LIST: Linearly Incremental SQL Translator for
Single-Hop Reasoning, Generation and Verification

Kaiyuan Guan'*, Ruoxin Li'?*

f, Xudong Guo'*', Zhenning Huang!,

Xudong Weng!, Hehuan Liu!, Zheng Wei', Zang Li!
'Platform and Content Group, Tencent
2School of Data Science, Fudan University
3Department of Automation, Tsinghua University

{wilfredguan, ruoxinli, brucexdguo, zenithhuang, steveweng, mermaidliu, hemingwei, gavinzli}@tencent.com

Abstract

SQL languages often feature nested structures
that require robust interaction with databases.
Aside from the well-validated schema linking
methods on PLMs and LLMs, we introduce the
Linearly Incremental SQL Translator (LIST), a
novel algorithmic toolkit designed to leverage
the notable reasoning and tool interaction ca-
pabilities inherent in LLMs. LIST transforms
complex SQL queries into grammatically veri-
fiable sub-queries which are arranged sequen-
tially to reflect single-hop reasoning steps, en-
hancing both the granularity and accuracy of
database interactions. With in-context learn-
ing, our experiments demonstrated significant
improvements, achieving notable performance
of 60.56% and 56.32% on the BIRD dataset
with GPT-40 and Llama-3-70B-Instruct. To the
best of our knowledge, this achieves SOTA per-
formance among non-schema linking methods,
also surpassing a series of schema linking based
approaches at a comparable or better cost.

1 Introduction

The rapid development of large language models
has enabled strong generalization and reasoning ca-
pabilities (OpenAl, 2024; Anthropic, 2024), mak-
ing it possible to tackle challenging tasks such as
production-level text-to-SQL. This task, crucial for
making database interactions accessible to non-
technical users, has seen significant progress on
benchmarks like SPIDER (Yu et al., 2019) and
BIRD (Li et al., 2023).

We consider SQL generation to be a multi-hop
reasoning problem, where models should progres-
sively explore database elements, including tables,
columns, and values, based on natural language in-
put, while uncovering explicit or implicit relations
(Popescu et al., 2003, 2004).

However, most existing methods modularize the
schema linking process, treating the reasoning and

“Equal contribution.
"Work done during the internship at Tencent.

generation ontological (Hong et al., 2024). For
example, some approaches build connections be-
tween natural language and SQL using graph mod-
els or context-aware training techniques (Yu et al.,
2018; He et al., 2019; Lei et al., 2020; Cao et al.,
2021; Zhong et al., 2021; Cai et al., 2022), or em-
ploy intermediate representations to mitigate the
impact of SQL’s nested structures (Guo et al., 2019;
Gan et al., 2021, 2022; Eyal et al., 2023). In addi-
tion, building schema linking modules with vector
search or prompts for LLMs is another effective
paradigm (Pourreza and Rafiei, 2023; Talaei et al.,
2024; Pourreza et al., 2024). While schema linking
modules with high accuracy and recall can signifi-
cantly reduce costs and simplify challenges, the rea-
soning and analytical capabilities inherent to LLMs,
which have the potential to tackle more challenging
problems, remain largely underexplored.

Therefore, we intentionally avoid using schema
linking modules, despite their effectiveness, and
instead frame the task as explicit or implicit reason-
ing problems as shown and introduced in Figure 1.
In conclusion, we pivot on:

(1) LIST (Linearly Incremental SQL Translator),
an algorithmic toolkit, can parse Abstract Syntax
Trees (AST) and generate verifiable sub-queries
sequenced by single-hop reasoning steps. While we
do not imply that LLMs reason in a strictly linear
structure, they have shown stronger generalization
abilities in single-hop reasoning (Yang et al., 2024).

(2) Through in-context learning, LIST guides
the LLM to solve the question in a single-hop man-
ner, showing results significantly superior to the
baseline without any forms of training. Our work
leverages the notable reasoning capabilities with in-
termediate steps, similar to chain-of-thought (CoT)
(Wei et al., 2023) and tree-of-thought (ToT) (Yao
et al., 2023), while providing structured guidance
and verification for each step. At the same time,
LIST provides the potential for dynamic explo-
ration, generation, and verification.

24886

Findings of the Association for Computational Linguistics: ACL 2025, pages 24886-24897
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

LIST: Linearly

Example Question SQL Translator —~ i “\~ Exploration process example
=" P
Q: released in the year 1945 refers to movie_release_year = 1945; Rule-based SQL traverse & update: DR | The question specifically asks for movie titles and |
Name movie titles released in year 1945. Sort the listing by the .o i their release years, which are attributes found in |
descending order of movie popularity. SELECT * FROM movies "1 the movies table. Therefore, we start by selecting |
| data from the movies table. |
A: SELECT movie_title FROM movies WHERE movie_release_year = SELECT * FROM movies \
1945 ORDER BY movie_popularity DESC LIMIT 1 WHERE movie_release_year = 1945
SELECT * FROM movies ~ SELECT % FROM movies
WHERE movie_release_year = 1945
ORDER BY movie_popularity i
i & Runtime linkng error example
Example AST SELECT * FROM movies | Re-reasoning
WHERE movie_release_year = 1945 { e { The question specifies that we need to find
ORDER BY movie_popularity i PP / N | movies released in the year 1945. The movies
Root DESC | @) (@) | table has a column named movie_release_year
H 1 h | which stores the release year of each movie.
SELECT movie_title i | Therefore, we add a condition to filter movies
FROM movies { \, where movie_release_year is 1945.
SELECT DESC LIMIT WHERE movie_release_year = 1945 |
ORDER BY movie_popularity i y
DESC T i
o MIT 1 SELECT % FROM movies
movie_title FROM ORDER BY 1] L WHERE movie-release-year = 1945
,, Linking error:
oS movie_pop e 7 \ 1“"and "
ularity | Single-h Sub-query | SQL Grammar Tree Search ; SELECT % FROM movies
H H i WHERE movie_release_year = 1945
WHERE i Each step is a single- Each sub-query is | Tested with a single-path :
i hop reasoning built i | executable, therefore | expl i i i
i upon the previous one. 1 the executor could pass | | method, with each step is P
_ | i | runtime information to | verified. L
- i theLLMs. £ i H
i i i
movie_rele 1945 Y W Iy
ase_year \ .

Figure 1: Overview of LIST and its implementation with in-context learning. Example Question is the first sample
in BIRD-train set. Example AST represents the abstract syntax tree of an example SQL query, where the root node
is shown in gray, operators are depicted in blue, and database elements are highlighted in yellow. The LIST section
in the middle illustrates how SQL queries are decomposed into single-hop reasoning processes, which consist of
minimal verifiable incremental steps formed by a set of keyword(s), operator(s), and database element(s). LIST is
utilized to construct few-shot examples for dividing reasoning into sub-problems, guiding single-hop generation,

and decompose outputs for verification.

2 Linearly Incremental SQL Translator

LIST starts from the SQL syntax tree, which is
parsed and scheduled by the engine into an exe-
cution order. We will progressively provide: (1)
how LIST produces verifiable single-hop reason-
ing steps (2) implementations of LIST with an in-
context learning manner.

2.1 Formation of Single-Hop Reasoning

Given a natural language query () and database
structure information D B (including mapping rela-
tionships, columns, tables, etc.), the goal is to input
@ and DB into a large language model (LLM).
The LLM will reason to derive the corresponding
SQL query Y.

Let the input I = {Q, DB}, then the LLM will
output a series of steps .S, which can be represented
as:

S ={51,95,..

-, Sn} = R(I) (D

Define o = {select, join, from, ... }, which in-
cludes database operations such as selection, join-
ing, and specifying data sources. Define e
{cols, cons, tables, ... } which e represents various
database elements such as columns (cols), con-
straints (cons), and tables. Then,

SQL: fon(fonfl(---f01(61)>en—1)a€n) (2)

Now, we can represent the nested structure of
the function f(-) in the following more concise
manner:

Fi(E1) = fo,(e1),
FQ(EQ) = foz(fm(el)veQ)y

Fn(En) = f07l(f0n,1(‘ . . f01 (61)7 en—l)a en)
— SQL

Further, LIST attempts to generate verifiable sub-
queries based on the AST and dependencies, which
is accomplished through grammar-based depth-first
search (DFS) traversal. In a parsed AST, each node
corresponds to an SQL operation and the leaf nodes
represent basic elements such as table names or
constants, as shown in Figure 1, and an executable
sub-query could be represented as a subtree travers-
ing from the root to the dependent values required
by current operations, provided that higher-level
operations depend on the lower-level elements or
outputs.

Importantly, to ensure that each sub-SQL
remains executable, we manually append the
fselect(+, *) operation to the first n — 1 sub-SQLs.
We denote T as a set of sub-SQLs, expressed by:
3)

T = (Ty,Tt,...,T,) = LIST(SQL)

24887

/' Initialization:

Step-wise instructions in

Init natural language.

(Iterative update:

O Correct
Run and Verify X Wrong
X Partially correct
Re-prompt the model with:
* Instructions
» Correct sub-queries
« The erroneous sub-query and
error messages

Reprompt

Select a retry strategy:

* Return to the nearest legal step.

* Re-generate the step-wise
reasoning.

Traceback

Figure 2: The four distinct states in the SQTS process.

LIST compares the dependencies of sibling
nodes, with the execution order of parallel exe-
cutions being fixed. For any nested execution struc-
ture, this step can be iteratively applied, ultimately
identifying the minimal expansion steps. Detailed
rules and coverage are presented in Appendix B.

Thus, single-hop reasoning is implemented as an
iterative process of generating .S; with LIST, guided
by the minimal yet valid expansion of keywords
and elements.

In practice, LIST is built on top of SQLGlot T
serving as our syntax tree generation and traversal
tool, and is theoretically compatible with multiple
dialects.

2.2 Regulated Step-Wise Generation with
In-Context Learning

Inspired by Monte Carlo Tree Search (MCTS)
(Brandfonbrener et al., 2024), we build up our SQL
Grammar Tree-based Search (SQTS) for the con-
strained generation, which consists of four states:
Init, Run and Verify, Reprompt, and Traceback,
as described in Figure 2.

During the initialization phase, the model is
provided with a set of examples that follow the
single-hop reasoning paradigm to incrementally
build SQL queries, only verbalizing the steps into
natural language instructions. In practice, this fixed
set of examples is generated by first decomposing
SQL queries into sub-queries using LIST and then
backtranslating them with GPT-4o0, as described in
Appendix C.1.

Thttps://github.com/tobymao/sqlglot

Then, SQTS formulates an iterative framework
for the runtime step-wise verification. This process
involves continuous interaction with the LIST and
exploration of various sub-query generation strate-
gies guided by the provided steps. (1) Each step
instruction generates a corresponding SQL query,
which is subsequently validated by the LIST de-
composer and an external verifier. SQTS proceeds
to the next step only upon successful validation of
the current step, while cases identified as (partially)
wrong trigger a Reprompt or Traceback process.
(2) During the Reprompt process, the model is pro-
vided with the database schema, the question, the
recorded correct sub-queries, and the erroneous
sub-query along with its corresponding error mes-
sage. This comprehensive feedback enhances the
robustness of the generative model by offering spe-
cific error signals. (3) SQTS enters the traceback
process after n unsuccessful attempts at a given
step. In this process, SQTS either reverts to the
most recent valid node or regenerates the step in-
structions if no valid state exists. This design min-
imizes the likelihood of ineffective iterations and
enhances the overall efficiency of the query-build
process.

In summary, SQTS algorithmically constrains
the generation process, with the step-wise in-
structions and SQL sub-queries being collected
and inserted by an algorithmic tool. The
number of correction attempts for each node
is set as max_local_attempts, and the total
number of global generation attempts is set as
max_global_attempts.

3 Preliminaries

3.1 Dataset and Metrics

The experiments adopt the recently released BIRD
(Li et al., 2023) dataset, containing 12,751 text-to-
SQL pairs across 95 databases, as a realistic and
challenging test environment. We adopted the Exe-
cution Accuracy (EX), evaluating the correctness of
SQL output by comparing the results of predicted
queries with reference queries on specific database
instances, as our primary evaluation metric.

3.2 Models and Prompts

Our experiments were carried out on Llama-3-8B-
Instruct, its 70B version (Meta, 2024) and GPT-4o.
We use Llama-3-8B and Llama-3-70B for short.
All tasks relevant to Llama-3 models were per-
formed on 8 NVIDIA A10 GPUs.

24888

https://github.com/tobymao/sqlglot

Methods
w/ Schema Linking

DIN-SQL(GPT-4)(Pourreza and Rafiei, 2023)
DAIL-SQL(GPT-4)(Gao et al., 2023)
MAC-SQL(GPT-3.5)(Wang et al., 2024)
MAC-SQL(GPT-4)(Wang et al., 2024)
SuperSQL(Li et al., 2024a)

TA-SQL(Qu et al., 2024)

Training BIRD-dev

50.72%
54.76%
50.56%
59.39%
58.60%
56.19%

X X X X X X

w/o Schema Linking

ChatGPT

CodeS(15B, 5-shot)(Li et al., 2024c)

GPT4

DTS-SQL(Deepseek-7B)(Pourreza and Rafiei, 2024)
SEA-SQL(GPT-3.5+Mistral-7B)(Li et al., 2024b)
CodeS(15B, SFT)(Li et al., 2024c)

Ours (Llama-3-70B)

Ours (GPT-40)

37.22%
45.44%
50.56%
55.80%
56.13%
58.47%
56.32%
60.56%

X XINSNSNX X X

Table 1: Comparison of execution accuracy on the BIRD
development set across different methods and models.

The prompts were intentionally and au-
tomatically constructed with fixed examples
(ID=11,12,15,65, BIRD-train) and templates in Ap-
pendix C.

4 Experiments

We will compare the effectiveness of our method
with mainstream approaches that with or without
the schema linking module. Additionally, an ab-
lation study is conducted to examine the impact
of LIST decomposition and the verifier mode. We
also present the coverage and cost analysis of LIST
in Appendix. B.2 and E.

4.1 Main Results

We primarily validated the effectiveness of our
method in an in-context learning manner on BIRD-
dev dataset. We categorize trending methods into
two folds, with or without schema linking module,
as shown in Table 1 for comparison.

Our method demonstrates to be a novel and
effective way for in-context learning without
schema linking module. When schema linking
modules are excluded, our method using GPT-40
achieves the best performance among open meth-
ods, including those with fine-tuning.

A demonstration of effectiveness with single
reasoning path and at a comparable or better
cost. Our method naturally demonstrated the re-
sults of step-wise syntactical validation along one
reasoning path, since the step-wise instructions are
generated only once. This suggests that methods
employing multi-path reasoning and answer gen-
eration could hold greater potential, especially if
more robust feedback signal tools or models can be
developed.

4.2 Ablation Study

Furthermore, we conducted ablation tests. Due to
cost considerations, these tests were performed on
open-source models with few-shot prompting and
WYV (weak verifier), as shown in Table 2.

BIRD-dev Categories

Methods
easy medium challenging all

Llama-3-8B 42.05% 20.04% 18.62% 33.18%
Ours-WV(8B) 42.70% 21.98% 15.17% 33.83%
Ours (8B) 51.46% 27.16% 20.69% 41.20%
Llama-3-70B 55.68% 36.64% 31.72% 47.72%
Ours-WV(70B) 62.05% 46.98% 32.41% 54.69%
Ours (70B) 64.32% 50.43% 37.93% 56.32%

Table 2: Our performance on BIRD-dev with open-
source models under different settings.

Here, the weak verifier refers to a set-up where,
after task decomposition, an SQL runtime environ-
ment is employed to provide feedback signals such
as syntax errors or whether the query results are
empty, without query decomposition. This feed-
back guides the model through the maximum of 3
iterations of error correction. Given that Llama-3
models have a context length limit of 8K tokens,
we recorded each generation result along with the
environment feedback and reorganized them into
prompts for subsequent iterations.

Consistency of improvements across cate-
gories. Our approach yielded comparable gains
across easy, medium, and challenging questions. In-
tuitively, leveraging reasoning capabilities more ef-
fectively, rather than simplifying the problem with
external tools, is more likely to lead to balanced
improvements.

The contribution is influenced by the model
capabilities. We observed a steeper improve-
ment curve on the 8B model compared to the 70B
model. Ours-WV(8B) gains marginal benefit from
solely step-wise reasoning prompts that without the
step-wise verifier (0.65%), possibly due to limited
instruction-following capabilities. However, when
provided with step-wise verification, it can identify
and rectify a fair amount of errors. The 70B model,
on the other hand, achieves substantial improve-
ment from step-wise reasoning alone (6.03%) and
can further compensate for some generated gram-
matical errors through step-wise verification. The
intuition behind could be that larger models pos-
sess stronger intrinsic reasoning abilities and can
better leverage explicit step-wise prompts.

24889

5 Conclusion

By decomposing the AST, LIST identifies a method
to break down ontological SQL generation tasks
into single-hop reasoning steps, while ensuring that
each step is grammatically verifiable. Through a
straightforward in-context learning approach, utiliz-
ing step-wise reasoning and step-wise generation,
we achieved profound results using LLM inference
alone. Furthermore, through ablation tests, LIST
demonstrated the need and potential for integra-
tion with existing methods, which could shed some
light on further RL-based methods.

6 Related Works

6.1 LMs for text-to-sql

The rationale behind Text-to-SQL pipeline can be
abstracted into two primary steps: schema linking
and generation (Popescu et al., 2003, 2004). A
significant amount of methods focus on further de-
composing this process and have proven effective.
(1) Schema linking involves mapping natural lan-
guage inputs to database relationships, mitigating
the impact of the variability of natural language
and handling the implicit relationships between
database elements (Lei et al., 2020; He et al., 2019;
Hong et al., 2024; Cao et al., 2021; Cai et al., 2022;
Zhong et al., 2021). (2) Generation is regarded
as the process of decoding the intermediate step
into an executable SQL query. Existing methods
focus on executing modules sequentially and al-
gorithmically (Yu et al., 2018; Li et al., 2024a),
such as using separate prompt templates for de-
composed steps (Pourreza and Rafiei, 2023; Zhang
etal., 2023; Dong et al., 2023) or combining LLMs
with entity retrieval (Gao et al., 2023; Talaei et al.,
2024), which we refer to as the modular approach.
These independent schema linking modules im-
ply that they must provide all relevant database
elements, as any omission would inevitably result
in errors (Maamari et al., 2024), unless models
could be dynamically involved into each process.
Based on this distinction, leveraging LLMs inher-
ent strengths while integrating that isolated modu-
larity into the reasoning and exploration processes
represents a promising avenue for future develop-
ment (Pourreza et al., 2024).

6.2 LLM for Reasoning

Reasoning with large language models (LLMs) in-
volves breaking down complex inputs into a se-
quence of intermediate steps that lead to the final

answer (Cobbe et al., 2021). This approach has
been demonstrated with chain-of-thought (CoT)
prompting (Wei et al., 2023), where the model pro-
cesses information step by step.

We focus on the role of a controlled verifier
in complex program reasoning. While existing
methods that generate reasoning chains in a sin-
gle step often encounter issues like error propa-
gation (Chen et al., 2022), advancements such as
self-consistency (Wang et al., 2022) and reasoning
via planning (RAP) aim to mitigate these prob-
lems. Self-consistency employs majority voting
over multiple reasoning chains to reduce errors,
while RAP integrates Monte Carlo Tree Search
(MCTS) simulations to enhance decision-making
during reasoning (Hao et al., 2023).

7 Limitations

In order to achieve controlled and effective reason-
ing path exploration, our approach still has several
limitations.

First, the validation methods used in this work
are limited to simple in-context learning and the ex-
ploration of a single reasoning path. How to build
more complex systems based on LIST, such as val-
idation beyond syntax or constructing preferred
reasoning paths, remains to be explored.

Second, the subqueries generated by LIST are
not always perfectly verifiable. For example, two
tables with only a JOIN but without an ON clause
will be transformed by the engine into a Carte-
sian product, which can be extremely expensive.
We have partially addressed this issue by methods
such as reverse validation (starting from more com-
plete SQL sub-queries) or setting resource limits
and timeouts for each validation thread, achieving
100% coverage of syntactic decomposition on the
BIRD dataset. However, this issue has not been
tested in more complex scenarios and remains in-
sufficiently resolved. This is crucial in explorative
reasoning, as the verifier often becomes the lim-
iting factor in performance (Cobbe et al., 2021).
More comprehensive validation and further im-
provements are needed.

Lastly, although our approach demonstrates com-
parable or superior efficiency in cost analysis (Ap-
pendix E), expanding the entire paradigm to multi-
path search inevitably leads to higher costs. Further
exploration is needed to better construct external
verifiers that collaborate with LLMs.

24890

References

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku.

David Brandfonbrener, Simon Henniger, Sibi Raja,
Tarun Prasad, Chloe Loughridge, Federico Cassano,
Sabrina Ruixin Hu, Jianang Yang, William E. Byrd,
Robert Zinkov, and Nada Amin. 2024. Vermcts:
Synthesizing multi-step programs using a verifier,
a large language model, and tree search. Preprint,
arXiv:2402.08147.

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2025. E-sql:
Direct schema linking via question enrichment in
text-to-sql. Preprint, arXiv:2409.16751.

Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng
Hao. 2022. Sadga: Structure-aware dual graph
aggregation network for text-to-sql. Preprint,
arXiv:2111.00653.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph
enhanced text-to-SQL model with mixed local and
non-local relations. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2541-2555, Online. Association
for Computational Linguistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. ArXiv, abs/2110.14168.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang
Lou. 2023. C3: Zero-shot text-to-sql with chatgpt.
Preprint, arXiv:2307.07306.

Ben Eyal, Amir Bachar, Ophir Haroche, Moran Ma-
habi, and Michael Elhadad. 2023. Semantic decom-
position of question and sql for text-to-sql parsing.
Preprint, arXiv:2310.13575.

Yujian Gan, Xinyun Chen, Qiuping Huang, and
Matthew Purver. 2022. Measuring and improving
compositional generalization in text-to-sql via com-
ponent alignment. Preprint, arXiv:2205.02054.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021. Natural sql: Making sql easier to infer
from natural language specifications. Preprint,
arXiv:2109.05153.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. Preprint,
arXiv:1905.08205.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and
Weizhu Chen. 2019. X-sql: reinforce schema repre-
sentation with context. Preprint, arXiv:1908.08113.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.
Next-generation database interfaces: A survey of llm-
based text-to-sql. Preprint, arXiv:2406.08426.

Wengiang Lei, Weixin Wang, Zhixin Ma, Tian Gan,
Wei Lu, Min-Yen Kan, and Tat-Seng Chua. 2020.
Re-examining the role of schema linking in text-to-
SQL. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6943—6954, Online. Association for
Computational Linguistics.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024a. The dawn of natural language
to sql: Are we fully ready? Proceedings of the VLDB
Endowment, 17(11):3318-3331.

Chaofan Li, Yingxia Shao, and Zheng Liu. 2024b. Sea-
sql: Semantic-enhanced text-to-sql with adaptive re-
finement. Preprint, arXiv:2408.04919.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024c. Codes: Towards
building open-source language models for text-to-sql.
Preprint, arXiv:2402.16347.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. 2023. Can llm
already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Preprint,
arXiv:2305.03111.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The death of schema
linking? text-to-sql in the age of well-reasoned lan-
guage models. Preprint, arXiv:2408.07702.

Meta. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

OpenAl. 2024. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

24891

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2402.08147
https://arxiv.org/abs/2402.08147
https://arxiv.org/abs/2402.08147
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2111.00653
https://arxiv.org/abs/2111.00653
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2310.13575
https://arxiv.org/abs/2310.13575
https://arxiv.org/abs/2205.02054
https://arxiv.org/abs/2205.02054
https://arxiv.org/abs/2205.02054
https://arxiv.org/abs/2109.05153
https://arxiv.org/abs/2109.05153
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1908.08113
https://arxiv.org/abs/1908.08113
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.18653/v1/2020.emnlp-main.564
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://arxiv.org/abs/2408.04919
https://arxiv.org/abs/2408.04919
https://arxiv.org/abs/2408.04919
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2303.08774

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates. 2004. Modern nat-
ural language interfaces to databases: Composing
statistical parsing with semantic tractability. In COL-
ING 2004: Proceedings of the 20th International
Conference on Computational Linguistics, pages 141—
147, Geneva, Switzerland. COLING.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th Interna-
tional Conference on Intelligent User Interfaces, IUI
’03, page 149-157, New York, NY, USA. Association
for Computing Machinery.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. Preprint, arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Dts-sql: Decomposed text-to-sql with small large
language models. Preprint, arXiv:2402.01117.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy
for mitigating hallucinations in text-to-sql generation.
Preprint, arXiv:2405.15307.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. Preprint, arXiv:2405.16755.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor
Geva, and Sebastian Riedel. 2024. Do large lan-
guage models latently perform multi-hop reasoning?
Preprint, arXiv:2402.16837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018. Syntaxsqlnet: Syntax tree networks for com-
plex and cross-domaintext-to-sql task. Preprint,
arXiv:1810.05237.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. Preprint, arXiv:1809.08887.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-
thought. Preprint, arXiv:2310.17342.

Victor Zhong, Mike Lewis, Sida I. Wang, and
Luke Zettlemoyer. 2021. Grounded adaptation for
zero-shot executable semantic parsing. Preprint,
arXiv:2009.07396.

A Hyperparameters

While the baseline experiments set
temperature=o, our approach sets
temperature=0.8 and top_p=0.95 to
allow multi-round self-correction. We
set max_local_attempts as 3 and

max_global_attempts as 15.

B LIST

B.1 Formula

Given a natural language query () and database
structure information D B (including mapping rela-
tionships, columns, tables, etc.), the goal is to input
Q@ and DB into a large language model (LLM).
The LLM will reason to derive the corresponding
SQL query Y.

Let the input / = {Q, DB}, then the LLM will
output a series of steps .S, which can be represented
as:

S ={51,52,...,5}=R()

The SQL statement Y; corresponding to each
step S; can be represented as:

ifi=1

T Ri(1,8:,Y1i-1) ifi€(2,...,n]

By generating SQL Y; for each step, we can
obtain the final answer Y,, = Y at the last step.

24892

https://aclanthology.org/C04-1021
https://aclanthology.org/C04-1021
https://aclanthology.org/C04-1021
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/604045.604070
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2402.01117
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2402.16837
https://arxiv.org/abs/2402.16837
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/1810.05237
https://arxiv.org/abs/1810.05237
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2009.07396
https://arxiv.org/abs/2009.07396

If Y; runs with an error during reasoning, we use
LIST to split the SQL into multiple executable sub-
SQLs 7', verify them individually and provide the
verification information to the model to correct the
erroneous SQL.

Before giving the mathematical expression of
LIST, let’s consider an example for better under-
standing of LIST.

Suppose we have the following SQL: SELECT
cols FROM t1 JOIN t2 WHERE cons.

According to the execution order of SQL, we
can represent this SQL as:

SQL = fselect(
fwhere(f}oin(ffrom(tl)y t2)7 COHS), CO]-S)

)

Define o = {select, join, from, ... }, which in-
cludes database operations such as selection, join-
ing, and specifying data sources. Define e =
{cols, cons, tables, ... } which e represents various
database elements such as columns (cols), con-
straints (cons), and tables. Then,

SQL = fon (fonfl (.. f01 (61)7 enfl)y en)

Now, we can represent the nested structure of
the function f(-) in the following more concise
manner:

Fi(E1) = fo(e1),
FQ(EQ) = foz(fm (61)’62)7

Fo(En) = fo,(fon_1(--- for(€1),€n—1), €n)
= SQL

Our LIST method originates from the inner-
most nested structure of the function, incremen-
tally adding an operator and its corresponding en-
tity at each step until the full SQL statement is
reconstructed. Importantly, to ensure that each sub-
SQL remains executable, we manually append the
fselect (-, *) operation to the first n — 1 sub-SQLs.
We denote 7" as a set of sub-SQLs, expressed by:

T = (Ty,Tt, ..., T,) = LIST(SQL)

where each T; for ¢« = 0,1,.
follows:

TO = fselect(ffrom(tl)a *) = fselect(Fl(E1)7 *)7
Tl = fselect(FQ(EQ)a *)7

..,n is defined as

Tn—l = fselect(Fn<En)7 *)7
Tn = fselect(Fn<En)a COlS) = FTL(EH)

In summary,

ie0,n—1],

1=n.

T — fselect(Fi+1(Ei+1)7 *)7
BB,

Thus, we obtain the mathematical expression of
LIST.

The SQL syntax tree can be converted into an
execution order table based on its dependencies
and handed over to the SQL engine core for ex-
ecution. The syntax tree is composed of nested
expression objects, such as those shown in Figure
1, where each expression object’s key and its child
key form parent-child node relationships. Similar
to other tree structures, the syntax tree can be se-
rialized through various algorithms, such as infix
and postfix expressions. Based on this intuition, we
employ an SDFS (SQL Depth First Search) method
to traverse the SQL.

In our algorithm, each exploration step can be
written as E, where the explored keywords can be
seen as an operation fopera[ioni, and the included
database elements can be regarded as reasoning
R for the problem (), database D B, and mapping
relationship M, forming an input [; i.e.,

I = R(Q,DB, M)

SQL also has advanced constructs, such as CTE
(Common Table Expressions), which are identi-
fied as Table Expressions, and various dialects like
ClickHouse and Hive, which offer different syn-
tax variations. However, since the syntax tree is
cross-linguistic, our approach is applicable to the
decomposition of different SQL variants.

B.2 Coverage

We tested the coverage of LIST on BIRD-dev, di-
viding it into three metrics: split pass rate (SPR),
complete pass rate (CPR), and sub-query pass rate
(SQPR). For complete SQL statements, we de-
note the total number of SQLs tested as sql_num,
the number of split-pass SQLs as split_pass, and
the number of SQLs with no syntax errors across
all clauses as sql_pass. At the clause level,
sub_query_num and sub_query_pass represent
the total number of split clauses and the number
of clauses without syntax errors, respectively. For

24893

BIRD-dev, sql_num = 1534.

SPR — split_pass
sql_num
CPR — sql_pass
sql_num
SQPR — sub_query_pass
sub_query_num
Metric Pass Rate
Split Pass Rate 1.0
Complete Pass Rate 0.9485
Sub-query Pass Rate 0.9842

Table 3: Pass Rates for LIST on BIRD-dev.

C Prompt Templates

C.1 Prompt for Generating Step-Wise
Reasoning

Instruction

You will be given a database schema
and a question-answer pair.

The question is about the database
schema, the answer, however, is a
partial step-by-step solution to the
question. Your task is to generate
natural language translation of the
partial steps.

Database Schema\n

{schema}

Question\n

{question}

Answer\n

{LIST results}

Your translation and reasoning pro-
cess that shows why you need to do
this with the reference to the question
and database schema\n

example: [[Step 1: content]]

C.2 Prompt for Our Method

Instruction:

You are a data scientist specializing

in text-to-SQL tasks. You should write
a valid SQLite to solve the following

question based on the database scheme

and hint.

Database Schema:
{schema}

Question:

You need to decompose the following
question into several operation steps:
{question}

Quote your step-by-step instruction
in [[J]. Do not generate SQL.

Steps:

.

Schema:
{Schema}

Instruction:

Revisit the schema, question, and
finish the step in SQLite grammar.
Answer with Question analysis,
Step analysis, Schema analysis and
Result in sql block.

Question:
{Question}

Step:
{Steps}

\

Running

Schema:
{Schema}

Instruction:

Revisit the schema, question, and
accomplish the SQL generation in
SQLite grammar. Answer with Question
analysis, Step analysis, Schema

24894

analysis and Result in sql block.

Question:
{Question}

Step:
{Steps}

Verified Code:
{Node_Content}

Return the final sql in ~“°sql ~°°
format.

\

Schema
{Schema}

Instruction

Answer with Question analysis, Step
analysis, Schema analysis and Result
in sql block.

Question:
{Question}

Step:
{Current_Step}

Error need to be handled:
Generated SQL:
*~sgl\n{Node_Content}\n~ "

SQLs that run well:
*~“sgl\n{Node_Runnable_Code}\n~ "
When it turns to:
**sgl\n{Node_Error_Code}\n™ "
error occured.

Return the final sql in
format.

ssogi] oo

\.

C.3 Prompt for Naive Few-Shot

You are a data scientist special-
izing in text-to-SQL tasks.

You should write a valid SQLite
to solve the following question
based on the database schema and
hint.

Database schema:

{schema}

Question:
{question}
#H#4SQL :

D Case Study

We randomly chose 12 samples to do case study,
which ids in [80, 104, 422, 439, 536, 707, 840, 849,
929, 953, 1025, 1061].

100

100 Type

Correct LIST not Naive
Correct Naive not LIST
W ABS Improvement

50 49

28
25
14
4
0 —

25 21

Number of SQLs

-50

57

simple moderate
Level

challenging

Figure 3: Case study on our method (70B, 1-shot).

Llama3-70b-instruct

104,707, 929, 1024
80, 422, 439, 894, 1061

Llama3-8b-instruct

707, 840, 929, 1024
80, 422, 894, 1061

Error Type

redundant columns
over-complication

timeouts 104, 953 953
type errors 536 536
other 439 840

Table 4: Case study details.

24895

Method Turns Input tokens Output tokens
TA-SQL(Qu et al., 2024) 4 8,540,001
DIN-SQL(Pourreza and Rafiei, 2023) 4 33,203,612
CHESS(Low budget)(Talaei et al., 2024) 6 33,761,389

1,162,772
1,767,875
1,203,187
1,114,580

E-SQL(Caferoglu and Ozgiir Ulusoy, 2025) 3

Ours(Llama-3-8B) 8.7973
Ours(Llama-3-70B) 6.1121
Ours(GPT-40) 5.8370

56,090,710
28,177,560
19,539,863
18,449,648

Table 5: Cost analysis details.

E Cost Analysis

In the following cost analysis, we consider several
metrics as standards: the number of dialogue turns,
the number of input tokens, and the number of out-
put tokens. We focus on comparisons with schema
linking-based methods, as both involve multiple
interactions with LLMs.

For comparability, we additionally calculate the
average number of dialogue turns for our method
(total iterative turns / number of questions) and
compare it with the fixed number of dialogue
turns in schema linking-based methods. For token
counts, we use OpenAl’s tiktoken library for tok-
enization across all models to ensure consistency.

Results are shown in Table 5. Based on the
pricing of GPT-40 ($2.5 per 1M input tokens and
$10 per 1M output tokens), the running cost of
Ours(GPT-40) is approximately $55, with an av-
erage cost of $0.035 per question. We also ob-
served that using more powerful models for in-
ference reduces the likelihood of falling into in-
effective attempts. Specifically, when compar-
ing the number of questions that exhausted the
max_global_attempts limit of 15, the results
were as follows: GPT-40: 54; Llama-70B: 86;
Llama-8B: 280.

For comparison, we have the experiments and
details as follows:

* DIN-SQL: The scope of our analysis in-
cludes ‘schema_linking_prompt*, ‘classifica-
tion_prompt‘, ‘easy_prompt‘, and ‘correc-
tion_prompt‘. We excluded ‘medium_prompt*
and ‘hard_prompt‘ as the classification mod-
ule was not actually executed. Also, in-
stead of providing actual input content in
the templates, we used placeholders such as
’schema_links’ and ’sql_query’.

* E-SQL: Referring to the cost analysis in this
work, we calculate the token consumptions
by multiplying the number of samples in the
BIRD dataset.

* TA-SQL: For efficiency, we reproduce and
simulate the pipeline by inserting a fixed
dummy SQL. The whole process contains
the column meaning, dummy prompts, SR
prompts and SR2SQL prompts.

* CHESS: The same to the TA-SQL, we repro-
duce the keyword extraction, column filtering,
table selection, column selection, candidate
generation and revision process according to
the CHESS (IR, SS, CG) configuration with
low budget.

In summary, we found that our approach of ver-
ification coupled with exploration improves effi-
ciency as the model’s capabilities increase. Intu-
itively, stronger models possess better reasoning
and instruction-following abilities, which is why
our method can achieve approximately a 35% effi-
ciency gain over Llama-3-8B.

The schema linking paradigm requires the use
of a large number of few-shot examples or addi-
tional modules, such as question enrichment, to
enhance the robustness of SQL as a formal lan-
guage. While the schema linking paradigm remains
effective, there is always a trade-off between cost,
inference efficiency, and accuracy that needs to be
considered.

24896

Error type Examples ‘ Ours(8B) ‘ Ours(70B) ‘

no such column "id": 2, "sql": " SELECT * FROM frpm ORDER 3662 547
BY FRPM Count DESC ", "status": -1, "message":
"Error: no such column: FRPMCount"

Got null result "id": 0, "sql": " SELECT * FROM (SELECT "Free 823 380
Meal Count (Ages 5-17)" / "Enrollment (Ages 5-17)"
AS eligible_free_rate FROM frpm WHERE "Educa-
tional Option Type" = ’Continuation’) AS subquery
ORDER BY eligible_free_rate ASC LIMIT 3; ", "sta-
tus": -1, "message": "Warning: Got null result."
Wrong syntax for SQLite | "status": -1, "id": 0, "sql": " SELECT CDSCode 314 70
FROM frpm WHERE (Enrollment (K-12) + Enroll-
ment (Ages 5-17)) > 500; ", "message": "Wrong
syntax for SQLite. splitter syntax error"

Ambiguous column name | "id": 0, "sql": " SELECT COUNT(raceld) FROM 64 24
races r JOIN results res ON r.raceld = res.raceld
WHERE r.year = 2008 AND r.name = ’Australian
Grand Prix’; ", "status": -1, "message": "Error: am-
biguous column name: raceld"

Table 6: Cost analysis details.

F Error Analysis ¢ Ambiguous column name: This arises when
columns with identical names exist across
multiple tables, requiring column names to
be explicitly specified.

In our work, we found that (1) the issues encoun-
tered during multi-turn iterations largely fall into
these existing categories, and (2) problems unique
to multi-turn dialogue scenarios, such as repeated
failures after multiple modifications, are particu-
larly challenging to classify into specific categories,
given that the model may produce different errors
during each modification attempt.

Therefore, during our experiments, we primarily
focused on the error types reported by the verifier
and conducted a comprehensive analysis of the
validation results across all iterations of the model.

The following are the four most frequently oc-
curring cases listed in Table 6:

¢ No such columns: This occurs when an incor-
rect column name is used or when a column
is sought from the wrong table.

* Got null result: This happens due to incorrect
conditions or when the correct answer is an
empty result. In practice, we only report a
warning rather than an error for such cases.

* Wrong syntax for SQLite: Since the bench-
mark uses SQLite as the execution environ-
ment, we restrict LIST to generating SQL
statements that conform to SQLite’s syntax
rules.

24897

