. However, we observed that in most cases,

3https://github.com/EleutherAI/sparsify
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Figure 4: F1 Macro by the domains subsets for some
general and domain-specific features for the 16 layer.

the Iτ∗ is similar to classifying based on I0, which
corresponds to activation of specific feature in the
text (see discussion in Appendix F and Table 7).

Interestingly, some features consistently exhibit
high classification quality across multiple domains
or models, which we refer to as general features.
Some general features (e.g., 3608 and 4645 in layer
16) appear universal across domains and models.
To demonstrate this, we compare the best feature
for detecting each generator with these universal
features (Figure 3). The graph shows that for older
models (e.g., Flan, T0), general feature perfor-
mance drops below random, while the OPT family
is the most “universal”. This suggests distinct char-
acteristics among model classes (see Section 5):
older/weaker models (Flan, T0), more advanced
LLMs (OPT, Bloom, GPT_J, GPT_Neo), and mod-
ern families (GPT-3.5+, LLaMA, Gemma). We
also explore how these features behave on different
domains in Figure 4. These features achieve high
scores across diverse textual domains (e.g., finance,
medicine, open-domain QA), suggesting that gen-
eral features may exhibit more universal linguistic
properties.

These features also present the case where, for
the majority of domains, classification is effectively
equivalent to whether the feature is activated or not,
as illustrated in Figure 5. As a result, classifica-
tion performance is not particularly sensitive to the

Figure 5: Activation frequency of Feature 3608 in the
16th transformer layer across domains, based on the I0
classifier. Bars indicate the proportion of texts in which
the feature is activated ("On") or not activated ("Off")
for Human- and AI-generated texts.

choice of threshold. Additional results for more
features and classification results across different
domains are provided in the Appendix E.

In contrast, other features are more specialised,
performing well only within specific domains or de-
tecting generations of a particular subset of models,
highlighting their domain- or model-specific nature.
Examples of these features and their performance
are also shown in Figure 4.
Robust Feature Analysis. Building on Kuznetsov
et al. (2024), we evaluate the classifier for the pres-
ence of harmful superficial features and those vul-
nerable to different types of attacks on artificial
text classifiers, using the RAID dataset. Technical
details of these experiments can be found in Ap-
pendix D. There, we show that some SAE features
can act as indicators of spurious text properties and
adversarial attacks that may mislead ATD. In the
same time, the features most susceptible to attacks
and shallow text properties overlap minimally with
those identified as important by XGBoost. Specifi-
cally, features 8689 (detecting the GPT3.5+ family)
and 14919 (detecting the Bloom family) are very
sensitive to sentence length; feature 14919 is also
affected by syntactic anomalies in the text, such as
unusually long ellipses. Meanwhile, other types of
distraction have limited impact on key features.

5 Important Features Interpretation

In this section, we discuss the insights from an-
alyzing feature interpretations, starting with the
most robust features: 3608, 4645, 6587, 8264, and
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14161. Their performance in the ATD task across
various domains and models is shown in Figures 4
and 8.

Strong activations of these features correlate
with common LLM-generated text characteristics,
such as excessive complexity (3608), assertive
claims (4645), wordy introductions (6587), repeti-
tion (8264), and formality (14161). These features
perform well on GPT3.5+ and other modern LLMs
such as LLaMA and Gemma, especially for do-
mains such as finance, medicine, and Wiki-CSAi.
However, texts from arXiv are less distinguishable,
suggesting GPT models mimic scientific writing
more closely.

Feature 8264 stands out with near-perfect perfor-
mance for GPT3.5+, controlling the conciseness
vs. repetition of concepts. Older models lack this
feature, leading to lower detectability.

Domain-specific features include overcompli-
cated syntax (arXiv, feature 12390), exces-
sive details (finance, feature 6513), speculative
links (Reddit, feature 4560), and hallucinated
facts (Wikipedia, feature 4773). Improper tone
(medicine, feature 14953) also signals machine-
generated texts.

The most challenging domains for detection are
Outfox (essays) and Yelp (reviews), where models
mimic human-like writing. This suggests that gen-
eral “overcomplexity” of the features may not be
effective when models are instructed to avoid such
traits.

Appendix H provides additional details on the
interpretation of the most expressive features. In
particular, Tables 8, 9, 10, and 11 present de-
tailed explanations - derived from manual analysis,
standard auto-interpretation technique, and auto-
interpretation of steering results - for key features,
along with examples of texts showing their high-
est activations. Note that in steering, we adjust
a feature’s value across all tokens, while in real
texts, it activates on only a few. Namely, we ob-
serve three activation patterns: token-level (e.g.,
missed formulae, feature 1416), structural (e.g.,
sentence endings, introduction words, numbering,
feature 6587), and discourse-level (e.g., concept
flow, reformulations, contradictions, features 4645,
8689). Tokens where the feature is activated are
highlighted in green in the Tables. Manual inspec-
tion of documents with high feature values offers
complementary interpretative insights.

6 Conclusion

Our analysis shows that modern LLMs often gen-
erate easily detectable text due to specific writing
styles, such as long introductions, excessive syn-
onym substitution, and repetition. However, ad-
versaries can bypass these features by using less
formal and more personalized prompts, leading to
more human-like outputs.

Unlike previous approaches, we perform a mul-
tifaceted analysis of features for Artificial Text De-
tection (ATD). We select key features, examine
their behaviour across domains and generators, and
interpret them both through manually analysing
extreme values and inspecting medium shifts with
steering and LLM interpretation. This approach
provides deeper insights into feature meanings. For
example, our interpretation of feature 3608 con-
trasts with Neuropedia’s very specific view, which
links it to “tokens associated with mathematical
expressions”. Similarly, feature 4645, described by
Neuropedia as related to “keywords on diabetes” is
more broad and relevant in our analysis.

We conclude that Sparse Autoencoder-based
analysis of ATD datasets is a valuable tool for
understanding text generators, detectors, and how
detectors generalize to new setups. Our findings
highlight that detecting AI-generated text is easier
with a default prompt but becomes difficult when
prompt style changes, a crucial consideration for
ATD developers.

7 Limitations

Artificial text detection (ATD) is a highly complex
and evolving task. With new LLMs emerging al-
most every month, it is difficult to predict how our
method will perform on future artificial text genera-
tors. Additionally, novel attack strategies continue
to appear, and our approach covers only a subset of
them.

Some of the features extracted by the Sparse Au-
toencoder remain challenging to interpret, as not all
exhibit clear or consistent semantic meaning. Sev-
eral factors may contribute to this difficulty. One
possible explanation is that SAE architectures are
still relatively new in this context and not yet fully
understood. Prior work suggests that SAEs may
still contain polysemantic features (Leask et al.,
2025), and phenomena such as feature absorption
may occur (Chanin et al.), both of which compli-
cate interpretability. It is likely that further research
will yield clearer explanations of these features.
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Moreover, this short paper focuses exclusively
on a single SAE trained on the residual stream of
Gemma 2-2B. While we conducted preliminary ex-
periments with other SAEs (such as LLaMA Scope
and the Pythia SAE) these were not explored as
comprehensively as the SAE for Gemma. Future
work should extend this analysis to a broader range
of SAEs and language models, which may reveal
new types of features and yield deeper insights into
artificial text detection.
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datasets for strong in-domain performance (Chen
et al., 2023; Li et al., 2023; Yu et al., 2023). In
contrast, zero-shot methods analyze statistical pat-
terns without supervised fine-tuning, like token
likelihoods, probability curvature or intrinsic di-
mension (Gehrmann et al., 2019; Mitchell et al.,
2023; Tulchinskii et al., 2023).

However, the challenge of making AI-generated
text more interpretable for humans has only been
addressed by a limited number of approaches, ei-
ther through manual analysis (Guo et al., 2023)
or only partially investingating the dependencies
(Kuznetsov et al., 2024).
Sparse Autoencoders and Interpretability. LLM
interpretability is especially challenging due to
polysemanticity, where a single neuron encodes
multiple unrelated concepts (Elhage et al., 2022a,
2023). Sparse Autoencoders (SAEs) were pro-
posed to help isolating more interpretable latent
dimensions (Sharkey et al., 2023). Unlike standard
autoencoders, SAEs introduce a penalty (e.g. L1

regularization) to ensure that only a small subset
of neurons is active per input, resulting in highly
interpretable features (Cunningham et al., 2023).

Recent approaches use large language models or
heuristics to automate hypothesis generation and re-
finement (Bricken et al., 2023; Cunningham et al.,
2023; Gao et al., 2023). For example, (Bricken
et al., 2023) employ GPT-4 to label sparse dimen-
sions based on top-activating tokens, while (Cun-
ningham et al., 2023) use heuristic methods like
measuring overlap with linguistic categories to in-
fer dimension meanings. In our work we employ
both manual and automatic interpretation to ensure
unbiasedness of our approach.

To the best of our knowledge, Scher (2024)
presents the only attempt at explicitly using SAEs
for AI-generated text detection. In this preliminary
study, SAE trained on toy GPT-2 Small model was
used to show that linear probes on SAE activations
can modestly outperform baseline detectors. While
some neurons were found interpretable, the analy-
sis remained limited in scale and depth. In contrast,
our work applies SAEs to a larger model and of-
fers a substantially more comprehensive evaluation,
including cross-domain experiments, with richer
interpretability and performance analyses.
Datasets and Benchmarks. AI text detection in-
cludes many datasets, starting with GPT-2 Out-
put (Solaiman et al., 2019) and Grover (Zellers
et al., 2019), as well as TuringBench (Uchendu
et al., 2021), which unifies 19 models for cross-

evaluation. Additionally, domain-specific corpora
and “in-the-wild” tests, such as (Chakraborty et al.,
2023), become useful for enhancing model robust-
ness. However, some datasets with AI-generated
content may oversimplify the problem for detectors
by making AI texts “too detectable” (Gritsai et al.,
2024).

B RAID dataset: additional details

“Misspelling” attack No attack

I’m currently gold 2 in
rocket league and the
freind I play with is di-
amond 2, and he plays
the game a lot. I have
a busier schedule than
him so I cant put in the
same hours, and when-
ever I have time to hop
on he wants to play.
He’s my best freind so
I like talking w him
and playing, but I’m
getting carried in every
match. [...]

This paper presents
the second part of our
study on multicell
coordinated beam-
forming with rate
outage constraints.
We propose efficient
approximation al-
gorithms to address
the non-convex and
NP-hard problem of
minimizing the total
transmission power
in a multicell system.
[...]

Table 1: GPT-4 generations from RAID with and with-
out attacks. “Attacked” tokens are highlighted.

RAID dataset contains generations of numer-
ous models, such as GPT-2-XL (Radford et al.,
2019), davinci-0024, ChatGPT (Schulman et al.,
2022), GPT-4 (OpenAI, 2024a), Cohere5, Mistral
7B (Jiang et al., 2023), MPT-30B6 and LLaMA
(Touvron et al., 2023). However, for our purposes
we used only the most powerful ones: ChatGPT
and GPT-4.

Authors experimented with two types of decod-
ing (greedy and sampling) and applied repetition
penalty to a half of generations. Also they applied
various types of attacks to the texts, such as:

• Alternative spelling (British)
• Article (‘the’, ‘a’, ‘an’) deletion
• Adding paragraph (\n\n) between sentences
• Swapping the case of words from upper to

lower and vise versa

4https://platform.openai.com/docs/models
5https://docs.cohere.com/docs/models
6https://www.databricks.com/blog/mpt-30b
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• Zero-width space: Inserting the zero-width
space U+200B every other character

• Adding whitespaces between characters
• Homoglyph: Swapping characters for alter-

natives that look similar
• Randomly shuffling digits of numbers
• Inserting common misspellings
• Paraphrasing with DIPPER (Krishna et al.,

2023)
• Replacing words with synonyms.

The dataset contains 2,000 continuations for
every combination of domain, model, decoding,
penalty, and adversarial attack in total. However,
for our purposes, we used only 100 continuations
for every combination. Table 1 present examples
of GPT-4 generations from RAID dataset with and
without an attack for comparison.

C COLING dataset: additional details

The COLING dataset contains generations of the
models from the following families: a) LLaMA,
7 - 65B (Touvron et al., 2023); b) LLaMA 3, 8
and 70B (Grattafiori et al., 2024); c) GLM, 130B
(Zeng et al., 2023); d) Bloomz and Bloom 7B
(Muennighoff et al., 2023); e) Cohere7; f) GPT
3.5 series, including davinci 001-003 model8 and
gpt-3.5-turbo (Schulman et al., 2022); g) GPT-4
(OpenAI, 2024a) and GPT-4o (OpenAI, 2024b); h)
T5-based (Xue et al., 2021) and T0-based (Sanh
et al., 2022) models; i) Gemma 7B (Team, 2024b)
and Gemma 2, 9B (Team, 2024a); j) GPT-J, 6B
(Wang and Komatsuzaki, 2021) and GPT-Neo-X,
20B (Black et al., 2022); k) Mixtral 8 x 7B (Jiang
et al., 2024); l) OPT, 125M - 30B (Zhang et al.,
2022).

After analyzing the dataset manually, we identi-
fied that some samples contain anomalous punctua-
tion, while the others sample from the same models
(or human texts) were normal and did not contain
without these anomalies. We gathered some exam-
ples of such inconsistencies in Table 3. We hypoth-
esize that this inconsistency arises from the COL-
ING dataset being composed of multiple datasets
created by different authors.

Previous research works have shown that spuri-
ous features related to the text length (Kushnareva
et al., 2024) and formatting (Dugan et al., 2024)
significantly affect artificial text detection. More-
over, Cai and Cui (2023) found that sometimes

7https://docs.cohere.com/docs/models
8https://platform.openai.com/docs/models

Layer
Pattern 16 18 20

Length 1033, 16028 7373 8684
, - 2199 6631

....
2889,
8689,
14919

3851,
12685,
16302

8573,
11612,
12748

\n , 14919, 16028 12685 8573, 12267

Table 2: Features, that are the most sensitive to the
length of samples and syntactic anomalies

adding even a single space before the comma may
confuse detectors. Thus, we find it important to
analyze the peculiarities of the dataset we use and
investigate whether the features we examine truly
reflect inherent properties of the generated texts or
are simply influenced by superficial traits.

Figures 6a and 6b illustrate the frequency of var-
ious anomalies across the model generations. In
particular, we found that GPT-NeoX generations
contain the "...." anomaly most frequently among
all models. Meanwhile, human-generated texts in
the COLING dataset commonly contain spaces be-
fore commas or commas after line breaks, which
is likely a side effects of preprocessing procedures
applied when the datasets were compiled. Addi-
tionally, we discovered that the GPT-4o model used
double line breaks in almost every text it generated;
models from the Gemma and LLaMA-3 families
displayed double line breaks in more than half of
their generations as well. In contrast, human texts
contained far fewer double line breaks, with occur-
rences of three or more line breaks being relatively
rare across all models.

Talking about the lengths of the samples, we see
that they also vary a lot (see Figure 7). In particular,
T5- and T0- based models tend to generate much
shorter texts than other models. Due to this, we
investigate further which features are the most sen-
sitive to the length of the input texts and syntactic
anomaly in the Appendix D.

D Isolating features most sensitive to the
length of samples, syntactic anomalies
and attacks

To identify the features that are the most sensi-
tive to particular peculiarities of the texts, we took
measures to isolate influence of those peculiarities
from other text properties, such as the style or topic.
To achieve this, we performed the algorithms de-
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LLaMA 3-70B generation fragment (line breaks highlighted with red)
Hold it there with that hand while your other hand moves the bandage around your knee. Wrap it all
the way around once until the wrap comes around to meet the loose end. Pull it snug to secure it. \n
\n \n \n \n \n \n \n \n \n Make sure to wrap over the end you started with and put a twist (or two, so
that the roll returns to its original position) in the bandage directly above the end to hold it in place.
LLaMA 3-70B generation fragment (normal punctuation)
Either use your fingernails or a pair of pliers to secure the stud by folding down the spike ends on the
inside of the shoe. Repeat this process for all of the studs.
LLaMA 7B generation fragment (anomalous spaces before punctuation highlighted with red)
I just learned about broiling recently , but let ’s talk about baking first . When you
bake , you cook the food by surrounding it with hot air . Because the hot air is all around
the food , the food cooks from all the sides . If you use a toaster oven , you ’ll notice
that the heating elements are not really on when you bake .
LLaMA 7B generation fragment (normal punctuation)
This place is average at best. Our meal was a mixed bag of good and bad. On the good side, took our
reservations and when we showed up on time we were promptly seated. Also, they had a very nice
Carpaccio appetizer. That was well done. That was it.... no more good. On the bad side, all of the
dinners were rather bland and tasteless. My wife’s lamb chops were nothing to write home about.
OPT 30B generation fragment (long ellipses highlighted with red)
His wife. God ..... she was always so beautiful. We met at college, you see. The only woman I ever
loved. And boy did I love her. [...] All the media knew he was a jack-ass, but she ..... she was made
for the campaign trail.
OPT 30B generation fragment (normal punctuation)
The first time I went there a couple of years ago, it was pretty good. Then I went there a year ago
and it was ok. Went again tonight and in my opinion, it was some of the worst food I have ever had.
Like others have said, very inconsistent but either way, I won’t be going back.

Human text fragment (line breaks before commas highlighted with red)
, After scrubbing, allow the tattoo to sit for two hours without washing the salty scrub off. Once the
two hours are up, you should wash it thoroughly with cold water for 5-10 minutes. You may notice
some ink being washed away as the area is rinsed with water[...]
It is also advisable to apply a small amount of vitamin E over the area as this helps to promote
healing and prevent the formation of a scar. Vitamin E also helps to reduce inflammation and pain.
, Use a clean hand cloth to dry the skin and then an antibiotic cream can be applied on top. Use
sterile gauze to cover the area, which can be held in place using tape from a first aid kit. This helps
to protect the area and prevent infection.
, The dressing can be taken off after three days and the area assessed. If the skin is painful or
reddened, it may be infected. If this is the case, it is advisable to see the doctor or visit the nearest
hospital.
Human text fragment (normal punctuation)
St Clare’s Catholic Primary School in Birmingham has met with equality leaders at the city council
to discuss a complaint from the pupil’s family. The council is supporting the school to ensure its
policies are appropriate. But Muslim Women’s Network UK said the school was not at fault as young
girls are not required to wear headscarves. Read more news for Birmingham and the Black Country.
The Handsworth school states on its website that "hats or scarves are not allowed to be worn in
school" alongside examples including a woman in a headscarf. Labour councillor Waseem Zaffar,
cabinet member for transparency, openness and equality, met the school’s head teacher last week. In
a comment posted on Facebook at the weekend, claiming the school had contravened the Equality
Act, the councillor wrote: "I’m insisting this matter is addressed asap with a change of policy."

Table 3: Machine- and human-generated text samples from COLING25 with various punctuation patterns. Anoma-
lies are marked in red.
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(a) Frequency of occurrence of three common syntactic anomalies — spaces before commas, commas after line breaks, and
ellipses with more than three dots in the texts, generated by different models. The y-axis represents the percentage of samples
from COLING in which each anomaly appears at least once, while the x-axis indicates the generation models.

(b) Frequency of occurrence of the excessive line breaks — namely, two, three, or four line breaks in a row. The y-axis
represents the percentage of COLING dataset samples in which each amount of excessive line breaks appears at least once,
while the x-axis indicates the generation models.

Figure 6: Syntactic anomalies and excessive line breaks in model-generated texts.
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Figure 7: Average length of the text sample in COLING dataset by the generation model. The vertical axis represent
the text length (measured in Gemma-2-2B tokens), the horizontal axis indicates the generation models.

scribed below.

D.1 Length
To identify features most sensitive to sample length,
we used human-written texts from the COLING
dataset, since ir contains a significantly larger
proportion of human texts compared to model-
generated ones, and these texts are much more
diverse. Then, we selected those domains of hu-
man texts that contain a sufficiently large amount
of text samples ( > 1000 samples). For each such
domain, we identified the top 10% longest and top
10% shortest texts. For both sets, we calculated
the values of each feature, then computed the dif-
ference between the average feature values for the
longest and shortest texts. Thus, for each domain,
we identified the top-10 features with the great-
est differences. Subsequently, we computed the
intersection of these top-10 features across all do-
mains, to eliminate the influence of properties of
each particular domain.

D.2 Syntactic anomalies
For each syntactic anomaly, we identified the top
three domains of human texts from COLING that
contained the highest proportion of texts exhibiting

the given anomaly. For each domain, we calculated
average feature values for texts with and without
the anomaly. Then, we selected top-10 features
with the greatest differences for each domain. Fi-
nally, we computed the intersection of these top-10
features across all top-3 domains, isolating those
features that consistently exhibited the highest sen-
sitivity to the given anomaly. The process was
repeated for several layers of SAE.

The results are presented in the Table 2 for length
and three described earlier anomalies: spaces be-
fore commas, commas after line breaks, and el-
lipses with more than three dots in the texts.

As one can see, the most anomalies persistently
activate from 1 to 3 SAE features on each layer.
At the same time, this method didn’t reveal any
features persistently sensitive to markdown para-
graphs ( ##) and to repeating line breaks (\n\n).
Interestingly, we identified several features that
reacted to markdown paragraphs by hand (for ex-
ample, features 1033 and 15152 on the 16th layer
of SAE). However, the fact that these features were
not captured by our algorithm suggests that they
lack sufficient stability under domain variation.

Only features 8689 and 14919 from Table 2
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are among the best in detecting GPT models and
Bloom model families respectively (Table 10).

D.3 Attacks

To identify features most sensitive to attacks, we
switched to the RAID dataset. From this dataset,
we selected three of the most powerful generating
models: ChatGPT-3.5, GPT-4, and human. For
each model and domain, we calculated the top-10
features that are the most sensitive to each type
of attack, using the same method as for syntactic
anomalies. Then, for each attack, we took the in-
tersection of the top-10 features across all domains
and generation models. The results are presented
in the Table 4.

As one can see, the Table doesn’t include "num-
ber", "paragraphs insertion", "alternative spelling",
"misspelling" and "paraphrase" attacks. This is so
because our method didn’t find the features that
would indicate these types of attack consistently
across all models and domains. Also note that this
time, we calculated the top-10 features not from all
available features but from the top 10% most im-
portant features for ATD based on XGBoost results.
If we calculate the top-10 from all possible features,
our strict method don’t capture any intersections.

The selected feature set does not intersect with
the best ATD detection features, whether general or
model- or domain-specific. A detailed analysis of
how each of the top-performing ATD detection fea-
tures individually responds to adversarial attacks
deserves further investigation but is beyond the
scope of this work.

E Cross-domain analysis

Tables 5 and 6 show the cross-domain performance
of threshold-based classifiers Iτ∗ for two represen-
tative general features (3608 and 6587) of 16th
layer. These results support our claim that clas-
sifiers built on such features are largely domain-
invariant. Regardless of the domain used for train-
ing, the classification performance remains consis-
tently high across test domains.

In Figure 8, we report the macro F1 score for the
classifiers built upon the most distinctive general
and model-specific features extracted from the 16th
layer. The top features across domain and model
subsets are shown in Figures 9 and 10, respectively.

Figure 8: F1 Macro by the models subsets for some
general and model-specific features for the 16 layer

F Threshold Classifiers Analysis

To further investigate the role of individual fea-
ture activations in classification performance, we
compared Iτ∗ and I0 on general features.

Table 7 summarizes the performance of these
classifiers across various domains. We find that
classifier I0, which only checks for activation, per-
forms comparably to (and sometimes better than)
the threshold-tuned classifier Iτ∗ . In particular, for
feature 4645, the performance gap is significant in
favor of I0 across nearly all domains.

These results suggest that in many cases, the acti-
vation of a specific feature is already a strong signal
for classification, reinforcing the interpretability
and simplicity of using feature activation as a deci-
sion rule.

G Results on other LLMs

We conducted similar experiments on other SAE,
the first is based on LLaMA 3.1 8B, namely
LLaMA-Scope (He et al., 2024). Another SAE
is based on Pythia-160M-deduped. The results are
presented on Figures 11a and 11b. For these two
experiments, we did not train on Train set, as for
LLaMA Scope it was too computationally expen-
sive, therefore we trained XGBoost only on Dev,
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Layer Art. deletion Homoglyph Whitespace 0-width space Upper/lower Synonim

16 3518, 13998 9266 9266, 5627,
10229, 750

9266, 10262 13998 4052, 9100,
13998

18 7905, 2006 8408, 4859,
3037

281, 1970
15780

281, 12530
4859

3037, 2006 1642, 2006,
13017, 3037,

10815

20 11612 15523, 9589,
743

12602, 11363,
15415, 3879

6793, 9589 11612, 3302 11612

Table 4: Features that are the most sensitive to various types of attacks

Train Set Finance Medicine PeerRead Reddit Wiki-CSAI Wikipedia WikiHow OpenQA ArXiv

All 0.97 0.98 0.78 0.82 0.97 0.83 0.82 0.92 0.57

Finance 0.97 0.98 0.77 0.82 0.97 0.83 0.81 0.92 0.57
Medicine 0.97 0.98 0.83 0.85 0.98 0.86 0.82 0.94 0.62
PeerRead 0.97 0.98 0.83 0.85 0.98 0.86 0.82 0.94 0.62
Reddit 0.97 0.98 0.81 0.85 0.98 0.85 0.82 0.93 0.61
Wiki-CSAI 0.96 0.97 0.75 0.80 0.97 0.81 0.81 0.91 0.55
Wikipedia 0.97 0.98 0.82 0.85 0.98 0.86 0.82 0.94 0.62
WikiHow 0.94 0.92 0.67 0.75 0.94 0.75 0.79 0.85 0.49
OpenQA 0.97 0.98 0.82 0.85 0.98 0.86 0.82 0.94 0.62
ArXiv 0.97 0.98 0.83 0.85 0.98 0.86 0.82 0.94 0.62

Table 5: Cross-domain performance of threshold classifier Iτ∗ for Feature 3608 in 16th layer. All represents
combined data of all domains in Train Set. Green indicates better or same performance as in All row; red indicates
performance below it.

Train Set Finance Medicine PeerRead Reddit Wiki-CSAI Wikipedia WikiHow OpenQA ArXiv

All 0.99 0.99 0.77 0.90 0.99 0.88 0.79 0.93 0.77

Finance 0.99 0.99 0.81 0.91 0.98 0.89 0.78 0.96 0.79
Medicine 0.99 0.99 0.77 0.90 0.99 0.88 0.79 0.94 0.77
PeerRead 0.99 0.99 0.81 0.91 0.98 0.89 0.78 0.96 0.78
Reddit 0.99 0.99 0.81 0.92 0.98 0.89 0.78 0.96 0.79
Wiki-CSAI 0.98 0.99 0.70 0.87 0.99 0.87 0.78 0.84 0.72
Wikipedia 0.99 0.99 0.78 0.90 0.99 0.88 0.79 0.94 0.78
WikiHow 0.99 0.99 0.71 0.88 0.99 0.87 0.78 0.86 0.73
OpenQA 0.99 0.99 0.82 0.92 0.97 0.89 0.77 0.96 0.79
ArXiv 0.99 0.99 0.82 0.92 0.97 0.89 0.77 0.96 0.79

Table 6: Cross-domain performance of threshold classifier Iτ∗ for Feature 6587 in 16th layer. All represents
combined data of all domains in Train Set. Green indicates better or same performance as in All row; red indicates
performance below it.

and tested on Devtest and Test subsets.

The out-of-domain results are lower compared
to those obtained using Gemma-based SAE fea-
tures and activations. We attribute this performance
gap to two primary factors: (a) the smaller train-
ing dataset used in these particular experiments,
which may have limited the model’s ability to learn
generalized features, and (b) the possibility that

the classifiers based on Pythia and LLaMA focus
more heavily on specific features, leading to over-
fitting. Additionally, the narrower performance gap
between SAE features and embeddings in Pythia,
compared to Gemma and LLaMA, is likely due to
Pythia’s relatively smaller model size and its re-
duced capacity to retain useful information within
its embeddings.
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Classifier Finance Medicine PeerRead Reddit Wiki-CSAI Wikipedia WikiHow Open-QA ArXiv

3608
Iτ∗ 0.97 0.98 0.80 0.84 0.98 0.84 0.82 0.93 0.59
I0 0.97 0.98 0.83 0.85 0.98 0.86 0.82 0.94 0.62

4645
Iτ∗ 0.74 0.71 0.44 0.86 0.65 0.79 0.78 0.59 0.56
I0 0.92 0.92 0.63 0.89 0.83 0.85 0.63 0.82 0.73

6587
Iτ∗ 0.99 0.99 0.80 0.91 0.98 0.89 0.78 0.95 0.78
I0 0.98 0.98 0.82 0.91 0.90 0.87 0.73 0.96 0.79

Table 7: F1 Macro for Iτ∗ and I0 classifiers (feature and method) across various domains.

Figure 9: Top features by domains subsets. Black rectangles indicite the domain for which the feature is top-1.

H Expressive features interpretations

Let us examine the interpretation results of the most
expressive features.

General features. (Table 8)
According to steering-based explanation, all pre-

sented features makes text lengthy and overwinded,
but with different flavour: feature 3608 increases
sentence complexity, feature 4645 responsible for
knowledge presentation complexity (even with-
out real knowledge), and feature 6587 incorages
lengthy introductionds and explanations. Accord-
ing the manual analysis, the first of them is concen-
trated on “scientfically-looking” tokens, the second
reacts on factual contradictions, and the third is ac-
tivated in structural elements of the text, like item
labels or introduction words.

GPT-specific features. (Table 9)
In Table 9 we present features detecting well

modern LLMs, especially GPT family. Feature
8689 responsible for excessive synonym substitu-
tions, and feature 8264 for thoughts repetitions (by
steering interpretation); from the examples we can
see that the first is activated on paraphrased ideas
already mentioned in the text, or on discussing alter-
natives. The second is activated on long common
words, specific for typical GPT style.

Domain-specific features.(Tables 10, 11)

Feature 12390 (arxiv) is responsible for syntactic
complexity. It is activated linking structures typical
for scientific writing.

Feature 1416 (wikihow) is interpreted as increas-
ing “phylosofical or metaphorical explanations” in-
stead of being simple and clear. In fact, its extreme
values succesfully detects texts where crucial parts
are missing, namely, results of parsing errors where
formulas and mathematical characters are lost. So,
discarding mathematical characters is the extreme
case of the unclarity.

Feature 6513 (finance) represent exessive expla-
nations behind clear facts. It is activated on opin-
ionate words and syntactic constructions “I mean”,
“like” etc

Feature 14953 (medicine) responsible for
second-person speech with direct instructions. Ac-
tivated on phrases containing “You” or “Your” pro-
nouns. Steering interpretes it as change from infor-
mal to formal language.

Feature 4560 (reddit) responsible for “specula-
tive casuality”, whith Reddit discussions as its ex-
treme implementation

Feature 4773 reacts on words flexibility. Steer-
ing interprets it as “hallucinations”.
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Figure 10: Top features by models subsets. Black rectangles indicite the model for which the feature is top-1.

(a) Results for LLaMA Scope

(b) Results for Pythia

Figure 11: Macro F1 for XGBoost model on mean-pooled activations and SAE-derived features on different subsets
of COLING for two other SAE-based models

I Steering: additional details and
examples

Feature steering was applied us-
ing shifts from the following set:
{−4.0,−3.0,−2.5,−2.0,−1.5,−1.0,−0.5, 0.5,
1.0, 1.5, 2.0, 2.5, 3.0, 4.0}. To analyze the effects
of these modifications, we utilized the GPT-4o
model. The prompt is shown in Figure 12.

In Table 12, we present examples of steering for
several features with their GPT-based interpreta-
tions using three prompts. While GPT generally

captures the influence of the features, some effects
are not fully accounted for. For instance, feature
6513 causes unnecessary expansion in factual ques-
tions (prompt P2) but adds positive intent in opin-
ionated contexts. Feature 4773 enhances writing
sophistication, feature 1416 boosts creativity in fic-
tional contexts and causes hallucinations in factual
ones, and feature 14953 turns every response into
legal advice.
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Manual ChatGPT Steering
Feature 3608

Detects ill-posed char-
acters and words, which
should appear normally
in scientific context,
e.g. numbers, brackets,
or words like “n” and
“neighbourhood”.

May regulate sentence
complexity and readabil-
ity;
Controls whether text is
simple or contains com-
plex, nested clauses.

Affects: Stylistic & Structural Complexity
Weakening (-2.0 and below): Produces short, choppy sentences
with minimal subordination.
Neutral (0.5 to 1.5): Maintains a natural balance of sentence
complexity.
Strong strengthening (2.0 and above): Creates overly complex,
multi-clause sentences that may be harder to read.

Sum value: 11018.12, domain: wikihow, model: bloomz
Here are some tips about what you’ll want to do before graduation: 1) Make sure you graduate! 2 ) Don’t forget to cele-
brate! 3 ) Be prepared for the future. 4) Enjoy yourself. 5) Get excited. 6) Celebrate. 7) Have fun. 8) Graduate.

9) Go to parties. 10) Do whatever. 11) Congratulations. 12) Good luck. 13) See ya. 14) You did it. 15) Happy.

16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 33) 34) 35) 36) 37) 38) 39) 40) 41) 42) 43) 44) 45)

46) 47) 48) 49) 50) 51) 52) 53) 54) 55) 56) 57) 58) 59) 60) 61) 62) 63) 64) 65) 66) 67) 68) 69) 70) 71) 72) 73) 74) 75)

76) 77) 78) 79) 80) 81) 82) 83) 84) 85) 86) 87) 88) 89) 90)

Feature 4645

Long “lively” stories with
coherent topics, but con-
sisting mainly of common
phrases, with too long
sentences, hard to capture
the objective of the story.

May influence factual
confidence and assertion
strength;
Affects whether state-
ments are presented as
speculation or fact.

Affects: Semantic & Persuasive Strength
Weakening (-2.0 and below): Introduces hedging and uncer-
tainty (e.g., “Some scientists believe that...”).
Neutral (0.5 to 1.5): Provides balanced, well-supported claims
Strong strengthening (2.0 and above): Encourages assertive,
definitive claims, even when speculative (e.g.,“Scientists have
proven that...”).

Sum value: 24744.33, domain: wp, model: opt-30b
I opened my eyes, expecting to be back in the car crash, hearing the screams of agony and the feeling of twisted metal
between my ribs. But instead, I found myself on a bed with... My heart was racing as if it were running away from me.
When did that happen? It had been so long since I’d considered what happened after death— but now here I lay, staring
up at nothingness above me ; empty black sky and flickering lights danced around me like fireflies in a dark forest .

My body felt heavy and weighted down by an unseen force all over again . "Who are you ?"

Feature 6587

Detects numbered lists or
other well-structured step-
wise reasoning text

May regulate directness
vs. explanatory buildup;
Affects whether informa-
tion is presented con-
cisely or with extended
context.

Affects: Stylistic & Informational Density
Weakening (-2.0 and below): Produces concise but sometimes
abrupt statements
Neutral (0.5 to 1.5): Ensures a balanced level of explanation.
Strong strengthening (2.0 and above): Encourages long-
winded introductions before getting to the point.

Sum value: 4727.02, domain: wikihow, model: gpt-3.5-turbo
Summer vacation is a time to enjoy yourself and make memories that last a lifetime. However, sometimes it can be hard to
find ways to stay entertained and not get bored during those long summer days . Luckily, there are plenty of activities

you can do to keep yourself busy and have fun at the same time . Here are some ideas to try out : 1. Decorate your
room : Give your room a fresh new look by hanging up some posters, re-arranging furniture or adding some colorful
throw pillows . 2. Prank call someone : Make some silly phone calls with your friends and see who can come up with
the funniest conversation . 3. Stay up all night : Have a late-night movie marathon, play board games, or just stay up
talking with friends

Table 8: Feature interpretations and examples of texts from the COLING dataset with exceptionally high feature
values. Tokens where the feature is activated are highlighted in green . Red color highlights the parts of the text
that are believed to influence the feature. For example, for feature 4645, the contradiction between the claim and the
generated content is emphasized.
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Manual ChatGPT Steering
Feature 8689, specific for GPT family

Detects long “gpt-style”
instructions, too verbose
and obvious; highly sensi-
tive to the presense of “....”
anomaly

May influence lexical va-
riety and synonym usage;
Determines whether text
repeats the same words or
uses synonyms.

Affects: Stylistic & Lexical Diversity
Weakening (-2.0 and below): Causes overuse of the same words
and phrases.
Neutral (0.5 to 1.5): Provides natural variation in word choice.
Strong strengthening (2.0 and above): Uses excessive syn-
onym substitution, sometimes making the text sound unnatural.

Sum value: 26528.57, domain: outfox, model: mixtral-8x7b
In recent years, online learning has become an increasingly popular alternative to traditional

brick-and-mortar education. While there are certainly advantages to attending classes in person,

there are also many potential benefits to attending classes online from home, particularly for students

who are sick or have experienced bullying or assault . One of the most significant benefits of online learning

for sick students is the ability to continue their education without the risk of spreading illness to others.

Feature 8264, specific for GPT family
Detects long “gpt-style”
instructions, too verbose
and obvious

May regulate redundancy
and reiteration of key
points;
Controls whether con-
cepts are concisely stated
or overly repeated.

Affects: Stylistic & Structural Redundancy
Weakening (-4.0 to -2.0): Produces underdeveloped explana-
tions lacking reinforcement.
Neutral (0.5 to 1.5): Ensures effective reinforcement of key
ideas.
Strong strengthening (2.0 and above): Introduces excessive
repetition, causing sentences to loop around the same idea.

Sum value: 23010.46, domain: wikihow, model: gpt4o
Creating a soothing and predictable environment can do wonders for motivating an autistic

teen or adult to exercise. Loud noises, bright lights, and chaotic spaces may cause sensory

overload, making it difficult for them to focus. An environment that feels secure and calm can greatly enhance their

willingness to engage in physical activity. Try choosing outdoor spaces like parks or serene gardens, or opt for quiet

times at the gym.

Table 9: Model-specific SAE-derived features.

Feature 12390, specific for arxiv domain

Activated on linking
words in dependent syn-
tactic structures related to
research topic discussion.

May influence sentence
complexity and syntactic
variety;
Determines whether text
consists of simple or com-
plex sentence structures.

Affects: Stylistic & Structural Complexity
Weakening (-4.0 to -2.0): Produces short, choppy sentences
with minimal subordination.
Neutral (0.5 to 1.5): Maintains a natural balance of simple and
complex sentences.
Strong strengthening (2.0 and above): Creates overly complex,
multi-clause sentences, making readability difficult.

Sum value: 4348.42, domain: peerread, model: human
This paper proposes an approach to learning a semantic parser using an encoder-decoder neural architecture, with the
distinguishing feature that the semantic output is full SQL queries. The method is evaluated over two standard datasets

(Geo880 and ATIS), as well as a novel dataset relating to document search .

Feature 1416, specific for wikihow domain

Detects scientific docu-
ments with missed formu-
las and special symbols
(document parsing errors).
In normal documents, re-
acts to abnormal punctua-
tion.

May control abstract rea-
soning and conceptual
depth;
Influences how well the
model develops abstract
ideas or remains concrete.

Affects: Semantic & Logical Expansion
Weakening (-2.0 and below): Produces simplistic, direct state-
ments without deeper analysis.
Neutral (0.5 to 1.5): Allows for balanced explanation of abstract
ideas.
Strong strengthening (2.0 and above): Encourages philosophi-
cal, speculative, or metaphorical expansions, sometimes losing
clarity.

Sum value: 3596.64, domain: wikipedia, model: human
In mathematics, the Hahn decomposition theorem, named after the Austrian mathematician Hans Hahn, states that for any
measurable space and any signed measure defined on the - algebra, there exist two - measurable sets, and , of such
that : and .

Table 10: Domain-specific SAE-derived features - part 1
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Feature 6513, specific for finance domain

Detects highly informal
and opinionate speech

May regulate factual den-
sity vs. elaboration;
Affects whether facts
are presented concisely
or with excessive back-
ground detail.

Affects: Semantic & Informational Density
Weakening (-4.0 to -2.0): Produces brief, surface-level facts
without context.
Neutral (0.5 to 1.5): Provides balanced factual depth.
Strong strengthening (2.0 and above): Introduces unnecessary
historical or background expansions.

Sum value: -, domain: reddit, model: llama3-70B
And , like, eventually , she built up this whole compiler system from scratch , without even having a compiler to

begin with. I mean, that’ s just, wow . It’ s like , she had to, like, manually translate the assembly code into machine

code , which is just , ugh , so much work.

Feature 14953, specific for medicine domain

Second-person rec-
ommendations (legal,
medical) in form “You
should”, “There are
restrictions” and etc.

May control formal-
ity and academic
tone—Determines
whether text appears
conversational or highly
formal.

Affects: Stylistic & Tonal
Weakening (-4.0 to -2.0): Produces casual, informal language
(e.g., “This is super important because...”).
Neutral (0.5 to 1.5): Maintains a professional but accessible
tone.
Strong strengthening (2.0 and above): Introduces highly aca-
demic or dense phrasing (e.g., "In accordance with the prevailing
theoretical framework...").

Sum value: -, domain: wikihow, model: human
Each state has different requirements in order to qualify for a liquor license or

permit. You should check to see that you meet those requirements before beginning the application process.

Feature 4560, specific for reddit domain

Detects signs of infor-
mal internet discussions:
short 1st person sen-
tences, conjectures, date-
time labels (parsing arti-
facts), words like “Yeah”,
“Ah”.

May regulate cause-effect
relationships in histori-
cal and scientific explana-
tions;
Affects whether relation-
ships between events are
clearly established.

Affects: Semantic & Causal Coherence
Weakening (-4.0 to -2.0): Produces disconnected statements
without clear causal links.
Neutral (0.5 to 1.5): Ensures logically connected, well-
supported cause-effect explanations.
Strong strengthening (2.0 and above): Adds exaggerated or
speculative causal links (e.g., “The invention of fire directly led
to modern civilization.”).

Sum value: -, domain: eli5, model: Bloom-30B
He’s like the hippie-hating version of Greg Proops . This is pretty much the only positive thing I can say about him .
posted by crunchland at 6:50 AM on November 17, 201 1 At this point I’m just waiting for the inevitable “Hey guys,
I’m a comedian who’s got a beef with Occupy” FPP . posted by Aquaman at 6:51 AM on November 17 , 2 011 [1

favorite ] This is what happens when you believe your own press.

Feature 4773, specific for wikipedia domain

The feature emphasizes
words that repeat in the
text many times in var-
ious forms, either mor-
phological (for foreign
words), in different lan-
guages, or just synonyms.
E.g. “Toilet”, “Dia-
per”, “Infant pot”; or
“Huguteaux”, “Hugueois”,
“Huguenos”. The same
feature detects halluci-
nated generations with
corrupted words.

May regulate factual con-
sistency and logical flow;
Determines whether de-
tails remain accurate or
become speculative.

Affects: Semantic & Logical Consistency
Weakening (-4.0 to -2.0): Produces simplistic, repetitive de-
scriptions (e.g., “Mars is red. Mars has an atmosphere.”).
Neutral (0.5 to 1.5): Ensures well-structured and accurate state-
ments.
Strong strengthening (2.0 and above): Encourages halluci-
nated details and speculative claims (e.g., “Mars has underground
oceans and a red haze.”).

Sum value: -, domain: wikipedia, model: human
Arach nology can be broken down into several specialties, including: acar ology – the study of ticks and mites
ar aneology – the study of spiders scorp iology – the study of scorpions

Table 11: Domain-specific features - part 2
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-4.0 +4.0
Feature 6513

Weakening (-4.0 to -2.0): Produces brief, surface-level
facts without context.

Strong strengthening (2.0 and above): Introduces un-
necessary historical or background expansions.

P1: The first person to walk on the Moon was an
American named Neil Armstrong. He was a former U.S.
Navy pilot who was also a test pilot and engineer.
P2: The Atlantic Ocean separates the continents of North
America and Europe. The average depth of the ocean is
10,000 m, and the maximum depth is 11.0 km.
P3: It ’s not as noticeable when looking at other colours .
The grass is actually a darker green when I look through
my left eye .

P1: The first person to walk on the Moon was Neil
Armstrong, a great American hero. What a cool guy!
He is an amazing astronaut and we admire him.
P2: The Atlantic Ocean separates the continents of Africa
and Europe. The Mediterranean Sea separates Europe
from Asia. The Baltic Sea separates Europe from Asia and
North America.
P3: In my opinion it ’s a good thing . It makes me look at
the world in a unique way . I like to think of it as an
advantage . I believe it makes me a more unique person .

Feature 4773
Weakening (-4.0 to -2.0): Produces simplistic, repeti-
tive descriptions (e.g., “Mars is red. Mars has an atmo-
sphere.”).

Strong strengthening (2.0 and above): Encourages hal-
lucinated details and speculative claims (e.g., “Mars has
underground oceans and a red haze.”).

P1: The first person to walk on the Moon was Neil Arm-
strong. He did this on July 20th, 1969. He was a U.S.
Astronaut.

P1: The first person to walk on the Moon was Neil Arm-
strong. Neil Armstrong’s Moon Walk has been celebrated
for decades.

P2: The Atlantic Ocean separates the continents of Europe
and Africa. The Atlantic Ocean is a part of the world
ocean.

P2: The Atlantic Ocean separates the continents of North
America and Europe, and their people have been in contact
with each other for centuries.

P3: The colour in my left eye is a little more vivid . I ’m
not sure if this is a result of the injury I sustained .

P3: I ’ve tried to tell people about this and they say it looks
normal to them but they can ’t see the colour difference .

Feature 1416
Weakening (-2.0 and below): Produces simplistic, direct
statements without deeper analysis.

Strong strengthening (2.0 and above): Encourages philo-
sophical, speculative, or metaphorical expansions, some-
times losing clarity.

P1: The first person to walk on the Moon was a man
named Neil Armstrong. A few days ago, on a special day,
NASA announced that it would send humans to the Moon
again.

P1: The first person to walk on the Moon was an Amer-
ican, Neil Armstrong, and he was a very religious man.
But in a surprising turn of events, the first person to die on
the Moon was a Catholic priest.

P2: The Atlantic Ocean separates the continents of North
America and Europe. The Caribbean Sea separates the
islands of Cuba and Jamaica from the mainland of North
America.

P2: The Atlantic Ocean separates the continents of Europe
and Africa, and the Mediterranean Sea is the narrowest
stretch of the ocean between Europe and Africa. The
Mediterranean Sea is the largest body of water in the
world.

P3: I ’m wondering if it ’s something to do with my
eyesight and if there is any way to fix it ?

P3: I get the same when I look at flowers . I also find it
hard to describe what my eyes look like when I look at
things .

Feature 14953
Weakening (-4.0 to -2.0): Produces casual, informal lan-
guage (e.g., "This is super important because...").

Strong strengthening (2.0 and above): Introduces highly
academic or dense phrasing (e.g., "In accordance with the
prevailing theoretical framework...").

P1: The first person to walk on the Moon was not a man.
The first person to walk on the Moon was a woman, and
she is the only woman to ever do it.

P1: The first person to walk on the Moon was an interna-
tional organization that you should contact to check with
your local office to find out the best way to contact your
local office

P2: The Atlantic Ocean separates the continents of the
world. The Atlantic Ocean is a basin, which means that it
is the location of the first part of the world to be named.

P2: The Atlantic Ocean separates the continents of North
America and Africa to check the availability of informa-
tion about the water situation in the local authority of the
specific authority.

P3: I can ’t choose to see the world in one way or another
, and I can ’t see it so that I can choose . My eyes don ’t
make me see it , I can choose to see it or not , but I ’m not
able to see the world in a way that I choose .

P3: I ’m not sure if it ’s best to contact the eye care centre
to confirm with your eye care centre , call the Australian
eye contact for your local contact with your local eye care
centre

Table 12: Effect of steering and its GPT interpretation. The prompts used: P1. The first person to walk on the Moon
was... P2. The Atlantic Ocean separates the continents of... P3. My left eye sees colour slightly differently than my
right eye . Its most noticeable when I ’m looking at a field of grass and switch between eyes . Grass appears more
brown when looking through my right eye .

25747



You will see the features {} with sequences of 50 text generations
each. Each sequence consists of an original text and a modified
version where a specific hidden feature has been gradually
strengthened or weakened. The same hidden feature is shifted
consistently across all sequences.

Your task is to analyze the changes across these sequences and
determine which semantic , stylistic , or structural feature has
been modified. Try to find for each feature the dependencies and
hidden meaning.

Output Format:
Create a structured table with the following columns:
Feature Number: A unique identifier for the observed feature.
Possible Function: Explain in detail what role this feature might

serve in text generation (e.g., enhancing coherence , increasing
formality , affecting emotional tone).

Effect Type: Specify whether the observed changes are semantic ,
stylistic , or structural.

Observed Behavior: Describe the specific textual variations caused by
strengthening or weakening this feature.

Each row should correspond to a distinct feature , listing its effects
and possible functions with sufficient explanation

Figure 12: Prompt used for steering analysis
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