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Abstract

Human learning and conceptual representation
is grounded in sensorimotor experience, in
contrast to state-of-the-art foundation models.
In this paper, we investigate how well such
large-scale models, trained on vast quantities
of data, represent the semantic feature norms of
concrete object concepts, €.g. a ROSE is red,
smells sweet, and is a flower. More specif-
ically, we use probing tasks to test which prop-
erties of objects these models are aware of. We
evaluate image encoders trained on image data
alone, as well as multimodally-trained image
encoders and language-only models, on predict-
ing an extended denser version of the classic
McRae norms and the newer Binder dataset
of attribute ratings. We find that multimodal
image encoders slightly outperform language-
only approaches, and that image-only encoders
perform comparably to the language models,
even on non-visual attributes that are classified
as “encyclopedic” or “function”. These results
offer new insights into what can be learned
from pure unimodal learning, and the comple-
mentarity of the modalities.'

1 Introduction

Multimodal models depend on vision encoders to
provide information about the objects that are de-
picted, including their properties, spatial config-
uration, lighting, and scene information. Recent
work has highlighted a degree of linear alignment
between neural network representations of the vi-
sion and language modalities (Abdou et al., 2021;
Merullo et al., 2023; Li et al., 2024; Huh et al.,
2024). This implies that the respective representa-
tion spaces have similar configurations, in terms of
the local organisation (nearest neighbours) of con-
cepts. However, there remains an open the question
of how the different modalities “understand” or rep-
resent the concepts: which attributes are salient for

!Code, datasets and results are available at: https://
danoneata.github.io/seeing-what-tastes-good.

P 17 57
o o (o)

has is has 4
seeds sweet legs
~
e
( . ¥
t Frozen encoder

A strawberry's seeds are on the ...
The dining room chair has a broken leg.

Adding avocado to salads can enhance ...

The cat jumped gracefully onto ...

Figure 1: Given a dataset of concrete concepts, depicted
using either visual or linguistic data, that are paired
with semantic norms, we train linear probes on frozen
modality-specific representations of to understand how
well conceptual attributes can be extracted from models.

a concept? In other words, how similar, in terms
of underlying attributes: is a CHAIR as seen by
a vision encoder similar to a CHAIR as encoded
by a language model? This question concerns the
complementarity of vision and language: are differ-
ent modalities distinct, or in fact convergent (Huh
et al., 2024)? Is a single modality, such as text,
sufficient, or are multiple knowledge sources nec-
essary? Early work on distributional representa-
tions, in text-only (Baroni and Lenci, 2008; Rubin-
stein et al., 2015; Lucy and Gauthier, 2017; Forbes
et al., 2019; Misra et al., 2022, 2023) and mul-
timodal (Bruni et al., 2014; Collell and Moens,
2016) models of static word embeddings, studied
this question extensively. Recent advances in repre-
sentation learning calls for revisiting this question
to understand the relative representational power
of each modality in modern models.

In this paper, we investigate how vision, lan-

guage, and vision-and-language models represent
concrete object concepts in terms of their associ-
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ated attributes (semantic norms). We use a linear
probing methodology to test whether model repre-
sentations make distinctions corresponding to at-
tributes associated with concepts, depicted visually
or in text. Figure 1 presents an overview of our
approach. The semantic norms cover many types
of attributes, from visual-perceptual is green, to
the functional is eaten, to the encyclopedic grows
on trees. Our first question is whether different
encoders, from different modalities, capture partic-
ular attribute types more or less well.

Secondly, the models we evaluate correspond to
a set of hypotheses about the role of language and
labelling in conceptualization and category learn-
ing, a hotly debated topic in cognitive and neu-
roscience (Waxman and Markow, 1995; Lupyan,
2012; Ivanova and Hofer, 2020; Benn et al., 2023).
At one extreme are pure vision encoders (ViT-
MAE, DINOV2) trained without any language or
category label supervision. At the other, models
like CLIP and SigLIP learn to represent the vi-
sual input by aligning it to text as batch-wise near-
est neighbours: a form of language-steered world
learning. We also evaluate text-only models that
get categories for free (via word labels) but have
to infer perceptual and other attributes from dis-
tributional semantics. Inasmuch language “carves
up the world”, visual encoders with more language
input should be better aligned with semantic norms
for English concepts.

We test these hypotheses using two concept at-
tribute datasets. The first dataset links the semantic
norms from the McRae dataset (McRae et al., 2005)
to the concepts of the THINGS project (Hansen and
Hebart, 2022), with an additional expansion step,
to create the new McRae X THINGS dataset. The
second is a dataset of neuro-cognitive attribute rat-
ings from Binder et al. (2016), which has been used
to investigate language model representations (Ut-
sumi, 2020; Turton et al., 2020; Chronis et al.,
2023), but not, to our knowledge, visual or multi-
modal representations.

Our results demonstrate strong conceptual aware-
ness in multimodal visual encoders across all at-
tribute types. Moreover, while single-modality
models behave most similarly (i.e. vision mod-
els and language models correlate most strongly
within-modality), all performant models are highly
correlated, indicating a degree of convergence,
given exposure to sufficient data of either modality.

The main contributions of this paper include:

* Improved understanding of the conceptual
knowledge embedded in vision encoder mod-
els, ranging from self-supervised to class-
supervised and language-supervised.

* McRaex THINGS: a new dataset of concepts
densely annotated with semantic norms, using
attributes from the McRae dataset and con-
cepts from THINGS.

* Best practices for extracting representations
for lexical semantic probing from LLMs.

2 Related Work

Understanding and evaluating the lexical semantics
learned by language models via co-occurrence pat-
terns is a long-standing concern in distributional
semantics. A popular method for evaluating vector
representations of lexemes is the correlation be-
tween the cosine similarity of two words in model
space compared to human ratings of word similar-
ity (e.g. using MEN (Bruni et al., 2014) and Sim-
Lex (Hill et al., 2015)). However, cosine similarity
cannot uncover the underlying dimensions of mean-
ing space, or how the space distinguishes between
human-meaningful attributes. In contrast, testing
for specific semantic attributes, by predicting se-
mantic norms, can inform us about the underlying
organisation of a model’s representation space.

Baroni and Lenci (2008) were the first to use the
McRae semantic norm dataset to evaluate the corre-
spondence between early models of distributional
semantics and cognitive concepts, using nearest-
neighbors procedures. Using prediction models
similar to linear probing, Rubinstein et al. (2015);
Lucy and Gauthier (2017) find that static word em-
beddings encode taxonomic properties significantly
more accurately than other types of properties, a
finding we replicate. However, Sommerauer and
Fokkens (2018) find that embeddings also reliably
encode attributes that cut across taxonomic classes,
such as is dangerous. Fagarasan et al. (2015)
show that semantic norms can be predicted from
word embeddings for unseen concepts. Contextual
representation models outperform static word em-
beddings (Forbes et al., 2019; Bhatia and Richie,
2024). Misra et al. (2022, 2023) use semantic
norms to explicitly probe for taxonomic generaliza-
tion across concepts.

Conceptual attributes (either in the form of
McRae norms directly or very similar data) have
also been used to investigate the complementar-

24175



ity of representations learned from language and
vision. While Silberer et al. (2013); Derby et al.
(2018); Derby (2022) show that multimodal repre-
sentations can improve norm prediction, i.e. that
two modalities are better than one, Bruni et al.
(2014); Collell and Moens (2016) find only slight
patterns of differences when they examine the dif-
ferences between vision and language representa-
tions in predicting different attribute types.

This latter finding (which we confirm for more
recent models) is in line with more recent work
by Merullo et al. (2023); Li et al. (2024) which
posits a linear relationship between vision and lan-
guage encodings. These works also compare across
different vision architectures with more or less su-
pervision. Merullo et al. (2023) connect frozen
visual encoders to frozen language models with
a trained linear transform, and find that the per-
formance on image captioning correlates with the
amount of language supervision of the visual en-
coder: CLIP, trained with full captions, performs
better than a model trained on category labels, and
self-supervised BEiT, trained on image data alone,
performs worst. Alternatively, Li et al. (2024)
perform Procrustes analysis (a linear mapping)
between image representations from ImageNet-
trained vision models and language model represen-
tations for the same concepts, and find better align-
ment with larger language models, and with vision
models that have been trained on supervised classi-
fication tasks, rather than self-supervised learning.

There is less work on the semantic alignment
of vision model representations with human con-
ceptual knowledge. In the computer vision lit-
erature, Muttenthaler et al. (2023); Mahner et al.
(2024) has investigated the alignment between vi-
sion model representation spaces and human visual
similarity judgements, using the THINGS dataset
(Hebart et al., 2023). This work is directly analo-
gous to evaluating pairwise similarities of language
model representations against semantic similarity
judgements, and as such, doesn’t separate out in-
dividual concept attributes. Moreover, it assesses
representations corresponding to instances (single
images), rather than concepts (collections of in-
stances). Mahner et al. (2024) compare sparse
representations of human and model similarities,
finding that while core dimensions overlap, hu-
mans use more semantic cues, and vision models
rely more on visual cues, as well as many human-
uninterpretable cues. In a study of several vision
encoders, Muttenthaler et al. (2023) find that mod-

els trained on larger datasets and language supervi-
sion (CLIP) are more aligned with human similar-
ity than smaller label- and self-supervised models.
Finally, Suresh et al. (2024) show that image en-
coders trained to predict object attributes, rather
than object classes, are more aligned with humans.

3 Concept Attributes: Datasets

Understanding concepts via a core set of distinc-
tive attributes is a long-standing quest in cogni-
tive science (Aristotle, 4th c¢. BC / 1928; Rosch
and Mervis, 1975; Nosofsky et al., 2018; Girden-
fors, 2000). One method of discovering which
attributes are important for human categorisation
is semantic norm elicitation: participants are asked
to write down the “characteristics and attributes”
(Rosch and Mervis, 1975) or “properties” (McRae
et al., 2005) they associate with a particular concept.
Pooled over many participants, semantic norms
thus represent a concept as a set of frequently men-
tioned salient attributes.

While commonly used, semantic norm data have
two important weaknesses. Firstly, they are not
complete: less-salient, but nonetheless present, at-
tributes of concepts are often missing (e.g. TIGER
but not CAT has teeth). To remedy this first issue,
we synthetically “complete” the attribute values
from (McRae et al., 2005) across a large set of
concepts. Secondly, norms are biased towards at-
tributes that are easily lexicalised. We thus also
explore a recent dataset of ratings across a fixed set
of attributes related to sensory and neurological di-
mensions that are not based on elicited lexicalised
norms (Binder et al., 2016).

Since we are exploring visual and linguistic rep-
resentations, the concepts we consider are concrete
objects, corresponding to English nouns. We use
the set of object concepts from THINGS (Hebart
et al., 2019), which also includes a set of quality-
controlled images for each concept.

McRaex THINGS norms. The original McRae
semantic norms dataset (McRae et al., 2005) con-
tains 541 concepts and 2 524 unique norms. The
attributes are classified into different types, such
as ‘taxonomic’, ‘functional’, ‘visual-colour’, cor-
responding to associated brain regions (Cree and
McRae, 2003). We discard attributes appearing
with fewer than five concepts; we also group highly
similar attributes (e.g. used by the military,
used by soldiers, used by the army) using se-
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mantic similarity.” This results in a final set of
278 attributes. We then find the corresponding
norms/attribute values for all 1854 concepts in
THINGS, resulting in a densely annotated dataset
without missing norms.

To obtain a complete mapping between concepts
and attributes, we ask GPT-4o to annotate whether
or not each attribute is a common trait of each
concept (see Appendix A); each concept is briefly
disambiguated and described using a definition ex-
tracted from the THINGS metadata. As a sanity
check we verify that the norms (concept—attribute
pairs) produced by our method include the norms
in the original McRae set. We obtain a recall of
94-100% at responding correctly with respect to
the human-authored attributes for a selection of ten
attributes (one for each category), and, as desired,
the number of concepts positively associated with
a given attribute increases. For example, the num-
ber of positive concepts for tastes good increases
from 28 to 335; for lays eggs from 39 to 83; for
is dangerous from 121 to 299.

We note that Hansen and Hebart (2022) also
used an LLM-based process to collect norms for
THINGS, but their process was designed to elicit
more (potentially unique) norms for these concepts,
whereas ours has the goal of comprehensive at-
tribute annotation to avoid false negatives (missing
positive values).

Binder ratings. Binder et al. (2016) collected
dense ratings for 65 “experiential attributes” of
534 concepts, of which we use the 155 concepts
also found in THINGS. The experiential attributes
correspond to lower-level conceptual dimensions
such as visual brightness, somatic pain, or mo-
tor movements in the upper/lower body, and are
organized into 14 different fine-grained domains
(vision, somatic, etc.), collapsed to 7 coarser do-
mains (sensory, motor, etc.). Participants used a
7-level rating scale® and the final concept-attribute
rating is the mean across participants.

4 Models

We primarily study the performance of image en-
coder models using Vision Transformers (ViT)
backbones (Dosovitskiy et al., 2020), trained with
different amounts of linguistic supervision. Table 1

2We merge attributes with cosine similarity greater than
0.9, using the sentence embedding model all-MiniLM-L6-v2.

3They answered the question “To what degree do you think
of CONCEPT as having/being associated with ATTRIBUTE?”

presents a high-level overview. At one extreme,
we use visual encoders trained without any label
supervision. We also use encoders trained with
object label classification supervision, e.g. trained
on the ImageNet dataset. At the other end of the
spectrum, we use visual encoders resulting from
large-scale vision-language contrastive learning,
and encoders derived from vision-language gener-
ative pretraining. The models were chosen so the
encoders are approximately the same size, and op-
erate over the same patch sizes. We also evaluate
text-only embedding models, to compare the con-
ceptual knowledge learned from the textual modal-
ity. Appendix B Table 4 shows the exact model
names used in timm / HuggingFace Transformers.

4.1 Vision-only Models

ViT-MAE (He et al., 2022) is a self-supervised
visual encoder pre-trained to reconstruct masked
image patches at the pixel level using a deep Trans-
former encoder and decoder. DINOv2 (Oquab
et al., 2024) is also a self-supervised visual encoder
pretrained using a combination of image-level ob-
jectives and patch-level objectives using a student
and a teacher network (Moutakanni et al., 2024).
This model is trained on a very large diverse dataset
(142M images) without labels. Swin-V2 (Liu et al.,
2022) is a self-supervised visual encoder pretrained
on ImageNet-21K to reconstruct masked image
patches using a single linear layer (Xie et al., 2022).
Max ViT (Tu et al., 2022) is a Vision Transformer
with Transformer blocks that combine convolution,
block attention, and grid-based attention. This
model is directly trained with a multi-class classifi-
cation objective on ImageNet (IN-1K or IN-21K).

4.2 Multimodal Models

CLIP (Radford et al., 2021) has separate vi-
sual and textual encoders that are jointly op-
timized to maximize the similarity of image—
sentence pairs. SigLIP (Zhai et al., 2023) also
has separate encoders that are trained to maxi-
mize a compute-efficient contrastive sigmoid loss.
PaliGemma (Beyer et al., 2024) is a generative
vision-language model initialized from the SigL.IP-
S0400M visual encoder and the Gemma language
model (Team et al., 2024). It is then further trained
on a multimodal conditional language modelling
task, and we use the visual encoder at the end of
this multi-stage multimodal pretraining. LLaVa-
1.5 (Liu et al., 2024) is also a generative model that
projects CLIP ViT/L embeddings into the Vicuna-
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Model Params. Dataset Size  Objective Labels IN-1K
FastText - CommonCrawl 840B NLL - -
GLoVe - CommonCrawl 840B NLL - -
Numberbatch - ConceptNet N/At  PPMI - -
DeBERTa v3 86M Wiki+Books 3.1B RTD - -
Gemma 2B Private 6T NLL - -
ViT-MAE 304M  ImageNet-1K 1.3M MSE N/A 85.9
Max ViT (IN-1K)T 212M  ImageNet-1K 1.3M Classification = Object classes 85.2
Max ViT (IN-21K) 212M  ImageNet-21K 14M  Classification  Object classes 88.3
Swin-V2f 197M  ImageNet-21K 14M  SimMIM N/A 87.7
DINOvV2 304M LVD 142M DINO +iBOT N/A 86.3
CLIP 304M  Private 400M Contrastive Sentences 83.9
SigL.IP 400M  Private 4B Sigmoid Contr. Sentences 83.2
PaliGemma 400M  Private 1B NLL Sentences N/A
LLaVa-1.5 324M  CC3M, OKVQA,etc. 1.2M NLL Sentences N/A
Qwen2.5-VL 669M  Private UNK NLL Sentences N/A

Table 1: Overview of the models studied in this paper. The number of parameters in the encoder, the type and size
of the pretraining data, the pretraining objective, and, where applicable, the reported ImageNet1K classification
accuracy at 224px x 224px, except where noted otherwise. 1: 384px x 384px. I: ConceptNet is a knowledge graph

of words and phrases with 8M nodes and 21M edges.

7B language model (Zheng et al., 2023) using an
MLP projector. The model is multimodally trained
on instruction data generated with GPT-4 on the
CC3M dataset (Sharma et al., 2018), as well as on
other scientific visual question answering datasets.
Qwen2.5-VL (Bai et al., 2025) similarly integrates
vision information through projection into an large
language model, but in this model the image is in-
put as a series of tokens, rather than as a single
embedding. The model is trained in multiple stages
on a wide variety of proprietary multimodal data.

4.3 Language-only Models

FastText (Mikolov et al., 2018) creates static word
embeddings by combining character n-grams em-
beddings within a white space-delimited word.
GLoVe (Pennington et al., 2014) also creates static
embeddings based on aggregated global word-word
co-occurrence statistics. For both FastText and
GLoVe we use 300D embeddings trained on Com-
mon Crawl (840B tokens). Numberbatch (Speer
et al., 2017) embeddings (300D) are a combination
of ConceptNet graph embeddings plus GLoVe and
word2vec embeddings. Gemma (Team et al., 2024)
is a 2B parameter causal language model trained
on 3T tokens. DeBERTa v3 is an language en-
coder trained on Wikipedia and the Books Corpus

(3.1B words) to detect replaced tokens in sentences.
CLIP (Radford et al., 2021) also has a language
encoder; we use the 151M parameter model that
was trained with the visual encoder.

5 Methodology

We use trained linear probes (Alain and Bengio,
2017; Hupkes et al., 2018; Belinkov, 2022) to
measure the extent to which conceptual attributes
(McRae feature norms or Binder attribute ratings)
are evident in image and text representations. This
evaluation requires generalizing attributes to un-
seen concepts, based on a small set of positive
examples. Following standard methodology, the
linear probes are trained on top of frozen repre-
sentations, which allows us to estimate what is
captured in the representations directly.

Each attribute is learned with a separate probe.
For McRae x THINGS, we train a linear classifier for
each attribute that maps a concept representation to
a binary label, using a simple logistic regression.*
For the Binder ratings dataset, we train a linear re-
gression on each attribute to predict the mean rating

*We use sklearn’s default implementation without regu-
larization and increase the maximum number of iterations to
1000. We cannot train more elaborate (MLP) probes since our
training datasets are very small, with few positive examples.
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for each concept-attribute pair.’> For both datasets,
we generate 10 train—test splits for each attribute us-
ing 5-fold stratified cross-validation repeated twice,
and report the average performance.

Visual concept representations. In the visual
modality, a concept is represented by images from
its THINGS concept class. The visual concept e, is
computed by averaging the embeddings extracted
from the last layer of a given vision encoder. Since
many of the vision models produce a dense grid of
embeddings, we obtain a single vector by average
pooling the embeddings spatially.

Textual concept embeddings. In the language
modality, a concept is represented by the English
noun label given by McRae. Static word embed-
ding models (GloVe, FastText, Numberbatch re-
turn an embedding directly, using only the surface
form of the word.® Contextual language models
(Gemma, DeBERTa v3) require a more careful
methodology to extract meaningful vector repre-
sentations. In these results, we always average over
10 sentences of the word in context (collected from
the GPT40 API, see Appendix A), following (Vuli¢
et al., 2020; Bommasani et al., 2020). We find
that each model requires a different extraction tech-
nique in order to achieve reasonable performance;
see Appendix E for failed attempts and suggestions
for best practices. Briefly, the best representations
are found from mean-pooling over multiple lay-
ers (Vuli¢ et al., 2020). For Gemma, we obtain
much better performance using only the last token
of the target word, while for the masked language
model (DeBERTa v3) we use the mean over all
concept tokens.

5.1 Evaluation and Baselines

For McRae X THINGS, our main evaluation metric is
F; score. Following (Hewitt and Liang, 2019), we
calculate the selectivity of each probe as the differ-
ence between the F; score on the correct labelling
minus the expected random performance (i.e. the
expected performance of a probe that learned a fre-
quency bias). F; selectivity results are thus already
with regard to a random baseline. (A second ran-
dom baseline is provided by the SigLIP-Random
encoder, an untrained, randomly initialized, ver-
sion of SigLIP.) For the linear regression results on

SWe use the LinearRegression implementation from
sklearn with default settings: fit intercept, no regularisation.

%The static embeddings for multi-word concepts are aver-
aged; homophones are not distinguished.

McRae x

THINGS Binder
Model F; selT RMSE |
Vision models
Random SigLIP 154 1.43
ViT-MAE 35.6 0.94
Max ViT (IN-1K) 29.0 1.37
Max ViT (IN-21K) 433 0.84
DINOv2 44.5 0.80
Swin-V2 47.0 0.74
Multimodal vision models
LLaVA-1.5 45.0 0.83
Qwen2.5-VL 46.8 0.79
CLIP (image) 48.4 0.74
PaliGemma 49.9 0.73
SigLIP 50.1 0.71
Language models
GloVe 840B 39.1 0.89
FastText 40.2 0.91
Numberbatch 44.1 0.83
CLIP (text) 43.0 0.81
DeBERTa v3 45.5 0.68
Gemma 49.8 0.67

Table 2: Performance of linear probes, averaged across
attributes, for semantic norms on McRae X THINGS, and
concept attribute ratings on Binder. We report F; se-
lectivity on McRaex THINGS, which is corrected for
random performance. On Binder we perform linear re-
gression and report the root mean squared error (RMSE).
More results can be found in Appendix Table 5.

Binder, we report root mean squared error (RMSE)
as the main metric. (We also include F; accuracy
results for logistic regression on a median-binarised
version of Binder in Appendix C.)

6 Results
6.1 Main Results

The results for linear probe accuracy results are
shown in Table 2; see also Appendix C, Table 5.

The impact of modality. Across the two datasets,
the multimodal vision encoders are consistently
amongst the highest performing models. How-
ever, the large text-only LLMs (Gemma-2B and
DeBERTa v3) also rank highly. The self-supervised
Swin-V2 model is the best vision model, and
clearly outperforms (among others) the static word
embedding models, despite having no access to
lexical information.
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Figure 2: Per-attribute Pearson correlation between models on McRae x THINGS and Binder datasets.
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Figure 3: Relative rankings of models across the
McRaex THINGS and Binder datasets (higher rank is
better). The vision models are show in warm colours,
language models in cool colours.

Dataset differences. Text-only models (espe-
cially Gemma and DeBERTa v3) perform relatively
better on the Binder attribute dimensions, as seen
in the rankings (Figure 3), while visually-informed
models predict McRae X THINGS attributes better.
Both dataset show large variation across different
attributes.

Effect of training data amounts. Language
models trained on larger amounts of data per-
form consistently better on McRae X THINGS and
Binder. On the vision side, Swin-V2 learns bet-
ter representations than DINOv2 for predicting se-
mantic attributes, despite having seen one tenth

as much data (14M vs 142M). Swin-V?2 also out-
performs the label-supervised VIT-MAE (IN-21K),
having been trained on the same dataset, but with a
less-informed objective. However, for Max ViT,
the training data size has a substantial impact.
For the multimodal vision models, the results on
McRaex THINGS suggest that training data mat-
ters to some degree; for example, CLIP (image)’
(400M) is outperformed by SigL.IP and PaliGemma
(5B). However, it is hard to disentangle the effect
of dataset size from architecture and, in the case of
language models, probing methodology (see Ap-
pendix E).

Correlation between model predictions. To un-
derstand the difference in model behaviour at the
level of individual attributes, we calculate pair-
wise Pearson correlations between probe accu-
racy on different models (Figure 2). For the
McRae X THINGS norms and Binder attributes, we
see modality clusters, where vision encoders (with
the exception of Max ViT IN-1K) are correlated
with each other, and likewise the static word em-
bedding models and the LLMS Gemma and De-
BERTa v3. We also see some cross-modal correla-
tions, with CLIP (text) correlating relatively higher

"We also evaluated the vision encoder of the performant
open-weight (DFN2B-CLIP-ViT-L-14) trained on DataComp-
1B for the same number of total training examples as OpenAl
CLIP. It achieves an F; selectivity of 47.7 for McRae X THINGS
and an RMSE of 0.79 on Binder.

24180


https://huggingface.co/apple/DFN2B-CLIP-ViT-L-14

with vision models in general (not only the CLIP
image encoder), and Swin-V2 correlating more
highly with language models on Binder. Overall,
all (reasonable) model correlations are quite high,
indicating that good encoders across modalities
are rather similar. Inspecting the best and worst
attribute for each model shows high consistency:
For McRae x THINGS, the most accurate attribute
across models is is mammal, while the worst is con-
sistently different sizes.® For Binder the easiest
attribute is angry, while the hardest is sound for
most models. Figure 4 visualizes norm prediction
performance of specific pairs of models (vision-
only Swin-V2 vs text-only Gemma, CLIP image vs
CLIP text), and qualitative examples can be found
in Appendix D.

6.2 Attribute Type Results

Are vision encoders better at visual-perceptual
features? Do language models encode more
functional-encyclopedic features? To answer these
questions we study performance aggregated by at-
tribute type, as given by the datasets. Figure 5
presents the McRae X THINGS probing results per
attribute type. Among the ten types, we see that tax-
onomic, visual-motion, and taste attributes are the
easiest to predict. The vision models, especially the
multimodal models, generally outperform the static
word embeddings and to some extent the language
models (Gemma and DeBERTa v3). This makes
sense for visual attributes like colour, but, surpris-
ingly, this is the case even for “encyclopedic” and
“functional” attributes, which should be easier to
learn from text than from visual inputs. Results by
Binder attribute domain (Appendix Figs. 8 and 9)
show similar patterns, with strong LLMs, multi-
modal vision encoders, and Swin-V2 performing
similarly across attribute domains.

Possible confounds. Since linear probes are
learned using attribute extensions (the set of pos-
itive examples of an attribute), we cannot be sure
they actually learn the attribute characteristics, and
not some closely correlated, but more visually or
textually available, attribute. For example, the two
taste attributes (tastes good and tastes sweet)
have extensions that are subsets of the food super-
category, which is learnable from visual features
alone (e.g. as demonstrated by high performance

$Interestingly, this is an attribute that is clearly associated
with the (variation shown by the) concept, instead of being
associated with individual instances.

Model Modality Correlation
CLIP (image) V(+L) 0.594
FastText L 0.578
Numberbatch L 0.573
LLaVA-1.5 V(+L) 0.565
GloVe 840B L 0.564
SigLIP V(+L) 0.561
PaliGemma V(+L) 0.554
Qwen2.5-VL V(+L) 0.553
DINOvV2 A" 0.552
CLIP (text) L(+V) 0.550
Swin-V2 A" 0.545
Gemma L 0.543
Max ViT (IN-21K) \" 0.542
DeBERTa v3 L 0.536
ViT-MAE A" 0.495
Max ViT (IN-1K) \" 0.413
Random SigLIP v 0.339

Table 3: McRaex THINGS dataset: Pearson correlation
between per-norm probing performance, as measured
by F; selectivity, and the proportion of the norm’s exten-
sion belonging to a single supercategory (i.e. the extent
to which predicting the supercategory would lead to
high precision). Modality indicates which input each
model operates on: vision (V) or language (L), with
multimodality indicated in brackets.

on the taxonomic is food norm for all models).
Likewise, many of the motion attributes capture
subsets of animals (eats grass). As a initial analy-
sis, we check whether models are better at learning
attributes that coincide with taxonomic supercate-
gories, as provided by the THINGS dataset. The re-
sulting correlations (Table 3) are highest for CLIP-
image (0.594), FastText (0.578), and Numberbatch
(0.573), a heterogenous set of models in terms of
modality and their linear probing accuracy.

7 Conclusion

This linear probing analysis on two datasets shows
that multimodally-trained vision encoders rep-
resent conceptual attributes better than single-
modality vision-only or text-only encoders. How-
ever, the single-modality encoders still perform
well. In particular, the self-supervised Swin-V2,
and to a lesser extent DINOv2 models, have learned
a large amount of conceptual attribute knowledge,
comparable to modern LLMs, and more than
static word embeddings. This result is particu-
larly surprising given that these vision models have
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not been trained to distinguish between concepts,
rather than instances, at all. Intriguingly, label-
supervision of vision models seems to be harm-
ful for learning human-aligned attributes, judging
by the relatively worse performance of Max ViT,
trained on ImageNet classification, compared to
the self-supervised Swin-V2.

There is a long-held belief that we need
multimodally-grounded representations to over-
come the limitations of learning from only lin-
guistic data. Our results suggest that Vision
and Language encoders encode (somewhat) com-
plementary views of concepts inasmuch same-
modality models correlate stronger than different-
modality models. However, overall correlations are
high, indicating a level of convergence. Previous

claims of modality convergence have used nearest-
neighbours measures (Huh et al., 2024; Li et al.,
2024); here we show similar convergence results
using a very different linear probing methodology.

We expect models with conceptual knowledge
organised in human-like ways, that are aware of the
semantic attributes that underlie category member-
ships, would, in turn, achieve better downstream
performance in language processing tasks. In fu-
ture work, we will investigate the predictive power
and utility of our probing tasks for multimodal
training. This will also require going beyond sim-
ple object concepts to investigate more abstract,
situational and configurational, concepts, in order
to cover a larger proportion of the human concep-
tual repertoire.
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Limitations

Linear probes Our linear probes assume that se-
mantic attributes are encoded linearly in represen-
tation space. However, it is possible that semantic
attributes are encoded as non-linear combinations:
(Sommerauer and Fokkens, 2018) see increased
probing accuracy with small MLPs compared to
a logistic regression model such as we used. Our
datasets are too small to learn MLPs without severe
overfitting.

English-only Our experiments and analyses only
concern evaluating the ability of models to pre-
dict the English semantic attributes of concepts
expressed in English. This hinders our ability to
make broader claims about the ability of models
to perform this task in other languages, or for non-
Western concrete concepts (Liu et al., 2021). In
future work, we are interested in understanding the
degree and quality of English-language influence
on visual encoder representations.

Risks We forsee no risks associated with this
research.
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A Data Collection

Concept-attribute norm annotations. To ob-
tain a complete representation of the THINGS con-
cepts in terms of the (most frequent) attributes
appearing in the McRae norms, we asked GPT-
40 (gpt-40-2024-08-06) whether each norm is a
valid trait of each concept; Figure 6 shows the exact
prompts. Given 1854 concepts and 278 attributes,
this yields over 515k queries. We used the OpenAl
Batch API for a the total cost of $127.64.

Annotation validation. When extracting the an-
notations from the GPT-40 output, we observed
that the format was not always consistent: e.g. the
valid field was usually either true or false, but
sometimes also True, TRUE, yes, Yes, sometimes,
False, no, No (sometimes rendered as a string,
sometimes as a literal); sometimes the valid field
also included explanations for the chosen answer
or the concept definition; sometimes the produced
JSON used single quotes, sometimes double quotes.
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ViIT-MAE facebook/vit-mae-large

Max ViT 1K maxvit_large_tf_384.inlk

Max ViT 21K maxvit_large_tf_224.in21k
DINOv2 facebook/dinov2-large

Swin-V2 swinv2_large_window12_192.ms_in22k
LLaVA-1.5 1llava-hf/1lava-1.5-7b-hf
Qwen2.5-VL.  Qwen/Qwen2.5-VL-3B-Instruct

CLIP openai/clip-vit-large-patch14
PaliGemma google/paligemma-3b-mix-224
SigLIP google/siglip-so40@m-patch14-224
GLoVe glove-840b-300d

DeBERTa v3  deberta-v3

Gemma google/gemma-2b

Table 4: Precise names of the models used in this paper.

In retrospect, many of these exceptions may have
been prevented by a more precise prompting, but
they were not apparent when testing at smaller
scale. To account for all these exceptions, we de-
fined a custom parser that managed to extract a
boolean value for each of the outputs. The result-
ing data is available on the project’s webpage.

Textual contexts. The best performance for con-
textualized language models depends on having
a collection of sentences in which the concepts
appear. In the absence of a large and naturally oc-
curring dataset of such sentences, we prompted the
GPT-40 API (gpt40-2024-08-06) to collect the
data. We also collected sentences with the addi-
tion constraint to avoid using any of the positively-
labelled semantic norms for a given concept. (This
was in order to reduce the chance that the result-
ing embedding literally included features about
the expected norm.) Figure 7 shows the prompts
used. The total cost of collecting the sentences was
$26.24.

B Model Details

For reproducibility, Table 4 shows the exact model
versions used in the experiments.

C Further Results

Detailed results. Table 5 presents the results in
terms of precision, recall, raw Fy, and F; selectivity
scores for the McRae X THINGS dataset and median-
binarised Binder dataset. On the original Binder
dataset, we report root mean squared and mean
absolute errors.

Per-attribute results on Binder. Figure 8
presents the detailed results on each of the 67 at-
tributes from the Binder dataset. Figure 9 shows the

results aggregated per attribute type (7 types). We
see that the auditory attributes (audition, loud,
sound) are the most difficult. Distinguishing be-
tween positively and negatively associated con-
cepts (Benefit, Harm, Pleasant, Unpleasant,
Happy) is also surprisingly difficult. Interestingly,
attributes to do with Time and negative Emotions
(sad, angry, disgusted) are relatively easy for
most models. Attributes that have directly to do
with the human body (Face, Body, Self, Human)
are also fairly easy.

D Qualitative Results

In Figure 10 we show results at the level of at-
tributes and concepts. The results are four at-
tributes (has 4 legs, made of wood, is dangerous,
tastes sweet), and for each we show five ran-
dom samples (concepts). For each sample we pro-
vide, the prediction using the same model selec-
tion as at the end of Section 6.1: that is, the best
vision-only model (Swin-V2), the best language-
only model (Gemma), and the language-and-vision
models (CLIP image and CLIP text). Note that the
models ingest the concept samples differently: the
vision models average embeddings over multiple
images, Gemma uses contextual sentences; so the
images and concept word in Figure 10 are shown
for illustrative purposes.

For the attribute has 4 legs we see that the
vision-based models (Swin-V2 and CLIP-image)
label TABLECLOTH as positive, likely due to visual
co-occurrence with TABLE. All models struggle
with the difficult cases of KANGAROO, predicted as
having 4 legs, and SKI, predicted as not made of
wood. Some concept—attribute pairs are arguably
ambiguous—is a CORKSCREW dangerous? is a
TOMATO SAUCE sweet?—resulting in disagree-
ments between models.

E Failures in Extracting Contextualized
Textual Representations

Concept representations can, in principle, be ex-
tracted from any language model using just the
surface-form of the concept label token(s). Here,
we report a collection of negative results for this
seemingly simple task using contextual language
models. Table 6 presents the complete results of our
endeavours. Initial experiments with the Gemma-
2B language model focused on using only the static
embedding layer, which resulted in complete fail-
ure to train meaningful probes (A). Closer inspec-
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McRae X THINGS Binder (binarised) Binder

Model PT RT Fit Fiselt Pt R1T Fi 1 Fiselt RMSE| MAE |
Vision models

Random SigL.IP 26.2 28.0 26.8 154 60.6 60.3 59.8 9.3 1.43 1.12
ViT-MAE 49.6 46.1 47.0 35.6 70.0 70.0 694 18.8 0.94 0.73

Max ViT (IN-1K) 38.7 44.1 404 29.0 622 61.0 61.0 10.4 1.37 1.07
Max ViT (IN-21K)  63.5 50.3 54.7 433 71.6 73.6 720 21.5 0.84 0.65

DINOV2 59.8 54.0 559 445 738 73.7 732 22.7 0.80 0.61
Swin-V2 67.3 53.8 58.4 47.0 748 752 74.5 23.9 0.74 0.55
Multimodal vision models

LLaVA-1.5 59.1 55.5 564 45.0 74.6 740 73.8 23.2 0.83 0.64
Qwen2.5-VL 62.0 56.6 58.2 46.8 754 750 74.7 24.1 0.79 0.61
CLIP (image) 63.5 58.1 59.8 484 77.0 76.2 76.1 25.5 0.74 0.56
PaliGemma 67.3 58.2 613 499 76.0 76.1 755 25.0 0.73 0.55
SigLIP 67.5 58.4 61.5 50.1 76.8 76.0 75.8 25.2 0.71 0.53
Language models

GloVe 840B 519 51.1 50.5 39.1 74.6 741 739 23.3 0.89 0.69
FastText 55.1 50.7 51.6 40.2 74.0 74.1 735 22.9 0.91 0.71
Numberbatch 59.6 54.0 555 441 75.0 750 745 23.9 0.83 0.65
CLIP (text) 60.2 51.7 544 43.0 732 727 725 21.9 0.81 0.63
DeBERTa v3 64.2 532 569 45,5 769 76.1 759 25.3 0.68 0.52
Gemma 68.7 57.2 61.2 49.8 77.1 76.5 76.3 25.7 0.67 0.51

Table 5: Detailed results, in terms of precision (P), recall (R), F; score (F;) and F; selectivity score (F; sel), of
concept norm linear probes on the McRae X THINGS and binarised Binder datasets. On the original Binder dataset
we report root mean squared error (RMSE) and mean absolute error (MAE).
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SYSTEM: “You are asked to decide whether an attribute is a common trait of a concept (to follow).
Please answer the request in JSON format with the following structure: {‘concept’: CONCEPT,
‘attribute’: ATTRIBUTE, ‘valid’: ANSWER}”

USER: "Is {attribute} a common trait of {concept}, in the sense of {concept_definition}?"

Figure 6: The prompt used to collect the McRae x THINGS dataset.

SYSTEM: “You are asked to write {num} short sentences about a word (to follow). Answer the
request by returning a list of numbered sentences, 1-{num}.”

USER: “Write {num} short sentences about {concept}. You must use {concept} as a noun in
each sentence.”

SYSTEM: “You are asked to write {num} short sentences about a word (to follow). Answer the
request by returning a list of numbered sentences, 1-{num}.”

USER: “Write {num} short sentences about {concept}. You must use {concept} as a
noun in each sentence. Try to avoid using the following phrases in any of the sentences:
{positive_attributes}”

Figure 7: The prompts used to collect sentence contexts for each concept in the THINGS dataset. Top: Unconstrained
prompt; Bottom: Constrained prompt. The constraint tries to prevent GPT4o from mentioning the attributes already
associated with a concept.

McRae X THINGS

Model Input Seq. Layer P R F, Fj sel
A Gemma word mean 0 (emb) 43.2 253 30.3 18.8
B Gemma word (space) mean 0 (emb) 583 379 442 328
C Gemma sentences (10) mean 1 61.2 41.8 479 36.5
D Gemma sentences (10) mean 18 (last) 63.8 524 563 449
E Gemma sentences (10) last 18 (last) 66.5 56.8 60.2 48.8
F Gemma sentences (10) mean 0-6 62.2 46.3 51.5 40.1
G Gemma sentences (10) mean 0-9 62.3 48.7 532 41.8
H Gemma sentences (10) mean 9-18 65.9 539 58.0 46.6
I Gemma sentences (10) last 9-18 68.7 572 612 498
J  Gemma sentences (50) mean 18 (last) 62.7 52.1 55.8 444
K Gemma sentences (50, constr.) mean 18 (dast) 62.1 51.6 552 43.8
L DeBERTav3 sentences (10) mean 12 (last) 439 429 428 314
M DeBERTa v3 sentences (10) mean 04 62.9 51.6 553 439
N DeBERTa v3 sentences (10) mean 0-6 64.2 532 569 455
O GPT2 sentences (10) mean 12 (last) 454 41.1 424 31.0
P BERT base uncased sentences (10) mean (04 48.9 41.1 435 320
Q BERT base uncased sentences (10) mean 0-6 50.9 427 452 33.8

Table 6: The effects of input (isolated concept word or contextual sentences), sequence pooling (mean or last token),
and layer (individual layer or averaged over a range of layers) for the contextualised language models.
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Figure 8: Per-attribute RMSE on Binder attribute ratings, across models. Lower is better.
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Figure 9: Results (RMSE) aggregated over attribute domain on the Binder data (note: lower is better). The
number below each domain indicates the number of attributes belonging to that domain. The error bars denote
95% confidence intervals using bootstrapping. Vision models are in reddish colours, while language models are in
greenish colours.
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Model F1 sel. Five random samples per attribute and their predictions

has 4 legs (visual: form & surface)

DOG + + TABLECLOTH -— ALTAR — KANGAROO -

Swin-V2 78.5 v v v ° v
Gemma 75.7 v ° ° v v
CLIP (image) 76.6 v VR4 v v v
CLIP (text) 71.6 v | IV v v v

made of wood (visual: form & surface)

AXE + BOW3 - — CARDBOARD -

Swin-V2 46.1 B v ° ° v
Gemma 49.7 v ° v v
CLIP (image) 47.8 v ° ° °
CLIP (text) 43.8 v v v v

is dangerous (encyclopaedic)

DYNAMITE + RAZOR +  CORKSCREW - -

Swin-V2 38.7 m vV ° v °
Gemma 51.0 v v ° v
CLIP (image) 44.8 v ° ° °
CLIP (text) 38.9 v v ° °

tastes sweet (taste)

PLUM + RAISIN + CAKEMIX + TOMATO SAUCE - -

Swin-V2 72.9 ‘ v v i, ° ° v
Gemma 71.8 ﬂ v v v °
CLIP (image) 729 e v ° ° °
CLIP (text) 59.8 il v v . .

Figure 10: Five random predictions of linear probes trained on four attributes. Positive concepts are indicated by
+, negative concepts by —. The linear probes are trained on embeddings from one of the four models: Swin-V2,
Gemma, CLIP image and text encoders. If a model predicts a concept as having the attribute, we indicate this by v;
otherwise we use e. The correctness of the prediction is colour-coded: green for a correct prediction, red for an
incorrect one. In the second column, we show the F1 selectivity (%) for the each of the models and attributes.
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tion revealed that the Gemma-2B tokenizer tok-
enizes single word inputs differently from words
appearing in a sentence (i.e., words preceded by a
space): <bos>aardvark—{aard, vark} instead of
{_aard, vark}. Using the within-sentence (space-
prepended) tokenization, performance improved
but was still lower than expected (B). Neverthe-
less, this approach was still substantially below the
performance that we expected. Following Bom-
masani et al. (2020), we decided to collect con-
textualized sentence representations over a set of
textual contexts for each concept. We collected 50
sentences from the GPT-40 API for each context
(see Appendix A for details). These per sentence
embeddings are averaged over multiple sentences,
analogous to averaging the embeddings over mul-
tiple image instances. This greatly improved per-
formance compared to using the embedding layer
(C), and extracting the representation from the last
later further improved performance (D). Another
improvement was obtained by extracting the repre-
sentation from the final subword token of a concept,
i.e. vark in the tokenization of aardvark (E), and
the final improvement involved extracting the repre-
sentation as an average over multiple Transformer
layers (I). The representations obtained from 50
sentences did not improve performance (J). Per-
formance was slightly reduced using the contexts
generated with the semantic norm constraints (K),
indicating the model could use information from
context sentences for this task. With this methodol-
ogy fixed, we quickly found better representations
for the DeBERTa v3 language encoder (N), and
confirmed that this would also result in marginal
improvements for BERT (Q). We also report results
for BERT base (uncased) and GPT-2 for complete-
ness. We find that BERT base (uncased) performs
much worse than DeBERTa v3 in similar condi-
tions (N vs Q), and that GPT-2 also performs much
worse than Gemma (O vs D). Given these findings,
we do not include BERT or GPT-2 in our main
results.
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